
Probability in the Engineering and Informational Sciences, 26, 2012, 425–436.
doi:10.1017/S0269964812000095

A GENERALIZED MEMORYLESS
PROPERTY

OFFER KELLA

Department of Statistics
The Hebrew University of Jerusalem

Mount Scopus, Jerusalem 91905
Israel

E-mail: Offer.Kella@huji.ac.il

ANDREAS LÖPKER

Department of Economics and Social Sciences
Helmut Schmidt University Hamburg

22043 Hamburg, Germany
E-mail: lopker@hsu-hh.de

We consider a generalized memoryless property which relates to Cantor’s second
functional equation, study its properties and demonstrate various examples.

1. INTRODUCTION AND SETUP

Let R denote the set of real numbers and B be its Borel sets. Consider a Markov kernel
P(x, A) where for each x ∈ R, P(x, ·) is a probability measure on (R, B). We say that
the generalized memoryless property is satisfied if the following is satisfied for each
nonnegative x, y and real z:

P(z, (x + y, ∞)) = P(z, (x, ∞))P(z + x, (y, ∞)). (1)

We note that if P(x, ·) = P(·), that is, the Markov kernel is independent of the origi-
nating state, this is precisely the memoryless property of which the only solution is of
the form P((x, ∞)) = ρx for some 0 ≤ ρ ≤ 1. That is, a random variable that has such
a distribution is either almost surely (a.s.) zero, or a.s. infinite or has an exponential
distribution.

To motivate the property given by (1) assume that in addition P(·, A) is a Borel
function for each A ∈ B and let Ta (age) and Tr (remaining life) be a pair of random
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variables, where Ta has an arbitrary distribution and P(Tr ∈ A|Ta) = P(Ta, A). That
is, one interprets P(Tr ∈ A|Ta = z) = P(z, A). Then (1) becomes

P(Tr > x + y|Ta = z) = P(Tr > x|Ta = z)P(Tr > y|Ta = z + x). (2)

In other words, in order for a component having age z to function at time x + y, it first
has to function at time x. Then, independent of everything else, its age is modified
to z + x and, given that its age is now z + x, it has to function at time y. This model
relates to Model II of [7]. In fact, given the condition that P(0, (x, ∞)) > 0 for each
x ≥ 0 this results in exactly the same model, even though we write it in more primitive
terms. To see this, denote 1 − F(x) = P(0, (x, ∞)) and observe that with z = 0, (2)
becomes

1 − F(x + y) = (1 − F(x))P(Tr > y|Ta = x), (3)

so that indeed

P(Tr > y|Ta = x) = 1 − F(x + y)

1 − F(x)
, (4)

which is Eq. (1) of [7] with the roles of x and y reversed. However, if we only
assume that P(z, (x, ∞)) > 0 for all 0 < z ≤ x then we will see that it is possible
that P(Tr > y|Ta = x) = s(x + y)/s(x) for some nonincreasing function s for which
s(x) → ∞ as x ↓ 0. We will also see that other possibilities may occur as well. We
also mention that for the case where P(z, (x, ∞)) > 0 a more general model was
considered in [9]. However, in this paper the authors suffice in pointing out some
examples of this property but do not characterize the general form. In this generality,
a characterization might not be possible.

To continue, for real x and y ≥ x we denote μ(x, y) = P(x, (y − x, ∞)) and
observe that (1) becomes

μ(z, y) = μ(z, x)μ(x, y) (5)

for each z ≤ x ≤ y. If this was valid for all x, y, z then (5) is called Cantor’s second
functional equation. We note that in the latter case, if μ(z, y) �= 0 for some z, y then
μ(z, x) �= 0 and μ(x, y) �= 0 for all x. Since μ(x, y) = μ(x, u)μ(u, y) then μ(x, u) �= 0
for all x, u and in particular if we denote s(x) = μ(z, x) then for any x, y we have that
μ(x, y) = s(y)/s(x). Thus, as is well known (e.g., see, [1]), the only solutions of
Cantor’s second functional equation are either μ(x, y) = 0 for all x, y or μ(x, y) =
s(y)/s(x) for some function s(·) that never vanishes. In the second case it is clear
that for all x, μ(x, x) = 1 and that for any nonvanishing function s(·), s(y)/s(x) obeys
Cantor’s second functional equation.

When we assume that (5) is satisfied only if z ≤ x ≤ y, the solution requires a bit
more care.
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2. MAIN OBSERVATIONS

In order to consider the most general setup, let us assume until further notice that

μ : {(x, y)| x ≤ y} → R (6)

(note: R rather than just [0, 1]) and that (5) is satisfied for z ≤ x ≤ y. Denote

b(z) =
{

z if μ(z, x) = 0 ∀x > z,

sup{x|μ(z, x) �= 0, x > z} otherwise
(7)

and

a(z) =
{

z if μ(x, z) = 0 ∀x < z,

inf{x|μ(x, z) �= 0, x < z} otherwise.
(8)

Now, when a(z) < b(z) we denote

I(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a(z), b(z)) if μ(a(z), z) = 0 = μ(z, b(z)),

(a(z), b(z)] if μ(a(z), z) = 0 �= μ(z, b(z)),

[a(z), b(z)) if μ(a(z), z) �= 0 = μ(z, b(z)),

[a(z), b(z)] if μ(a(z), z) �= 0 �= μ(z, b(z))

(9)

and when a(z) = b(z) = z we let I(z) = {z}, noting that from μ(z, z) = μ(z, z)μ(z, z)
necessarily μ(z, z) ∈ {0, 1}. Moreover, since

μ(u, v) = μ(u, v)μ(v, v) = μ(u, u)μ(u, v) (10)

for u ≤ v, it is easy to check that if I(z) is not a singleton, then necessarily μ(z, z) = 1.
Consider now the following.

Lemma 1: Let μ : {(x, y)| x ≤ y} → R satisfy (5) for all z ≤ x ≤ y. Then for x < y,
μ(x, y) �= 0 if and only if I(x) = I(y) and for every u, v ∈ I(x) with u ≤ v we have
that μ(u, v) �= 0.

Proof: For v ≥ y we have that μ(x, v) = μ(x, y)μ(y, v), so that μ(x, v) �= 0 if and
only if μ(y, v) �= 0. For u ≤ x we have by similar reasoning that μ(u, x) �= 0 if and
only if μ(u, y) �= 0. For w ∈ (x, y) we have that μ(x, y) = μ(x, w)μ(w, y) and thus
μ(x, w) �= 0 and μ(w, y) �= 0. This implies that I(x) = I(y). Now, for every u ∈ I(x)
we have that I(u) = I(x) and thus for any v ≥ u with v ∈ I(x) it follows that v ∈ I(u)

which implies that μ(u, v) �= 0.

Theorem 1: Under the conditions of Lemma 1 there exists a family {Iθ | θ ∈ �} of
necessarily at most countably many disjoint intervals (open, half open, or closed)
and possibly uncountably many singletons with ∪θ∈�Iθ = R such that for each θ for
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which Iθ is not a singleton there exists a function sθ : Iθ → R which is nonvanishing
such that for every x, y ∈ Iθ with x ≤ y we have that μ(x, y) = sθ (y)/sθ (x).

Proof: For an arbitrary z ∈ Iθ define

sθ (x) =
{

μ(z, x) if z ≤ x ∈ Iθ ,

1/μ(x, z) if z ≥ x ∈ Iθ .
(11)

Then, if z ≤ x ≤ y and x, y ∈ Iθ then

sθ (y) = μ(z, y) = μ(z, x)μ(x, y) = sθ (x)μ(x, y) . (12)

If x ≤ y ≤ z and x, y ∈ Iθ then

1

sθ (x)
= μ(x, z) = μ(x, y)μ(y, z) = μ(x, y)

1

sθ (y)
. (13)

Finally, when x ≤ z ≤ y with x, y ∈ Iθ then

μ(x, y) = μ(x, z)μ(z, y) = 1

sθ (x)
sθ (y) . (14)

In particular, we observe that if μ(x, y) �= 0 for all x ≤ y then I(x) = R and for
some nonvanishing function s : R → R we have that μ(x, y) = s(y)/s(x) for all x ≤ y.
It seems as if this is the same solution of Cantor’s second functional equation until
we recall that μ(x, y) is undefined for x > y.

Returning to the generalized memoryless property of (1) we recall that μ(x, y) =
P(x, (y − x, ∞)) and thus, for y ≥ 0, P(x, y) = μ(x, x + y). Hence we conclude the
following.

Theorem 2: Assume that (1) is satisfied. Then there exists a family {Iθ | θ ∈ �} of
disjoint intervals and singletons with ∪θ∈�Iθ = R such that for each θ for which Iθ is
not a singleton there exists a nonincreasing right continuous strictly positive function
sθ : Iθ → R such that for every x ∈ Iθ and y ≥ 0 with x + y ∈ Iθ we have that

P(x, (y, ∞)) = sθ (x + y)

sθ (x)
.

Remark 1: We note that the same result holds, only with sθ being left continuous, for
P(x, [y, ∞)) (left closed interval) if we replace (1) by the left closed version

P(z, [x + y, ∞)) = P(z, [x, ∞))P(z + x, [y, ∞)) (15)

which, by taking y ↓ u, where u ≥ x, is also equivalent to

P(z, (x + u, ∞)) = P(z, [x, ∞))P(z + x, (u, ∞)) (16)

whenever x, y ≥ 0.
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Remark 2: For the case μ(x, y) = P(x, (y − x, ∞)) clearly μ(x, y) ∈ [0, 1] for all
x ≤ y. Therefore, from μ(z, y) = μ(z, x)μ(x, y) ≤ μ(x, y) for z ≤ x ≤ y it follows
that μ(·, y) is a nondecreasing function on (−∞, y]. Similarly μ(x, ·) is nonincreasing
on [x, ∞).

Remark 3: It is easy to check that these results remain unchanged if the domain of
μ is 0 ≤ x ≤ y, rather than x ≤ y, or x ≤ y ≤ ∞ or any other combination like this.
Basically, whenever we have (5) for z ≤ x ≤ y these results apply.

Remark 4: When P(x, (y, ∞)) > 0 for every x and every y ≥ 0, then there is some
necessarily nonincreasing and right continuous function s : R → (0, ∞) for which
μ(x, (y, ∞)) = s(x + y)/s(x) for all x and y ≥ 0. Moreover the function s is uniquely
determined up to a constant multiple. We note that unlike in [7], it is possible that for
some θ , Iθ = (0, ∞) and sθ (x) → ∞ as x ↓ 0. If [0, ∞) ⊂ Iθ for some θ then one has
the model considered in [7].

Remark 5: It is also evident that the same structure holds when one reverses (1) to

P(z, (−∞, x + y)) = P(z, (−∞, x))P(z + x, (−∞, y)) (17)

or to

P(z, (−∞, x + y]) = P(z, (−∞, x]))P(z + x, (−∞, y]) (18)

for all x, y ≤ 0. In particular when P(z, (−∞, 0)) = 0 and −z ≤ x, y ≤ 0. We will use
this in the next section when modeling a certain growth collapse (additive increase
multiplicative decrease) process with state-dependent decrease ratios.

Consider now a possibly infinite interval Iθ which is not a singleton and its
corresponding positive valued function sθ . Then for each z ∈ Iθ and x ≥ 0 such that z +
x ∈ Iθ we have that P(z, (x, ∞)) = sθ (z + x)/sθ (z). If x + z �∈ Iθ then P(z, (x, ∞)) =
0 so that we may define sθ (y) = 0 for any y �∈ Iθ which is on the right of Iθ (if any)
where necessarily sθ must be right continuous at z∗(θ) = sup{z| z ∈ Iθ }. Now, for
z ∈ Iθ and 0 < u < 1 denote

tz
θ (u) = inf

{
x| 1 − sθ (z + x)

sθ (z)
≥ 1 − u, x ≥ 0

}

= −z + inf {x| sθ (x) ≤ sθ (z)u, x ≥ z} (19)

= −z + inf {x| sθ (x) ≤ sθ (z)u} .

The last equality follows since sθ (x) < sθ (z)u for every x ≤ z. It is standard that if
U ∼ Uniform(0, 1) then tz

θ (1 − U) and thus tz
θ (U) have the distribution P(z, ·). Thus,

if we denote tθ (v) = inf{x| sθ (x) ≤ v} for v > inf{z| z ∈ Iθ } then for every z ∈ Iθ
we have that tθ (sθ (z)U) − z has the distribution P(z, ·). Recalling Ta and Tr from
Section 1, this implies the following.
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Theorem 3: Assuming that Ta and U ∼ Uniform(0, 1) are independent, then
(Ta, Tr)1{Ta∈Iθ } and (Ta, tθ (sθ (Ta)U) − Ta)1{Ta∈Iθ } are identically distributed.

Clearly, when � is countable then the immediate conclusion is that

(Ta, Tr) ∼
(

Ta,
∑

θ

(tθ (sθ (Ta)U) − Ta)1{Ta∈Iθ }
)

. (20)

It is interesting to check when for a given θ for which Iθ is not a singleton the
value of tθ (sθ (z)u)−z is independent of z. That is, it is only a function of u. The answer
is not surprising.

Theorem 4: When Iθ is not a singleton then tθ (sθ (z)u)−z is independent of z ∈ Iθ if
and only if for some 0 ≤ λθ < ∞ and 0 < cθ < ∞, sθ (z) = cθe−λθ z for z ∈ Iθ .

Proof: Let f (u) = tθ (sθ (z)u)−z (independent of z) for every z ∈ Iθ and 0 < u < 1.
Note that since the right side is left continuous in u, then so is f (as a function defined
on (0, 1)). In particular f is Borel. Denoting X = f (U) we have that for every z ∈ Iθ
and every x, y ≥ 0, with z + x + y ∈ Iθ ,

P(X > x + y) = sθ (z + x + y)

sθ (z)

= sθ (z + x)

sθ (z)
· sθ (z + x + y)

sθ (z + x)

= P(X > x)P(X > y).

The equation g(x + y) = g(x)g(y) for x, y ≥ 0 under minor regularity condi-
tions on g implies that g is either identically zero, identically one, or exponential.
Monotonicity, right or left continuity or even Lebesgue measurability are sufficient
conditions. The standard proof can be easily modified to the case where g is defined
on and the equation is valid only when x, y, x + y are in [0, a) or [0, a] for some
0 < a < ∞, resulting in g being identically zero, identically one, or exponential on
[0, a) or [0, a]. When we know that g is strictly positive and bounded above by one on
[0, a) or [0, a], then zero is not an option and thus g(x) = e−λx for some 0 ≤ λ < ∞.
Thus, for every z ∈ Iθ and x ≥ 0 such that w = z + x ∈ θ we have that for some
0 ≤ λθ < ∞

sθ (z + x)

sθ (z)
= e−λθ x = e−λθ (z+x)

e−λθ z
(21)

which implies that for every z, w ∈ Iθ

sθ (w)eλθ w = sθ (z)e
λθ z ≡ cθ (22)

as required.
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3. MAXIMUM AT A RANDOMTIME OF A CONTINUOUSTIME
MARKOV PROCESS WITH NO POSITIVE JUMPS

Consider a continuous time right continuous Markov process {X(t)}t≥0 with convex
state space X ⊂ R, having no positive jumps and with generator A. As is customary,
we denote Px and Ex the distribution measure and the expected value when the process
is initiated at x ∈ X.Assuming its existence, let f be strictly positive and nondecreasing
function in the extended domain, which is bounded on (−∞, x] ∩ X for any x ∈ R

and for which

M(t) = f (X(t)) exp

(
−

∫ t

0

Af (X(s))

f (X(s))
ds

)
(23)

is a martingale with respect to the right continuous augmented filtration {Ft| t ≥ 0}
generated by X. A sufficient condition for the latter is that f is bounded away from
zero on X (e.g., [4, p. 175]). Furthermore, we assume that Af (x) is nonnegative
for all x ∈ X. Now, denote τ(y) = inf{t| X(t) > y} (infinite if X never exceeds y).
Then τ(y) is right continuous in y and it is easy to check that sup0≤s≤t X(s) ≤ y
if and only if τ(y) ≥ t. With a ∧ b = min(a, b) it is well known that M(τ (y) ∧ t)
is also a martingale and moreover, our assumptions assure that it is also bounded.
Finally, denoting λ(x) = Af (x)/f (x), then by the bounded convergence theorem we
have that for y ≥ x such that y ∈ X, if either τ(y) < ∞ Px-a.s. (almost surely) or∫ ∞

0 λ(X(s)) ds = ∞ on {τ(y) = ∞} then

f (x) = ExM(0) = ExM(τ (y)) = f (y)Exe− ∫ τ(y)
0 λ(X(s)) ds. (24)

In particular, this means that it is impossible to find a positive f in the extended domain
of A such that Af ≥ 0 and

∫ τ(y)
0 λ(X(s)) ds = ∞ Px-a.s. for some x.

Now, if we denote s(x) = 1/f (x), we have that

Exe− ∫ τ(y)
0 λ(X(s)) ds = s(y)

s(x)
(25)

for every y for which τ(y) < ∞ Px-a.s. If Z is a random variable (possibly infinite)
such that Px (Z > t|Ft) = e− ∫ t

0 λ(X(s)) ds, then in fact

Exe− ∫ τ(y)
0 λ(X(s)) ds = Px (Z > τ(y)) = Px

(
max

0≤t≤Z
X(t) > y

)
. (26)

Thus, we have that

Px

[
max

0≤t≤Z
X(t) > y

]
= s(y)

s(x)
(27)

for x ≤ y. If one assumes that U is an independent Uniform(0, 1) random variable
(if there is not then it is easy to artificially modify our probability space so that
there is), then taking FU

t = Ft ∨ σ(U), we see that M is a martingale also with
respect to this new filtration. Thus, if we let F(X , t) = 1 − e− ∫ t

0 λ(X(s)) ds and G(X, u) =
inf{t| F(X, t) ≥ u} then Z = G(X , U) has the correct conditional distribution.
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3.1. Lévy Processes

Sometimes, for various values of α, we may be lucky to find a function f satisfying
the above conditions and for which λ(x) = α. In this case we immediately obtain the
Laplace transform

Exe−ατ(y) = s(y)

s(x)
. (28)

For a Lévy process with no positive jumps (in particular a Brownian motion) and

ϕ(α) = log E0eαX(1) = cα + σ 2

2
α2 +

∫
(−∞,0)

(
eαy − 1 − αy1(−1,0)(y)

)
ν(dy), (29)

then the equation that needs to be solved is the following:

cf ′(x) + σ 2

2
f ′′(x) +

∫
(−∞,0)

(
f (x + y) − f (x) − yf ′(x)1(−1,0)(y)

)
ν(dy) = αf (x).

(30)
Fortunately, when X is not nonincreasing (the negative of a subordinator or the zero
function), then ϕ has an inverse on [β, ∞) when β = inf{α| ϕ(α) > 0, α > 0}. It is
well known that β = 0 if ϕ′(0) ≥ 0 and β > 0 otherwise. In this case, for every x ≤ y,
τ(y) is Px-a.s. finite and f (x) = eϕ−1(α)x for α ≥ β satisfies all the needed requirements
and in particular solves (30). So, as is well known,

Exe−ατ(y) = Exe−ατ(y)1{τ(y)<∞} = s(y)

s(x)
= f (x)

f (y)
= e−ϕ−1(α)(y−x), (31)

even if τ(y) is not Px-a.s. finite (i.e., when ϕ′(0) < 0). In this particular case Z ∼
exp(α) (independent of X) and it follows as is also well known that

max
0≤t≤Z

X(t) − X(0) ∼ exp(ϕ−1(α)),

so that this random variable obeys the standard (not-generalized) memoryless property.

3.2. Reflected Brownian Motion

For the reflected Brownian motion on X = [0, ∞) with general drift, the genera-
tor is the same as the one for Brownian motion, only that its domain is reduced to
twice differentiable functions for which f ′(0) = 0. In this case one needs to compute
μf ′(x) + (σ 2/2)f ′′(x) = αf (x) subject to f ′(0) = 0 for α > 0. It is easy to check that
any positive constant multiple of the function

f (x) = ea+x

a+ + e−a−x

a− , (32)

where a± = (
√

μ2 + 2σ 2α ± μ)/σ 2, would do the trick. In particular, it is positive
and increasing due to 0 < a− < a+. In this case it is well known that τ(y) < ∞
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Px-a.s. for any y > x regardless of the value of μ, but it can also be inferred from this
without resorting to anything else, by letting α → 0. Of course, this particular result
is quite standard (e.g., [5, problem 4, p. 95]).

More generally, of course, given a positive function λ if it is possible to find
some f satisfying our assumptions for which Af (x) = λ(x)f (x) for each x ∈ X, then
if either y > x is such that τ(y) is Px-a.s. finite or λ is bounded away from zero, then
(27) is satisfied.

3.3. A Growth Collapse Process with Generalized Memoryless Jumps

In this section we consider a piecewise deterministic Markov process Xt with jumps
that are governed by a jump measure with the generalized lack of memory property
described above. See [2,8] for similar models.

Let {X(t)}t≥0 be a Markov process on X = [0, ∞) which is deterministically
increasing with rate r(x) between randomly occurring downward jumps. More specif-
ically, we assume that inbetween jumps dXt = r(Xt) dt, that r(x) is positive and
Lipschitz-continuous and that the time t∗(x, y) = ∫ y

x 1/r(u) du that is needed to reach
the level y from x in the absence of any jumps is finite for all x < y ∈ [0, ∞). Let
κ : X → [0, ∞) denote the state-dependent jump rate, that is, if the process is in
the state x ∈ X, then a jump occurs during the next t time units with probability
κ(x)t + o(t) (and the probability to see more than one jump is o(t)). We assume
κ to be bounded. Given that there is a jump at time t, the process jumps from state
x ∈ X into some measurable A ⊂ [0, x) with probability ν(x, A). We assume that for
0 ≤ y ≤ x ≤ z the kernel ν has the special property that

ν(z, y) = ν(z, x)ν(x, y) (33)

holds (compare with (5)). Here we write ν(x, y) for ν(x, [0, y]). It is then easy to see
that a similar situation as in Section 1 is present (let P(z, A) = ν(−z, −A) for z ≤ 0 and
A ⊆ (x, 0]). It follows that there exists a family {Iθ | θ ∈ �} of disjoint intervals and
singletons with ∪θ∈�Iθ = [0, ∞) such that for each θ for which Iθ is not a singleton
there exists a function sθ : Iθ → R which is nonvanishing such that for every x, y ∈ Iθ
with x ≤ y we have that

ν(x, y) = sθ (y)

sθ (x)
.

Note that sθ (y): Iθ → [0, ∞) is nondecreasing and is not necessarily bounded. The
infinitesimal generator of the Markov process Xt is given by

Af (x) = r(x)f ′(x) + κ(x)
∫ x

0

(
f (y) − f (x)

)
ν(x, dy). (34)

We assume that the domain DA of A consists of functions f that are absolutely
continuous and for which the expectation of

∑
0<Ti≤t |f (XTi−) − f (XTi)| is finite for

every t ≥ 0, where Ti denotes the ith jump time (see [3]).
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The following lemma generalizes formula (28) in [8].

Lemma 2: Suppose that r(x), κ(x), λ(x) and sθ (x) are differentiable for x ∈ Iθ . Define
the functions a(x) = r′(x) + r(x)ξ(x) − λ(x) − κ(x) and b(x) = λ′(x) + λ(x)ξ(x),
where ξ(x) = (s′

θ (x)/sθ (x)) − (κ ′(x)/κ(x)) if κ(x) �= 0 and ξ(x) = 0 otherwise. Any
twice differentiable solution f with f ′(x)sθ (x) being continuous of

r(x)f ′′(x) + a(x)f ′(x) − b(x)f (x) = 0, (35)

fulfils Af (x) = λ(x)f (x).

Proof: The process Xt , if started in the state x ∈ Iθ will leave Iθ only at the moment
when it passes through the upper boundary z∗(θ) and ν(x, y) = 0 for y < z∗(θ). If
x ∈ Iθ we may hence write

Af (x) = r(x)f ′(x) + κ(x)

sθ (x)

∫ x

z∗(θ)

∫ y

x
f ′(u) du sθ (dy), x ∈ Iθ .

Applying Fubini’s theorem we can write this as

Af (x) = r(x)f ′(x) − κ(x)

sθ (x)

∫ x

z∗(θ)

f ′(u)sθ (u) du, x ∈ Iθ . (36)

Then Af (x) = λ(x)f (x) is equivalent to

κ(x)
∫ x

z∗(θ)

f ′(u)sθ (u) du = sθ (x)
(
r(x)f ′(x) − λ(x)f (x)

)
. (37)

Differentiation yields

κ ′(x)
sθ (x)

∫ x

z∗(θ)

f ′(u)sθ (u) du = r(x)f ′′(x) +
(

r′(x) + r(x)
s′
θ (x)

sθ (x)

− λ(x) − κ(x)

)
f ′(x) −

(
λ′(x) + λ(x)

s′
θ (x)

sθ (x)

)
f (x).

If κ(x) �= 0 then we divide (37) by κ(x) and obtain (35) with ξ(x) = (s′
θ (x)/sθ (x)) −

(κ ′(x)/κ(x)). If κ(x) = 0 then it follows from (37) that

r(x)f ′′(x) + (r′(x) − λ(x))f ′(x) − λ′(x)f (x) = 0,

which is (35) with ξ(x) = 0.

As is described earlier in the section via (27), the probability that the maximum
process max0≤t≤Z X(t) exceeds y, given X(0) = x, satisfies the generalized lack of
memory property when Z is defined right before (26). More precisely,
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Corollary 1: Fix a θ ∈ � and suppose that f ∈ DA is bounded away from zero (or
is such that M(t) in (23) is a martingale) and solves Eq. (35) in Iθ . Then

Px

[
max

0≤t≤Z
X(t) > y

]
= f (x)

f (y)
,

for all x, y ∈ Iθ with x ≤ y, where Z be a random variable, such that Px (Z > t|Ft) =
e− ∫ t

0 λ(X(s))ds.

In general (35) is not easy to solve and closed-form solutions may be obtained
only in certain cases. We provide two examples, where the coefficients a(x) and b(x)
are such that a solution can be given.

Example 1: Eq. (35) reduces to a differential equation with contant coefficients if

r′(x)
r(x)

+ s′
θ (x)

sθ (x)
− κ ′(x)

κ(x)
− λ(x) + κ(x)

r(x)
≡ C

and
λ(x)

r(x)

(
λ′(x)
λ(x)

+ s′
θ (x)

sθ (x)
− κ ′(x)

κ(x)

)
≡ D.

For example suppose that λ(x) = c1eαx, κ(x) = c2eαx, r(x) = c3eαx, sθ (x) = c4eβx,
with c1, c2, c3, c4, β ≥ 0 and α ∈ R. Then (35) reads

f ′′(x) +
(

β − c1 + c2

c3

)
f ′(x) − c1β

c3
f (x) = 0,

which is solved by f (x) = Aea−x + Bea+x, where

a± = 1

2

⎛
⎝β − c1 + c2

c3
±

√(
β − c1 + c2

c3

)2

+ 4
c1β

c3

⎞
⎠ .

If we set f (z∗(θ)) = 1 (w.l.o.g.), then f ′(z∗(θ)) = λ(z∗(θ))/r(z∗(θ)) = c1/c3. This
leads to the final solution

f (x) = a+ − c1
c3

a+ − a− ea−(x−z∗(θ)) +
c1
c3

− a−

a+ − a− ea+(x−z∗(θ)).

Example 2: This example is a generalization of Example (A), Section 4.1 in [8]. Sup-
pose that the jump measure ν(x, y) = sθ (y)/sθ (x) is defined such that for some α > 0
sθ (x)λ(x) = ακ(x). Then ξ(x) = −λ′(x)/λ(x) and as a consequence the second coef-
ficient b(x) is zero (while a(x) = r′(x) − r(x)λ′(x)/λ(x) − λ(x) − κ(x)). Hence (35)
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becomes

r(x)f ′′(x) + a(x)f ′(x) = 0, (38)

which is solved by

f (x) = f (z∗(θ)) + f ′(z∗(θ))
r(z∗(θ))

λ(z∗(θ))

∫ x

z∗(θ)

λ(u)

r(u)
e
∫ u

z∗(θ)
λ(w)+κ(w)

r(w)
dw du.

Note that since Af (x) = λ(x)f (x) it follows that λ(z∗(θ))f (z∗(θ)) = r(z∗(θ))f ′(z∗(θ))

and hence, choosing w.l.o.g. f (z∗(θ)) = 1, we obtain the solution

f (x) = 1 +
∫ x

z∗(θ)

λ(u)

r(u)
e
∫ u

z∗(θ)
λ(w)+κ(w)

r(w)
dw du.
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