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This paper reviews recent work related to the interplay between quantum information and

computation on the one hand and classical and quantum chaos on the other.

First, we present several models of quantum chaos that can be simulated efficiently on a

quantum computer. Then a discussion of information extraction shows that such models can

give rise to complete algorithms including measurements that can achieve an increase in

speed compared with classical computation. It is also shown that models of classical chaos

can be simulated efficiently on a quantum computer, and again information can be extracted

efficiently from the final wave function. The total gain can be exponential or polynomial,

depending on the model chosen and the observable measured. The simulation of such

systems is also economical in the number of qubits, allowing implementation on present-day

quantum computers, some of these algorithms having been already experimentally

implemented.

The second topic considered concerns the analysis of errors on quantum computers. It is

shown that quantum chaos algorithms can be used to explore the effect of errors on quantum

algorithms, such as random unitary errors or dissipative errors. Furthermore, the tools of

quantum chaos allows a direct analysis of the effects of static errors on quantum computers.

Finally, we consider the different resources used by quantum information, and show that

quantum chaos has some precise consequences on entanglement generation, which becomes

close to maximal. For another resource, interference, a proposal is presented for quantifying

it, enabling a discussion on entanglement and interference generation in quantum algorithms.
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1. Introduction

In classical computer science, the notion of complexity quantifies the asymptotic difficulty

of solving a given problem. Many complexity classes have been defined, which try and

evaluate this in term of space or time resources or both. The main divide separates

polynomial problems, for which the resources needed grow polynomially with the number

of bits of the input, and exponential problems, for which these resources grow exponentially

with the number of bits. Polynomial problems are thought of as easy, while exponential

ones are hard, in the sense that even a moderate increase of the input size becomes very

quickly intractable. In many cases it is easy to quantify the complexity of an algorithm,

but it is more difficult to do the same for a problem, since that requires us to find the best

possible algorithm or at least its complexity. This explains why, while certain problems are

known to be polynomial (arithmetic operations, and so on), and others to be exponential,

many problems are ‘probably’ exponential: the fastest known algorithm is exponential, but

there is no proof of the non-existence of a better algorithm (for example, the factorisation

of integers or the travelling salesman problem).

Quantum computation (for good reviews see Steane (1998), Nielsen and Chuang (2000),

Preskill (1998) and Benenti et al. (2004)) also gives rise to a well-defined notion of

complexity, corresponding to the asymptotic number of elementary quantum operations

(gates) needed for the resolution of a given problem. Unlike classical computation, great

care has to be exercised in specifying the measurement process and the total number

of operations needed, including the measurements. Indeed, on a quantum computer the

information is hidden in a wave function, and the extraction of information requires

quantum measurements. Several problems have been shown to admit an increase in

speed for a quantum computer compared with classical computation. The most famous

is Shor’s algorithm (Shor 1994), which factorises an integer into prime factors in a

polynomial number of operations, which is thus exponentially faster than any known

classical algorithm. Grover’s algorithm (Grover 1997) finds a given item in an unstructured

list quadratically faster than any classical procedure.

On the other hand, in physics, complexity often refers to the dynamics of the system.

The most complex systems in classical physics correspond to chaotic systems, for which a

body of well-defined properties have been found and classified. Such systems often display

ergodicity, mixing and exponential divergence of nearby trajectories. In the quantum

realm, the domain of quantum chaos is less clearly delineated, but it is known that the

corresponding wave functions show complex features that interconnect all parts of the

system.
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In recent years, these two notions of complexity have begun to interact within the

quantum information field. In particular, the efficient simulation of chaotic classical and

quantum systems on a quantum computer has been shown to be possible, and has even

been implemented experimentally. Also, tools from the quantum chaos community have

allowed us to understand certain types of errors that appear with quantum computers.

This paper will review these different subjects, with an inevitable emphasis on my own

work, which I know best. I will conclude with some remarks on the resources available

for quantum information, exemplifying a link between quantum chaos and entanglement

production, and also presenting a way to measure the interference used during a quantum

process such as a quantum algorithm.

2. Complexity in classical and quantum chaos

The development of classical mechanics from Newton to Lagrange and Hamilton has

enabled us to write down equations describing the dynamics. That these equations could

be integrated fully in some cases led to the probably widespread belief that, in general,

there existed certain sets of coordinates in which the motion will become simple and

predictable. This corresponds to the notion of integrable systems. In such systems, the

number of constants of motion equals the number of degrees of freedom N. In general,

this leads to the existence of action-angle variables, in which the equations of motion

become extremely simple. The classical trajectories lie on N-dimensional tori foliating the

2N-dimensional phase space.

It was only at the end of the nineteenth century that Poincaré stumbled across some

evidence of a very different behaviour while investigating the three-body problem. Yet this

was a specific case, and only after the advent of computers did numerical integrations of

equations of motion decisively show that integrable systems where the exception rather

than the rule, and that many systems display a dynamics that is far from simple and

predictable, and was termed chaotic.

2.1. Classical chaos

Such a dynamics also leads to a notion of complexity, corresponding to the difficulty of

accurately predicting the behaviour of such systems. The study of this type of dynamics

led to the definition of several degrees of chaos in Hamiltonian systems (for more

detailed reviews see Lichtenberg and Lieberman (1992) and Ott (1993)). The lowest

degree is ergodicity, for which one typical trajectory is dense in phase space (this is

equivalent to the asymptotic equality of time and space averages). The next level is

mixing: for any two subsets A and B of non-zero measure within the (finite) phase

space Ω with a measure µ, if one applies the dynamics described by iterations of the

function f, then µ(A)/µ(Ω) = limn→∞µ(B
⋂
fn(A))/µ(B). This means that for time long

enough, any subset of Ω contains the same proportion of points originally in A. This

property is already much stronger than ergodicity, but does not tell us how fast the

mixing takes place. K-systems are mixing systems where the process is exponentially fast.

In such systems, nearby trajectories diverge exponentially with time, and the correlation
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functions decay exponentially. A certain function, called the Kolmogorov–Sinai entropy,

is positive for such systems and quantifies the rate of mixing. This level of chaoticity

corresponds to what is termed hard chaos, where the most extreme properties of chaos are

seen.

Most physical systems actually lie between the integrable and chaotic extremes, being

so-called mixed systems where integrable islands coexist with chaotic zones in phase space.

A particular way of producing mixed systems is the (sufficiently smooth) perturbation

of an integrable system. Indeed, according to the Kolmogorov–Arnold–Moser (KAM)

theorem, rational tori where orbits are periodic disappear as soon as the perturbation

is non-zero, and are replaced by chains of integrable islands (resonances) surrounded by

chaotic layers. On the other hand, irrational tori where orbits are quasiperiodic and dense

survive for non-zero perturbation; they are first deformed and then finally disappear for

stronger perturbation.

Chaos can even be seen for Hamiltonian systems with one degree of freedom (phase

space of dimension 2) provided energy is not conserved. The simplest such models

are periodic in time with ‘kicked potentials’, giving a Hamiltonian such as H(I, θ, t) =

TI2/2 + kV (θ)
∑

n δ(t− n) (where θ is an angle, I is the conjugate action variable, k and

T are parameters, and V (θ) is a potential). Integration over one period yields a map with

discretised time

Ī = I − kV ′(θ); θ̄ = θ + T Ī (1)

where bars denote values of (I, θ) after one iteration. These maps are area-preserving.

Dynamics takes place on a cylinder (periodicity in θ), and is controlled by a single

parameter K = kT . The map (1) is periodic in I of period 2π/T , so the phase space

structures repeat themselves on each cell of size 2π/T . For K = 0, this dynamics is

integrable (one-dimensional tori are lines I =constant). For many choices of the potential

V , classical dynamics becomes chaotic when K = kT increases. In particular, this is

the case for V (θ) = cos(θ), which corresponds to the famous Chirikov standard map,

which is also called the kicked rotator. For this map, a KAM transition takes place for

0 < K < Kg ≈ 0.9716 . . . (see the picture of phase space in Figure 1). For K � Kg , the

last invariant torus disappears and a single large connected chaotic zone enables chaotic

diffusion through the system, with diffusion coefficient D = 〈n2〉/t ≈ k2/2.

2.2. Quantum chaos

The translation of such properties to quantum mechanics has been the subject of the

field of quantum chaos, which emerged in the 1960’s and 70’s. It seems obvious that

quantum systems whose classical limit is chaotic should possess specific properties, since

classical mechanics is a limit of quantum mechanics. Still, the limit is usually far from

trivial, and, besides, quantum evolution is driven by the linear Schroedinger equation,

which excludes any type of non-linear behaviour. Thus, the properties of classical chaos

cannot be taken immediately to apply to some quantum systems. Instead, the work of

many authors (see the reviews in, for example, Ott (1993) and Gutzwiller (1990)) has
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Fig. 1. The classical phase space of the Chirikov standard map at K = Kg = 0.9716 . . . (t = 104

iterations of (1) with 200 points). The vertical axis is momentum and the horizontal axis is angle.

The figure shows one phase space cell of size 2π/T in momentum. (Lévi et al. 2003)

enabled us to find certain properties that are present in quantum systems whose classical

limit is chaotic, and can be understood as characterising the complexity of quantum

chaos.

One such property concerns the construction of quantum wave functions semiclassically

from classical quantities. While integrable systems enable the quantisation of individual

tori (Einstein–Brillouin–Keller quantisation), chaotic systems require knowledge from

classical orbits all over the system to approximate wave functions.

Another important property is connected to Random Matrix Theory. This approximates

the statistical properties of spectra and wave functions by those of large matrices with

random Gaussian entries. It gives predictions for several statistical quantities concerning

eigenvalues or eigenstates of a Hamiltonian. As the average density of states depends

on geometric features of the system and has no universality, spectra should be unfolded

in order to get a mean level spacing equal to one before comparisons can be made

with Random Matrix Theory predictions. A popular statistics is the nearest-neighbour

distribution P (s) of eigenvalues. This quantity is the density of probability for the distance

between adjacent levels. It was conjectured in Berry and Tabor (1977) that the spectra of

classically integrable systems should behave as uncorrelated random numbers, giving for

P (s) the Poisson law PP (s) = e−s. In contrast, it was conjectured in Bohigas et al. (1984)

that classically chaotic systems should follow Random Matrix Theory predictions, which

for P (s) imply a level repulsion at short distance (P (s) → 0 as s → 0) and a faster than

exponential decay for large s. The Wigner distribution PW (s), which approximates the

Random Matrix results with good accuracy, is, for example, plotted on the left-hand side

of Figure 10. This conjecture has been checked on many examples. It is remarkable that

Random Matrix Theory can be quite predictive for many systems despite the fact that it
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has no free parameter. In a sense, through Random Matrix Theory a kind of universality

in quantum chaos emerges, where complex quantum systems share common features that

can be modelled by random variables.

Finally, an important property of solid-state physics systems has a parallel in quantum

chaos. Indeed, it was noted by Anderson in the 1950’s that electrons in a disordered

potential can be exponentially localised, although their classical motion would be diffusive.

This is one way to create an insulator in solid state physics, which is called Anderson

localisation. In some quantum chaos systems, a similar behaviour can be observed,

termed dynamical localisation. Although the classical motion is diffusive, for these

systems the quantum eigenstates are exponentially localised, albeit without any random

potential.

The quantisation of chaotic maps described in the preceding section gives a variety

of models displaying these properties. For the map (1), this yields an operator U such

that ψ̄ = Uψ, where ψ is the wave function and ψ̄ is its new value after one iteration,

with

Û = e−ikV (θ̂)e−iT n̂2/2 (2)

where n̂ = −i∂/∂θ.
For V (θ) = cos(θ), the quantised kicked rotator has evolution operator corresponding

to Û = e−ik cos θ̂e−iT n̂2/2. The quantum dynamics depends on two parameters k and

T (classically one single parameter K = kT was enough), with T playing the role

of an effective �. The classical limit corresponds to k → ∞, T → 0 while keeping

K = kT = constant. For K < Kg ≈ 0.9716.., the quantum dynamics shows quantum

diffusion limited by KAM tori, but for K � Kg , classical diffusion is replaced by quantum

localisation. Eigenfunctions of Û in momentum representation are ∼ exp(−|n−m|/l)/
√
l

with localisation length l = D/2 ≈ k2/4. Thus, dynamical localisation can be observed

on the kicked rotator provided the system is larger than l. On the other hand, if the

localisation length is greater than the system size, we recover results in accordance

with Random Matrix Theory, with ergodic eigenfunctions. Therefore, many properties of

quantum chaos can be seen in such a system despite its simplicity; this makes the kicked

rotator a paradigmatic model of quantum chaos, which, additionally, has been shown

to be a model for Rydberg atoms in microwave fields. Furthermore, it has been realised

experimentally with cold atoms.

The quantum phase space distribution function is a very useful tool for the study of

the features of complex wave functions. In classical mechanics, it is possible to describe

the dynamics through (Liouville) probability distributions in phase space. In quantum

mechanics, a wave function |ψ〉 embodies the state of the system, in momentum or

position representation. Momentum and position do not commute, and a true probability

distribution in phase space cannot really be defined. Instead, for a continuous system one

can define the Wigner function through: W (p, q) = 1√
2π�

∫
e− i

� p.q
′
ψ(q + q′

2
)∗ψ(q − q′

2
)dq′ (q

is position and p momentum).

This function cannot be interpreted as a probability distribution, since it is real but

can take negative values. Still, it satisfies the sum rules
∫
q
W (p, q)dq = |ψ(p)|2 and∫

p
W (p, q)dp = |ψ(q)|2.
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On an N-dimensional Hilbert space (for example, for maps like (2)), one should use

2N × 2N points of phase space and the formula becomes (with Θ = Nθ
2π

):

W (Θ, n) =
1

2N

N−1∑
m=0

e− 2iπ
N
n(m−Θ/2)ψ(Θ − m)∗ψ(m). (3)

Smoothing the Wigner function over cells of area � gives a real non-negative function,

which is therefore more like a classical probability distribution. Using a Gaussian smooth-

ing gives the Husimi function ρH (θ0, n0) = |〈φ(θ0 ,n0)|ψ〉|2 where the smoothing function

φ(θ0 ,n0)(θ, n) = A
∑
n

e−(n−n0)
2/4a2−iθ0n|n〉

is a Gaussian wave packet centred on (θ0, n0) in phase space (A is a normalisation constant

and a determines the width of the Gaussian).

Other smoothing functions can be used, such as, for example, the modified Husimi

function (Frahm et al. 2004)

ρ
(p)
H (θ0, n0) = |〈φ(p)

(θ0 ,n0)
|ψ〉|2 (4)

where

φ
(p)
(θ0 ,n0)

(θ, n) = (1/N1/4)

n0+
√
N−1∑

n=n0

e−iθ0n|n〉

(that is, the smoothing function is a box in momentum). This modified Husimi function

is also real and non-negative. Figure 2 shows examples of Wigner and modified Husimi

functions for the kicked rotator model. These quantum distributions show some corres-

pondence with classical phase space plots such as in Figure 1, but in a much clearer way

in the case of the Husimi function, the Wigner function presenting many interference

patterns making it more complicated to interpret.

3. Coping with complexity: simulating chaos on quantum computers

Historically, the first application proposed for quantum computers (Feynman 1986) was

the simulation of quantum systems. However, this first proposal was not very explicit but

was refined later (Lloyd 1996), showing, for example, that certain many-body Hamiltonians

could be simulated efficiently on quantum computers. Nevertheless, some questions remain

unclear, such as the precise extent of systems that can be simulated efficiently through

quantum algorithms, the precise observables that can be efficiently measured, and the

total quantum complexity of such simulations. Models from quantum chaos are therefore

good testgrounds to study and assess such problems, since despite being described by

simple equations allowing efficient simulation even on small-scale quantum computers,

they display many complex properties that can also be seen in more complicated systems.

Historically, the first model of quantum chaos to be shown to be efficiently simulated by a

quantum computer was the baker’s transformation (Schack 1998), which shows quantum

chaos but is not of the type (2).
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Fig. 2. The top pictures show the Wigner function for the quantum kicked rotator with K = 0.9

(left) and K = 2 (right). Here T = 2π/N, where N = 2nq , with nq = 7. The vertical axis is

momentum and the horizontal axis is angle. The whole Wigner function (on a 2N × 2N lattice) is

plotted. White represents the positive maximal values and black the negative values. The initial

state is uniformly spread on the set 0 � n < N/8, and the Wigner function is computed after 1000

iterations of (2). The bottom pictures show the modified Husimi function (4) for the quantum

kicked rotator with K = 0.9 (left) and K = 2 (right). Here T = 2π/N, where N = 2nq , with

nq = 16. The function is plotted on a lattice of
√
N ×

√
N and each point is the average of N

points. The initial state is the same as for the top figures, and the function is computed after 1000

iterations of (2). Gray represents the maximal value, white the intermediate value and black the

minimal value. (Terraneo et al. 2005)

3.1. Simulation of chaotic quantum maps

As explained in Section 2.2, quantum maps form a very congenial class of models

displaying quantum chaos. In these systems, time is discretised and evolution corresponds

to iterations of a one-step operator given by (2). Classical simulations of these systems

take advantage of the factorised form (2) into an operator diagonal in momentum

and an operator diagonal in position. Indeed, one starts from a wave function in

momentum representation, then applies the first operator diagonal in momentum e−iT n̂2/2
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by direct multiplication of the components of the wave function. Then one applies a

fast Fourier transform to change representation from momentum to position. In this

representation, the second operator e−ikV (θ) is diagonal and can be readily implemented

by direct multiplications. Then an inverse Fourier transform takes the wave function

back to momentum representation. In this way, one iteration of (2) on a wave function

in a Hilbert space of dimension N takes O(N logN) classical elementary operations, the

slowest parts being the Fourier transforms.

It is possible to implement the evolution (2) on a quantum computer using many

fewer elementary operations. Indeed, it was shown in Georgeot and Shepelyansky (2001a)

that one iteration of (2) for V (θ) = cos(θ), corresponding to the kicked rotator, can be

implemented on an N-dimensional Hilbert space (N = 2nq ) with O((logN)3) quantum

gates. The quantum simulation follows the strategy of the classical one, with an increase

in speed for each part.

Step I Preparation of initial state:

ψ(0) =

N−1∑
n=0

an|n〉.

For example, ψ(0) = |N/2〉.
Step II Action of e−iT n̂2/2:

N−1∑
n=0

an|n〉 ⇒
N−1∑
n=0

ane
−iTn2/2|n〉

(by ∼ n2
q applications of two-qubit gates).

Step III Quantum Fourier transform:

N−1∑
p=0

ane
−iTn2/2|n〉 ⇒

N−1∑
i=0

bi|θi〉

with bj = 1
N

∑N−1
n=0 ane

−iTn2/2e2iπjn/N . This changes from n to θ representation

and costs ∼ n2
q quantum gates.

Step IV Construction of the cosines:

N−1∑
i=0

bi|θi〉|0〉 ⇒
N−1∑
i=0

bi|θi〉| cos θi〉.

This requires ∼ n3
q gates and can be made using elementary arithmetical

operations, which are known to be implementable efficiently on a quantum

computer, at the cost of using several workspace registers (but these only amount

to O(nq) qubits).

Step V Action of e−ik cos θ̂:∑
bi|θi〉| cos θi〉 ⇒

∑
bie

−ik cos θi |θi〉| cos θi〉
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(by nq applications of one-qubit gates). Then we erase the cosines by running

step IV backwards (∼ n3
q operations):

N−1∑
i=0

bie
−ik cos θi |θi〉| cos θi〉 ⇒

N−1∑
i=0

bie
−ik cos θi |θi〉|0〉.

Step VI Quantum Fourier transform (∼ n2
q operations); this puts the wave function back

in n representation.

The total number of elementary quantum gates is thus O((logN)3); the whole process

needs only ∼ logN qubits. Thus simulation of the quantum kicked rotator needs

exponentially less resources on a quantum computer than on a classical device.

Different regimes can be probed depending on how the parameters of the system

scale with the number of qubits nq . Keeping K = kT constant in (2) keeps the classical

dynamics unchanged. If, additionally, T is kept constant while nq is increased, the size

of phase space will increase exponentially (number of cells of size 2π/T in momentum).

In this regime the localisation of eigenstates is seen as soon as the (constant) localisation

length becomes smaller than the system size. In contrast, if T = 2π/2nq , the phase space

keeps a constant size (one cell of size 2π/T ) while the effective � decreases exponentially.

In this regime the localisation length rapidly becomes larger than the system size, and

Random Matrix properties and semiclassical limits can be probed.

In this quantum simulation, the slowest part is the construction of the cosines, which

is expensive both in number of qubits and gates. It is actually possible to find quantum

algorithms that give a sufficiently good approximation of the wave function without

computing the cosines explicitly, thus speeding up the process even further (see below).

For other potentials V (θ), the exact quantum simulation can also be faster. Indeed,

a related model called the sawtooth map corresponds to ψ̄ = Uψ with the evolution

operator U = e−iT n̂2/2eik(θ̂−π)2/2. It was shown in Benenti et al. (2001) that this model can

be simulated on a quantum computer on an N-dimensional Hilbert space (N = 2nq ), using

only 3n2
q + nq quantum gates per iteration and nq qubits. This algorithm for simulation

of the sawtooth map has actually very recently been experimentally implemented with

three qubits using the NMR technique (Henry et al. 2005). Although the localisation

is only algebraic in the sawtooth map, this phenomenon could be observed for the

eight-dimensional Hilbert space in the experiment.

An even simpler map of the form (2) is given by the evolution operator

Û = e−2iπp̂2/Ne2iπαq̂ . (5)

It was shown in Giraud and Georgeot (2005) that this map can be simulated on a

quantum computer for a Hilbert space of dimension N = 2nq , with 2n2
q + 2nq gates and

nq qubits, making it very economical. Depending on the value of α, this map can display

a dynamics that can be chaotic, regular or intermediate between these two extremes.

The algorithms above are exact and efficient, but, for example, the kicked rotator

algorithm needs many extra qubits for workspace; this may be a problem for the small

quantum computers currently being built. It is therefore worthwile exploring the possibility

of using approximate algorithms, which require less resource than the exact simulations.
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Fig. 3. Eigenphases of the Harper operator of (6) as a function of � for K = L = 10−3 and Hilbert

space dimension 28; one recovers the fractal spectrum of the Harper Hamiltonian. (Lévi and

Georgeot 2004)

This has been done using another quantum map, the kicked Harper model (Lévi and

Georgeot 2004), as the example.

The Harper model H0(p, q) = cos(p) + cos(q) is a famous model describing electrons

in a magnetic field, which is well known for having a fractal spectrum, which is called

the ‘Hofstadter butterfly’ (see Figure 3). Nevertheless, it is an integrable system. A more

complex system is represented by the kicked Harper model: H(I, θ, t) = L cos(I) +

K cos(θ)
∑

n δ(t − n), which once integrated over one period gives the map Ī = I +

K sin θ , θ̄ = θ − L sin Ī .

This map depends on two parameters K and L, and displays a transition to chaos as

K and L increase. Quantisation leads to

ψ̄ = Ûψ = e−iL cos(�n̂)/�e−iK cos(θ̂)/�ψ (6)

where n̂ = −i∂/∂θ and ψ(θ+ 2π) = ψ(θ). This model describes the motion of electrons in

electromagnetic fields and the stochastic heating of a plasma. The limit K = L → 0 gives

the Harper model with its fractal spectrum (see Figure 3). There is dynamical localisation,

similar to Anderson localisation of electrons in solids, as in the kicked rotator, but, in

addition, for a certain range of values of K and L, there is a transition to a partially

delocalised regime, with coexistence of localised and delocalised states.

On an N-dimensional Hilbert space with N = 2nq , an exact algorithm similar to the one

described above for the kicked rotator requires O(logN3) quantum gates for the evolution

of the wave function and several workspace registers.

A first strategy for building more economical algorithms enables us to implement an

approximation of operators of the form e−ik cos (p θ̂) by a succession of simpler operators.

This follows an idea first presented in Pomeransky and Shepelyansky (2004). To this end,

we introduce

M(α,U) = HCUHe
i α2 σzHCU−2Hei

α
2 σzHCUH
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where CU is U controlled by an ancilla qubit and H is a Hadamard gate. We have

M(α,U) = 1 + iα
U +U−1

2
+ O(α2).

If we now choose U = eipθ , then

M(α,U) = 1 + iα cos (p θ)σz + O(α2) ≈ eiα cos (p θ̂).

Thus we can approximate e−ik cos (p θ̂) by M(α,U)ns with α = −k
ns

and error O(α2). This

can be improved further by symmetrisation, using M̃(α,U) = M
(
α
2
, U

)
M

(
α
2
, U−1

)
. Then

e−ik cos (p θ̂) ≈ M̃(α,U)
ns

with error O(α3).

This enables us to build a ‘time-slice algorithm’ for the kicked Harper model on

N = 2nq -dimensional space. The implementation of both e−iK cos(θ̂)/� and e−iL cos(�n̂)/� by ns
iterations of the appropriate M̃(α,U) needs 4 + 2(nq − a) + (ns − 1)(7 + 2(nq − a)) gates;

the quantum Fourier transforms need nq(nq + 1) gates. In total, only nq + 1 qubits and

O(n2
q) quantum gates are needed. Numerical simulations for increasing ns show a good

precision for relatively low ns (Lévi and Georgeot 2004).

An alternative strategy, which was also explored in Lévi and Georgeot (2004), uses

Chebychev polynomials to approximate the cosines. This method is used in classical

computers to approximate functions. The Chebychev polynomials are defined by:

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x) − Tn−2(x).

If f(x) is a function on [−1, 1], and

cj =
2

M

M−1∑
k=0

f

[
cos

(
π

(
k + 1

2

)
M

)]
cos

(
πj

(
k + 1

2

)
M

)
,

then for large M we have that
∑M−1

j=0 cjTj(x) − 1
2
c0 is a very good approximation of f(x)

on [−1, 1]. If we take such a polynomial P (x) approximating cos (π(x+ 1)), then e−ik cos (p θ̂)

can be approximated by e
−ikP

(
pθ̂
π

−1
)
, which is much easier to implement on a quantum

computer. To simulate the kicked Harper model, a Chebychev polynomial approximation

of degree d leads to a complexity of O(nq
d) (N = 2nq ). Numerics (Lévi and Georgeot

2004) show that d = 6 is enough to get a very good approximation of the wave function.

The simulation of one time step of the kicked Harper model on an N = 2nq -dimensional

space needs only nq qubits and O((nq)
d) quantum gates.

The numerical results given in Lévi and Georgeot (2004) showed that both approximate

methods give good results for a moderate number of qubits. The most economical in

number of qubits is the Chebychev method, where no workspace qubit is used. However,

in the numerical simulations the time-slice method, despite needing one more qubit, was

actually the most efficient in terms of the number of gates used, and therefore in terms of

the computing time.

Thus, we see that even in cases where the exact algorithm for simulating (2) requires

many workspace qubits, it is possible to use efficient approximate quantum algorithms

that use very few extra qubits and still simulate the dynamics with good accuracy. This

implies that quantum chaos maps of the form (2) can in many cases be implemented
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on small-size quantum computers, such as the ones currently being built throughout the

world.

3.2. Information extraction

We have seen that complex quantum evolution, manifested by quantum chaos properties,

can be simulated with exponential efficiency on a quantum computer. Still, at the end of

the simulation one is left with an N-dimensional wave function that, in general, requires

O(N) measurements for an accurate description. Thus, to assess the quantum algorithmic

complexity of such simulations, one should describe the measurement procedure, and

compare the efficiency of obtaining a given observable from quantum and classical

algorithms. This problem is present in general for any quantum simulation of quantum

systems, and corresponds to the even more general question of efficient extraction of

information from a general quantum wave function.

The simplest idea is to use coarse-grained measurements. For a wave function on nq
qubits (Hilbert space of dimension N = 2nq ), this can be achieved by measuring the first

nf qubits only, thus yielding a wave function that is coarse grained over 2nf cells (this

can be realised equivalently by measuring all qubits and binning the data in a histogram

of 2nf boxes). If nf is kept constant while the total number of qubits increases, a given

precision can be achieved for the probability of each cell at a constant cost. Coupled with

a procedure as above to simulate a system exponentially fast, this can, in principle, yield

an exponential gain. Nevertheless, the wave function obtained is only an approximation,

and this should be compared with classical approximate methods, which are often faster

than exact simulations. Also, the time evolution of the system should be long enough to

enable the desired result to be obtained, which can mitigate the quantum gain. As an

example, these two factors lead to a polynomial gain when the coarse-grained method is

applied to the measure of the localisation length of quantum chaotic maps.

Indeed, we have seen in Section 2.2 that the kicked rotator presents localised states. The

localisation length l can be measured directly by fitting an exponential function around

maximal values of |ψ〉 obtained by coarse-grained measurements. This is effective and

costs only a constant number of measurements to get a given precision in units of l

(Benenti et al. 2003).

However, the usual way to obtain this length l numerically is to start from an initial state

that is localised on one value of momentum and evolve the wave function through (2).

The wave packet initially spreads but after a certain number of iterations its size reaches

the localisation length and the spreading stops. Thus iterations should be performed until

size ≈ l ≈ D (D is the classical diffusion constant). For a short time initially in the kicked

rotator one expects diffusive spreading 〈n(t)2〉 ≈ Dt; thus the wave packet needs to be

evolved until the time t∗ ≈ l2/D ≈ l. Thus the total number of gates needed is ∼ l,

dropping logarithmic factors.

On the other hand, classically it is possible to get a good approximation of the evolution

by restricting it to a Hilbert space of dimension ∼ l. The classical simulation of a vector

of dimension ∼ l for time t∗ costs ∼ l2 operations. Thus the comparison leads to only a

quadratic improvement for the quantum algorithm.
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Other transport properties such as the diffusion constants can be obtained by similar

procedures. A coarse-grained measurement enables us to get these diffusion constants

once the wave function has spread enough. But, for example, in the kicked Harper model

the quantum dynamics for short times is diffusive on the K = L line, and this gives

∼ (t∗)3/2 operations classically, and ∼ t∗ quantum mechanically for evolving the system

up to time t∗. The time t∗ corresponds to a time long enough for the diffusion to be seen

for a wave packet initially localised on one momentum value. Outside the K = L line, the

motion is ballistic (〈n(t)2〉 ≈ Dt2). The same arguments as above give ∼ (t∗)3/2 operations

classically and ∼ t∗ quantum mechanically for evolving the system up to time t∗. Thus, the

gain is again polynomial in both cases, albeit with different powers (Lévi and Georgeot

2004).

A recent efficient algorithm to simulate the evolution of a wave packet on disordered

quantum small-world networks was presented in Giraud et al. (2005). These networks

have been investigated in statistical physics since they are widespread in nature and

have the interesting feature of linking distant sites through a small number of links. The

quantised version of this system shows a spreading of the wave packet, which can get

faster and faster when more and more random links are added to the network (Giraud

et al. 2005). Thus, in this case it is possible that an exponential gain could be obtained for

the computation of diffusion constants since the factor limiting the efficiency for quantum

computation of such quantities is the spreading rate of the wave packet.

Another quantity that can be extracted from a complex wave function is the fidelity

decay (Emerson et al. 2002). We suppose we have a quantum map with evolution operator

U that is efficiently implementable on a quantum computer and a perturbed evolution

operator Up that is efficiently implementable also. The function f(t) = |〈Utψ0|Ut
pψ0〉|2

measures the fidelity decay between the exact and perturbed wave function, and has been

the subject of many studies since it reflects the dynamics of the system. If the initial state

is |ψ0〉 = U0|0〉, then 〈Utψ0|Ut
pψ0〉 = 〈0|U+

0 (U+)tUt
pU0|0〉, so simulating U+

0 (U+)tUt
pU0

and sampling the population of the state |0〉 gives the fidelity decay (with polynomial

precision). This may give rise to a possible exponential gain compared with classical

simulations, since there is no known classical algorithm giving this result efficiently. This

procedure was actually recently experimentally implemented using the NMR technique

(Ryan et al. 2005).

It is also possible to measure the spectral statistics discussed in Section 2.2 on a

quantum computer after evolving a map with evolution operator U such as in (2). It was

shown in Poulin et al. (2003) that one can transfer the value of the traces of iterates of

U on an ancilla qubit with TrUp/N = 〈σz〉 for the probe qubit. The value of traces for

small p are known to characterise the dynamics of the quantum map: regular, integrable,

or intermediate. Measuring the traces on a quantum computer can be shown to give a

quadratic improvement over classical computation.

Several recent works have also studied the extraction of information using quantum

phase space distribution functions such as the Wigner and Husimi functions presented

in Section 2.2. These functions are important since they are widely used, represent all

information about the wave function, and allow especially easy comparison with classical

evolution. It was shown in Miquel et al. (2002) that one can measure Wigner functions (3)
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at one given phase space location using an ancilla qubit. The goal is to obtain the Wigner

function of a wave function |ψ〉. To do this, we apply one Hadamard gate to the ancilla

qubit, then the operator A(Θ, n) = SΘRV−n exp(2iπΘn/2N) to the system, the application

being conditioned by the value of the ancilla qubit (S = shift in Θ basis, S(|Θ〉) = |Θ+1〉;
V = shift in the n basis; R = the reflection operator, R(|n〉) = |N−n〉). Then we apply one

Hadamard gate to the ancilla qubit. The expectation value of the ancilla can be shown to

be

〈σz〉 = Re[Tr(A(Θ, n)ρ)] = 2NW (Θ, n)

where ρ = |ψ〉〈ψ| is the density matrix and N = 2nq is the dimension of the Hilbert space.

In principle this allows us to extract the value of the Wigner function from the evolution

of any efficiently implementable map of the form (2). Nevertheless, the values of W are

usually very small, and this may require exponentially many iterations.

Another algorithm was proposed in Terraneo et al. (2005), which uses a different

strategy: we build a state of the quantum computer whose amplitudes in a chosen basis

gives the Wigner function. The wave function we want to study is supposed to be produced

by t iterations of a map like (2) on an initial state |ψ0〉.
The procedure is as follows:

Step I Transform |ψ0〉|ψ0〉 into

|Utψ0〉|Utψ0〉 =
∑
θ,θ′

ψ(θ)ψ∗(θ′)|θ〉|θ′〉.

Then add an extra qubit and transform into∑
θ,θ′

ψ(θ)ψ∗(θ′)|θ + θ′〉|θ′〉

(addition).

Step II Take the Fourier transform of the second register, to give∑
Θ

∑
n

(∑
θ′

e− 2iπ
N
nθ′
ψ(Θ − θ′)ψ∗(θ′)

)
|Θ〉|n〉

= 2
√
N

∑
Θ

∑
n

W (Θ, n)e− 2iπ
N
nΘ/2|Θ〉|n〉

where Θ = θ + θ′ and Θ varies from 0 to 2N − 1 and n from 0 to N − 1.

Step III Add an extra qubit in the state |0〉 and apply a Hadamard gate to give

√
2N

(∑
Θ

N−1∑
n=0

W (Θ, n)e− 2iπ
N
nΘ/2|Θ〉|n〉

+
∑
Θ

2N−1∑
n=N

W (Θ, n)e− 2iπ
N

(n−N)Θ/2|Θ〉|n〉
)
.

Then multiply by the phases e− 2iπ
N
nΘ/2 and e− 2iπ

N
(n−N)Θ/2 to give the final wave

function

|ψf〉 =
√

2N

2N−1∑
Θ=0

2N−1∑
n=0

W (Θ, n)|Θ〉|n〉.

https://doi.org/10.1017/S0960129507006366 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006366


Bertrand Georgeot 1236

This procedure allows further quantum data treatment, such as amplitude amplification,

or the quantum wavelet transform.

Amplitude amplification (Brassard et al. 2002) is a generalisation of Grover’s algorithm.

It increases the amplitude of a whole subspace H , instead of a single marked state. Let

P be a projector on this subspace H , and V̂ be an operator taking |0〉 to a state having

some projection on H . Repeated iterations of V̂ (I − 2|0〉〈0|)V̂−1(I − 2P ) on V̂ |0〉 will

increase the projection. Indeed, if one write V̂ |0〉 = PV̂ |0〉 +(I −P )V̂ |0〉, the result of one

iteration is to rotate the state toward PV̂ |0〉 staying in the subspace spanned by PV̂ |0〉
and (I − P )V̂ |0〉. One can check that after one iteration the state has a component along

(I − P )V̂ |0〉 decreased by an amount that depends on |PV̂ |0〉|2. If N is the dimension of

the total Hilbert space and M the dimension of H , then
√
N/M iterations are needed

to bring the probability to be in H close to 1. One sees from the procedure that the

probability to be in H is increased by changing the norm of the projection, keeping

its direction in H constant. Thus for a wave function, using amplitude amplification to

increase the projection on some subset of the computational basis will keep the initial

relative amplitudes on each basis vector of the subset.

Wavelet transforms are generalisations of Fourier transforms. For the wavelet bases,

each basis vector is localised in position as well as momentum, with different scales

(note the difference compared with the Fourier basis, which is composed of plane waves).

Wavelet basis vectors are obtained by translations and dilations of an original function

and their properties enable us to probe the different scales of the data as well as

localised features, both in space and frequency. The wavelet transforms are used in

a large number of applications involving classical data treatment, in particular, they

allow us to reach large compression rates for classical images in standards like MPEG.

Indeed, in many cases the same information can be spread on many fewer wavelet

coefficients than Fourier coefficients. Efficient quantum algorithms for implementing such

transforms have been built, requiring polynomial resources to treat an exponentially large

vector.

These different strategies have been tested by numerical simulations for the kicked

rotator model on an N-dimensional space in Terraneo et al. (2005). The cost of measuring

the final wave function after t iterations was assessed through computation of a participa-

tion ratio of the Wigner function ξ = 1/(
∑
N2W (Θ, n)4), which computes how amplitudes

are dispatched on the different basis vectors of the computational basis. If N peaks of

approximately equal weights 1/N are present, then ξ = N, whereas N2 components of

equal weights (in absolute value) 1/N3/2 give ξ = N2. This quantity ξ therefore enables us

to estimate the number of main components of the Wigner function, and as a consequence

the number of measurements needed to get the largest peaks with a given accuracy. For

direct measurements, numerical results (see the examples on the left-hand side of Figure 4)

show that the quantum algorithm needs O(tNα) operations with α ≈ 1.8−2; classically one

needs O(tN2 logN) operations, meaning a small polynomial gain is obtained. This is the

only gain attainable through the measurement of the probe qubit as in Miquel et al. (2002).

Other possibilities arise if we use the direct construction of the Wigner function allowed

by the algorithm described above. Coarse-grained measurement could give a possible

exponential gain. Comparing amplitude amplification on an ND × ND square, we get

O(tN + NDN) operations classically and O(tNα
DN) quantum mechanically, which means
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Fig. 4. The plot on the left-hand side shows ξ = 1/(
∑
N2W (Θ, n)4) for the Wigner function (open

squares) and its wavelet transform (full squares) for K = 2. The straight lines are α = 1.8 and

β = 1.4, respectively; N = 2nq . In the inset, the ratio R between ξ of the Wigner function and the

wavelet transformed Wigner function is plotted. The full line represents the scaling N0.75, while the

dashed line represents N0.35. Here T = 2π/N, where N = 2nq . The initial state is uniformly spread

on the set 0 � n < N/8, and the Wigner function is computed after 1000 iterations of (2). The plot

on the right-hand side shows the scaling for ξ versus nq for the function H(θ, n) where |H(θ, n)|2 is

the modified Husimi function in (4), with parameters K = 2 and T = 2π/N, N = 2nq . In the main

plot, empty squares represent ξ of H(θ, n) the full squares represent ξ of the wavelet transform of

the modulus of H(θ, n), and the dashed line is N0.7. In the inset, the ratio R between ξ of H(θ, n)

and wavelet transform of |H(θ, n)| is plotted for different nq , the full line is N0.7. The number of

iterations and the initial state are the same as for the picture on the left-hand side. (Terraneo et al.

2005)

we again get a small polynomial gain. Finally, wavelet transforming the Wigner function

leads to O(tNβ) with 1.4 � β � 2 quantum mechanically, compared with O(tN2 logN)

classically, giving a larger polynomial gain. The gain is larger in the chaotic regime

For Husimi functions, the same strategy of computing a ξ that counts the number of

main components can be used. Paz et al. (2004) showed how to use an ancilla qubit to

transfer the value of the Husimi function and obtain its value at a specific phase space

location. The method is complicated: it constructs a Gaussian using the ground state of

the Harper Hamiltonian, and suffers from similar drawbacks to the same method for the

Wigner function.

It is actually much simpler to use the modified Husimi function (4). Indeed, Frahm

et al. (2004) showed that if we use a quantum Fourier transform of the first half of

the qubits, we can transform an N-dimensional wave function |ψ〉 (N = 2nq ) into

|ψH〉 =
∑

θ,n H(θ, n)|θ〉|n〉, where θ and n take only
√
N values each and |H(θ, n)|2 is

the modified Husimi function, using only (nq/4)(nq/2 + 1) quantum gates. It is therefore

quite economical to construct the modified Husimi function on a quantum register from

a given wave function.

Numerical results for the kicked rotator on an N-dimensional space after t iterations

(Terraneo et al. 2005) (see the example on the right-hand side of Figure 4) show that direct

measurements lead to O(tNγ) operations with 0.5 � γ � 0.7 for the quantum algorithm,

https://doi.org/10.1017/S0960129507006366 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006366


Bertrand Georgeot 1238

compared with O(tN) classically, leading to a polynomial gain. As before, coarse-grained

measurements can give rise to a possibly exponential gain. Amplitude amplification on

an ND × ND square requires O(t
√
NN

γ−1/2
D ) operations quantum mechanically, against

O(tN) classically. This means that a quadratic gain is obtained, independent of the system

simulated. The wavelet transform also gives a polynomial gain.

Thus, the quantum phase space distribution can be obtained from a simulation on

a quantum computer faster than on a classical computer. It is also possible to obtain

the spectrum of an operator with some speeding up. A general procedure has been

presented in Kitaev (1995) and Abrams and Lloyd (1999). Given a unitary operator U

and an eigenvector |u〉, the goal is to find the associated eigenvalue e2iπωu efficiently. The

procedure starts from 1/
√
N

∑N−1
t=0 |t〉|u〉, and we transform it into 1/

√
N

∑N−1
t=0 |t〉|Utu〉 =

1/
√
N

∑N−1
t=0 e2iπωut|t〉|u〉. Then a quantum Fourier transform of the first register yields

|ωu〉|u〉. To be exponentially efficient, this requires:

(i) an operator U whose exponentially large iterates are efficiently implementable, and

(ii) a good approximation of one eigenvector.

This is the case for Shor’s algorithm, which can be reinterpreted as phase estimation on

the operator U|y〉 = |ay mod(N)〉.
If (i) and (ii) are not fulfilled, as is the case for maps such as (2) in general, a modification

of the procedure enables us to get a polynomial gain (Lévi and Georgeot 2004). The

evolution operator on an N-dimensional Hilbert space (N = 2nq ) should be efficiently

implementable, as is the case in several models like (2). We start with
∑N−1

t=0 |t〉|ψ0〉, for

example, |ψ0〉 = 2−nq/2
∑

n |n〉. Then we transform it into 2−nq/2
∑N−1

t=0 |t〉|Utψ0〉 in O(N)

operations (since iterates of U should be computed sequentially). Then a quantum Fourier

transform of the first register yields peaks centred at eigenvalues of U. A measurement

of the first register gives one random eigenvalue of U with good probability in O(N)

operations. If we combine this procedure with amplitude amplification, all eigenvalues in

a given interval can be obtained in O(N
√
N) operations.

For the kicked Harper model, this should be compared with the O(N2) operations

needed classically to get the spectrum, and gives a polynomial gain for exploring the

complexity of fractal spectra such as the one in Figure 3.

Thus, we see that extracting information from a complex wave function requires some

care. The exponential efficiency of simulating maps of the form (2) on a quantum computer

does not translate straightforwardly into an exponential gain for a full quantum algorithm

including measurements. Yet the discussion presented here shows that methods do exist

for extracting information efficiently, and, depending on the observable considered, the

gain can be polynomial or possibly exponential compared with classical algorithms. Thus

the quantum simulation of maps such as (2) has a practical interest, which is reinforced

by the remarkable economy of resources used.

3.3. Simulation of classical chaos

It may seem natural that quantum computers can simulate complex quantum mechanical

systems with some efficiency. However, although quantum mechanics rules the world
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Fig. 5. Dynamics of the cat map (7) on a 128 × 128 lattice. Left: initial distribution; right:

distributions after 10 iterations; the probability is represented by the shade of gray from light gray

(low probability) to black (high probability); due to the exponential instability, the initial

structures disappear very quickly. (Georgeot and Shepelyansky 2001b)

around us, many applications and problems require the use of classical mechanics. It is

therefore important to determine whether quantum computers can help in understanding

classical dynamical systems. While regular systems are usually quite predictable, chaotic

properties lead to an exponential divergence of nearby trajectories and instability, which

makes chaotic systems hard to simulate over long times on a classical computer.

Chaotic maps with one degree of freedom (phase space of dimension 2) are described

by simple equations but can display most of the features of hard chaos. They are therefore

good test grounds for studying the feasibility of quantum simulations of classical chaos.

A well-known example is the Arnold cat map:

ȳ = y + x (mod 1); x̄ = y + 2x (mod 1). (7)

This is a textbook example of hard chaos, with positive Kolmogorov–Sinai entropy,

exponential divergence of trajectories, and so on.

To simulate such an evolution numerically for a classical phase space probability

distribution, one should discretise the phase space into small cells and iterate the cells

as trajectories (an example of such an evolution is given in Figure 5). It was shown

in Georgeot and Shepelyansky (2001b) that a phase-space density on a 2nq × 2nq lattice

(that is, 22nq different trajectories) can be simulated on a quantum computer with only

16nq − 22 quantum gates per iteration and 3nq − 1 qubits. This should be contrasted with

the simulation on a classical computer, which costs 22nq+1 additions.

The algorithm for one iteration of (7) is very simple; it uses repeated applications

of modular addition (addition modulo N = 2nq ), which is known to be efficiently

implementable on a quantum computer:

Step I Preparation of the initial wave function: ψ(0) =
∑

i,j ai,j |xi〉|yj〉. This wave

function encodes the initial phase space distribution, (xi, yj) labelling the phase

space cells of the 2nq × 2nq lattice and |ai,j |2 specifying the probability in this cell.
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Step II (Modular addition)∑
i,j

ai,j |xi〉|yj〉 ⇒
∑
i,j

ai,j |xi〉|yj + xi(mod(1))〉 =
∑
i,j

bi,j |xi〉|yj〉.

Step III (Modular addition)∑
i,j

bi,j |xi〉|yj〉 ⇒
∑
i,j

bi,j |xi + yj(mod(1))〉|yj〉 =
∑
i,j

ci,j |xi〉|yj〉.

The cat map is area-preserving and reversible. As quantum computers are inherently

reversible due to the unitarity of quantum evolution, it may seem that such quantum

simulations of classical chaos are limited to reversible processes. This would be a

big limitation, since dissipative dynamical systems arise quite commonly in physics.

In particular, chaotic dissipative dynamics often converges to a strange attractor with

fractal dimension: this has been observed in turbulence and weather forecasting, molecular

dynamics, chaotic chemical reactions, multimode solid state lasers, ecology and physiology,

and so on. In fact, it was shown in Terraneo et al. (2003) that the dissipative deterministic

map ȳ = y
2

+ x (mod 2), x̄ = y
2

+ 2x (mod 1), which converges to a strange

attractor of fractal dimension ≈ 1.543, can be simulated efficiently on a quantum

computer. Indeed, quantum computation of a density on a 2nq × 2nq+1 lattice can perform

one iteration of the map with 17nq − 10 quantum gates. Four registers are needed,

|x〉, |y〉, |workspace〉, |garbage〉. The additional garbage register is needed because of the

irreversibility of the map, and keeps track of the information loss during the evolution.

The size of this garbage register grows like t (simplest algorithm), but can be made to

grow like ln t if the ‘pebble game’ algorithm described in Preskill (1998) is used.

As in the case of simulation of quantum systems, the results above imply that one can

simulate the evolution of classical chaotic maps with exponential efficiency compared with

classical simulation. However, this gain can be illusory since one has to take into account

the measurement procedure to extract information from the final wave function.

Obviously, to extract the full phase-space density directly requires an exponential

number of measurements. It was suggested in Georgeot and Shepelyansky (2002) that

Fourier coefficients of the discretised phase-space density can be obtained by applying

a quantum Fourier transform after iterating the map and performing coarse-grained

measurements of the wave function. This gives the possibility of an exponential gain,

since, unlike quantum dynamics, the classical dynamics is exponentially fast in Fourier

space: large harmonics corresponding to exponentially small scales being very quickly

populated due to chaos.

In the case of dissipative dynamics, it was shown in Terraneo et al. (2003) that going

to Fourier space can also give the possibility of an exponential gain. Indeed, the spectrum

of phase space correlation functions, defined by

C(t, kx,y) =
∑
x0 ,y0

exp(2iπ(x(t, x0, y0) + y(t, x0, y0))) exp(2iπ(kxx0 + kyy0))

can be obtained on a quantum computer by coarse-grained measurements (here the

sum runs over points (x0, y0) of the initial distribution, and (x(t, x0, y0), y(t, x0, y0)) is the

position of (x0, y0) after t iterations). Such correlation functions have been studied for

https://doi.org/10.1017/S0960129507006366 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006366


Complexity of chaos and quantum computation 1241

chaotic systems, where they determine various kinetic coefficients, such as the diffusion

rate (Lichtenberg and Lieberman 1992). This requires O(n2
q) gates (t iterations of the map

+ (2nq + 1) one-qubit rotations + t reverse iterations + a quantum Fourier transform)

on a quantum computer to obtain the state A
∑

kx,ky
C(t, kx,y)|kx〉|ky〉 (with an additional

normalisation constant) as the wave function. Measuring just the first nf qubits, a

polynomial number of measurements gives a coarse-grained image of |C(t, kx,y)|2. The

possibility of exponential gain is further substantiated by a numerical simulation showing

that this whole procedure is exponentially faster than classical Monte-Carlo (Terraneo

et al. 2003).

A different way to extract information from the quantum simulation of classical complex

dynamics was presented in Georgeot (2004), by looking at long times instead of large

system size. A theorem of Poincaré states that for classical bounded conservative systems,

some points from an arbitrary small phase space domain A will eventually return to A.

The time needed for the first return is called the recurrence time; it is usually a very long

time, and hard to find numerically.

For more general systems, periodic orbits form a related concept: these are orbits that

return exactly to their starting position in phase space. They can be considered to be the

‘backbone’ of classical dynamics, since they enable us to compute diffusion coefficients

and the properties of strange attractors, and to enter classical and semiclassical trace

formulas.

We have seen above that the cat map (7) can be efficiently simulated on a quantum

computer. It can be described as the action of the 2 × 2 matrix

L =

(
2 1

1 1

)
on

(
x

y

)
.

It is known that for this map the periodic points are the rational points; they all belong

to some g × g lattice of {(p1/g, p2/g)}, p1, p2 = 0, 1 . . . g. With such a lattice, the map acts

on numerators only as ȳ = y + x (mod g), x̄ = y + 2x (mod g) , or(
x̄

ȳ

)
= L

(
x

y

)
(mod g),

with x, y, x̄, ȳ integers.

The lattice period function α(g) is the smallest integer such that after α(g) iterations all

points in the lattice have returned to the initial position. Alternatively, α(g) is the smallest

integer t such that Lt = I (mod g). It is a very erratic function of g, of order g, which can

be considered as the equivalent of the recurrence times for the cat map (see Figure 6 for

an example of its distribution).

It was shown in Georgeot (2004) that this quantity can be obtained efficiently on a

quantum computer. The algorithm corresponds to the following steps:

Step I Start with N−1/2
∑N−1

t=0 |t〉|1〉|0〉|0〉|1〉 where N = 2nq with nq ∼ log2 g.

Step II Transform it into N−1/2
∑N−1

t=0 |t〉|At〉|Bt〉|Ct〉|Dt〉, where (At, Bt, Ct, Dt) are entries

of the matrix Lt mod g, periodic function of t.
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Fig. 6. The lattice period function α(g) for the Arnold cat map.

Step III Measure the last registers. The result is |A〉|B〉|C〉|D〉 corresponding to a given

(randomly chosen) matrix K. The total state isM−1/2ΣM−1
j=0 |tj〉|A〉|B〉|C〉|D〉 where

tj are all t such that Ltj = K , and M ≈ 2nq/α(g).

Step IV Perform a quantum Fourier transform of the first register to yield peaks at

multiples of M ≈ 2nq/α(g). From the measurement of such a value, a continued

fraction algorithm yields the period in ∼ n3
q classical operations.

The reader familiar with Shor’s algorithm for the factorisation of integers will recognise

the steps, since this is very similar to the factorisation algorithm, the main difference being

that the period of matrices, rather than numbers, is found. In total, O((log g)3) operations

and ∼ 9 log g qubits are needed to find α(g). This is a probable exponential improvement

in speed compared with a classical computation, since all methods known for computing

α(g) classically are exponential in g.

More generally, a similar algorithm can be applied to other systems besides the cat

map. We start from an initial point and look for periodicities of its iterates. We use

a discretised (unitary) map on a lattice xi = i/N, i = 0, . . . , N − 1 and yj = j/N,

j = 0, . . . , N − 1, with N = 2nq . The initial state is 2−p/2 ∑2p−1
t=0 |t〉|x0〉|y0〉 with p ≈ nq . This

is transformed efficiently into 2−p/2 ∑2p−1
t=0 |t〉|Lt(x0)〉|Lt(y0)〉. Then we perform a quantum

Fourier transform of the first register. This can only be efficient if a fast (polynomial in

k) classical computation of (L2k ) is possible.

In general, however, iterates of L cannot be computed efficiently for most classical

maps, but L is efficiently computable over exponentially many points. In this case the

algorithm above does not give an increase in speed, but a quantum computer can still

obtain recurrence times faster than classical computers using the Grover algorithm as a

subroutine. One chooses a time t fixed and a subdomain A. A simple case is a square of

size P × P with P = 2p in a phase space of size N ×N where N = 2nq . The initial state is

|ψ0〉 = 2−p ∑2p−1
i=0

∑2p−1
j=0 |xi〉|yj〉. Then we perform |ψ0〉→ 2−p ∑2p−1

i=0

∑2p−1
j=0 |Lt(xi)〉|Lt(yj)〉.

After that, we give a (-1) phase to the values of |Lt(xi)〉|Lt(yj)〉 ending a trajectory returning

to A, then invert everything. This yields 2−p ∑2p−1
i=0

∑2p−1
j=0 ε|xi〉|yj〉, where ε = ±1, and

ε = −1 marks a point that has returned to A after t iterations. We are now in a position

to use this as an oracle in Grover iterations to increase the probability of these particular

points; one return among M is found in O(tP/
√
M) operations, as opposed to O(tP 2/M)

classically.
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We can also obtain periodic orbits of period t with a similar procedure. We start

from all the N × N points of the lattice with N = 2nq . Then |ψ0〉 is transformed into

2−nq
∑2nq−1

i=0

∑2nq−1
j=0 |xi〉|yj〉|Lt(xi)〉|Lt(yj)〉. After t iterations the value of the iterate is

compared to the initial value; a minus sign is given if it is the same; then we invert the

process and get 2−nq
∑2nq−1

i=0

∑2nq−1
j=0 ε|xi〉|yj〉. As before, this is used as an oracle in Grover

iterations; one periodic orbit among M is found in O(tN/
√
M) operations, as opposed to

O(tN2/M) classically.

For example, let us look at classical maps of the form (1). If V (θ) = cos θ (the Chirikov

standard map), the discretised map on a 2nq × 2nq lattice can be performed in O(n3
q) gates,

while its iterates cannot be implemented exponentially fast with respect to the number of

iterates. This implies that a quadratic gain is achievable for the computation of recurrence

times and periodic orbits.

For V (θ) = −θ2/2 (sawtooth map), the discretised mapping is

Ȳ = Y + [NK(2πX/N − π)/(2π)](modN); X̄ = X + Ȳ (modN).

For integer K , one can get an exponential gain, but only a quadratic gain is possible for

non-integer K . The case K = ±1/2 for return times needs only 3 registers; a domain 4×4

in a 8 × 8 lattice requires only 8 qubits and a few tens of quantum gates.

Therefore, as with the simulation of quantum chaotic maps, we see that it is possible

to extract information efficiently from the simulation of classical dynamical systems

on quantum computers. Again, the gain can be polynomial or exponential depending

on the quantity considered and the system simulated. Some of these algorithms can be

implemented with a remarkable economy of resources, meaning they could be implemented

on present day quantum computers. However, unlike the case with quantum chaotic maps,

no experimental implementation of this type of algorithm has been realised so far.

4. Complexity against computation: errors in the quantum computer

The preceding section was concerned with various algorithms that can be implemented

on a quantum computer once such a system is built. Yet, despite years of experimental

progress, we are still far from being able to built such a device of any reasonable size.

The reason lies in the difficulties associated with keeping a set of qubits coherent and in

manipulating them while unwanted processes make the system evolve in uncontrollable

ways. These error processes can be identified as belonging to one of three main types, their

relative importance depending on the precise implementation. The first type is random

unitary errors, such as imperfections in the implementation of the quantum gates. This can

be modelled as noise in the quantum gates applied. The second type is external non-unitary

errors, which correspond to coupling to the external world and are usually described as

‘decoherence’. Finally, the third type of errors correspond to internal imperfections in the

device, and are manifested even when a quantum computer is at rest without coupling to

the external world. Quantum algorithms such as those developed in Section 3.1, since they

use a small amount of resources to produce complex quantum wave functions on which

different observables can be measured, are ideal test grounds for exploring the effects

of such errors on quantum algorithms, especially numerically. In the following we will
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study these three types of errors, assessing how they affect the quantum computer while

simulating a complex wave function. It will turn out that tools from quantum chaos can

help to model the effect of internal errors. Also, different types of errors will be shown to

have vastly different effects depending on the observable considered.

4.1. Random unitary errors

The first type of error corresponds to random unitary errors; it can be modelled as, for

example, unitary noise in the gates. Numerical simulations and analytical estimates for

the kicked rotator model on a quantum computer with such types of errors have been

performed in Song and Shepelyansky (2001) and Lévi et al. (2003). The system is therefore

described by (2) with V (θ) = cos θ. The Hilbert space dimension is N = 2nq , and T and

k are constant. In this case, the size of phase space grows exponentially with nq , keeping

the effective � constant. This is the regime where quantum localisation can be seen for

large K values.

The errors were implemented by rotating each quantum gate by a small angle drawn

randomly in [0, ε]. For such a process of random errors, one expects physically that each

gate transfers probability of order ε2 from the exact wave function. The results of the

simulations showed that this can lead to vastly different time scales, depending on the

observable.

The first quantity we can look at is the fidelity: f(t) = | < ψε(t)|ψ0(t) > |2 (the projection

of the perturbed state onto the exact state). As each gate transfers probability of order

ε2, this leads to an estimate for the fidelity time scale (the unit of time is the number of

iterations of (2)):

tf ≈ Cf/(ε
2ng) (8)

where ng is the number of gates for one iteration of (2), which depends polynomially

on nq (see Section 3.1). The time scale (8) is therefore polynomial in ε and nq (Cf is a

constant). This time scale is confirmed numerically by the plot on the left-hand side of

Figure 7.

If we now turn to the second moment < n2 >=< (n − n0)
2 >, where the initial wave

function is |ψ0〉 = |n0〉, the results are quite different. Indeed, similar arguments to those

given for the fidelity time scale now lead to a very different estimate for the second

moment time scale:

tq ≈ Cqk
4/(ε2nq2

2nq ). (9)

This is polynomial in ε, but exponential in nq (Cq is a constant). This is confirmed by the

plot on the right-hand side of Figure 7. The reason for such behaviour lies in the fact that

even a small transfer of probability from the exact localised state can increase the second

moment enormously, provided the transfer is to regions far away in phase space. Indeed,

the random errors are strongly non-local in phase space: a change in the most significant

qubit being enough to change location over half of phase space.

This shows that the same physical process of errors can give vastly different outcomes

for the same computation, depending on the observable we are interested in.
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Fig. 7. The plot on the left-hand side shows the dependence of the time scale tf on system

parameters for nq = 4 (�), 6 (squares), 8 (�),10 (), 12 (� ), 14 (�), 16 (�), 18 (+). Here K = 1.3,

T = 2π/N (N = 2nq ) (open symbols) or K = 5, T = 0.5 (full symbols). The dashed line is the

theoretical formula (8) with Cf = 0.35. The initial state is |Ψ0 >= |n0 >, with n0 = 1 (K = 1.3) or

n0 = N/2 (K = 5). The plot on the right-hand side shows the dependence of the rescaled time

scale tq on the number of qubits nq for 10−6 < ε < 0.03, T = 0.5, K = 5 (×) and K = 15 (�). The

initial state is |Ψ0 >= |n0 > with n0 = N/2. Full and dashed lines correspond to the theoretical

formula (9) with Cq = 0.23. (Lévi et al. 2003)

In view of these results, it is important to explore how phase space distribution functions

such as the Wigner function are affected by the errors, since such distributions are among

the important observables to be extracted from a wave function.

This was investigated in Lévi et al. (2003) (an example of the effects of such errors on

phase space distributions is given in Figure 8). It was shown that the relative error in the

Wigner function δW = 〈|W − Wε|〉/〈|W |〉 varies only polynomially with the parameters

of the system (W and Wε are the exact and perturbed Wigner functions, respectively).

Numerical simulations (see Figure 9) showed that it obeys the time scale

tW ≈ CW/(n
α
qε

2) (10)

where α depends on the regime (localised, chaotic, integrable) the system is in. This shows

that the Wigner function is only polynomially affected by these errors, thus confirming

the fact that it can be effectively measured on a quantum computer even in the presence

of random errors.

4.2. Dissipative decoherence

The effect of errors on quantum chaos algorithms has also been recently explored for

dissipative decoherence (Lee and Shepelyansky 2005). The dissipation was numerically

computed using the method of quantum trajectories, which enables us to study a quantum

computer undergoing decoherence for relatively long times. The algorithm tested was the

one for the quantum sawtooth map discussed above in Section 3.1, which has actually

been experimentally implemented with the NMR technique. It was shown that in the

presence of these errors the fidelity decays exponentially with time and that the decay rate
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Fig. 8. Plot of Wigner (top) and Husimi (bottom) distributions for the kicked rotator model at

t = 103 for K = 1.3 > Kg , T = 2π/N, N = 2nq and nq = 7. The initial state is |Ψ0 >= |n0 >, with

n0 = 1. The horizontal axis is momentum and the vertical axis is angle. The quantum noise

(random unitary errors) is ε = 0 (left), ε = 0.002 (centre), ε = 0.004 (right). For the top plots,

grayness represents the amplitude of the Wigner function, from white (minimal negative value) to

black (maximal positive value). For the bottom plots black represents the minimal intensity level,

white an intermediate intensity level and gray the maximal intensity level. (Lévi et al. 2003)

is proportional to the number of qubits nq , the number of quantum gates per iteration

of the map ng and the dissipation rate per gate induced by external decoherence Γ. This

gives the following time scale for fidelity decay in the presence of dissipative errors:

td ≈ 1/(nqngΓ). (11)

For localisation properties, a moderate dissipation destroys the dynamical localisation of

the exact models, but in the limit of strong dissipation there is again localisation but

on a quantum attractor, which may have a complex or simple structure depending on

the parameters. It is interesting to note that the fidelity decay law obtained for quantum

chaos algorithms also holds for the Grover algorithm in the presence of dissipative errors

(Zhirov and Shepelyansky 2006).

4.3. Static imperfections: many-body quantum chaos

Before turning to internal errors, we will give brief consideration to quantum chaos in

many-particle systems. Quantum chaos phenomena have been seen to manifest themselves

quite commonly in quantum many-body systems, especially when some disorder is present.

In such systems, the classical limit is often harder to grasp in practice than in the one-

body case. Nevertheless, many models follow the predictions of Random Matrix Theory,
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Fig. 9. The plot on the left-hand side shows the relative error in the Wigner function

δWε = 〈|W −Wε|〉/〈|W |〉 as a function of time for K = Kg , T = 2π/N, N = 2nq and nq = 10. The

initial state is |Ψ0 >= |n0 >, with n0 = N/2. From bottom to top, the quantum noise is ε = 10−4,

ε = 10−3.5, ε = 10−3. The Wigner function is averaged over 2N values in the chaotic zone. The plot

on the right-hand side shows the dependence of time scale tW on system parameters for

5 � nq � 11. Here K = Kg , T = 2π/N (N = 2nq ). The Wigner function is averaged over 2N values

in the chaotic zone (©) or in the integrable zone (). The straight lines are the theoretical

formula (10) with α = 1.5 and CW = 0.02 (full line) or CW = 0.03 (dashed line). The initial state is

|Ψ0 >= |n0 >, with n0 = N/2. The inset shows the dependence of time scale tW on system

parameters for 5 � nq � 14. Here T = 0.5 and K = 5. The Wigner function is averaged over 2N

values in the localised zone (squares). The full line is the theoretical formula (10) with α = 1 and

CW = 0.012. The initial state is |Ψ0 >= |n0 >, with n0 = N/2. (Lévi et al. 2003)

although possibly only in a certain energy range, and have wave functions ergodic in

Hilbert space.

Usually, the presence of a random interaction drives an initially integrable or localised

system to such a quantum chaos regime. This has been shown in many different systems

such as nuclei, atoms, quantum dots, interacting fermions, quantum spin glasses, and so

on. Remarkably enough, this happens despite the fact that the two-body interactions

usually found in nature couple only very few of the many-body states of the unperturbed

system.

Such a quantum chaos regime may appear in a quantum computer. Indeed, the energy

between the two states of the qubits may fluctuate from one qubit to another. Also,

an interaction between qubits is necessary to use two-qubit gates. Usually, in many

quantum computer models this interaction is switched on and off to use the gates, but

this cannot be done with perfect accuracy, and there will be residual random couplings

that act permanently on the system. Such static (time-independent) imperfections make

a quantum computer similar to a disordered interacting system of the type discussed

above. A quantum computer with static imperfections can be modelled by the following

Hamiltonian:

H =
∑
i

Γiσ
z
i +

∑
i<j

Jijσ
x
i σ

x
j . (12)
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Fig. 10. The plot on the left-hand side shows the transition from Poisson to Wigner statistics for

the Hamiltonian (12) in the central band for nq=16: J/δ = 0.05, η = 0.99 (dashed line histogram);

J/δ = 0.32, η = 0.047 (full line histogram). The full curves show the Poisson distribution PP (s) and

the Wigner distribution PW (s). The plot on the right-hand side shows the dependence of η on the

rescaled coupling strength J/Jc (Jc is the quantum chaos border, see text) for the states in the

middle of the energy band for nq = 6(∗), 9(o), 12(triangles), 15(squares), 16(diamonds). (Georgeot

and Shepelyansky 2000b)

This Hamiltonian was introduced in this context and analysed in Georgeot and

Shepelyansky (2000a; 2000b). The qubits labelled by i, j are in a two-dimensional

lattice; Jij are nearest-neighbour couplings random uniform in [−J, J]; Γi is random

in [∆ − δ/2,∆ + δ/2]; σi are Pauli matrices.

In the absence of the couplings (J = 0), the model (12) for nq qubits and δ � ∆ presents

a density of states composed of n+ 1 bands, the central band being the most important

in a number of many-body states. For δ = ∆, the different bands merge into one band

of Gaussian shape. In both cases the spectral statistics are Poisson, which is typical of

integrable systems as long as J = 0. Note that nq qubits imply N = 2nq multi-qubit

states (‘quantum register states’). To investigate the transition to quantum chaos when J

increases, it is useful to study the spectral statistics. Numerical results show a transition

from the Poisson distribution (typical of integrable systems) to the Wigner distribution

(from Random Matrix Theory) of eigenvalues of (12) as J/δ increases, as seen in the plot

on the left-hand side of Figure 10. To monitor the transition in a more precise way, it is

customary to use a parameter η defined by

η =

∫ s0
0

(P (s) − PW (s))ds∫ s0
0

(PP (s) − PW (s))ds

where s0 = 0.4729 . . . is the intersection point of PP (s) (Poisson distribution) and PW (s)

(Wigner distribution). This parameter η varies continuously from η = 1 (Poisson) to η = 0

(Wigner). The results shown in the plot on the right-hand side of Figure 10 show a sharp

transition (it can be smooth in other systems).

Where in parameter space does the transition take place? The Hamiltonian (12) has

three energy scales. The largest is ∆, the one-particle level spacing. The smallest is ∆n, the

level spacing between multi-particle states, which decreases exponentially with nq . There
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∆n c∆
∆

E

Fig. 11. The three different energy scales in (12): ∆ is the one-particle level spacing; ∆n the level

spacing between multi-particle states; and ∆c the level spacing between directly coupled

multi-particle states. Note that ∆n � ∆c < ∆.

is, however, a third energy scale. Indeed, the Hamiltonian corresponds to a very sparse

matrix. Due to the two-body interaction, (12) can couple multi-qubit states only if they

differ by only two qubits. Thus very few states are actually coupled by matrix elements of

(12). This introduces a third energy scale, which is ∆c, the level spacing between directly

coupled multi-particle states, which varies polynomially with nq . Thus one obviously has

∆n � ∆c. The three energy scales are shown in Figure 11.

The numerical results show that at a certain value of interaction Jc, the system undergoes

a transition to quantum chaos. The dependence of this ‘quantum chaos border’ on system

parameters is obviously of great interest. Recent work has dealt with this problem in similar

systems: in particular, a general prediction was made in Åberg (1990) and Jacquod and

Shepelyansky (1997). It was realised that chaos corresponds to mixing of many-particle

states, and as higher orders of perturbation theory can be written in terms of two-particle

terms, mixing of many-particle states should happen when two-particle states are mixed.

We can therefore expect the critical interaction strength to be Jc ≈ ∆c. This was confirmed

by numerical simulations in many systems with two-body interactions.

For the Hamiltonian (12), we have seen that the spectrum for J = 0 (in the case δ � ∆)

is composed of n + 1 bands with interband distance 2∆ and width
√
nqδ. Thus, in the

central band, where ∼ 2nq/nq states are present, this gives the estimate ∆n ∼ n
3/2
q 2−nqδ,

which is exponentially small. In the same central band, one multi-qubit state is coupled

to around nq states in an energy interval 2δ, thus ∆c ∼ δ/nq . The general estimate for Jc

therefore implies that Jc ≈ ∆c ∼ δ/nq � ∆n ∼ n
3/2
q 2−nqδ. The numerical results presented

in the plot on the left-hand side of Figure 12 show that this estimate is correct in the case

of (12).

In the regime of quantum chaos, the true eigenstates of (12) are no longer quantum

register states, but have components in many of them. To quantify this spreading of

eigenstates, two related quantities are generally used, which depend on Wim, the quantum

probability to find the quantum register state |ψi〉 in a true eigenstate |φm〉 of the

Hamiltonian (Wim = |〈ψi|φm〉|2). The first quantity is the inverse participation ratio (IPR)
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Fig. 12. The plot on the left-hand side shows the dependence of log(Jc/δ) (diamonds) and

log(Jcs/δ) (triangles) on log(nq); the variation of the scaled multi-qubit spacing (log(∆n/δ)) with

log(nq) is shown for comparison (+). Jc is the quantum chaos border determined by level statistics,

Jcs is the quantum chaos border determined by the beginning of the mixing of quantum register

states. The dashed line gives the theoretical formula Jc = Cδ/nq with C = 3.3 and the solid line is

Jcs = 0.41δ/nq . The results show that both definitions give the same parametric dependence. The

dashed curve is drawn to guide the eye for (+). (Georgeot and Shepelyansky 2000b) The picture

on the right-hand side shows the the quantum computer melting induced by the coupling between

qubits. The shade of gray is used to represent the level of quantum eigenstate entropy Sq , which

measure the mixing of quantum register states in eigenstates of 12, with gray close to maximal

(Sq ≈ 11), black close to minimal (Sq ≈ 0) and white for intermediate values. The horizontal axis is

the energy of the computer eigenstates counted from the ground state to the maximal energy

(≈ 2nq∆). The vertical axis is the value of J/δ, varying from 0 to 0.5. Here nq = 12, δ = ∆,

Jc/δ = 0.273, and one random realisation of (12) is chosen. (Georgeot and Shepelyansky 2000a)

ξ = 1/
∑

i |Wim|4. The second is the quantum eigenstate entropy Sq = −
∑

i Wim log2Wim.

One can check that:

— Sq = 0 and ξ = 1 if |φm〉 is one quantum register state (J = 0)

— Sq = 1 and ξ = 2 if |φm〉 is equally composed of two |ψi〉
— in an N-dimensional Hilbert space with N = 2nq , the maximal value are Sq = nq and

ξ = 2nq if all 2nq states contribute equally to |φm〉.

Chaos implies mixing of exponentially many multi-qubit states – ergodicity. This can be

understood as a kind of ‘melting’ of the quantum computer. This leads to the destruction of

the computer without coupling to the environment, since its source lies in internal disorder

in (12). This process can be quantified through the IPR and entropy: for example, the

plot on the right-hand side of Figure 12 shows the entropy of the quantum computer as

the interaction strength increases. The melting starts in the band centre where the density

of states is largest, and then spreads to most of the Hilbert space. To show in more detail

what happens for an individual state, the plot on the left-hand side of Figure 13 shows

the projections of a true quantum computer eigenstate of (12) in the basis of quantum
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Fig. 13. The plot on the left-hand side shows two quantum computer eigenstates of model (12) in

the basis of non-interacting multi-qubit states, that is, Wi = | < ψi|φ > |2 as a function of

non-interacting multi-qubit energy Ei for nq = 12 and δ = ∆ with Jc/δ = 0.273 (see text). For

(a) J/δ = 0.02 (below the quantum chaos border) and for (b) J/δ = 0.48 (above the quantum

chaos border). (Georgeot and Shepelyansky 2000a) The plot on the right-hand side shows ρW for

the quantum computer model (12) for nq = 15 and δ � ∆. The inserts show examples of the

LDOS for, on the right-hand side, J/δ = 0.08 (Breit–Wigner form) and, on the left-hand side,

J/δ = 0.4 (Gaussian form). The main plot shows the dependence of the width Γ on J/δ. The

straight lines are Γ = 1.3J2nq/δ (Breit–Wigner theoretical formula) and Γ ∝ J (Gaussian regime).

(Georgeot and Shepelyansky 2000b)

register states. Below the quantum chaos border, such an eigenstate is very close to one

quantum register state, while above this border it is composed of a huge number of them.

Another useful related quantity is called the local density of states (LDOS), which is

defined by ρW (E−Ei) =
∑

mWimδ(E−Em), and characterises how quantum register states

are spread over the true eigenstates of the perturbed system. In general it has two forms.

The first is the Breit–Wigner form

ρBW (E − Ei) =
Γ

2π((E − Ei)2 + Γ2/4)
,

which is valid when Γ is smaller than the bandwidth (Γ <
√
nqδ) and many levels are

contained inside this width. In this regime, the Breit–Wigner width Γ is given by the

Fermi golden rule: Γ = 2πU2
s /∆c, where Us is the root mean square of the transition

matrix element and 1/∆c is the density of directly coupled states. In our case Us ∼ J and

∆c ∼ δ/nq , so that Γ ∼ J2nq
δ

. The second form arises for large J , when Γ >
√
nqδ, and

ρW becomes close to a Gaussian, whose width grows like Γ ∼ J . The change from one

dependence to the other takes place for J > δ/n
1/4
q . These two regimes can be seen in the

plot on the right-hand side of Figure 13, which shows the LDOS for the model (12). The

general theory asserts that for J > Jc, all states inside the width Γ are mixed. Thus, for

(12) this translates into an estimate of ξ ≈ Γ/∆n ∼ J2/(∆c∆n) for the IPR.

The theory described above enables us to understand the time scale of the destruction of

quantum register states in the different regimes of (12). For J > Jc, as these states are far

from being eigenstates of (12), they decay with time. If one starts with a quantum register

state |ψ(0)〉 = |ψi0 (0)〉, this process can be measured by the fidelity f(t) = |〈ψ(t)|ψi0 (t)〉|2.
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It is easy to see that the fidelity decay is the Fourier transform of the local density of

states. Thus, for J > Jc, the Breit–Wigner form of the LDOS with width Γ implies an

exponential decay ∼ e−Γt, while a Gaussian shape of the LDOS with width Γ implies

a Gaussian decay ∼ e−Γ2t2 . In both cases the time scale is τ ∼ 1/Γ (Georgeot and

Shepelyansky 2000b; Flambaum 2000). There will also be phase errors, which are not

taken into account in this picture. Therefore, even in the regime of quantum chaos, the

computer can be used reliably for some time, although it is eventually destroyed. It has

been proposed (Berman et al. 2001; Lages and Shepelyansky 2006) that by imposing a

gradient in the values of Γi in (12), the quantum computer might be more stable against

static errors since this can push the quantum chaos border higher in interaction strength.

However, this requires some fine-tuning in the parameters of the quantum computer, and

its applicability depends on the experimental implementation.

The analysis we have presented so far has been purely static, the quantum computer

being at rest with no gate applied. In reality we are interested in a quantum computer

doing a calculation, and it is therefore important to assess the effect of static imperfections

while the computer is performing some algorithm, such as a simulation of a quantum

map of the form (2).

This analysis was performed on a quantum computer simulating the kicked Harper

model (6) on an N-dimensional Hilbert space (N = 2nq ) through the time-slice algorithm

presented in Section 3.1 (Lévi and Georgeot 2004). To investigate such effects, the

approximation was made that the Hamiltonian (12) acts during a time τg between each

gate, which is taken to be instantaneous. A single rescaled parameter ε describes the

amplitude of these static errors, with ε = δτg = Jτg .

For K,L very small, it is known that in the classical kicked Harper model a small chaotic

layer appears in phase space surrounding large integrable islands; this is called a ‘stochastic

web’, and has been much studied since quantum transport in this regime is a complicated

interplay between classical diffusion through the layer and quantum tunnelling.

In this regime, the effects of static errors were tested on the Husimi distribution (see

Figure 14 for an example). The numerical results showed that the relative error is 1/2

for a time scale th ≈ Ch/(εn
1.23
q ), where Ch is a numerical constant. Thus the phase-space

distributions vary polynomially with these static errors as well as in the case of random

noise in the gates discussed in Section 4.1.

For larger values of K and L, classical chaos sets in and the quantum dynamics shows

dynamical localisation, until a partial delocalisation takes place for increasing K and L. In

the localised regime, it is possible to estimate theoretically the effect of static imperfections.

It is similar to the analysis given above for the quantum computer at rest, but we should

now consider the eigenstates of the evolution operator Û of the unperturbed system

(kicked Harper (6)) instead of the quantum register states.

In the regime where all states are localised with localisation length l, an eigenstate is

coupled to only ∼ l neighbouring states with typical matrix element Vtyp ∼ εng
√
nq/

√
l,

where ng is the number of gates needed for one iteration of (6) and nq is the number of

qubits. This implies that the quantum chaos border is

εc ≈ C1/(ng
√
nq

√
l) (13)
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Fig. 14. Example of the Husimi distribution of a wave packet spreading on the stochastic web of

(6) in the presence of static errors: here K = L = 0.5, � = 2π × 64/2nq (this is the only figure where

there are 8 × 8 cells, both in momentum and angle directions); the initial state is a Gaussian wave

packet of area � started half a cell above the centre of the figure; and 100 iterations have been

performed using 2 × 40 slices per iteration. For the top pictures, nq = 14 and from left to right

ε = 10−6, ε = 10−5, ε = 10−4. For the bottom pictures, ε = 0 and from left to right nq = 14, nq = 11,

nq = 8. The amplitude of the Husimi function is represented by shades of gray with black

representing zero, gray representing maximal values and white representing intermediate values.

(Lévi and Georgeot 2004)

where C1 is a numerical constant. This formula was checked numerically (see Figure 15).

For ε � εc, the localisation length l can be measured for very long times (no quantum

chaos regime), while for ε � εc, we get that l can be measured up to t ∼ 1/(εng
√
nq).

If K and L increase, a certain fraction of the eigenstates of Û in (6) become delocalised.

In this case, the typical matrix element between states with at least one delocalised is

Vtyp ∼ εng
√
nq/

√
N, where N = 2nq . This implies that the quantum chaos border should

vary as

εc ≈ C2/(ng
√
nq

√
N) (14)

where C2 is a numerical constant. This formula agrees with numerical simulations (see

Figure 16). Unlike the localised case, the threshold is now exponentially small since

N = 2nq (see also Benenti et al. (2002) where a similar phenomenon was seen on a

different system). However, even if, realistically, the quantum chaos regime is unavoidable,

ε � εc means that observables are measurable up to time t ∼ 1/(εng
√
nq).

For other maps of the form (2) displaying quantum chaos, provided one is in a regime

where localisation is not visible and eigenfunctions of the simulation evolution operator

U are ergodic, one can use Random Matrix Theory to compute the threshold and the
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Fig. 15. The plot on the left-hand side shows an example of the wave function after iterations of

(6) in the localised regime in the presence of static imperfections: here K = 1, L = 5,

�/(2π) = (13 −
√

5)/82, the initial state is |ψ0〉 = |0〉, 1000 iterations have been performed using

2 × 40 slices per iteration, nq = 8, and, from bottom to top, ε = 0 (black, solid line), ε = 10−7 (dark

gray, dashed line), ε = 10−3 (light gray, solid line). In the centre, the first two curves are superposed

and indistinguishable. The plot on the right-hand side shows the critical value of ε (error strength)

as a function of parameters for K = 2, L = 27, with other parameter values the same as for the

plots on the left-hand side. The solid line is the formula (13). (Lévi and Georgeot 2004)
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Fig. 16. The plot on the left-hand side shows an example of the wave function after iterations of

(6) in the partially delocalised regime in the presence of static imperfections. Here K = 2, L = 5,

�/(2π) = (13 −
√

5)/82, the initial state is |ψ0〉 = |0〉, 100 iterations have been performed using

2 × 40 slices per iteration, nq = 8 (N = 2nq ), and, from bottom to top, ε = 0 (black, solid line),

ε = 10−7 (dark gray, dashed line), ε = 10−3 (light gray, solid line). In the centre, the first two curves

are superposed and indistinguishable. The plot on the right-hand side shows the critical value of ε

(error strength) as a function of parameters for K = 10, L = 27 with other parameter values the

same as for the plot on the left-hand side. The solid line is the formula (14). (Lévi and Georgeot

2004)
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time scales. This was done in Frahm et al. (2004). It was shown that for fidelities f(t)

close to one, we have

ln f(t) ≈ − t

tc
− 2t2

tctH
(15)

where tc = 1
ε2nqn2

g
and tH = 2nq is the Heisenberg time (the inverse of the mean level

spacing), and N = 2nq is the dimension of the Hilbert space, ng is the number of gates

needed for one iteration of the map, and ε is the amplitude of static imperfections. Two

regimes are therefore possible:

(i) tc < tH or, equivalently, ε > εc = 2−nq/2/(ng
√
nq): the system is above the quantum

chaos threshold εc, the first term in (15) dominates, and makes the fidelity decay

exponential, as in the case of random errors, though the decay is parametrically

faster.

(ii) tc > tH or, equivalently, ε < εc = 2−nq/2/(ng
√
nq): the system is below the quantum

chaos threshold εc, the second term in (15) dominates, and makes the fidelity decay

as a Gaussian, which is very different from the exponential decay of random errors.

As in the case of the partially delocalised regime of the kicked Harper, the quantum

chaos border also decreases exponentially with nq in this result.

The effect of static errors has also been explored for a quantum computer performing

the Grover algorithm (Braun 2002; Pomeransky et al. 2005), showing that in this case the

quantum chaos border decreases polynomially with the number of qubits nq .

In the above discussion, the static imperfections have generally been found to have

parametrically bigger effects than both the random unitary and dissipative errors discussed

previously. However, it is interesting to note that it is actually possible to devise quantum

error-correcting codes tailored for such types of static imperfections. This method of

correction, which was introduced in Kern et al. (2005) and called the Pauli Random Error

Correction (PAREC) method, is based on repeated application of Pauli operators, which

change the computational basis. Interestingly, there is no need to increase the number of

qubits, unlike most other quantum error correcting codes. This randomisation procedure

eliminates the time-coherence of static errors and the time scales after correction are now

similar parametrically to the ones for incoherent errors such as random unitary noise.

5. Complexity, entanglement and interference

In this section we address the question of how to measure the complexity of quantum

states. Quantum chaos gives one answer to such questions. Quantum computation can

also give a parallel answer: any quantum state can be built from a simple initial state

through the action of quantum operations. So the complexity of a quantum process, or

of a quantum algorithm, can be used to define the complexity of a state. To understand

the construction of complex quantum states from simple initial states, it is important to

understand the resources used in quantum manipulation of information, which are not the

same as in classical computing. One of them is the superposition principle, which enables

us to manipulate as a single state arbitrary superpositions of classical registers. Another

resource is entanglement: the non-factorisability of most quantum states into individual
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Fig. 17. The plots on the left-hand side show the distributions of matrix elements (top) and Q of

column vectors (bottom) for iterates Ûn of Û in (5) for N = 29, in momentum representation.

Matrix elements x are rescaled by y = N|x|2. From lowest to topmost curve: black is α = 1/3, dark

gray is α = 1/5, light gray is α = (1 +
√

5)/2, intermediate gray is the random matrix result. The

plots on the right-hand side are the same as those on the left for iterates of a random phase model

where in (5) the first operator is replaced by random phases, for N = 28. (Giraud and Georgeot

2005)

qubit states. Finally, quantum computing uses interferences between different registers as

a resource. In this section we will look more closely at the production of entanglement

and interference in quantum processes, pointing out the links, where they exist, with the

quantum chaos concepts.

5.1. Entanglement and quantum chaos

It is well known that entanglement is an important resource that is specifically quantum

and is produced in large quantities in efficient quantum algorithms. It has even been

suggested that the amount of entanglement measures the difficulty of simulating a quantum

state classically. Remarkably, entanglement and quantum chaos have been shown to be

linked. Indeed, several studies have shown that quantum chaotic maps of the form

(2) are good producers of entanglement. Indeed, the entanglement of Random Matrix

column vectors or eigenvectors gets closer and closer to the maximal value as the size

of matrices increases. Parallel to this, it has been shown that several quantum chaotic

maps exhibit distributions of entanglement among column vectors (after many iterates)

or eigenvectors which are close to the values for Random Matrices (Bandyopadhyay

and Lakshminarayan 2002; Scott and Caves 2003; Weinstein and Hellberg 2005). To

illustrate this point, Figure 17 shows the matrix element and entanglement distributions

for the map (5) and a random phase version of it, for different values of α. The classical

map corresponding to (5) is ergodic and mixing for α irrational, and in this case the

quantum evolution operator has eigenvalues following Random Matrix predictions. The

entanglement in Figure 17 is measured by the average bipartite entanglement between
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one qubit and the rest of the system

Q = 2 − 2/nq

nq∑
k=1

Trρ2
k,

where ρk is the density operator corresponding to the k-th qubit after having traced out

the rest, and nq is the number of qubits. This Q is a popular measure of entanglement

called the Meyer–Wallach measure. For irrational α, the distribution of Q for column

vectors is very close to the Random Matrix prediction, which, in turn, for large matrices is

close to the maximal value. For rational α, the map (5) is not chaotic and not integrable,

and the evolution operator eigenvalues are intermediate between Random Matrices and

Poisson. Figure 17 shows that in this case the entanglement distribution as well as the

matrix element distribution departs from Random Matrix results, in a parallel way. The

distribution of Q gets further from the maximal value as the matrix elements are far from

Random Matrix predictions. In this system, as one get further from quantum chaos, the

less entangled one becomes.

A further confirmation of this link between entanglement and quantum chaos has been

observed in many-body systems. Indeed, it was shown in Mejia-Monasterio et al. (2005)

that the Hamiltonian (12) of Section 4.3 displays a large increase in bipartite entanglement

once the interaction becomes larger than the quantum chaos border. Actually, the existence

of this link inspired the construction of pseudo-random operators based on quantum

chaotic maps, which efficiently mimic random operators with Random Matrix statistics

of entanglement (Emerson et al. 2003).

5.2. Entanglement and interference in quantum algorithms

Although entanglement has been much studied and many competing measures are

available for it, this is not the case for interference, which is, in a sense, more mysterious.

Indeed, interference cannot be easily associated with a state in isolation, but only with

a process, and it obviously depends on the basis chosen. Nevertheless, a measure of

interference was proposed in Braun and Georgeot (2006). This allows us to compare

interference and entanglement production in quantum algorithms, including the quantum

chaos algorithms of Section 3.1.

To explain this measure of interference, consider a process mapping density matrices ρ

to density matrices ρ′ in an N-dimensional Hilbert space through ρ′
ij =

∑
k,l Pij,klρkl , and

let us start with a pure initial state, ρ = |ψ〉〈ψ|, with |ψ〉 =
∑N

j=1 aj |j〉, with phases ϕj such

that aj = |aj | exp(iϕj). One can define a real phase sensitivity matrix S , which measure how

probabilities |ρ′
ii| are affected by the phases ϕj , with matrix elements Sil = ∂p′

i/∂ϕl . The

interference measure is obtained by taking the trace of SST , averaging it over all initial

phases, and applying it to an equipartitioned state with |ai| = 1/
√
N for all i = 1, . . . , N.

This procedure defines the interference measure by

I(P ) =
∑
i,k,l

|Pii,kl |2 −
∑
i,k

|Pii,kk|2. (16)
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Fig. 18. Potentially available interference. The plot on the left shows the accumulated interference

up to and including step number t in Grover’s algorithm for nq = 8 qubits. One Grover iteration

corresponds to four steps in the plot. The plot on the right shows the accumulated interference up

to and including step number t generated during Shor’s algorithm for factorisation of R = 15

(finding the period of f(x) = ax (mod R) on nq = 12 qubits, where the first four qubits hold the

values of x and the next eight the values of f(x)). Values of a are a = 13 (circles, full line), a = 7

(squares, dashed line), a = 11 (diamonds, full line), a = 8 (triangles, full line), a = 14 (inverted

triangles, full line), a = 4 (crosses, full line), a = 2 (stars, dashed line). Data for different values of a

differ only for the last two time steps. The horizontal dashed red line is the maximum possible

value of interference for an untouched second register, I = 2nq − 2L = 4080. The inset shows the

same curves for the last steps on a different scale. Lines are there to guide the eye only. Massive

interference I = 2n − 2L (or almost n i-bits) is generated during the application of the

Walsh–Hadamard gate (part 1, first eight points). Interference is unchanged in part 2 (next eight

points), and decreases during the final part (quantum Fourier transform) (final eight points).

(Braun and Georgeot 2006)

For unitary processes described by an N ×N unitary matrix U, it becomes

I(P (U)) =

⎛⎝N −
∑
i,k

|Uik|4
⎞⎠ . (17)

The measure (16) allows us to define a unit of interference, the ‘i-bit’; the number of

‘i-bits’ in a process is nI = log2(I(P ) + 1). In the case of unitary processes, the measure

(17) verifies 0 � I(P (U)) � N− 1. Note that it can be related to the inverse participation

ratio (IPR) is defined in Section 4.3, applied to all column vectors of the matrix. One

can easily verify that (17) gives the expected results for some specific cases. Indeed, for a

process described by a permutation matrix, we have I(P (U)) = 0, that is, no interference

is produced by swapping states. On the other hand, for Fourier and Walsh–Hadamard

transforms, I(P (U)) = N − 1, so the maximal value is reached.

It is instructive to use the interference measure to quantify interference production

in the most famous quantum algorithms: those of Grover and Shor. The results are

shown in Figure 18. It turns out that both algorithms generate an exponential amount of

interference right at the beginning, as they start out with the Walsh–Hadamard transform

on many qubits. At the end, the information extraction, which concentrates probability

on a small subspace, reduces the total interference produced from the beginning. An

alternative approach is to calculate, instead of this ‘potentially available interference’,
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Fig. 19. Actually used interference. The plot on the left-hand side shows the accumulated

interference up to and including step number t generated during Grover’s algorithm, excluding the

initial Walsh–Hadamard transform, for nq = 7 qubits. The step number on the t-axis is shifted by

one compared to Figure 18 (left), that is, step 1 is now the first application of the oracle, which

does not lead to interference. The accumulated interference is changed only during the following

steps. The maximum value I � 8 is asymptotically independent of the number of qubits. The plot

on the right-hand side shows the accumulated interference up to and including step number t

generated during Shor’s algorithm, excluding the initial Walsh–Hadamard transform for

factorisation of R = 15 (nq = 12 qubits). The step number on the t-axis is the same as in Figure 18

(right) but shifted by 8. The horizontal dashed red line is the maximum possible value of

interference for transformations of the first register alone I = 4080. The accumulated interference

is changed only during the final quantum Fourier transform, and does not depend on the value of

a. (Braun and Georgeot 2006)

the accumulated interference for the algorithm without the initial Walsh–Hadamard

transform, which amounts to a change in the initial state. The results for this ‘actually used

interference’ are given in Figure 19 and show that in this case the production of interference

is small in Grover’s algorithm, while it remains exponential in the case of Shor’s algorithm.

This result may be related to the fact that the former only has polynomial efficiency, while

the latter has exponential efficiency. The high level of interference produced in Shor’s

algorithm may also be related to the fact that the operator performing this algorithm has

quantum chaotic properties, such as spectral statistics in agreement with Random Matrix

Theory (Maity and Lakshminarayan 2006).

Interestingly enough, if one now looks at entanglement production for both algorithms,

there is a sort of symmetry. Indeed, each Grover iteration can be divided into four

operators, two of them (Walsh–Hadamard transforms) producing interference but no

entanglement (products of one-qubit gates), and two of them (changes in the phase of

amplitudes) creating entanglement but no interference. In the same way, the three parts

of Shor’s algorithm consist of two phases producing interference but little entanglement

(an initial Walsh–Hadamard transform and a final Fourier transform), and one producing

massive entanglement but no interference (the computation of the modular exponentiation

function f(x)). This is also true for quantum chaos algorithms such as, for example, the

simulation of the kicked rotator presented in Section 3.1. Indeed, one iteration of the

map requires, essentially, four phases in the computation: two of them are quantum

Fourier transforms creating little entanglement but vast amounts of interference; and two
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of them are diagonal multiplications (which correspond to multiplication by diagonal

matrices) and the computation of a function on another register (which corresponds to

multiplication by permutation matrices), yielding no interference but a large amount of

entanglement.

6. Conclusion

In this paper I have reviewed a recent body of work, including my own, which connects the

fields of classical and quantum chaos with quantum information and computation. Three

main connections can be discerned. As chaos is, in a sense, a science of complex systems,

it is a source of problems that are difficult to tackle with classical computation and are

good candidates for a quantum speed-up. It turns out that the simulation of such systems

can be faster on a quantum computer than classically: the gain can be exponential or

polynomial, depending on the system considered and the observable we are interested in.

As many physical systems display chaotic properties, this gives new practical applications

for quantum computing. Another very important feature of these algorithms is that they

can sometimes be very economical in the number of gates and qubits required. This makes

them a good choice for testing the small-scale quantum computers currently being built,

and explains why some of them have already been implemented experimentally.

A second connection between chaos and quantum computing is in error analysis.

Quantum algorithms for chaotic physical systems are very versatile and varied, and

permit a thorough analysis of the effect of different types of errors on the outcome of a

quantum computation. Furthermore, the tools of quantum chaos can be applied to the

quantum computer as a physical system in order to investigate the effects of certain types

of errors such as static errors.

A final connection is related to the resources of quantum computation: the complexity

of quantum chaotic systems reflects itself in high degrees of entanglement. We have also

made a proposal to quantify interference, and this resource may also be produced in large

amounts for chaotic systems.

The results presented in this paper show that the concepts of complexity due to chaos

and complexity in the sense of information theory are not totally disconnected. This recent

interplay between two exciting fields of science should go on to give some new insights to

both of them in the future.
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69 032301.

Georgeot, B. and Shepelyansky, D. L. (2000a) Quantum chaos border for quantum computing. Phys.

Rev. E 62 3504.

Georgeot, B. and Shepelyansky, D. L. (2000b) Emergence of quantum chaos in the quantum

computer core and how to manage it. Phys. Rev. E 62 6366.

Georgeot, B. and Shepelyansky, D. L. (2001a) Exponential gain in quantum computing of quantum

chaos and localization Phys. Rev. Lett. 86 2890–2893.

Georgeot, B. and Shepelyansky, D. L. (2001b) Stable quantum computation of unstable classical

chaos. Phys. Rev. Lett. 86 5393–5396.

Georgeot, B. and Shepelyansky, D. L. (2002) Georgeot and Shepelyansky reply. Phys. Rev. Lett. 88

219802.

Giraud, O. and Georgeot, B. (2005) Intermediate quantum maps for quantum computation. Phys.

Rev. A 72 042312.

https://doi.org/10.1017/S0960129507006366 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006366


Bertrand Georgeot 1262

Giraud, O., Georgeot, B. and Shepelyansky, D. L. (2005) Quantum computing of delocalization in

small-world networks. Phys. Rev. E 72 036203.

Grover, L.K. (1997) Quantum Mechanics Helps in Searching for a Needle in a Haystack. Phys.

Rev. Lett. 79 325–328.

Gutzwiller, M.C. (1990) Chaos in Classical and Quantum Mechanics, Springer.

Henry, M.K., Emerson, J., Martinez, R. and Cory, D.G. (2006) Localization in the quantum

sawtooth map emulated on a quantum information processor. Phys. Rev. A 74 062317.

Jacquod, P. and Shepelyansky, D. L. (1997) Emergence of Quantum Chaos in Finite Interacting

Fermi Systems. Phys. Rev. Lett. 79 1837–1840.

Kern, O., Alber, G. and Shepelyansky, D. L. (2005) Quantum error correction of coherent errors by

randomization. Eur. Phys. J. D 32 153–156.

Kitaev, A. (1995) Quantum measurements and the Abelian Stabilizer Problem. Preprint quant-

ph/9511026.

Lages, J. and Shepelyansky, D. L. (2006) Suppression of quantum chaos in a quantum computer

hardware. Phys. Rev. E 74 026208.

Lee, J.W. and Shepelyansky, D. L. (2005) Quantum chaos algorithms and dissipative decoherence

with quantum trajectories. Phys. Rev. E 71 056202.
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