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We consider a generalized memoryless property which relates to Cantor’s second
functional equation, study its properties and demonstrate various examples.

1. INTRODUCTION AND SETUP

Let R denote the set of real numbers and 5 be its Borel sets. Consider a Markov kernel
P(x,A) where for each x € R, P(x, -) is a probability measure on (R, B). We say that
the generalized memoryless property is satisfied if the following is satisfied for each
nonnegative x, y and real z:

P(z, (x +y,00)) = P(z, (x,00))P(z + x, (y, 00)). @)

We note that if P(x,-) = P(-), that is, the Markov kernel is independent of the origi-
nating state, this is precisely the memoryless property of which the only solution is of
the form P((x, 00)) = p* forsome 0 < p < 1.Thatis, arandom variable that has such
a distribution is either almost surely (a.s.) zero, or a.s. infinite or has an exponential
distribution.

To motivate the property given by (1) assume that in addition P(-,A) is a Borel
function for each A € B and let T, (age) and T, (remaining life) be a pair of random
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variables, where T, has an arbitrary distribution and P(7; € A|T,) = P(T,,A). That
is, one interprets P(T; € A|T, = z) = P(z,A). Then (1) becomes

P(T; > x +y|Ty, = 2) =P(T; > x|T, = 2)P(T; > y|T, = z+ x). 2)

In other words, in order for a component having age z to function at time x + y, it first
has to function at time x. Then, independent of everything else, its age is modified
to z 4+ x and, given that its age is now z + x, it has to function at time y. This model
relates to Model II of [7]. In fact, given the condition that P(0, (x,c0)) > 0 for each
x > 0 this results in exactly the same model, even though we write it in more primitive
terms. To see this, denote 1 — F(x) = P(0, (x, 00)) and observe that with z = 0, (2)

becomes
1—Fx+y) =0—-Fx)P(T: > y|T, =x), 3
so that indeed
1 —F(x+y)
P(T; Ty=%X) = ——————=, 4
(T =)= = —— @

which is Eq. (1) of [7] with the roles of x and y reversed. However, if we only
assume that P(z, (x,00)) > 0 for all 0 < z < x then we will see that it is possible
that P(T; > y|T, = x) = s(x + y)/s(x) for some nonincreasing function s for which
s(x) — oo as x | 0. We will also see that other possibilities may occur as well. We
also mention that for the case where P(z, (x,00)) > 0 a more general model was
considered in [9]. However, in this paper the authors suffice in pointing out some
examples of this property but do not characterize the general form. In this generality,
a characterization might not be possible.

To continue, for real x and y > x we denote u(x,y) = P(x,(y — x,00)) and
observe that (1) becomes

w(z,y) = u(z, x)ulx,y) 3

for each z < x < y. If this was valid for all x,y, z then (5) is called Cantor’s second
Sfunctional equation. We note that in the latter case, if 1 (z,y) # 0 for some z,y then
u(z,x) # 0and p(x,y) # Oforall x. Since w(x,y) = pu(x, u)u(u,y) then pu(x,u) # 0
for all x, u and in particular if we denote s(x) = u(z,x) then for any x, y we have that
w(x,y) = s()/s(x). Thus, as is well known (e.g., see, [1]), the only solutions of
Cantor’s second functional equation are either u(x,y) = 0 for all x,y or u(x,y) =
s(y)/s(x) for some function s(-) that never vanishes. In the second case it is clear
that for all x, p(x,x) = 1 and that for any nonvanishing function s(-), s(y)/s(x) obeys
Cantor’s second functional equation.

When we assume that (5) is satisfied only if z < x < y, the solution requires a bit
more care.
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2. MAIN OBSERVATIONS

In order to consider the most general setup, let us assume until further notice that
pe{Geylx =yt >R (6)

(note: R rather than just [0, 1]) and that (5) is satisfied for z < x < y. Denote

z if u(z,x) =0 Vx> z,
b(z) = u( .) Rl
sup{x|u(z,x) # 0, x > z} otherwise
and
z if u(x,z) =0 Vx <z,
a(z) = . M( ) )
inf{x|u(x,z) #0, x <z} otherwise.

Now, when a(z) < b(z) we denote

(a(2),b(z)) if u(a(z),z) =0 = u(z, b(2)),
(a(2),b(z)] if u(a(z),z) =0 # u(z, b(2)),

1 = 9
@ =1 105G if @), 2) £ 0 = pz b)), @

la(2),b(x)]  if u(a(2),2) # 0 # u(z,b(z)

and when a(z) = b(z) = z we letI(z) = {z}, noting that from u(z,z) = u(z,2)(z,z)
necessarily ©(z,z) € {0, 1}. Moreover, since

p(u,v) = p(u, Vv, v) = w(u, u)u(u, v) (10)

foru < v,itis easy to check that if /(z) is not a singleton, then necessarily u(z,z) = 1.
Consider now the following.

LEMMA 1: Let u : {(x,y)| x <y} — R satisfy (5) for all z < x <y. Then for x <y,
w(x,y) # 0 if and only if I(x) = I(y) and for every u,v € I(x) with u <v we have
that (u,v) # 0.

PrROOF: For v > y we have that u(x,v) = u(x,y)u(y,v), so that u(x,v) # 0 if and
only if u(y,v) # 0. For u < x we have by similar reasoning that p(u,x) # 0 if and
only if u(u,y) # 0. For w € (x,y) we have that u(x,y) = w(x, w)u(w,y) and thus
w(x,w) # 0 and pw(w,y) # 0. This implies that /(x) = I(y). Now, for every u € I(x)
we have that /(1) = I(x) and thus for any v > u with v € I(x) it follows that v € I(u)
which implies that w(u,v) # 0. [ ]

THEOREM 1: Under the conditions of Lemma 1 there exists a family {Iy| 6 € O} of

necessarily at most countably many disjoint intervals (open, half open, or closed)
and possibly uncountably many singletons with Uygcely = R such that for each 0 for
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which Iy is not a singleton there exists a function sy : Iy — R which is nonvanishing
such that for every x,y € Iy with x <y we have that u(x,y) = s¢(y)/59(x).

PRrOOF: For an arbitrary z € Iy define

s f < I s
o) = 0 Bl an
I/u(x,z) ifz=x¢ely.
Then, if z <x < yandx,y € Iy then
5o(y) = w(z,y) = pu(z, x)u(x,y) = sg(x)(x,y) . (12)
Ifx <y<zandx,y € I then
1 1
= ux,z) = nuxu@,z) = nx,y)—- . 13)
sg(x) s9(y)
Finally, when x < z <y with x,y € Iy then
1
nx,y) = ulx, )p(z,y) = sp(¥) - a4
sg(x)
[

In particular, we observe that if @ (x,y) # O for all x < y then I(x) = R and for
some nonvanishing function s : R — R we have that u(x,y) = s(y)/s(x) forallx < y.
It seems as if this is the same solution of Cantor’s second functional equation until
we recall that w(x,y) is undefined for x > y.

Returning to the generalized memoryless property of (1) we recall that u(x,y) =
P(x,(y — x,00)) and thus, for y > 0, P(x,y) = u(x,x +y). Hence we conclude the
following.

THEOREM 2: Assume that (1) is satisfied. Then there exists a family {Ig] 0 € O} of
disjoint intervals and singletons with Upcoly = R such that for each 0 for which Iy is
not a singleton there exists a nonincreasing right continuous strictly positive function
sg : Iy — R such that for every x € Iy andy > 0 withx +y € Iy we have that

sp(x +y)
so(x)

Remark 1: We note that the same result holds, only with sy being left continuous, for
P(x, [y, 00)) (left closed interval) if we replace (1) by the left closed version

P(x, (y,00)) =

P(z,[x +y,00)) = P(z, [x,00))P(z + x, [y, 00)) 15)
which, by taking y | u, where u > x, is also equivalent to
P(z, (x 4+ u,00)) = P(z, [x,00))P(z + x, (u, 00)) (16)

whenever x,y > 0.
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Remark 2: For the case u(x,y) = P(x,(y — x,00)) clearly u(x,y) € [0, 1] for all
x < y. Therefore, from ©(z,y) = u(z, x)u(x,y) < u(x,y) for z <x <y it follows
that (-, y) is a nondecreasing function on (—oo, y]. Similarly u(x, -) is nonincreasing
on [x, 00).

Remark 3: 1t is easy to check that these results remain unchanged if the domain of
@ is 0 < x <y, rather than x <y, or x <y < 0o or any other combination like this.
Basically, whenever we have (5) for z < x <y these results apply.

Remark 4: When P(x, (y,00)) > 0 for every x and every y > 0, then there is some
necessarily nonincreasing and right continuous function s : R — (0, 00) for which
wux, (y,00)) = s(x +y)/s(x) for all x and y > 0. Moreover the function s is uniquely
determined up to a constant multiple. We note that unlike in [7], it is possible that for
some 0, Iy = (0,00) and sg(x) - oo asx | 0.If [0, 00) C I, for some 6 then one has
the model considered in [7].

Remark 5: 1t is also evident that the same structure holds when one reverses (1) to
P(z,(—00,x +y)) = P(z, (—00,x))P(z + x, (—00,y)) a7)

or to
P(Z7 (—OO,X + )’]) = P(Z7 (—OO,X]))P(Z + X, (_007 y]) (18)

for all x,y < 0. In particular when P(z, (—00,0)) = 0and —z < x,y < 0. We will use
this in the next section when modeling a certain growth collapse (additive increase
multiplicative decrease) process with state-dependent decrease ratios.

Consider now a possibly infinite interval I, which is not a singleton and its
corresponding positive valued function s¢. Then foreach z € Iy andx > Osuchthatz +
x € Iy we have that P(z, (x,00)) = s¢(z + x)/s9(2). If x + z & Iy then P(z, (x,00)) =
0 so that we may define sy(y) = O for any y & I, which is on the right of I, (if any)
where necessarily s, must be right continuous at z*(8) = sup{z| z € l}. Now, for
z€lpand 0 < u < 1 denote

t§(u):inf{x|l—wzl—u,x20}
56(2)
= —z+inf {x| sp(x) < sp(2)u, x > 7} 19

= —z+inf {x]| sp(x) < sp(Qu}.

The last equality follows since sg(x) < so(z)u for every x < z. It is standard that if
U ~ Uniform(0, 1) then #5(1 — U) and thus #; (U) have the distribution P(z, -). Thus,
if we denote fy(v) = inf{x| so(x) < v} for v > inf{z| z € Iy} then for every z € Iy
we have that 7y (s9(z)U) — z has the distribution P(z,-). Recalling T, and 7, from
Section 1, this implies the following.
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THEOREM 3: Assuming that T, and U ~ Uniform(0, 1) are independent, then
(Ta, T)V1,e1,y and (Ty, to (59 (Ta) U) — T,)17,c1,y are identically distributed.

Clearly, when ® is countable then the immediate conclusion is that

(Tas T ~ (Tas Y10 50TV = T L ). (20)
0

It is interesting to check when for a given 6 for which Iy is not a singleton the
value of #y (59 (z)u)—z is independent of z. That is, it is only a function of u. The answer
is not surprising.

THEOREM 4: When Iy is not a singleton then ty(sg(z)u)—z is independent of z € Iy if
and only if for some 0 < Ay < 0o and 0 < cg < 00, 59(z) = coe % for z € I,.

PROOF: Let f(u) = ty(s9(z)u)—z (independent of z) forevery z € Iy and 0 < u < 1.
Note that since the right side is left continuous in u, then so is f (as a function defined
on (0, 1)). In particular f is Borel. Denoting X = f(U) we have that for every z € Iy
and every x,y > 0, withz+x+y € Iy,

so(z+x+y)

s6(2)
_spz+x) sp(z+x+Y)
T ow@ s+
=PX > 0»)PX > y).

PX >x+y =

The equation g(x +y) = g(x)g(y) for x,y > 0 under minor regularity condi-
tions on g implies that g is either identically zero, identically one, or exponential.
Monotonicity, right or left continuity or even Lebesgue measurability are sufficient
conditions. The standard proof can be easily modified to the case where g is defined
on and the equation is valid only when x,y,x + y are in [0,a) or [0, a] for some
0 < a < oo, resulting in g being identically zero, identically one, or exponential on
[0, @) or [0, a]. When we know that g is strictly positive and bounded above by one on
[0, a) or [0, a], then zero is not an option and thus g(x) = e~** for some 0 < A < oo.
Thus, for every z € Iy and x > 0 such that w = z + x € & we have that for some
0<i <00

—Xo(z+x)
sp(z + x) e € o(z+x 1)
50(2) et
which implies that for every z, w € Iy
so(W)eHY = s5p(2)e™* = ¢y (22)
as required. [ ]
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3. MAXIMUM AT A RANDOMTIME OF A CONTINUOUS TIME
MARKOV PROCESS WITH NO POSITIVE JUMPS

Consider a continuous time right continuous Markov process {X(#)},>0 with convex
state space X C R, having no positive jumps and with generator .A. As is customary,
we denote P, and E, the distribution measure and the expected value when the process
isinitiated atx € X. Assuming its existence, letf be strictly positive and nondecreasing
function in the extended domain, which is bounded on (—oo,x] N X for any x € R
and for which

FAf(X(5)) d )

—————das

o SX()
is a martingale with respect to the right continuous augmented filtration {#;| t > 0}
generated by X. A sufficient condition for the latter is that f is bounded away from
zero on X (e.g., [4, p. 175]). Furthermore, we assume that Af(x) is nonnegative
for all x € X. Now, denote 7(y) = inf{¢| X(¢) > y} (infinite if X never exceeds y).
Then t(y) is right continuous in y and it is easy to check that supy_,., X(s) <y
if and only if T(y) > r. With a A b = min(a, b) it is well known that M(t (y) A 1)
is also a martingale and moreover, our assumptions assure that it is also bounded.
Finally, denoting A(x) = Af (x)/f (x), then by the bounded convergence theorem we
have that for y > x such that y € X, if either 7(y) < oo P,-a.s. (almost surely) or
Jo© M(X(s)) ds = 0o on {r(y) = oo} then

M(r) = f(X(0)) exp (— (23)

F() = E,M(0) = E,M(z(y)) = f()Eye o HXOds 24)

In particular, this means that it is impossible to find a positive f in the extended domain
of A such that Af > 0 and for(y) ©M(X(s)) ds = oo P,-a.s. for some x.
Now, if we denote s(x) = 1/f(x), we have that

Ty N
Exeffo ' M(X(s)) ds — % (25)

for every y for which t(y) < co P,-a.s. If Z is a random variable (possibly infinite)
such that P, (Z > t|F,) = e~ Jo *X(Dds then in fact

.o Jo¥ axsyds _ P.(Z > 1(y)) =P, (OmaxZX(t) > y) . (26)
<i<
Thus, we have that
s(y)
PX[JQ&)%X(t) > y] = @ 27)

for x <y. If one assumes that U is an independent Uniform(0, 1) random variable
(if there is not then it is easy to artificially modify our probability space so that
there is), then taking ,7-",U =F,vo(U), we see that M is a martingale also with
respect to this new filtration. Thus, if we let F(X, 1) = 1 — e~ /o XD ds and G(X, u) =
inf{¢| F(X,t) > u} then Z = G(X, U) has the correct conditional distribution.
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3.1. Lévy Processes

Sometimes, for various values of «, we may be lucky to find a function f satisfying

the above conditions and for which A(x) = «. In this case we immediately obtain the

Laplace transform

—at(y) — @
s(x)”

For a Lévy process with no positive jumps (in particular a Brownian motion) and

E.e (28)

o? ,
@) = log Boge* D = ca + 7052 +/ (e"‘»‘ —1- ayl(_lqo)(y)) v(dy), (29)
(=00,0)

then the equation that needs to be solved is the following:

2
of (x) + %f”(x) + / (Fa+y) =f0) =3 (D110 ) v(dy) = af (x).
(—00,0)

(30)
Fortunately, when X is not nonincreasing (the negative of a subordinator or the zero
function), then ¢ has an inverse on [, c0) when 8 = inf{«| ¢(a) > 0, > 0}. It is
well known that 8 = 0if ¢’(0) > 0 and 8 > 0 otherwise. In this case, forevery x <y,
7(y) is Py-a.s. finite and f (x) = e @ forq > B satisfies all the needed requirements
and in particular solves (30). So, as is well known,

N X -
B0 = B oy = S =L ot )

5@ fO)
even if 7(y) is not P;-a.s. finite (i.e., when ¢’(0) < 0). In this particular case Z ~
exp(«) (independent of X) and it follows as is also well known that

max X (1) = X(0) ~ exp(p™ (@),

so that this random variable obeys the standard (not-generalized) memoryless property.

3.2. Reflected Brownian Motion

For the reflected Brownian motion on X = [0, c0) with general drift, the genera-
tor is the same as the one for Brownian motion, only that its domain is reduced to
twice differentiable functions for which f”(0) = 0. In this case one needs to compute
uf' (x) + (02/2)f" (x) = af (x) subject to f/(0) = 0 for o > 0. It is easy to check that

any positive constant multiple of the function
ea*x —a~x

fo =5+ (32)
a a

where a® = (\/u? + 202« & ) /0%, would do the trick. In particular, it is positive
and increasing due to 0 < a~ < a*. In this case it is well known that T(y) < co
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P,-a.s. for any y > x regardless of the value of 1, but it can also be inferred from this
without resorting to anything else, by letting « — 0. Of course, this particular result
is quite standard (e.g., [5, problem 4, p. 95]).

More generally, of course, given a positive function A if it is possible to find
some f satisfying our assumptions for which Af (x) = A(x)f (x) for each x € X, then
if either y > x is such that 7 (y) is Py-a.s. finite or A is bounded away from zero, then
(27) is satisfied.

3.3. A Growth Collapse Process with Generalized Memoryless Jumps

In this section we consider a piecewise deterministic Markov process X; with jumps
that are governed by a jump measure with the generalized lack of memory property
described above. See [2,8] for similar models.

Let {X(#)};>0 be a Markov process on X = [0, c0) which is deterministically
increasing with rate »(x) between randomly occurring downward jumps. More specif-
ically, we assume that inbetween jumps dX; = r(X;) dt, that r(x) is positive and
Lipschitz-continuous and that the time *(x,y) = fxy 1/r(u) du that is needed to reach
the level y from x in the absence of any jumps is finite for all x <y € [0, 00). Let
k : X — [0,00) denote the state-dependent jump rate, that is, if the process is in
the state x € X, then a jump occurs during the next Atz time units with probability
Kk (x) At + o(At) (and the probability to see more than one jump is 0(At)). We assume
k to be bounded. Given that there is a jump at time ¢, the process jumps from state
x € X into some measurable A C [0, x) with probability v(x,A). We assume that for
0 <y < x < zthe kernel v has the special property that

v(z,y) = v(z,0)v(x,y) (33)

holds (compare with (5)). Here we write v(x,y) for v(x, [0, y]). It is then easy to see
that a similar situation as in Section 1 is present (let P(z,A) = v(—z, —A) forz < Oand
A C (x,0]). It follows that there exists a family {/y| 6 € ®} of disjoint intervals and
singletons with Ugecgly = [0, 00) such that for each 8 for which Iy is not a singleton
there exists a function sy: Iy — R which is nonvanishing such that for every x,y € I
with x < y we have that

Note that sy (y): Iy — [0, 00) is nondecreasing and is not necessarily bounded. The
infinitesimal generator of the Markov process X; is given by

AF () = r@)f () + () /0 (F) — (0 v, dy). (34)

We assume that the domain D 4 of A consists of functions f that are absolutely
continuous and for which the expectation of 20<n < FX7,—) — f(X7,)] is finite for
every t > (0, where T; denotes the ith jump time (see [3]).
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The following lemma generalizes formula (28) in [8].

LEMMA 2: Suppose that r(x), k (x), L(x) and sg (x) are differentiable for x € ly. Define
the functions a(x) = r'(x) + r(x)§(x) — A(x) — k(x) and b(x) = X' (x) + A(x)&(x),
where &(x) = (sy(x)/s0(x)) — (k' (x) /K (x)) if k (x) # 0 and &(x) = O otherwise. Any
twice differentiable solution f with f'(x)sg (x) being continuous of

r)f"(x) + a()f'(x) — b()f (x) = 0, (35)
Julfils Af (x) = 2 )f (x).

ProOF: The process X;, if started in the state x € Iy will leave Iy only at the moment
when it passes through the upper boundary z*(0) and v(x,y) = 0 for y < z,(0). If
x € Iy we may hence write

k(x) [*

sg(x) 2.(0)

Af () = r@)f (x) +

/yf’(u) du so(dy), x € ly.

Applying Fubini’s theorem we can write this as

k(x) [F

s6(x) 2:(0)

Af (x) = r(x)f'(x) — [ se)du, x €Iy (36)

Then Af (x) = A(x)f (x) is equivalent to
kK@) | fw)sew) du = sp(x) (r(x)f (x) — Ax)f (x)) . (37

2:(6)

Differentiation yields

O s ) du = r0f” () + (r’(x) +rn 2™
s6(x) Jz.0) 56(x)
— ) - K(x)>f’(x) = (A’(x) + () ‘:Z g;)f(x)-

If k (x) # O then we divide (37) by « (x) and obtain (35) with £(x) = (s, (x)/sp(x)) —
(k" (x) /K (x)). If k (x) = O then it follows from (37) that

reOf" () + (' () = () (x) — ' (0)f (x) = 0,
which is (35) with £(x) = 0. ]
As is described earlier in the section via (27), the probability that the maximum

process maxo<;<z X (f) exceeds y, given X(0) = x, satisfies the generalized lack of
memory property when Z is defined right before (26). More precisely,
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COROLLARY 1: Fix a6 € © and suppose that f € D 4 is bounded away from zero (or
is such that M(t) in (23) is a martingale) and solves Eq. (35) in ly. Then

f)
]:f(yxr

P[ X(1
x| max (1) >y

forallx,y € I withx <y, where Z be a random variable, such that P, (Z > t|F;) =
o= Jo HX()ds_

In general (35) is not easy to solve and closed-form solutions may be obtained
only in certain cases. We provide two examples, where the coefficients a(x) and b(x)
are such that a solution can be given.

Example 1: Eq. (35) reduces to a differential equation with contant coefficients if

re) s k() A + ()

r(x)  se(x)  Kk(x) r(x)
A(x) (N(X) n sp(x) ;d(x))
r(x) \Alx)  se(x)  xx)

C

For example suppose that A(x) = c;e®, k (x) = c2e®, r(x) = c3¢*, sp(x) = cuef?,
with ¢y, ¢z, ¢3,¢4, > 0 and @ € R. Then (35) reads

17 + (ﬂ - %)f/(x) - %f(x) —0,

which is solved by f(x) = Ae? * 4+ Be® *, where

2
Aol ﬁ_01+czi\/<ﬂ_cl+cz> +4ﬂ).
2 C3 C3 C3

If we set f(z.(0)) = 1 (w.l.o.g.), then f'(z+(0)) = A(z+(0))/r(z+(0)) = c1/c3. This
leads to the final solution

at — 4 . _ q—

€3 a (x—z4(0)) (&) at (x—z.(0))

X) = e + e .
f@ at —a- at —a-

Example 2: This example is a generalization of Example (A), Section 4.1 in [8]. Sup-
pose that the jump measure v(x,y) = sy(y)/sg(x) is defined such that for some o > 0
so(x)A(x) = ak(x). Then &(x) = —A'(x)/A(x) and as a consequence the second coef-
ficient b(x) is zero (while a(x) = r'(x) — r(x)X (x) /A (x) — A(x) — k(x)). Hence (35)
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becomes
r)f" (x) + a(x)f' (x) =0, (38)
which is solved by

r(z«(0)) [* )L(u)ef;;( /(MI)‘tK(w) dwd
Mz:(0)) Jz, ) r(w)

Note that since Af (x) = A(x)f (x) it follows that A (2, (0))f (z+(0)) = r(z+(0))f' (z+(0))
and hence, choosing w.l.0.g. f(z.(0)) = 1, we obtain the solution

F&) =f(z(0)) +f'(z(0))

f(x)=1+/ W) oy s v g,
(0 Q)
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