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On the elliptic points of the Hilbert modular
group of the totally real cyclotomic cubic
field Q(ζ9)+
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We determine explicitly the elliptic points with respect to the Hilbert modular group
associated with the totally real cyclotomic cubic field Q(ζ + ζ−1), where ζ stands for
a primitive 9th root of unity.

1. Introduction

Let ζ9, or simply ζ, stand for a primitive 9th root of unity over Q (which in practice
will be taken to be e2πi/9). Then, K := Q(ζ)+ = Q(ζ + ζ−1), the maximal real
subfield of the cyclotomic field Q(ζ), which will often be denoted simply by Q(α),
with α := ζ + ζ−1, is a totally real field of degree 3 over Q, and OK will stand for
its ring of integers.

Denoting by x �→ x′ and x �→ x′′ the two non-trivial Q-automorphisms of K, it is
well known that the (usual or narrow) Hilbert modular group Γ := SL(2,OK) acts
(discontinuously and not faithfully) on H3, where H stands for the Poincaré upper
half-plane, as follows:(

a b

c d

)
: (z1, z2, z3) �→

(
az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′ ,
a′′z3 + b′′

c′′z3 + d′′

)
,

where (
a b

c d

)
∈ SL(2,OK)

and zi are complex numbers with strictly positive imaginary part, for i = 1, 2, 3.
We recall that, by definition, a matrix (or the corresponding transformation on

H3) is elliptic if and only if it has a fixed point in H3 (necessarily unique), and such
a fixed point is called an elliptic point of Γ . Obviously, elliptic points of H3 in the
same orbit under the action of Γ will be identified and we determine in this paper
a complete set of representatives for the equivalence relation defined by the action
of Γ .

There is, of course, an extensive literature devoted to the general study of elliptic
points with respect to the Hilbert modular group (and not only in the narrow
sense) of a totally real number field (see, for instance, [3, 4, 6]) where a number
of complicated formulae appear in order to count the number of elliptic points.
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Incidentally, justifications of these formulae rely on very interesting results on the
arithmetic of quaternion algebras previously obtained by Eichler in [1]. But, as
far as the applications are concerned, concrete and down to earth results seem to
appear only in the case of real quadratic fields. Thus, we have been enthralled by
the challenge of determining explicitly the elliptic points in the case of the cubic
field K = Q(ζ)+.

The number of elliptic points in this situation was computed by Weisser in [8],
using the most elaborate results of Prestel (see [3]), which seem to throw no light
at all on how the elliptic points can be effectively obtained. But Prestel’s formulae
are strongly based on earlier results of Shimizu (see [4]), which to some extent, via
previous results of Eichler [1], seem to be more directly connected with the elliptic
points themselves. Thus, even though our primary concern in this paper is with the
explicit computation of elliptic points in the case K = Q(ζ)+, we have also been
challenged to see whether Weisser’s results on the number of elliptic points can
also be derived directly from Shimizu’s formulae. The following contains a detailed
description of what we have found out.

But, before we start, we state a few simple facts concerning the field Q(ζ)+. The
irreducible polynomial of α = ζ + ζ−1 over Q is X3 − 3X + 1, so [Q(α) : Q] = 3,
the conjugates of α are α, α′ = α2 − 2 and α′′ = 2 − α − α2, and if we choose
ζ = e2πi/9, as we do in the following, then α = 2 cos(2π/9) = 1.532088886 . . . ,
α′ = 0.347296355 . . . and α′′ = −1.879385241 . . . . It is also easy to see that the
ring OK of integers of Q(α) is Z[α], the different is 3(α2 − 1)OK , the discriminant
is 81 (so 3Z is the only prime ideal in Z that ramifies in OK), the rational prime
2 remains prime in OK and the strict class number of K is 1 (in particular, OK is
principal).

2. Traces of elliptic matrices

To begin with, we determine the traces of the elliptic matrices.

Proposition 2.1. The only possible traces of the elliptic matrices of the (narrow)
Hilbert modular group SL(2,OK) of the maximal real subfield K = Q(α) of the
cyclotomic field Q(ζ) are, up to signs and conjugates, 0, 1 and α.

Proof. The elliptic matrices have finite orders and, consequently, are conjugate in
SL(2, C) to matrices of the type (

ξ, 0
0, ξ̄

)
,

with ξ a root of unity other than ±1. As the trace s = ξ + ξ̄ lies in Q(ζ)+, we see
that ξ can only be a 4th, 6th or 9th root of unity other than ±1, from which the
result follows.

Remark 2.2. It is immediately seen from proposition 2.1 that the orders of elliptic
matrices are 2, 3, 9, corresponding (up to signs and conjugates) to s = 0, 1, α,
respectively (see [8, corollary 1.8]).

Remark 2.3. Without invoking diagonalization of matrices, and recalling that a
matrix M in SL(2,OK) is elliptic if and only if s2 − 4 � 0, i.e. s2 − 4 is totally

https://doi.org/10.1017/S0308210512000376 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210512000376


Elliptic points of the Hilbert modular group of cubic field Q(ζ9)+ 895

negative, where s stands for the trace of M , proposition 2.1 can alternatively be
obtained by expressing s in the basis 1, α, α2 of K over Q, s = x + yα + zα2, with
x, y, z in Z, since s ∈ OK , and solving the system of inequalities

|x + yα + zα2| < 2,

|x + yα′ + zα′2| < 2,

|x + yα′′ + zα′′2| < 2,

whose solutions are easily seen to be (0, 0, 0), ±(1, 0, 0), ±(0, 1, 0), ±(−2, 1, 1)
and ±(2, 0,−1).

3. Rings of integers and orders

For each trace value s appearing in proposition 2.1, we choose the particular elliptic
matrix (

0 −1
1 s

)
in SL(2,OK).

This matrix will often be denoted by Ms, or simply by M if the reference to s is
unnecessary.

This particular choice of matrix is harmless in the sense that any other matrix M ′

having the same trace and determinant as M satisfies the same irreducible equation
as M , so sending M to M ′ defines a K-isomorphism between K(M) and K(M ′)
and, consequently, M ′ = AMA−1, for some invertible A in the ring M(2, K) of
2 × 2 matrices with entries in K, by virtue of the Skolem–Noether theorem.

Then, K(M) is a totally imaginary quadratic extension of K contained in the ring
M(2, K), where we consider K ‘diagonally’ embedded in M(2, K). K(M) is a field
K-isomorphic with K(

√
s2 − 4), since M satisfies the equation X2 − sX + 1 = 0.

The aim of this section is twofold: first, to find the integral closure of OK = Z[α] in
K(M) or, equivalently, in K(

√
s2 − 4), and, second, to compare the results obtained

with the corresponding intersections of K(M) with the maximal order M(2,OK)
of M(2, K) consisting of the matrices with entries of OK . Obviously, the order of
K(M) obtained by intersecting with M(2,OK) is just

K(M) ∩ M(2,OK) = {x + yM | x, y ∈ K} ∩ M(2,OK)

=
{ (

x −y

y x + ys

) ∣∣∣∣ x, y ∈ K

}
∩ M(2,OK)

=
{ (

x −y

y x + ys

) ∣∣∣∣ x, y ∈ OK

}
= OK + OK · M.

So, we start by considering the cases s = 0 and α, up to signs and conjugates.
When s = 0, as M2

0 = −1 by sending M0 into
√

−1, we obtain a K-isomorphism
between K(M0) and K(

√
−1). As the discriminants of Q(

√
−1) and K are coprime,

we can apply [2, Kap. 1, Satz 2.11] and conclude that OK [
√

−1] is the ring of integers
of K(

√
−1). Consequently, the order K(M0) ∩ M(2,OK) of K(M0) is maximal.

When s = α, the equation for Mα over K is X2 − αX + 1 = 0. Recalling that
α = ζ +ζ−1, we realize it is precisely the equation for ζ over K, so Mα �→ ζ extends
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to a K-isomorphism from K(Mα) onto K(ζ) = Q(ζ), the cyclotomic field. But the
ring of integers of Q(ζ) is just Z[ζ] (see [2, Kap. 1, § 10]). This entails, as in the
preceding case, that K(Mα) ∩ M(2,OK) is the maximal order of K(Mα).

Observe that similar results hold if α is replaced by −α, ±α′ and ±α′′, since the
various fields K(Ms), for s ∈ {±α,±α′,±α′′}, are all K-isomorphic.

Applying the Skolem–Noether theorem to the above fields, which are all contained
in M(2, K), we can realize the K-isomorphisms by means of inner automorphisms
defined by suitable invertible matrices of M(2, K). As K-isomorphisms obviously
preserve OK-integrality, we conclude that the orders obtained by intersecting with
M(2,OK), which are clearly distinct, are, however, isomorphic under the inner
automorphisms just quoted.

We now concentrate on the case s = ±1. Here

M =
(

0 −1
1 ±1

)

and K(M) � K(
√

s2 − 4) = K(
√

−3). In order to compute the ring of integers of
K(

√
−3), and recalling that the prime 3 of Z totally ramifies in OK , actually in the

form 3OK = β3OK , with β = α + 1, we observe first that (3 +
√

−3)/2β is integral
over OK , since both its trace and norm (over K), namely 3/β and 3/β2, lie in OK .
This is a key fact, as the following proposition shows.

Proposition 3.1. The ring of integers of K(
√

−3) is

OK

[
3 +

√
−3

2β

]
= OK + OK · 3 +

√
−3

2β
.

Proof. It suffices to prove that if x + y · ((3 +
√

−3)/2β), with x, y in K, is integral
over OK , then both x and y already lie in OK .

Computing the trace and norm (over K) of such an element, we thus assume that

2x +
3
β

y ∈ OK (3.1)

and (
x +

3y

2β

)2

+
3y2

4β2 = x2 +
3
β

xy +
3
β2 y2 ∈ OK . (3.2)

Squaring (3.1) and then subtracting four times (3.2), i.e. considering the discrim-
inant of the quadratic polynomial X2 − (2x+ sy)X +(x2 + y2 + sxy), with s = ±1,
which kills our element, we get that

3
β2 y2 ∈ OK . (3.3)

If vp, for any prime (either ideal or element) of OK , stands for the normalized
valuation associated with p, we have from (3.3) that

0 � vp

(
3
β2 y2

)
= vp

(
3
β2

)
+ 2vp(y)
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for any p of OK , and, as

vp

(
3
β2

)
=

{
1 if p = β,

0 otherwise,

we infer that vp(y) � 0 for all p, i.e. that y ∈ OK . Returning to (3.1), as 2 is prime
in OK , we have that

vp(x) �
{

−1 if p = 2,

0 otherwise.

But if v2(x) = −1, then from (3.2) we get that

v2

(
x2 +

3
β

xy +
3
β2 y2

)
= v2(x2) = −2.

This is a contradiction, and thus completes the proof.

Remark 3.2. Since
√

−3 ∈ Q(ζ3) ⊂ Q(ζ9), we obviously have that Q(ζ9,
√

−3) =
Q(ζ9). Consequently, as previously seen, the ring of integers of K(

√
−3) is Z[ζ9],

but the translation in terms of
√

−3 does not seem straightforward to us and for
this reason we have supplied a direct proof.

Corollary 3.3. The ring of integers of K(M1) is just

OK

[
1
β

(
1 −1
1 2

) ]
.

Consequently, the order K(M1) ∩ M(2,OK) = OK [M1] is not maximal in K(M1).

Proof. M1 can be identified with (1+
√

−3)/2 (since they both satisfy the equation
X2 − X + 1 = 0) and, consequently, (3 +

√
−3)/2β corresponds to

1
β

(1 + M1) =
1
β

(
1 −1
1 2

)
.

Remark 3.4. If M1 were identified with (1 −
√

−3)/2, then (3 +
√

−3)/2β would
correspond to

1
β

(2 − M1) =
1
β

(
2 1

−1 1

)
.

But (
2 1

−1 1

)
=

(
3 0
0 3

)
−

(
1 −1
1 2

)
.

Remark 3.5. Needless to say, the case s = −1 follows exactly the same pattern as
the case s = +1. In particular, it is obvious that the orders K(M1)∩M(2,OK) and
K(M−1) ∩ M(2,OK) are isomorphic (under an inner automorphism of M(2, K)).

Corollary 3.6. None of the inner automorphisms induced by an invertible matrix
of M(2, K) make the orders K(Mα)∩ (2,OK) and K(M1)∩M(2,OK) isomorphic.
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Proof. Otherwise, such an automorphism would also make K(Mα) and K(M1)
K-isomorphic, in which case their OK-integral closures would be preserved, but
this would obviously contradict the preceding results.

Remark 3.7. The orders of corollary 3.6 are, however, OK-isomorphic as OK-
modules: obviously they are OK-free of rank 2.

Following Shimizu [4], we denote by Ω the set of sub-rings O of M(2, K) such
that

(1) K(O) is a totally imaginary maximal subfield of M(2, K),

(2) O = K(O) ∩ M(2,OK) and

(3) O ∩ Γ 	= {±1}, where Γ = SL(2,OK).

Then, the results of these two sections actually aim at the following.

Theorem 3.8. Ω is divided up into three classes under the equivalence relation
defined by the inner automorphisms induced by the invertible matrices of M(2, K).
And the orders K(Ms) ∩ M(2,OK), for s = 0, 1 and α, constitute a complete set
of representatives for these classes.

Proof. It remains to check only that the order K(M0)∩M(2,OK) is not isomorphic
with either K(M1)∩M(2,OK) or K(Mα)∩M(2,OK) (via inner automorphisms of
the matrix ring M(2, K)). But this follows easily from the fact that K(

√
−1) is not

K-isomorphic with K(ζ) = Q(ζ), for, otherwise, Q(ζ) would contain a primitive
4th root of unity and, consequently, a primitive 36th root of unity, which is clearly
impossible.

4. Number of elliptic points

In trying to count the number of elliptic points, we proceed to apply [4, (48)]
(see [5, p. 15], [6, (8)], [3, Satz 3]), for which we need, among other things, to
compute the index of the square units U2

K of OK in the group of totally positive
units U+

K of OK .
Following [7, ch. 8, lemma 8.1], the units of Q(ζ)+, when ζ is a primitive prime

power pmth root of unity, are generated by −1 and the elements ζ(1−a)/2(1 − ζa)/
(1 − ζ), with 1 < a < 1

2pm, (a, p) = 1.
In our case, pm = 32, so the only values of a are 2 and 4, and choosing, for

instance, ζ1/2 = ζ5, a simple calculation yields for these elements the values α′′ and
α′′ − 1, respectively. As O×

K is invariant under the Galois group of K|Q, we realize
that we have proved the following.

Lemma 4.1. The group O×
K of units of K is generated by the elements α, α − 1

and −1.

Proposition 4.2. The group U+
K of totally positive units of K coincides with the

group U2
K of square units of K and, consequently, (U+

K : U2
K) = 1. The units are

generated by the squares of α and α − 1.
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Proof. Taking ζ = e2πi/9 and performing elementary numerical calculations, we see
that none of the elements α, α − 1 and α(α − 1) is totally positive. Recalling the
Dirichlet theorem on the structure of the group of units O×

K , the assertion follows
immediately.

Our next step is to find the index (O× : O×
+) in O of the subgroup O×

+ , consisting
of the elements of O× having totally positive determinant, and where O stands for
the order K(M) ∩ M(2,OK) of K(M) and M are the matrices considered in the
preceding section, i.e. those of the form Ms, with s being 0, 1 and α. Now the
answer is quite easy.

Proposition 4.3. For the above values of M ′, the index (O× : O×
+) is always 1.

Proof. O consists of the matrices (
x −y

y x + sy

)

with both x and y in OK . Recalling that a matrix is invertible if and only if its
determinant is so, we see that, with our notation, invertibility means that x2 +
y2 + sxy ∈ O×

K . Viewing x2 + y2 + sxy now as a real quadratic form (recall that
OK ⊂ K ⊂ R) we see that its discriminant is (up to squares) 1 − s2/4, which turns
out to be always strictly positive for our values of s, and from this we immediately
get that these real quadratic forms are positive definite, which entails that O× =
O×

+ .

Our last efforts in this section deal with the special case when s = 1, which
turns out to be the only case (up to isomorphism) in which the order O is not
maximal in K(M), as the results of § 3 show. For this we have to compute the ratio
h(O)/h(K(M)), where h(O) and h(K(M)) denote the class number of O and of
K(M), respectively. From the formula appearing in [2, Kap. I, Satz 12.12], we may
write, with Õ standing for the ring of integers of K(M), that

h(O)
h(K(M))

=
1

(Õ× : O×)
· #(Õ/f)×

#(O/f)× ,

where f denotes the conductor of the extension Õ ⊃ O.
From proposition 3.1, we have that

O = OK

[
3 +

√
−3

2

]
= OK + OK · 3 +

√
−3

2
,

while

Õ = OK

[
3 +

√
−3

2β

]
= OK + OK · 3 +

√
−3

2β
.

This entails that the conductor f of Õ|O is precisely βÕ = (α + 1)Õ = OK · β +
OK · ((3 +

√
−3)/2). Bearing this in mind, we now turn our attention to the rings

Õ/f and O/f. For these we have the following.

Proposition 4.4. Following the preceding assumptions and notation, we have that
#(Õ/βÕ) = 6 and #(O/βÕ) = 2.
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Proof. Obviously,

O/βÕ � OK/βOK � F3 (the field of three elements),

so #(O/βÕ)× = #F×
3 = 2. Next,

Õ/βÕ � OK

[
3 +

√
−3

2β

]/
βÕ � (OK/βOK [T ])

/(
T 2 − 3

β
T +

3
β2

)
,

since T 2 − 3T/β + 3/β2 is the defining polynomial of (3 +
√

−3)/2β, and as both
3/β and 3/β2 lie in βOK , we can further write that

Õ/βÕ � (OK/βOK)[T ]/(T 2) � F3[T ]/(T 2).

As the units of this last ring are easily seen to be the elements of type a + bT
(mod T 2), with a, b ∈ F3 and a 	= 0, we see that #(F3[T ]/(T 2))× = 2 · 3 = 6, and
our assertion is proved.

We are now left only with the computation of the value (Õ× : O×), and here
we prefer to use the fact that Õ = Z[ζ], as shown in § 3. What we find now is the
following.

Proposition 4.5. (Õ× : O×) = 3.

Proof. Following [7, ch. 8, lemma 8.1] we see that Õ× = (Z[ζ])× is generated either
by the primitive 9th root of unity ζ together with the set of generators {α, α−1,−1}
of O×

K , or by ζ18 (a primitive 18th root of unity), α and α − 1.
As for O, we recall that

O = OK

[
3 +

√
−3

2

]
= OK

[
1 +

√
−3

2

]

and (1 +
√

−3)/2 is a primitive 6th root, say ζ6, of unity.
Moreover, it is easy to write ζ6 in terms of ζ as (1 +

√
−3)/2 = ζ6 = ζ · ζ1/2 =

ζ · (−ζ5) = −ζ6. Now, it is immediate that O× is generated by ζ6 together with α
and α − 1 (since −1 = ζ3

6 ). The result follows from this.

The facts already proved lead us to assert the following.

Theorem 4.6. For the orders O appearing above the number �(O) of Γ -inequivalent
orders of the form AOA−1, with A invertible in M(2, K) or what amounts to the
same thing, the number of Γ -inequivalent elliptic points associated with orders iso-
morphic with O under inner automorphisms of M(2, K) is just 4.

Proof. We apply [4, (48), § 6] (see [6, (8)] and [5, p. 15]), which reads

�(O) =
22

(U+
K : U2

K)(O× : O×
+)

· h(O)
h(K(M))

.

Now, it suffices to bear in mind propositions 4.2 and 4.3 in all cases, and for s = 1
use also propositions 4.4 and 4.5.

From this we immediately get the following.
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Theorem 4.7. The number of elliptic points in H3/Γ under the action of the
Hilbert modular group Γ = SL(2,OK), for K = Q(ζ)+, is 4 · 3 = 12.

5. Representatives for the elliptic points

We recall, from the end of § 3, that the set Ω introduced by Shimizu consists of
three orbits, i.e. three isomorphism classes of orders under the action of the inner
automorphisms of M(2, K), and, from § 4, that each such orbit consists of precisely
four non-Γ -equivalent subclasses, as asserted in theorem 4.6 (we recall that O and
O′ in Ω are Γ -equivalent if O′ = EOE−1 for some E in Γ ).

In general, it is very hard to make explicit a complete set of representative orders
for these subclasses because of the intricate calculations involved (see [1, 3, 4]).
However, in our concrete situation, a straightforward argument will allow us to
overcome the general difficulties and we end the paper by showing this.

Theorem 5.1. Let M = Ms, with s = 0, 1 and α, and let

Aλ =
(

λ 0
0 1

)
,

with λ = 1, α, α − 1 and α(α − 1). Then, the 12 (elliptic) matrices AλMsA
−1
λ

constitute a complete set of representatives for the Γ -equivalence of orders in Ω.

From this the following corollary is obtained directly.

Corollary 5.2. The 12 fixed points in H3 of the matrices in theorem 5.1 are a
full set of representatives for the Γ -equivalence of elliptic points with respect to the
Hilbert modular group Γ = SL(2,OK) acting on H3.

Proof of theorem 5.1. We have to show that (for any fixed s) if O = {x + yMs |
x, y ∈ OK}, the orders AλOA−1

λ (obviously contained in M(2,OK), since the A−1
λ

are integral matrices), for λ = 1, α, α−1 and α(α−1), are all distinct. To prove this,
it suffices to show that AλMsA

−1
λ does not lie in any order of type E(AµOA−1

µ )E−1,
for µ ∈ {1, α, α − 1, α(α − 1)}, µ 	= λ and E ∈ Γ .

Assume it does, i.e. there exist x, y in OK such that

AλMsA
−1
λ = EAµ(x + yMs)A−1

µ E−1 = x + yEAµMsA
−1
µ E−1 (5.1)

for some

E =
(

a b

c d

)
in Γ = SL(2,OK).

First observe that the characteristic polynomial (i.e. the defining polynomial of Ms

over K) of AλMsA
−1
λ , or just of Ms, is X2 − sX + 1, and that of x + yMs is

X2 − (2x + ys)X + (x2 + y2 − sxy) (see § 3). Their respective discriminants are
s2 − 4 and y2(s2 − 4), so the matrix equality (5.1) entails that y = ±1.

Next, direct computation shows that(
λ 0
0 1

) (
0 −1
1 s

) (
λ−1 0
0 1

)
=

(
0 −λ

λ−1 s

)
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which allows us to write (5.1) as(
0 −λ

λ−1 s

)
= x + y

(
a b

c d

) (
0 −µ

µ−1 s

) (
d −b

−c a

)

= x + y

(
acµ + bdµ−1 − bcs −a2µ − b2µ−1 + abs

c2µ + d2µ−1 − cds −acµ − bdµ−1 + ads

)
, (5.2)

where the last equality has been obtained by simple computation.
Paying attention to the lower left-hand entries in (5.2), with y = ±1, we have

that
λ−1 = y(c2µ + d2µ−1 − cds). (5.3)

At this point, observe that c2µ + d2µ−1 − cds may be thought of as the value on
the vector (c, d) of the real quadratic form of the matrix(

µ −s/2
−s/2 µ−1

)

with determinant 1 − s2/4 � 0 (totally positive), so we are dealing with either
a positive-definite or a negative-definite real quadratic form, since µ is positive or
negative. Bearing this in mind, (5.3) together with those equalities obtained from
it by applying the two non-trivial Galois automorphisms (of Gal(K|Q)) entail then
that the signs of λ and µ and those of their corresponding conjugates by the Galois
automorphisms always coincide if y = +1 or always differ if y = −1. But this is
inconsistent (recall that both λ and µ lie in {1, α, α − 1, α(α − 1)}) with the facts
that (see § 1)

α > 0, α′ > 0, α′′ < 0,

α − 1 > 0, α′ − 1 < 0, α′′ − 1 < 0

and (multiplying)

α(α − 1) > 0, α′(α′ − 1) < 0, α′′(α′′ − 1) > 0.

This completes the proof of the theorem.
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6 M.-F. Vignéras. Invariants numériques des groupes de Hilbert. Math. Annalen 224 (1976),
189–215.

7 L. C. Washington. Introduction to cyclotomic fields, 2nd edn (Springer, 1997).
8 D. Weisser. The arithmetic genus of the Hilbert modular variety and the elliptic fixed points

of the Hilbert modular group. Math. Annalen 257 (1981), 9–22.

(Issued 4 October 2013 )

https://doi.org/10.1017/S0308210512000376 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210512000376



