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Development of statistically two-dimensional (2-D) turbulent wakes under pressure
gradients is a common feature of many industrial and aerodynamic flows. The usual
set-up is to generate a wake, and study its development through a passage with a
variable area; if the downstream area decreases (increases) a favourable pressure
gradient or FPG (adverse pressure gradient or APG) is imposed. In applications
such as in turbomachinery, however, the wakes develop in a periodic constant area
passage in the stator–rotor gap and with an imposed pressure gradient. To study
these flows, here, we develop a canonical set-up for this new kind of wake evolution
in FPG and APG of different strengths by placing a 2-D flat plate normal to the
flow in a periodic constant area passage and a fixed inflow mass flux. Employing
compressible direct numerical simulations, we impose pressure gradients through a
ramped body force term to the momentum and total energy equations while the wake
is allowed to develop spatially in a region of fixed width. The resultant mean velocity
statistics, wake width, energy budgets and entropy generation rates are scrutinised to
assess the effect of the pressure gradients, and where possible, the similarities and
differences to the conventional case of variable area pressure gradients are discussed.
The results show that the effect of a constant area pressure gradient on flow statistics
is non-trivial, resulting from significant density changes. The pressure gradients also
have an effect on the different energy budgets, which produces a gain for FPG and
loss for APG in the mean kinetic energy. Consequently, the entropy generation rate
diminishes and augments for the FPG and APG, respectively, compared to the zero
pressure gradient. Finally, the effect of different passage heights (H) relative to the
wake half-width (δ) is studied using large eddy simulations. We find that wake width
and hence the spreading, depends primarily on the wake–wake interaction for small
H and pressure gradients for larger H, and this has implications for the design of
turbomachinery.

Key words: compressible turbulence, wakes, turbulence simulation

1. Introduction
Symmetric plane turbulent wakes, i.e. quasi-two-dimensional, which are homogenous

in the spanwise direction have been under investigation since Townsend (1946).

† Email address for correspondence: chitrarth.lav@unimelb.edu.au
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A large body of work has been devoted to the far-wake characterisation of these
wakes under the condition of a zero streamwise pressure gradient, in the search for
self-preservation, i.e. becoming asymptotically independent of the initial conditions.
The first notable effort by Townsend (1946) considered circular cylinder wakes, later
postulating the self-preservation hypothesis in 1956. However, the study by Wygnanski,
Champagne & Marasli (1986), which looked at extending the self-preservation
hypothesis to other wake-generating bodies (cylinders, screens, airfoils and flat
plates) led to the profound observation that the wake evolution was not actually
independent of the generating body, i.e. it depended on the initial conditions, even
though the wakes themselves were self-preserving. This led to a widening of the
definition of self-preservation, as outlined by George (1989). The decades of research
have led to the well-known scaling laws for the far wake, where the velocity deficit
Ud (defined as the difference between the centreline and free-stream velocity Us)
scales as Ud ∼ x−0.5

1 and the wake half-width δ (defined as the location from the
centreline where the local deficit is half the maximum deficit Ud) scales as δ ∼ x0.5

1 ,
where x1 refers to the streamwise coordinate.

Following the attention to zero pressure gradient conditions, similar efforts were
attempted to understand wake evolution under streamwise pressure gradients. The
literature, however, is more limited compared to the no pressure gradient counterpart,
which is rather surprising given there is still no consensus on the scaling law for
wakes under these conditions, although there have been some attempts, such as the
experiments of Hill, Schaub & Sendo (1963), Gartshore (1967) and Liu, Thomas
& Nelson (2002) and the numerical works of Tummers et al. (2007) and Rogers
(2002). All pressure gradient investigations mentioned thus far are motivated by
applications such as high-lift wings. In the current study, we turn our attention
to another application where the pressure gradient affects wake evolution: in the
stator–rotor gap of turbomachines. This is an important area of investigation, given
that the wakes produced by turbines and compressors contribute to the wake mixing
loss, augmentation of which can reduce the aerodynamic efficiency. There have been
multiple studies into characterising the wake mixing loss and consequently reducing
it, such as Smith (1966), Adamczyk (1996) and Praisner et al. (2006). No serious
attention, however, has been paid to the role of the pressure gradient on the loss with
the only notable study that of Denton (1993), in which he observed that accelerating
the wake decreased the loss and vice versa, with no attempt at quantification.

To motivate the work conducted in this paper, we first demonstrate the significance
and existence of pressure gradients in axial turbomachines by post-processing the
high-fidelity datasets of a low pressure turbine (Sandberg et al. 2015) and a high
pressure compressor (Leggett et al. 2018). Figures 1(a) and 1(b) show the contours
of the non-dimensional streamwise pressure gradient around the low pressure turbine
(LPT) and high pressure compressor (HPC), respectively. The streamwise direction is
denoted with x1 and follows the mean streamline in both cases. It is evident from
the figures that there exist pressure gradients downstream of the blade profiles. The
area of the wake evolution downstream of the blades is also shown in the figure,
marked by the red box. While the wake is turned by an angle in the LPT and sheds
off horizontally in the HPC, the wakes in both cases evolve within a constant area
region, due to the pitchwise (x2 direction in figure 1b) periodicity. Interestingly, the
constant area region results in the confinement of the wakes while evolving in the
presence of pressure gradients, whereas conventional pressure gradients do not restrict
the region of wake development, as with high-lift wings (Liu et al. 2002). In fact, in
the conventional case of wakes being subjected to pressure gradients, the gradients
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FIGURE 1. Non-dimensional streamwise pressure gradient for (a) a low pressure turbine at
Re= 60 000 based on chord length and exit flow conditions, (b) high pressure compressor
at Re= 300 000 based on chord length and inflow conditions, where red boxes depict area
of wake evolution and (c) schematic of the canonical set-up for the study. Green arrows
show direction of flow; red planes indicate periodic boundaries, green plane corresponds to
fixed mass flux inflow (ρ∞U∞= 1) and blue plane is non-reflecting characteristic outflow
boundary. The plate is shown by the black rectangular cylinder while domain extents are
non-dimensionalised with h = 1. Reynolds number Re = ρ∞U∞L∞/µ∞, where ρ∞, U∞,
L∞ and µ∞ refer to the reference density, velocity, length scales and molecular viscosity,
respectively.

are created by changing the area where the wake develops. Reducing the area gives
rise to favourable pressure gradients (FPG) while increasing the area leads to adverse
pressure gradients (APG). Thus, the problem being studied in this paper, where the
wake is subjected to APG and FPG as it develops in a constant area, is conceptually
different from the configurations previously studied. As with the conventional case,
the application is simplified into a canonical case for study, by considering a wake
generating body placed within a constant area region, in the form of a rectangular
domain. Analytically, it was demonstrated in Lav, Sandberg & Philip (2018) that
the effect of the constant area was non-trivial on flow evolution in the presence of
pressure gradients as opposed to the variable area section. The differences observed
can be summarised as follows:
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(i) The change in the streamwise velocity results in a change of density for the
constant area case instead of the cross-stream velocity, which happens in case
of variable area sections.

(ii) A larger magnitude of pressure gradient is required to produce the same change
in the streamwise velocity in the constant area section compared with the variable
area section.

In this paper, a detailed investigation is conducted on the wake evolution under
constant area gradients. In § 2, the direct numerical set-up for the problem is detailed
while the results of the simulations are presented in § 3. The results section begins
with the mean statistics, such as the velocities, density and wake parameters (§ 3.1).
Following this, budgets of the turbulence kinetic energy are extracted for comparison
in § 3.2 and their role in the transfer of energy between the three energy components
of total energy are examined (§ 3.2.4). Additionally, the entropy generation rates
(in § 3.3) are computed for the different pressure gradients, instantaneously and in
the mean to quantify the loss generation, which is followed by considering the effect
of different domain heights on wake spreading in § 3.4. Finally, in § 4 we summarise
the results of the present study.

2. Numerical set-up
To eliminate the complexity of the flow in a turbomachinery set-up and focus purely

on the impact of pressure gradients on the wake evolution, a canonical representation
of the problem is created, as shown in figure 1(c). The schematic consists of a
bounding box containing a flat plate normal to the flow direction, serving as the
wake-generating body. It must be pointed out that, while the wake-generating body
chosen here is not truly representative of a turbomachinery wake, which is generated
through smooth separation and is largely asymmetric about the wake centreline, the
aim of the study here is to expose a generic confined wake to both favourable
and adverse pressure gradients to understand the underlying flow physics with the
expectation these observations can be extended to turbomachinery wakes. Since this
study is a first of its kind, the canonical simplification further assumes a symmetric
wake that is parallel to the boundaries in x2 while being exposed to a single pressure
gradient magnitude. Thus, the effects of the asymmetry, the rotation of the wake and
the streamwise variation of the pressure gradients are not considered here. However,
the simulation set-up and parameters are still guided by the turbomachinery data,
particularly the LPT, with the Reynolds number (Re∞) of 2000 based on the plate
height and the inflow mass flux. The mass flux was chosen here instead of a velocity
scale due to the expected compressibility effects, based on the observations in Lav
et al. (2018). Direct numerical simulations (DNS) of the wakes were performed with
HiPSTAR, which is a high-fidelity in-house structured compressible Navier–Stokes
solver. The code uses a fourth-order accurate stencil in the streamwise/lateral
directions, a Fourier pseudo-spectral approach in the spanwise direction and a
fourth-order accurate Runge–Kutta scheme in time (Sandberg et al. 2015). The
equations solved in HiPSTAR are non-dimensionalised based on reference length
(h= height of flat plate), velocity (u∞= inflow velocity), density (ρ∞= inflow density)
and temperature (T∞ = inflow temperature) scales. Thus, all quantities presented in
§ 3 are non-dimensional and dimensional results can be obtained by multiplying by
the appropriate reference scales. For example, the production term in dimensional
form can be obtained by multiplying the non-dimensional form presented below with
ρ∞U3

∞
/h.
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The boundary conditions chosen for the study are also shown in figure 1(c), with
the streamwise direction (x1) boundaries utilising a fixed mass flux for the inflow
boundary and a zonal non-reflective characteristic boundary condition for the outflow.
The fixed inflow was chosen to allow for a direct comparison amongst the various
cases simulated while the characteristic condition is employed to prevent spurious
reflections from the outflow boundary back into the domain (Kim & Sandberg 2012).
The outflow boundary is also combined with a zonal boundary condition, which
acts as sponge layer to further damp the reflections into the domain (Sandberg
& Sandham 2006). The cross-stream direction (x2) boundaries were chosen to be
periodic, to model the constant area effect seen downstream of the blade trailing
edge while the spanwise direction (x3) boundaries are also periodic, to model the
quasi-two-dimensional wake.

The extent of the domain in the x1 direction was −15h to 85h units, with h being
the height of the flat plate placed at the origin. The boundaries up and downstream
were far enough away so as not to interfere with the flow. The downstream extent
was chosen to provide a sufficient length for the wake to develop and to allocate a
sufficient number of grid points for the sponge layer. The extent in the x2 direction
was chosen from −20h to 20h units to match with the periodic pitch of the low
pressure turbine in figure 1. A spanwise extent (x3) of 8h units, for a plate of thickness
0.1h units, was chosen after testing multiple spans and multiple grids until mean
statistics of the wake converged for the zero pressure gradient (ZPG) condition. In
this study, h is set to 1.0 unit.

Instead of body fitting the grid around the flat plate, the plate was represented with
the boundary data immersion method (BDIM) of Schlanderer, Weymouth & Sandberg
(2016), whereby a smoothing region is used to demarcate the boundaries of the flat
plate. The flow variables are ramped down to zero from outside of the smoothing
region (the fluid domain) to the inside of the smoothing region (the flat plate domain).
The choice of using BDIM over a conventional body-fitted grid provided ease in grid
generation during the grid convergence study. Given that the aim of the study is to
focus on the wake development, the free-shear region is of more interest than the
source of the wake itself and with our choice of wake-generating body (thin flat plate),
the separation points are always fixed at the leading edge corners. The resultant grid
following the grid convergence study had 1056× 396 points in plane (x1− x2) and 64
Fourier modes in span (130 physical points) and was finalised based on the resolution
of the smallest length scales in the flow. This was verified through the budgets of
the turbulence kinetic energy equation (3.2), by comparing the directly evaluated
dissipation budget with the sum of the budgets of the remaining terms, with the two
quantities being closely matched for the resultant grid. The pressure gradient cases
were simulated by adding forcing terms F to the streamwise momentum equation and
u1F to the total energy equation, since they contain the terms ∂p/∂x1 and u1∂p/∂x1

respectively, u1 being the streamwise velocity component.
In the case of the turbomachinery wakes in figures 1(a) and 1(b), the pressure

gradients exist due to the potential flow field set up by the blade array. Given
our canonical set-up confines the wake within a rectangular region where potential
effects are not as severe, the pressure gradients can be mimicked through the use of a
forcing term in the governing equations of fluid motion. The resulting non-dimensional
equations being solved are the compressible conservations of mass, momentum and
total energy
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∂ρ

∂t
+
∂(ρuj)

∂xj
= 0, (2.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
=−

∂(pδij)

∂xj
+
∂σij

∂xj
+ Fδi1, (2.2)

∂(ρE)
∂t
+
∂(ρujE)
∂xj

=−
∂(ujp)
∂xj
+
∂(σijui)

∂xj
+
∂qj

∂xj
+ ujFδ1j. (2.3)

In the above equations, ρ, ui, p and E are the density, velocity components, pressure
and specific total energy, respectively. Here, E = e + 0.5uiui, where e is the specific
internal energy (e=T/γ (γ − 1)M2

∞
). Assuming a Newtonian fluid obeying the Fourier

law, the molecular stress (σij) and the heat flux (qj) are given by

σij =
µ

Re∞

(
−

2
3
∂uk

∂xk
δij +

∂uj

∂xi
+
∂ui

∂xj

)
, (2.4)

qj =
−µ

Pr∞(γ − 1)M2
∞

Re∞

∂T
∂xj
, (2.5)

where µ and T are the molecular viscosity and temperature. The viscosity µ is defined
using Sutherlands law using a reference temperature T∞ = 300 K. The fluid is also
assumed to follow the ideal gas law, with γ = 1.4 such that

p=
ρT
γM2

∞

. (2.6)

The forcing term F was represented as a smooth ramping function that ramped from
0 (zero pressure gradient) to Fo (non-zero pressure gradient), with the ramp centred
25 units downstream of the flat plate

F= 0.5Fo(1+ tanh(x1 − 25.0)). (2.7)

Thus, at x1 = 20.0, F = 0 while at x1 = 30.0, F= Fo. The cases simulated are shown
in table 1, along with the values of Fo used. These values were chosen based on
the non-dimensional pressure gradients encountered by the wake downstream of the
LPT, i.e. ∈ [−0.008, 0.008] (see figure 1a). An analysis on the effect of the forcing
term on the actual pressure gradient showed that the actual pressure gradient was
approximately 10 times smaller than the forcing term chosen. The reader is referred
to appendix A for further details. Compared to the experiments of Liu et al. (2002)
where the wake evolves in a conventional variable area section, the absolute value of
the gradients considered here are larger by an order of magnitude. The simulations
were all conducted with M∞ = 0.30, Pr∞ = 0.72 and a non-dimensional time step of
5 × 10−3, which produced a maximum Courant number of 1.15. Figure 2 shows an
instantaneous snapshot of the Q-criterion (Jeong & Hussain 1995), coloured by the
spanwise vorticity for the cases F2, Z and A2, to demonstrate the range of length
scales being resolved as well as offering a visual distinction of structures between the
three cases. Here, Q= 0.5(|Ω|2 − |S|2), where |Ω| and |S| are the mean rotation and
strain rates respectively.
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FPG

ZPG

APG

x1

x2 x3

FIGURE 2. Instantaneous snapshot of the Q-criterion for cases F2, Z and A2, coloured
by the spanwise vorticity.

Case Symbol Fo Ṡṽi × 10−7 Ṡt̃h × 10−9

Z u (black) +0.0 2.05 3.40
A1 p (red) +0.04 2.80 4.35
A2 f (red) +0.08 3.87 4.50
F1 q (blue) −0.04 1.25 2.52
F2 (blue) −0.08 1.02 2.40

TABLE 1. List of pressure gradient cases simulated. Symbols shown here are used in all
line plots. Mean entropy generation rates from the viscous and thermal contributions also
shown at x1 = 50.

3. Results
3.1. Mean statistics

The time-averaged statistics shown in this section were collected over 1800 time units,
following a time convergence test, which corresponds with 18 flow-through times. The
data presented henceforth are spanwise and time averaged. Given that we solve for
the conservative variables ((2.1), (2.2) and (2.3)), the averaging performed is of the
Favre-decomposition type, such that any variable φ = φ̃ + φ′′, where φ̃ = ρφ/ρ is the
Favre average; φ corresponds to the Reynolds average such that φ= φ+ φ′, while φ′
(Reynolds-decomposed fluctuation) and φ′′ (Favre-decomposed fluctuation) are related
by φ′′=φ′−ρφ′/ρ. Favre decomposition is a popular choice for variable density flows
as it provides a strong analogy for variable density effects, arising from the density
fluctuation correlations, with constant density flows (Chassaing et al. 2002).

Figure 3 shows the streamwise variation of the streamwise velocity, density and
pressure in the free stream, at x2 = 20. The trends confirm the expected changes
in the velocity, i.e. acceleration from FPG and deceleration from APG respectively.
Due to the pressure gradients acting in a constant area section, the change in the
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FIGURE 3. Free-stream variation of (a) mean streamwise velocity, (b) density and
(c) pressure at x2 = 20 units: u (black), Z; p (red), A1; f (red), A2; q (blue), F1;
(blue), F2.

velocity is reciprocated by a change in the density. So, increase in the velocity
corresponds to a decrease in density while decrease in the velocity results in density
increase. The impact of the pressure gradients are now assessed on the wake by
considering a streamwise location within the region of the applied forcing, i.e. at
x1= 50. Figure 4 shows the mean streamwise velocity, density and mean cross-stream
velocity at x1 = 50. The changes in ρ and ũ1 are consistent with the changes seen in
the free stream. The changes are also consistent with the conservation of mass as the
integrated flux (

∫
ρũ1 dx2) values are identical across all the cases. The cross-stream

velocity (ũ2) shows that the velocity at the boundaries (x2 =−20, 20) is zero, which
is a direct consequence of the periodic boundary condition as well as the inflow
condition. As one moves inward from the boundaries, opposite trends are observed in
the adverse and favourable pressure gradients. For APGs, the flow accelerates away
from the centreline, peaks a certain distance away and then decelerates until the flow
moving outwards comes to a rest at the boundary; while for the favourable gradients,
the flow accelerates inward from the boundaries, peaks and then decelerates to zero
at the centreline. Following these differences, the wake parameters, namely maximum
wake deficit (Ud) and wake half-width (δ) are plotted in log–log coordinates in
figure 5. Also plotted in the figures are lines of slopes −0.5 for Ud and 0.5 for δ.
For the ZPG, Ud and δ follow the established scaling laws of ∼ x−0.5

1 and ∼ x0.5
1

respectively. In the case of pressure gradients, the development of Ud is similar
to observations in the experimental finding of Liu et al. (2002), where a pressure
gradient was applied in a variable area section. Due to the acceleration of the flow,
Ud reduces in the case of FPGs as the wake profiles tend toward uniformity, while the
deceleration caused by APGs affects the centreline more severely than the free stream,
causing an increase in the deficit. However, the development of δ is different when
compared to the experiment. For the pressure gradients, the small deviations from the
ZPG case are in contrast to the exponential growth in δ for the APG and a constant
δ for the FPG in the experiment. These differences in the half-width development
downstream can be explained by the effect the constant area section imposes on the
wake. This can be explained by considering the ũ2 profiles in figure 4 which go to
zero at the x2 boundaries. This imposition restricts the amount of mass flux entering
and exiting for the FPG and APG cases, respectively, which would not be the case
in the variable area set-up were a similar rectangular control volume considered. In
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FIGURE 4. (a) Mean streamwise velocity, (b) density and (c) cross-stream velocity at
x1 = 50. For labels, refer to table 1.
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FIGURE 5. (a) Maximum velocity deficit (Ud) and (b) wake half-width (δ) variation with
x1. Solid line represents the slope on the log space plots.

fact, in that situation, there would exist a distribution of ũ2 as a function of x1 at
the x2 boundaries. Thus, the confinement of the wake in the constant area case alters
the spreading of the wake when compared with the conventional variable area case.
As opposed to the variable area case, where there is only one macro-length scale, in
this study there are two macro-length scales, the width of the domain in addition to
the wake half-width. The effect of changing the width of the domain on δ will be
further elaborated in § 3.4.

Figure 6 shows the proposed scaling between the wake parameters, where UsUd/δ∼

x−1
1 was observed empirically. This is different from the scaling proposed by Liu et al.

(2002), where the variation of Ud/δ was observed to be independent of the pressure
gradient. In this study, however, the difference in Ud/δ at various streamwise locations
between the cases could not be ignored, even if the development was very similar.
This can clearly be attributed to the way δ evolves spatially in the constant area
section of this study. The data also reveal that, both in the present study and in the
variable area experiments of Liu et al. (2002), the self-similarity profile of Wygnanski
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FIGURE 6. (a) Scaling for Us, Ud and δ. The solid line corresponds to a slope of −1.
(b) Self-similarity profile for all cases at x1 = 50 units. Dashed line represents (3.1).

et al. (1986) is valid:

Us − ũ1

Ud
= exp

(
−0.637

(x2

δ

)2
− 0.056

(x2

δ

)4
)
≡ f (x2/δ). (3.1)

Figure 6 shows the self-similar plots of the different cases at x1 = 50, with all cases
collapsing onto the exponential presented in (3.1). The negative values for |x2/δ| ∈

[2, 6] units for all cases is due to the velocity excess resulting from the blockage
effect produced by the bluff body used.

3.2. Energy budgets
To further our understanding of the trends from the previous section, select budgets
of the turbulence kinetic energy (k̃= 0.5ũ′′i u′′i ) equation are discussed for comparison.
The equation used for comparison is the Favre-averaged form, derived by Adumitroaie,
Ristorcelli & Taulbee (1999):

∂(ρk̃)
∂t
+
∂(ρk̃ũj)

∂xj︸ ︷︷ ︸
C

= −ρũ′′i u′′j
∂ ũi

∂xj︸ ︷︷ ︸
P

−
∂(ρũ′′j k− u′′i σji{u′′} + p′u′′j )

∂xj︸ ︷︷ ︸
T

+ p′
∂u′′i
∂xi︸ ︷︷ ︸
Π

+ u′′j
∂σji{ũ}
∂xj︸ ︷︷ ︸
V

− u′′j
∂p
∂xj︸ ︷︷ ︸
R

− σji{u′′}
∂u′′i
∂xj︸ ︷︷ ︸

E

, (3.2)

where C, convection/advection; P , production by the mean velocity gradient; T ,
turbulent transport; Π , pressure–dilatation correlation; V , viscous stress work
associated with velocity fluctuations; R, pressure–work associated with velocity
fluctuations; and E , dissipation due to molecular effects. The term σij{Φ} refers to
the traceless strain rate tensor for the vector Φ, i.e. replacing ui with Φ in (2.4).
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3.2.1. Production
The budget of the production term (P) along the wake centreline (x2 = 0) and

at x1 = 50 is shown in figure 7. While the data presented in this and the following
sections are time converged, they has been smoothed out using the Savitzky–Golay
filter (Savitzky & Golay 1964) to remove fluctuations arising from the higher-order
nature of the statistics. The filter preserves the trends, thus allowing ease in visualising
the differences between the different cases. The trends suggest that APGs augment
the production of k̃ while FPGs reduce it, compared to the ZPG scenario. The wake
centreline trend also suggests the same, even though the region shown is upstream
of the pressure gradient imposition (x1 = 25). For the FPG, there exist regions
with negative production at x1 = 50, so, to understand these trends, we decompose
the production budget into a dilatational production (Pd) component and a shear
production (Ps) component as suggested by Liu & Thomas (2004),

Pd =−ρũ′′1u′′1
∂ ũ1

∂x1
− ρũ′′2u′′2

∂ ũ2

∂x2
, (3.3)

Ps =−ρũ′′1u′′2
∂ ũ1

∂x2
− ρũ′′2u′′1

∂ ũ2

∂x1
, (3.4)

and this is shown in figure 8. As was observed in the case of Liu & Thomas
(2004), the dilatational production augments overall production for APGs and vice
versa. Given that the pressure gradient magnitudes are higher in this study, the
strong FPG’s dilatational component is larger in magnitude than the shear component,
leading to overall negative production. This negative production plays a role in
transfer of energy from the turbulence to the mean kinetic energy (K̃= 0.5ũiũi). Since
the normal components of the Reynolds stress in Pd are positive, the sign of Pd is
driven by ∂ ũ1/∂x1 and ∂ ũ2/∂x2. In the case of FPGs, ∂ ũ1/∂x1 > 0 since each point
undergoes acceleration in the streamwise direction while for APGs ∂ ũ1/∂x1 < 0. The
value of ∂ ũ2/∂x2 on the other hand changes sign across x2. However, at any given
spatial position, APG and FPG have the opposite sign (see figure 4). Between the
centreline and the location of absolute maximum of ũ2, ∂ ũ2/∂x2 > 0 for the APG and
∂ ũ2/∂x2< 0 for the FPG. These values combined explain the difference in the sign of
the dilatational component between the different pressure gradients. It is also worth
mentioning that the production in the wake centreline is dependent on the dilatational
component only and is not affected by the shear production, given the shear stress
is zero at the centreline. The trends observed in the production budget show strong
similarities to the variable area pressure gradient study of Liu et al. (2002).

3.2.2. Pressure–dilatation correlation and dissipation
The pressure–dilatation correlation (Π ) is a budget term that exists only in the

compressible formulation of the turbulence kinetic energy budget equation and as
such serves to facilitate the transfer of energy between the turbulence kinetic and
mean internal energy (̃e = T̃/γ (γ − 1)M2

∞
). When Π > 0, it acts as a source in the

turbulence kinetic energy equation, i.e. it helps increase k̃ while Π < 0 increases ẽ
at the expense of k̃. At x1 = 50, all Π values, as shown in figure 9, are negative,
causing a reduction in the turbulence kinetic energy. In case of APGs, the magnitude
is greater, consequently transferring more energy from the turbulence kinetic to the
mean internal energy than the FPGs. However, considering Π in isolation is not
helpful when dealing with the mechanics of the energy transfer, as will be discussed
in a later section.
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FIGURE 7. Production budget (a) along wake centreline and (b) at x1 = 50.
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FIGURE 8. Split of production budget into (a) dilatational component and (b) shear
component at x1 = 50.

For the dissipation budget presented in figure 9, the same trend is observed as
with other budgets, i.e. APGs demonstrating larger magnitudes than FPGs. Unlike the
experiment of Liu (2001), scaling of E by δ/k̃1.5

max does not show a collapse that would
indicate no effect of pressure gradients (not plotted here). Instead, the same trend as
with the unscaled dissipation is observed. This could possibly be due to a difference
in the development of δ, which is a direct consequence of the wake evolving in the
constant area section.

3.2.3. Pressure work
The pressure work is an important budget term for flows that accelerate or

decelerate as it contains the pressure gradient. It appears in two forms, turbulent
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FIGURE 9. (a) Pressure–dilatation correlation (Π ) and (b) dissipation (E) at x1 = 50.

pressure work (R) and pressure work of the mean (R̃)

R= u′′j
∂p
∂xj
; R̃= ũj

∂p
∂xj
. (3.5a,b)

While R appears in the turbulence kinetic energy equation as a sink and in the mean
internal energy equation as a source, R̃ appears in the mean kinetic energy (K̃) as
a sink and in the mean internal energy as a source. So, positive values of R and
R̃ will reduce k̃ and K̃, respectively, and vice versa. Figure 10 shows R and R̃ at
x1 = 50, where we observe all pressure gradients having opposite signs in the two
budgets. For R, the APGs have a negative value while the FPGs have positive values.
This indicates that R, in the case of APGs, contributes to increasing k̃ at the expense
of ẽ while FPGs decrease k̃. However, the absolute values of R are two orders of
magnitude smaller than other budgets of the turbulence kinetic energy, so its impact
on k̃ is insignificant. This quantity is not presented in the budgets of Liu et al. (2002)
since the incompressible form of the turbulence kinetic energy is devoid of R, given
that the time mean of the Reynolds fluctuation is zero whereas the time mean of
the Favre fluctuation is not. In the case of R̃, budget magnitudes are significantly
larger and influence the energy transfer between the mean kinetic and mean internal
energies. Clearly, negative values of R̃ would increase the mean kinetic energy, which
is expected in the case of accelerating flows (FPGs). A detailed explanation of the
energy transfer is presented in the following section.

3.2.4. Energy transfer
Based on the budget trends discussed in the previous sections, the energy transfer

sequence is now explored. The interplay of transfer between the different energies is
taken from the schematic in Chassaing et al. (2002), adapted here in figure 11. The
condition on a budget near an arrow head signifies transfer of energy from the source
of the arrow to the arrow head. For example, a positive value of mean pressure work
(R̃ > 0) transfers energy from the mean kinetic to the mean internal energy. This
would result in a decrease in the mean kinetic energy while causing an increase in
the mean internal energy. The dissipation budget has not been added in the schematic

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

18
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.183


892 A35-14 C. Lav, J. Philip and R. D. Sandberg

-8 -6 -4 -2 -0.15 -0.10 0 0.10-5 ÷ 10-2 5 ÷ 10-20 2 4

10

5

0

-5

-10

10

5

0

-5

-10

x2

r r
¡

(a) (b)

(÷ 10-6)

FIGURE 10. (a) Pressure work of the fluctuations (R) and (b) of the mean (R̃) at x1= 50.
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FIGURE 11. Schematic of energy transfer based on select budgets. Adapted from
Chassaing et al. (2002).

as the transfer is one way, from k̃ to ẽ, while the purpose of this section is to analyse
the two-way transfer and it’s impact on the energies.

Figure 12 shows the profiles at x1=50 for the turbulent kinetic energy (k̃=0.5ũ′′i u′′i ),
the mean internal energy (̃e = T̃/γ (γ − 1)M2

∞
) and the mean kinetic energy (K̃ =

0.5ũiũi). Since R is smaller than all other budgets shown, its contribution in assessing
the energy transfer will be ignored. Looking at the mean internal energy, an increase
in the energy is possible when R̃> 0 and Π < 0. For APGs, both conditions hold true
while for FPGs, R̃< 0 and Π < 0. Since Π is two orders of magnitude smaller than
R̃, the transfer is dominated by the mean pressure work. As a result, APGs have a
higher proportion of internal energy. In the case of the mean kinetic energy, the FPGs
augment the energy due to smaller (for case F1) or negative (for case F2) production
values and negative R̃, while the opposite is true for the APGs. Thus, mean kinetic
energy is larger in the case of favourable gradient conditions. Finally, in the turbulence
kinetic energy, the net balance of energy transfer is first obtained for each case since
Π and P are comparable in magnitude. If Π +P>0, an increase in turbulence kinetic
energy should be observed. Figure 13 shows that the APGs have larger positive values
and consequently help increase the turbulence kinetic energy, while FPGs would cause
a reduction in the turbulence kinetic energy.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

18
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.183


Plane turbulent wakes in constant area pressure gradients 892 A35-15

0 0.5 1.0 1.5 0 0.2 0.4 0.6 0.819.6 19.8 20.0 20.2

10

5

0

-5

-10

10

5

0

-5

-10

10

5

0

-5

-10

x2

(÷ 10-2)k¡ K¡e¡

(a) (b) (c)

FIGURE 12. (a) Turbulence kinetic energy, (b) mean internal energy and (c) mean kinetic
energy at x1 = 50.
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FIGURE 13. Sum of production and pressure–dilatation correlation budgets at x1 = 50.

3.3. Entropy generation

Turbomachinery design is driven by the aim to minimise loss as it directly affects
the aerodynamic efficiency. In Denton (1993), several metrics were introduced to
quantify loss, with the case being made for entropy as a preferred candidate, due to
its independence of the frame of reference. The total loss could also be obtained by
simply summing the entropy changes across the different contributing mechanisms.

With availability of DNS data, we can take the use of entropy even further, by
utilising the entropy generation rate to compute and compare the loss production
between the three pressure gradient cases. This is based on the application of the
principle of second law analysis, described in Herwig & Schmandt (2014), by
considering the entropy generation rate to assess sources of loss as field information,
volume integration of which would provide one final value of the total entropy
produced. Another reason for relying on entropy is the fact that entropy and its
generation is non-negative, providing an absolute reference of zero, which would
correspond to an idealistic process, i.e. zero entropy production. Following the
derivation of the entropy generation rate in Bejan (1982), the instantaneous entropy
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FIGURE 14. Mean entropy generation rates due to viscous and thermal effects at x1= 50.

generation rate for a differential element can be written as

Ṡgen =
κ

T2

(
∂T
∂xi

)2

︸ ︷︷ ︸
Ṡth

+
1
T
σij
∂ui

∂xj︸ ︷︷ ︸
Ṡvi

, (3.6)

where the first term (Ṡth) corresponds to entropy generation due to thermal effects,
with κ being the thermal conductivity, while the second term (Ṡvi) corresponds to
entropy generation due to viscous effects. Here, σij represents the traceless molecular
stress tensor, given in (2.4). It is worth mentioning that Ṡgen is independent of the
forcing term and for proof of the derivation, the reader is referred to the course notes
of Cantwell (2018). Manipulation of the second term would reveal that Ṡvi is non-
negative, giving a non-negative Ṡgen. The total entropy generated can then be obtained
by integrating over the volume of interest. While these quantities are all instantaneous,
mean entropy generation rate can also be calculated, as performed by Lin, Yuan & Su
(2017), where the mean values of generation rates are given by

Ṡṽi =
1

T̃
σij{ũ}

∂ ũi

∂xj
, Ṡt̃h =

κ

T̃2

(
∂T̃
∂xi

)2

. (3.7a,b)

Figure 14 shows the mean viscous and thermal generation rates at x1 = 50,
non-dimensionalised by reference values. Clearly, the viscous effects are dominant
over the thermal effects, by two orders of magnitude. This is not entirely surprising,
given that temperature variations are small in the cases simulated. Interestingly,
however, the generation rates are negligible in the centreline, with the bulk of
the generation concentrated in the region of mean maximum shear stress for the
viscous component and the shear layer between the wake and free stream for the
thermal component. Finally, the figure also yields information regarding the amount
of entropy generation. Visually, the adverse gradients seem to produce higher values
than the zero and favourable gradients. This can also be quantified by computing
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FIGURE 15. Instantaneous and mean entropy generation rates due to viscous and thermal
effects, for the A1 case. The bounding box in the images above span x1 ∈ [25.0, 70.0] and
x2 ∈ [−10.0, 10.0]. For the instantaneous cases, the data are extracted for one spanwise
plane, at x3 = 0, while the mean cases are spanwise averaged.

the mass-averaged value of the generation rates (see Cumpsty & Horlock (2006)),
presented in table 1. The values suggest that accelerating the wake produces lower
entropy than decelerating the wake, causing a reduced loss in favourable gradients
when compared to adverse gradients. This observation is also in agreement with
Denton (1993), where the focus was on the mixing loss metric for qualification. The
trends observed above were consistent when looking at the instantaneous generation
rates as well. However, comparing the instantaneous with the mean generation
rate reveals that the unsteady effects significantly dominate the generation rate, as
evidenced from figure 15. We only show one case result for brevity because the
differences were similar across the other cases.

Finally, figure 16 shows an instantaneous snapshot of the viscous entropy generation
rate for the F1, Z and A1 cases, zoomed into the pressure gradient region i.e. x1 ∈

[25.0, 70.0]. The contour values in all three cases were set between 0 and 2× 10−4

and offer a direct visual comparison of the amount of entropy generated in each
case. The presence of a favourable gradient severely diminishes the amount of entropy
existing as well as restricting the extent of generation in the cross-stream direction,
whereas for the adverse gradient, the widening of the region of entropy generation
is clearly visible along with higher levels of entropy generation. Thus, based on the
presented data, it can be stated that a increase in the mean kinetic energy results in
reduction of entropy while a loss would increase the entropy produced.
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FIGURE 16. Instantaneous entropy generation rate due to viscous effect in the pressure
gradient region for F1, Z and A1 cases. Entropy values for all cases are scaled between
0 and 2× 10−4. The bounding box in the images above span x1 ∈ [25.0, 70.0] and x2 ∈

[−10.0, 10.0] for each case. The data presented are extracted for one spanwise location,
at x3 = 0.

3.4. Effect of domain height
As mentioned in § 3.1, there are two macro-length scales in this flow problem, the
height of the domain (H) and the wake half-width (δ). In this section, we analyse
the impact of the domain height on the spatial wake development. To reduce the
computational expenses, calculations were performed only for the extreme APG (case
A2), as it produces the fastest rate of wake spreading amongst all the cases considered
thus far. Additionally, all calculations shown in this section were performed using
large eddy simulations (LES), utilising the wall-adapted local eddy viscosity model
of Nicoud & Ducros (1999). Using the DNS grid as a benchmark, the optimal LES
grid was obtained by coarsening the grid from the DNS resolution and comparing
the mean statistics with the DNS results until the differences could not be ignored.
The resulting grid for the LES contains 672 × 290 points in plane with 64 Fourier
modes (130 physical points) in the span. Figure 17 shows a comparison of the mean
streamwise velocity, density and cross-stream velocity between the LES and DNS as
a check on the accuracy of the LES.

For this section, three additional domain heights were simulated, with extents of
H= 80, 20 and 10 units each in the x2 direction, apart from the original H= 40 units
case. The grid resolutions for these cases and corresponding symbols are presented in
table 2. For all cases, the grid point distribution in the x1, x2 directions is unchanged
from the A2L2 case. In the case of domain heights smaller than 40, i.e. A2L3 and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

18
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.183


Plane turbulent wakes in constant area pressure gradients 892 A35-19

0.5 0.6 0.7 0.8 0.9 1.178 1.182 1.186 -2 -1 0 1 2

20

10

0

-10

-20

20

10

0

-10

-20

20

10

0

-10

-20

x2

(÷ 10-2)u¡1 u¡2®

(a) (b) (c)
DNS
LES

FIGURE 17. Comparison between LES (672× 290× 130 points) and DNS (1056× 396×
130 points) for case A2, to assess the accuracy of the LES solution. (a) Mean streamwise,
(b) density and (c) cross-stream profiles shown for x1 = 50.

Case Symbol Fo Spatial extent Grid resolution

A2L1 p (red) +0.08 100.0× 80.0× 8.0 672× 410× 130
A2L2 f (red) +0.08 100.0× 40.0× 8.0 672× 290× 130
A2L3 q (dark red) +0.08 100.0× 20.0× 8.0 672× 216× 130
A2L4 (dark red) +0.08 100.0× 10.0× 8.0 672× 160× 130

TABLE 2. List of domain heights simulated, where spatial extent is given in terms of
L × H × W. A2L represents APG case A2, simulated as LES. Symbols shown here are
used in all line plots for § 3.4.

A2L4, the grid points in x2 beyond the domain extent were removed while for A2L1,
additional points were added in the x2 direction using the same growth rate as for
the A2L2 case. In terms of turbomachinery flows, the effect of the different domain
heights studied here is analogous to the pitchwise spacing between consecutive
blades in the linear cascade. Larger domains result in blades being spaced further
apart, which implies less blades for a given row while smaller domains means more
blades for the given row. The optimal spacing is chosen based on a number of
parameters, primarily to produce the desired power output. In this study, however, the
purpose of varying the domain extent is to obtain a more fundamental understanding
on the wake spreading and its relation to the domain extent. Figure 18 shows the
streamwise variation of the maximum velocity deficit and the wake half-width for
all the additional cases. The largest deviation is observed for case A2L4, compared
with the other domain extents. This deviation can be attributed to the cross-stream
domain extent being narrow enough to interfere with the wake spreading, resulting in
wake–wake interaction, which is demonstrated in figure 19, through the instantaneous
Q-criterion snapshot for the A2L4 case. The wakes in the figure above and below
the middle wake represent the adjacent wakes on account of the periodicity in
the cross-stream direction. The deviation in figure 18 occurs when δ ∼ 1.5, which
corresponds to 30 % of half of the cross-stream domain height (H/2 = 5 units).
Interestingly, the deviation in δ is also observed for case A2L3, when δ∼ 3.0, which
corresponds to δ being 30 % of half of the domain extent (H/2 = 10 units). The
adjacent wakes seem to influence the subsequent spreading once the wake becomes
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FIGURE 18. Values of (a) Ud and (b) δ, for domain extent cases and symbols described
in table 2.

x1

x2

FIGURE 19. Instantaneous Q-criterion, coloured by spanwise vorticity for A2L4 case. Top
and bottom wakes are transforms of the middle wake to demonstrate the periodic effect
with domain bounds for each wake being x1 ∈ [−5, 75], x2 ∈ [−5, 5] and x3 ∈ [0, 8].

sufficiently wide. It could be suggested then, that the spreading for case A2L2 could
deviate from A2L1 when δ ∼ 6, if the domain were long enough in the streamwise
direction. This is of course speculation and a confirmation is possible only when a
simulation of a longer domain in the streamwise direction is conducted. Nevertheless,
the main takeaway is that the wake spreading is influenced by both the pressure
gradient and the domain height. The pressure gradient dictates the spreading when
the domain height is large enough while the domain height controls the spreading
when it is small enough. The rapid decline in Ud and δ for case A2L4 due to the
narrow domain extent presents an important observation, in that, placing APG wakes
closer to one another leads to the APG wake behaving more like a wide domain FPG
wake.

Furthermore, the closeness of the adjacent wakes causes mixing of the wakes,
and this will produce a lower entropy loss than the original wide domain APG
(case A2L2). Support for this observation can be found in Michelassi et al. (2015),
where the authors subjected a low pressure turbine to incoming wakes with different
pitches. When the incoming wakes were close enough to interact with one another,
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FIGURE 20. (a) Mean streamwise velocity at x1= 50, scaled by the corresponding domain
height and (b) streamwise variation of UdUs/δ, for domain extent cases and symbols
described in table 2.

the mixing of the wakes produced loss values similar to the case of no incoming
wakes with background turbulence. This was due to the wakes mixing out before
reaching the leading edge of the low pressure turbine, while the other cases produced
distinct wakes, resulting in higher loss. Drawing a parallel with our study, closely
spacing the wakes can reduce the impact the pressure gradient has, seen through
the changes in Ud and δ, which happen due to the mixing out from wake–wake
interaction. Mixing out in wakes refers to the reduction in the non-uniformity or a
wake moving towards ‘flatness’. This point is demonstrated through figure 20, which
shows the mean streamwise velocity for all the cases at x1 = 50, normalised by the
domain height. The move towards ‘flatness’ in the wake profile is clearly visible as
the domain height shrinks. Finally, figure 20 also shows the streamwise variation of
UsUd/δ, where a reasonable collapse is observed for the different domain extents,
meaning the empirical scaling law proposed in § 3.1 still holds.

4. Summary and conclusions
In this study, the impact of constant area pressure gradients on spatial wake

development was examined through the use of multiple high-fidelity compressible
DNSs. Unlike the traditional method of applying pressure gradients on wakes by
changing the cross-sectional area, the commonly occurring wakes in the stator–rotor
gap of turbomachines develop under pressure gradients in constant cross-sectional
areas. As such, for the first time, we study a canonical set-up of a wake from a bluff
body, subjected to a constant area region of pressure gradient. With the Reynolds
number and range of gradients considered matching turbine wake conditions, we
reported on key time-averaged quantities, such as the streamwise and cross-stream
velocities, density and wake parameters. Compared with the conventional application,
where the pressure gradients act in a variable area section, the mean statistics reveal
non-trivial differences. The change in the streamwise velocity causes a change in the
density of the fluid while the constant area condition restricts the variation of the
cross-stream velocity. This has an impact on the amount of wake spreading, with
the variation in the wake half-width being not significantly different from the zero
pressure gradient case.
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However, the different pressure gradient cases show a reasonable collapse onto the
self-similarity profile proposed by Wygnanski et al. (1986), and are in agreement
with the variable area pressure gradient. The difference in the growth of δ also
reveals a different scaling law, where UsUd/δ was observed to scale with x−1

1
compared with the variable area gradient case where Ud/δ was observed to be
independent of the pressure gradient. Following this, a detailed investigation into the
energy budgets was conducted, which also revealed key differences. The turbulence
production term showed the importance of the dilatational component’s role in the
total production. For FPGs, the dilatational component was negative and larger in
magnitude than the positive shear component. This resulted in an overall negative
production in the pressure gradient region. In the case of dissipation, the pressure
gradients demonstrated that they had an impact on its value, even after scaling,
which is different than the observations of the variable area gradients. Additional
budgets were also presented, which appear only in the compressible version of the
turbulence kinetic energy equation. The pressure–dilatation term, which relates the
pressure fluctuations with the fluctuation dilatation, was found to be important in the
energy transfer between the mean internal energy and the turbulence kinetic energy.
The pressure–work term for the fluctuations and mean velocities revealed that the
fluctuation contribution was two orders of magnitude smaller than other budgets
considered while the mean contribution dominated all other budgets. The latter budget
term was found to be important in facilitating the transfer between the mean internal
and mean kinetic energies. The energy transfer sequence based on the extracted
budgets showed that FPGs added energy to the mean kinetic energy at the expense of
the turbulence kinetic and mean internal energy while the adverse gradient extracted
energy from the mean kinetic energy to facilitate the turbulence kinetic and mean
internal energies.

Subsequently, the entropy generation rates were computed for all the pressure
gradient cases, instantaneously and in the mean. The instantaneous entropy generation
rates dominated the mean rate by two orders of magnitude and the viscous effects
were found to be more important than the thermal effects, again by two orders of
magnitude. The FPGs inhibited the production of entropy along with the size of
the region, while the APGs did the exact opposite. Thus, the reduction in entropy
production achieved by exposing wakes to favourable pressure gradients could serve
as a way to help reduce the loss produced.

Finally, the effect of different domain heights in the cross-stream direction (x2) was
investigated for the extreme APG case using large eddy simulations. The spreading
of the wake was found to depend on the value of the wake half-width δ relative to
the domain height. It was observed that a deviation in the δ growth occurred when it
was 30 % of half of the domain height in x2 and the deviation was explained due to
the interaction with adjacent wakes. As a result, both the pressure gradient and the
lateral domain extent were found to influence the wake spreading. When wake–wake
interaction is negligible, the pressure gradient dictates the wake spreading while
the wake–wake interaction affects the wake spreading for narrower domains. This
interaction leads to accelerated mixing of the wakes, through slower wake spreading
and rapid decline in Ud. Consequently, a reduction in the entropy generation is
possible, leading to a scenario where an adverse pressure gradient reduces the loss
when wakes are close enough to interact with one another.
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Appendix A. Relating the forcing term to the pressure gradient
To understand the role the forcing term plays in mimicking the pressure gradient,

we first extract the pressure gradient in the free stream for all the pressure gradient
cases described in table 1. The streamwise variation of the pressure gradient is plotted
in figure 21, along with the streamwise variation of the forcing term. The figure shows
that the pressure gradient obtained is higher in magnitude than the forcing term for all
cases. The pressure gradients in figure 21 are a response to the existence of the forcing
term within the momentum equation, in (2.2). Given a pressure field p∗ that needs
to be modelled through a forcing term, a comparison of the streamwise momentum
equation with and without the forcing term can be made. By combining all the terms
of the streamwise momentum equation into the left-hand side of the equality, save for
the pressure gradient and forcing term, NS(ũ1), the momentum equations with and
without the forcing term are given by

NS(ũ1)=−
∂p
∂x1
+ F, (A 1)

NS(ũ1)=−
∂p∗

∂x1
. (A 2)

While (A 2) represents the momentum equation with the actual pressure gradient, (A 1)
represents the momentum equation with a forcing term as evaluated by the simulation,
to mimic (A 2). Comparing the two, the actual pressure gradient being modelled can
be given by

∂p∗

∂x1
=
∂p
∂x1
− F. (A 3)

Based on (A 3), it was observed that, with the different values of the forcing terms,
the actual gradient (∂p∗/∂x1) was approximately an order of magnitude smaller that
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the simulated pressure gradient (∂p/∂x1). This information can thus be used to fix the
limits of the forcing term needed to conduct the pressure gradient investigation. Since
the LPT pressure gradients downstream of the blade trailing edge were shown to be
within −0.008 and 0.008 (figure 1), our investigation would look at forcing terms
between −0.08 and 0.08. To further elaborate on the relation between the forcing
term and the pressure gradient, we can perform a time-averaged volume integral of
the streamwise momentum equation, within the region of the applied forcing term,
i.e. x1 ∈ [25, 70]. The integrated equation with the dominant terms is given by

ρũ2
1|f − ρũ2

1|i = p|i − p|f + Fo(x1 − 25), (A 4)

where the subscripts i, f correspond to initial and final positions in x1, while the
contribution from the molecular and Reynolds stresses were found to be negligible.
The implication of (A 4) is that the net change in momentum flux is balanced by
both the pressure difference and the forcing term. Thus, the difference between the
solid and dashed lines in figure 21 is the net change in momentum flux. Since the
mass flux is fixed, the pressure gradient is a part of the solution, i.e. it is not known
until after the simulation is performed. However, with our choice of forcing terms, the
resulting pressure gradient was within the limits of the LPT pressure gradients and is
thus satisfactory for the present study.
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