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We present a model for the relative velocity of inertial particles in turbulent flows
that provides new physical insight into this problem. Our general formulation shows
that the relative velocity has contributions from two terms, referred to as the
‘generalized acceleration’ and ‘generalized shear’, because they reduce to the well-
known acceleration and shear terms in the Saffman–Turner limit. The generalized
shear term represents particles’ memory of the flow velocity difference along their
trajectories and depends on the inertial particle pair dispersion backward in time. The
importance of this backward dispersion in determining the particle relative velocity is
emphasized. We find that our model with a two-phase separation behaviour, an early
ballistic phase and a later tracer-like phase, as found by recent simulations for the
forward (in time) dispersion of inertial particle pairs, gives good fits to the measured
relative speeds from simulations at low Reynolds numbers. In the monodisperse case
with identical particles, the generalized acceleration term vanishes and the relative
velocity is determined by the generalized shear term. At large Reynolds numbers,
our model gives a St1/2-dependence of the relative velocity on the Stokes number St

in the inertial range for both the ballistic behaviour and the Richardson separation
law. This leads to the same inertial-range scaling for the two-phase separation that
well fits the simulation results. Our calculations for the bidisperse case show that,
with the friction timescale of one particle fixed, the relative speed as a function
of the other particle’s friction time has a dip when the two timescales are similar.
This indicates that similar-size particles tend to have stronger velocity correlation
than different ones. We find that the primary contribution at the dip, i.e. for similar
particles, is from the generalized shear term, while the generalized acceleration term is
dominant for particles of very different sizes. Future numerical studies are motivated
to check the accuracy of the assumptions made in our model and to investigate the
backward-in-time dispersion of inertial particle pairs in turbulent flows.

Key words: particle/fluid flows, turbulent flows

1. Introduction
The dynamics of inertial particles suspended in turbulent flows is of both theoretical

and practical importance. Its applications range from industrial processes, e.g.

† Email address for correspondence: liubin.pan@asu.edu
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turbulent spray combustion, aerosols and raindrop formation in terrestrial clouds
and dust grain dynamics in astrophysical environments such as interstellar media,
protoplanetary disks and planetary atmospheres. Particle collisions in a turbulent
flow are of particular interest because they determine the growth of the particles
by coagulation. The estimate of the collision rate requires the understanding of
two interesting phenomena regarding inertial particles in turbulence, the preferential
concentration and the turbulence-induced relative velocity. The latter is the focus of
the present work.

Our primary motivation for this study is its application to theoretical modelling of
planetesimal formation in protoplanetory disks. Planetesimals are objects of kilometre
size that can further grow into fully fledged planets. The formation of these objects
is believed to start from the growth of dust grains of micrometre size by collisional
coagulation (e.g. Weidenschilling 1980). Particles involved in this process have an
extensive size range, from micrometre to kilometre, which corresponds to a range of
friction timescale that covers all the scales (from the dissipation range, the inertial
range to the outer scales) in the turbulence in protoplanetary disks. Therefore, a
detailed understanding of particle collision velocities for a whole range of particle
sizes induced by turbulent motions is crucial to investigating particle growth in these
disks. Dust grain collisions in protoplanetary disks do not always lead to coagulation.
The grains become less sticky as the size increases. If the relative speed is large, the
collision between two large particles may cause them to fragment or to simply bounce
off each other (e.g. Blum & Wurm 2008). To judge the outcome of collisions between
large particles thus requires an accurate prediction for the collision speed.

Besides turbulence, there are other effects that can induce relative velocities between
particles. For example, gravity gives rise to differential settling for particles of different
sizes, which can have important contribution to the relative speed between these
particles. In astrophysical environments, radiation pressure and the coupling with
magnetic fields (through electric charge on the grain surface) can also play an
important role. In the present study, we will neglect these effects and concentrate
on the turbulence-induced relative velocity. We aim at a physical understanding of
relative velocities induced by turbulent motions alone, which is clearly a crucial
step towards an accurate model for the particle collisions in the presence of both
turbulence and the other complexities. The model presented here could be extended
to take the other effects into account. Although our work is motivated by the problem
of dust grain collisions in astrophysical environments, it has applications in other
contexts such as droplet formation in cloud physics (e.g. Saffman & Turner 1956).

The relative velocity of two nearby particles induced by turbulent motions has
been extensively studied. Saffman & Turner (1956) considered particles with small
inertia in the limit that the friction time, τp , of both particles is much smaller than
the Kolmogorov timescale, τη. This limit is also expressed as St � 1, where the Stokes
number, St , is defined as the ratio of τp to τη. In this limit, the particle velocity at
a given point can be approximately obtained from the (first-order) Taylor expansion
of the particle momentum equation (see (2.1)). For two particles with a separation,
r , much smaller than the Kolmogorov scale, η, Saffman & Turner (1956) derived a
result for the average radial relative velocity, 〈|wr |〉. In the absence of gravity, there
are two terms that contribute to the relative speed, a shear term and an acceleration
term (see Ayala, Rosa & Wang 2008),

〈|wr |〉 =

√
2

π

(
1

15

ε̄

ν
r2 + (τp2 − τp1)

2a2

)1/2

, (1.1)
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where ε̄ and ν are the average dissipation rate and the kinematic viscosity of the
turbulent flow, respectively, τp1 and τp2 are the friction timescales of the two particles
and a is the root-mean-square (r.m.s.) acceleration, i.e. a2 = 〈(Du/Dt)2〉. The factor√

2/π is from the conversion of the radial relative velocity variance, 〈w2
r 〉, to 〈|wr |〉

assuming a Gaussian distribution for wr . Note that the shear term is from the
longitudinal structure function, Sll(r), of the flow, which is given by (1/15)(ε̄/ν)r2

for r ∼<η. In the Saffman–Turner (ST) limit, the particle velocity follows the local
flow velocity very closely, thus the velocity of the two particles at a distance r < η

is highly correlated because of the strong flow velocity correlation across a small
distance.

The opposite limit is that of heavy particles with friction timescales much larger than
the Lagrangian correlation timescale, TL. In this limit, the velocities of two particles
coming together are essentially uncorrelated. This is because particles with τp � TL

have long-time memory, and their current velocities have substantial contributions
from the flow velocities on their trajectories in the past. These flow velocities at early
times are likely to be uncorrelated because the particles were far away from each
other. The relative velocity in this limit is thus determined by the sum of the velocity
variances of the two particles:

〈|wr |〉 =

√
2

π

[(
v′(1)

)2
+

(
v′(2)

)2
]1/2

, (1.2)

where v′(1) and v′(2) denote the particle r.m.s. velocities. In the limit τp � TL, they are
given by (e.g. Abrahamson 1975)

(
v′(1)

)2 	 u′2 TL

τp1

,
(
v′(2)

)2 	 u′2 TL

τp2

, (1.3)

where u′ is the r.m.s. of the flow velocity fluctuations. In the derivation of (1.3), the
temporal correlation of the flow velocity on a particle’s trajectory is approximated
by the Lagrangian correlation for tracer particles. Discussions on the validity of this
assumption will be given in § 2.2.

The problem of the relative velocity of inertial particles in these two extreme
limits is physically clear, and the results given above are easy to understand and are
expected to be generally robust. On the other hand, for particles with intermediate
inertia, τη ∼<τp ∼<TL, the problem is more complicated and is less well understood.
The velocities of two nearby particles with intermediate τp are partially correlated
and the degree of correlation, intermediate between the two limits, is not easy
to evaluate. We will point out that a very important factor in determining this
correlation is the distance between the trajectories of the two particles as a function
of time before they come close to each other. To our knowledge, this point has not
been clearly recognized or explicitly emphasized in the literature. We will show how
the separation of two nearby inertial particles backward in time affects the relative
velocity between particles with intermediate inertia, τη ∼<τp ∼< TL.

A successful theory for particles of all sizes needs to correctly predict and explain
the behaviour of the relative velocity between particles with intermediate friction
time, as well as recover the results in the two extreme limits. An example of particular
theoretical interest is that of identical particles, referred to as the monodisperse case.
In the ST limit (τp � τη), the acceleration term in (1.1) vanishes for the monodisperse
case and the relative velocity does not depend on the friction time. It is constant at a
given distance, r , and increases linearly with r . In the opposite limit with τp � TL, the
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relative velocity decreases with the friction time as τ−1/2
p or St−1/2, according to (1.2)

and (1.3). The question of how 〈|wr |〉 scales with τp for τp in a range corresponding
to the inertial range of the turbulent flow, and how it connects with the two extreme
limits has not been systematically studied or fully understood. This is one of the
primary goals of the present paper. We find that the dispersion of particles backward
in time is crucial to answer this question.

The existing models have very different predictions for the relative speed in the
inertial range for the monodisperse case (Volk et al. 1980; Williams & Crane 1983;
Yuu 1984; Kruis & Kusters 1997; Zaichik, Simonin & Alipchenkov 2003, 2006;
Ayala et al. 2008). A detailed discussion of the qualitative differences between these
models and their problems will be given in § 4. An important reason for the problems
in most of the previous models is that they did not clearly recognize or carefully
consider the effect of the particle pair separation backward in time (except for the
differential model by Zaichik et al. 2003, 2006 to be discussed below, which we think
has the particle backward separation implicitly included). The role of this backward
separation will be revealed along the formulation of our model.

In the previous studies that cover a whole range of Stokes numbers, the differential
model by Zaichik and collaborators (Zaichik & Alipchenkov 2003; Zaichik et al.
2003, 2006) is perhaps the most complete one, as it examines the effect of preferential
clustering and the relative speed simultaneously. We will refer to this model as the
model by Zaichik et al. Assuming Gaussian statistics for the flow velocity, the model
first sets up an equation for the joint probability distribution function (p.d.f.) of
the particle separation and the relative velocity. Deriving the first three moment
equations of the p.d.f. equation and closing these moment equations by a quasi-
normal approximation, Zaichik et al. were able to obtain a set of partial differential
equations for the particle density correlation function (usually referred to as the radial
distribution function) and the particle velocity structure functions. The solution of the
differential equations reproduces the two extreme limits discussed above and predicts
that the relative velocity of identical particles with intermediate inertia is proportional
to τ 1/2

p or, equivalently, St1/2. The validity of this prediction remains to be confirmed
by high-resolution simulations. Despite the elegant mathematical formulation and
good agreement with results of direct numerical simulations of turbulence with low
Reynolds numbers, the model lacks physical transparency in its approximations,
especially the quasi-normal assumption. One of the goals of our model is to elucidate
the physics behind the inertial range scaling of the relative velocity.

Falkovich, Fouxon & Stepanov (2002) found that an effect, named the sling effect,
has a significant contribution to the relative speed (see also Wilkinson & Mehlig
2005; Wilkinson, Mehlig & Bezuglyy 2006; Falkovich & Pumir 2007). The physical
picture of the effect is that, at regions with large negative velocity gradients, faster
moving particles can catch up the slower ones from behind (Falkovich et al. 2002),
leading to trajectory crossing of the particles (Bec et al. 2005, also see figure 1 in
Falkovich & Pumir 2007 for an illustration). This results in a larger relative speed
than the ST prediction for small particles. Falkovich & Pumir (2007) showed that the
effect starts to be important for St ∼> 0.2 and gives a relative speed several time larger
than (1.1) for St between 0.2 and 1. We will point out a common element shared
by the sling effect and our model: the contribution to the relative speed from the
particles’ memory of the flow velocity difference in the past.

The paper is organized as follows. We present the formulation of our model in § 2
(a general formulation in § 2.1, and basic assumptions and approximations in §§ 2.2
and 2.3). The results for identical particles (monodisperse) and different particles

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

28
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010002855


Particle relative velocity 77

(bidisperse) are given in §§ 3.1 and 3.2, respectively. In § 4, we discuss previous models
and compare them with our model. Conclusions are given in § 5.

2. The model
2.1. The general formulation

The velocity, v(t), of a particle with friction time, τp , can be obtained by integrating
the momentum equation

dv

dt
=

u(X(t), t) − v

τp

, (2.1)

where u(x, t) denotes the flow velocity field and X(t) is the position of the particle
at time t . Clearly, u (X(t), t) is the flow velocity at the positions of the particle along
its trajectory (we will refer to it also as the flow velocity ‘seen’ by the particle). The
particle trajectory is given by,

X(t) = X0 +

∫ t

t0

v(t ′) dt ′, (2.2)

where X0 is the particle position at a given time t0.
Equation (2.1) has a formal solution:

v(t) = v0 exp

(
− t − t0

τp

)
+

1

τp

∫ t

t0

u (X(τ ), τ ) exp

(
− t − τ

τp

)
dτ, (2.3)

where v0 is the particle velocity at t0.
We are interested in deriving the relative velocity between two particles at a distance

r at a given time t . The two particles are here denoted superscripts ‘(1)’ and ‘(2)’. For
example, their velocities at t are denoted as v(1)(t) and v(2)(t), respectively. To evaluate
the average relative speed, we will calculate the velocity structure tensor, Spij , of the
two particles,

Spij (r, t) =
〈(

v
(1)
i − v

(2)
i

)(
v

(1)
j − v

(2)
j

)〉
, (2.4)

where 〈 〉 denotes the ensemble average. The particle velocities can be solved by
integrating equation (2.3) and the trajectories of the two particles are subject to a
constraint,

X (1)(t) − X (2)(t) = r, (2.5)

which means that two particles happen to be separated by r at t . We will particularly
consider small values of r (below η) because we are interested in the collision
speed, which is essentially the relative velocity of the two particles over a distance
of the particle size. From the structure tensor Spij , we will obtain the longitudinal
structure function Spll , which, by definition, is the radial relative velocity variance,
〈w2

r 〉. Although only small r will be considered in the paper, our model can predict the
structure function at all separations. By a comparison with their results, our model
may provide an explanation for the inertial particle structure functions found in Bec
et al. (2010a).

The particle structure tensor can be written as

Spij =
〈
v

(1)
i v

(1)
j

〉
−

〈
v

(1)
i v

(2)
j

〉
−

〈
v

(2)
i v

(1)
j

〉
+

〈
v

(2)
i v

(2)
j

〉
. (2.6)

Note that the cross-terms correspond to the particle–velocity correlations discussed
in § 1, where it was argued that a careful treatment of such correlations is essential
for modelling the relative velocity of particles with intermediate inertia.
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To calculate the structure tensor, we insert (2.3) for the particle velocities into (2.6).
For simplicity in notations, we will set the time when the particle relative speed is
measured (i.e. t in (2.4)) to be zero, and assume it is far from the initial time (since we
are interested in the relative velocity for a statistically stationary state). This allows
us to set t0 in (2.3) to −∞.

We analyse the four terms in (2.6) one by one. The first term on the right-hand side
corresponds to the velocity variance of particle (1). For this term, only the velocity of
particle (1) is involved and we have,

〈
v

(1)
i v

(1)
j

〉
=

∫ 0

−∞

dτ

τp1

∫ 0

−∞

dτ ′

τp1

〈
u

(1)
i (τ )u(1)

j (τ ′)
〉
exp

(
τ

τp1

)
exp

(
τ ′

τp1

)
, (2.7)

where u
(1)
i (t) = ui(X (1)(t), t) denotes the flow velocity on the trajectory of particle (1).

The exponential factors here represent the memory loss of the particles. The integral
limits in (2.7) (see also (2.9)) suggest that it is the flow velocity the particles saw in
the past that is relevant in determining the particles’ velocities at the current time.
The relative position of the two particles back in time will be shown to play an
important role in the prediction of their relative velocity. We will call 〈u(1)

i (τ )u(1)
j (τ ′)〉

in the integral the trajectory correlation tensor and denote it as B
(1)
Tij , i.e.

B
(1)
Tij (τ, τ

′) =
〈
u

(1)
i (τ )u(1)

j (τ ′)
〉
, (2.8)

where the subscript ‘T’ stands for ‘trajectory’.
The result for the fourth term on the right-hand side of (2.6) is similar. One only

needs to replace τp1 in (2.7) by τp2, and B
(1)
Tij by B

(2)
Tij ≡ 〈u(2)

i (τ )u(2)
j (τ ′)〉. If the two

particles are identical and have the same friction time, 〈v(1)
i v

(1)
j 〉 is equal to 〈v(2)

i v
(2)
j 〉.

These two terms correspond to the velocity variance of each particle and will be
called the velocity variance terms.

The exact form of BTij as a function of the friction time is not available. In the
limit of vanishing τp (i.e. passive tracers), this correlation tensor would approach the
Lagrangian correlation tensor, BLij , of the flow, which has been extensively studied
(e.g. Yeung & Pope 1989). A common approximation is to set BTij equal to BLij for
particles with any τp (e.g. Zaichik & Alipchenkov 2003; Zaichik et al. 2003, 2006;
Ayala et al. 2008). Physically, it corresponds to the assumption that the trajectory
of any inertial particle is not far away from that of a tracer particle starting from
the same initial condition. We will adopt this assumption in our calculations and its
validity will be discussed in § 2.2.

The cross-correlation terms in (2.6) can be evaluated with the same approach. The
second term on the right-hand side is given by

〈
v

(1)
i v

(2)
j

〉
=

∫ 0

−∞

dτ

τp1

∫ 0

−∞

dτ ′

τp2

〈
u

(1)
i (τ )u(2)

j (τ ′)
〉
exp

(
τ

τp1

)
exp

(
τ ′

τp2

)
. (2.9)

The result for the term 〈v(2)
i v

(1)
j 〉 in (2.6) is similar to (2.9), but with 〈u(2)

i (τ )u(1)
j (τ ′)〉 in

the integrand. The sum of the two tensors in the integrand can be written as,〈
u

(1)
i (τ )u(2)

j (τ ′)
〉

+
〈
u

(2)
i (τ )u(1)

j (τ ′)
〉

= B
(1)
Tij (τ, τ

′) + B
(2)
Tij (τ, τ

′) − STij (r; τ, τ ′) (2.10)

where the tensor STij is defined as

STij (r; τ, τ ′) =
〈[

u
(1)
i (τ ) − u

(2)
i (τ )

] [
u

(1)
j (τ ′) − u

(2)
j (τ ′)

]〉
. (2.11)
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Clearly, STij is the correlation of the flow velocity difference at the positions of
the particles on their trajectories at times τ and τ ′. We have explicitly indicated
the dependence of the tensor on the particle separation at time zero. The ensemble
average on the right-hand side includes an average over the probability distribution
of the flow velocity difference at time zero. By analogy with BTij , we will call STij the
trajectory structure tensor.

Since STij has not been directly studied, we will give an approximate estimate for
it in § 2.3. For example, we will relate the flow velocity difference, u(1)(t) – u(2)(t),
along the trajectories by the two particles, to the separation of the two particles at t ,
assuming the velocity difference scaling in the Eulerian frame applies to the velocity
difference on the particles’ trajectories. The uncertainty in this assumption will be
discussed in § 2.3. We will denote the particle separation at a given time t as ρ(t),
which, in our notation, is given by X (1)(t) – X (2)(t). Note that ρ is a stochastic vector
because of the particle dispersion by turbulent motions.

Combining (2.6)–(2.10), we finally arrive at the formula for the velocity structure
tensor of two particles separated by r:

Spij (r) = Aij + Dij , (2.12)

where

Aij =

∫ 0

−∞

dτ

τp1

∫ 0

−∞

dτ ′

τp1

B
(1)
Tij (τ, τ

′) exp

(
τ

τp1

)
exp

(
τ ′

τp1

)

−
∫ 0

−∞

dτ

τp1

∫ 0

−∞

dτ ′

τp2

(
B

(1)
Tij (τ, τ

′) + B
(2)
Tij (τ, τ

′)
)
exp

(
τ

τp1

)
exp

(
τ ′

τp2

)

+

∫ 0

−∞

dτ

τp2

∫ 0

−∞

dτ ′

τp2

B
(2)
Tij (τ, τ

′) exp

(
τ

τp2

)
exp

(
τ ′

τp2

)
(2.13)

and

Dij =

∫ 0

−∞

dτ

τp1

∫ 0

−∞

dτ ′

τp2

STij (r; τ, τ ′) exp

(
τ

τp1

)
exp

(
τ ′

τp2

)
. (2.14)

In the trajectory structure tensor in Dij , the dependence on r is from the requirement
that particle separation ρ is equal to r at time zero, i.e.

ρ(0) = r. (2.15)

The result, (2.12), is written in such a way that the first term Aij only depends
on the one-particle trajectory correlation tensor and the second term Dij only on
the two-particle trajectory structure tensor. There are also physical reasons to split
Spij into these two terms. First, the Aij term vanishes for identical particles with
τp1 = τp2, and only Dij contributes to the relative speed in the monodisperse case. On
the other hand, for particles of very different sizes, Aij dominates the contribution
to the relative speed (see § 3.2). Second, in the ST limit, Aij and Dij reduce to the
acceleration term and the shear term in (1.1), respectively. Therefore, our formulation
can be regarded as one that extends (1.1) from the low-inertia limit to the whole
range of particle sizes. We will refer to Aij and Dij as the generalized acceleration
term and the generalized shear term, respectively.

It is straightforward to see that Dij reduces to the shear contribution in the ST
limit. As τp → 0, we have 1/τp exp(τ/τp) → δ(τ ), and thus Dij approaches the flow
structure tensor Sij (r). As pointed out in § 1, it is exactly this flow structure tensor
that is responsible for the shear contribution in (1.1).
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In the ST limit, Aij can be evaluated as follows. For τp → 0, particle trajectories
are close to those of tracers, so BTij 	 BLij . For small time lag �τ = τ − τ ′ (only
small time lag is of interest here because of the exponential cutoffs in the integrand),
BLij (�τ ) 	 (u′2 − (a2�τ 2)/2)δij where u′ and a are, respectively, the r.m.s. flow velocity

and the r.m.s. acceleration. Using this approximation for both B
(1)
Tij and B

(2)
Tij in (2.13),

we find Aij = a2(τp1 – τp2)
2δij , which is exactly the same as the acceleration term

in (1.1).
In §§ 2.2 and 2.3.3 we will show that, with our modelling of Aij and Dij , (2.12),

(2.13) and (2.14) recover the large-particle limit as well.
Our formulation reflects the trajectory-crossing effect mentioned in § 1. When setting

r to zero (or more exactly the particle size), the formulation is for two particles whose
trajectories cross at time zero. Different from the model for the sling effect (Falkovich
et al. 2002), our model does not specify the physical mechanism how and when the
trajectories of two particles cross. Instead the process leading to trajectory crossing
is considered indirectly from the backward separation behaviour of the two particles.
From the following perspective, one may see a common feature shared by the sling
effect and our model. The sling effect could be interpreted as a mechanism that
contributes to the particle separation backward in time, and it gives a larger relative
speed by increasing the contribution from the particles’ memory of the flow velocity
difference in the past. The latter is the point of our model. Therefore, we think that
the sling effect can be accounted for in our model if the backward separation to be
used in the model includes its contribution.

2.2. Modelling Aij

The formulation has been general so far. To proceed, we make assumptions for the
trajectory correlation and structure tensors in (2.13) and (2.14). In this subsection, we
evaluate the generalized acceleration term Aij .

We use the usual assumption for BTij that the flow velocity viewed by a particle
on its trajectory is the same as that by a tracer particle (e.g. Zaichik & Alipchenkov
2003; Zaichik et al. 2003, 2006; Ayala et al. 2008), i.e. BTij = BLij . In a statistically
stationary and isotropic flow, the Lagrangian correlation tensor only depends on the
time lag, and can be written as BLij (�τ ) = u′2δijΦ(�τ ), where Φ is the normalized
temporal correlation function. We adopt the bi-exponential form for Φ (see Sawford
1991; Zaichik et al. 2003, 2006),

Φ(�τ ; τT , TL) =
1

2
√

1 − 2z2

[
(1 +

√
1 − 2z2) exp

(
− 2|�τ |

(1 +
√

1 − 2z2)TL

)

− (1 −
√

1 − 2z2) exp

(
− 2|�τ |

(1 −
√

1 − 2z2)TL

)]
, (2.16)

where TL (=
∫

Φ(�τ ) d�τ ) is the Lagrangian correlation timescale, and z = τT /TL is
the ratio of the Taylor micro timescale, τT , to TL. In addition to the time lag �τ ,
we have written Φ also as a function of τT and TL in (2.16) for later convenience
(see 2.23).

We obtain TL using direct numerical simulation results for the ratio of TL to the
large-eddy turnover time, TE . TE is defined as the longitudinal integral scale, L1,
divided by the r.m.s. velocity, u′. The length scale L1 can be calculated from the
relation, ε̄ = Du′3/L1, using simulation results for the dimensionless coefficient D.
Defining a length scale L as L = u′3/ε̄, we have L1 = DL. The large-eddy timescale is
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then given by TE = Du′2/ε̄ or TE = DTe with Te defined as Te = u′2/ε̄ = L/u′. Yeung,
Pope & Sawford (2006b) found that the ratio of TL to TE is 	 0.75, and is essentially
independent of the Taylor–Reynolds number, Reλ (although this ratio may depend
on the forcing and thus could be flow-dependent). Therefore we have TL = 0.75Du′2/ε̄
or TL =0.75DTe.

Numerical simulations have shown that the coefficient, D, is Reynolds number
dependent for Reλ ∼< 100, but approaches a constant ∼0.4 for Reλ larger than several
hundred (e.g. Yeung et al. 2006a; Ishihara, Gotoh & Kaneda 2009). Therefore in the
limit of large Reλ, we expect TL = 0.3u′2/ε̄. To also account for the Reλ dependence
of D at small Reλ, we use D = 0.4(1 + 30/Reλ), which is obtained from fitting the
numerical results in Yeung et al. (2006a). We then have

TL = 0.3(1 + 30/Reλ)u
′2/ε̄, (2.17)

which is very close to that adopted by Zaichik et al. (2003, 2006) and the empirical
formula given in Sawford, Yeung & Hackl (2008). The definition of Reλ gives
u′2 = Reλ/

√
15u2

η, which will be used for normalization in our calculations.

The Taylor micro timescale is defined as τT = (2u′2/a2)1/2. The asymptotic behaviour
of the normalized acceleration variance, a0 = a2/(ε̄3/2ν−1/2), at large Reλ has not been
resolved by current simulations. Although a0 is predicted to be constant at large Reλ
limit by the Kolmogorov 41 (K41) theory (see, e.g. Voth, Satyanarayan & Bodenschatz
1998; Zaichik et al. 2003), the intermittency corrections to the K41 theory may give
it a power-law-dependence on Reλ (e.g. Borgas 1993). For example, assuming that
the temporal statistics of the dissipation rate along Lagrangian trajectories are the
same as its spatial statistics in the Eulerian frame (which follows from the ergodic
hypothesis and incompressibility; see Borgas 1993), and using the intermittency theory
by She & Leveque (1994) for the dissipation rate statistics, we find that a0 ∝ Re0.133

λ

(a similar result was obtained by Borgas (1993) using the log-normal intermittency
model). This result is in impressive agreement with one of two formulas that well fit
the results from simulations with resolution up to 20483 in Yeung et al. (2006a):

a0 = 1.9Re0.135
λ

(
1 + 85/Re1.135

λ

)
, (2.18)

which goes like Re0.135
λ at large Reλ. Therefore, one may expect that a0 = 1.9Re0.135

λ

for asymptotically large Reλ. However, the confirmation of this asymptotic behaviour
needs future simulations with higher resolutions (Yeung et al. 2006a) or more accurate
experimental measurements (Voth et al. 1998). We will use (2.18) in our calculations.

Equation (2.16) approaches exp(−|�τ |/TL) for z � 1 and |�τ | � τT . The
biexponential form is expected to be better than the single exponential form,
exp(−|�τ |/TL), because the Lagrangian correlation is believed to be smooth at
small time lag, |�τ | → 0. It can be easily shown that Φ ∼ 1 − �τ 2/τ 2

T for |�τ | � τT ,
and thus satisfies the smoothness requirement.

We insert (2.16) into (2.13) to calculate Aij . A lengthy but straightforward
integration gives,

Aij = u′2δij

(Ω2 − Ω1)
2

(
Ω1Ω2 + (Ω1 + Ω2)

z2

2

)

(Ω1 + Ω2)

(
Ω1 + Ω2

1 +
z2

2

)(
Ω2 + Ω2

2 +
z2

2

) , (2.19)

where Ω1 and Ω2 are defined as Ω1 = τp1/TL and Ω2 = τp2/TL. Equation (2.19)
correctly reproduces the acceleration term in the ST limit. When Ω1, Ω2 � z2/2, i.e.
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τp1
, τp2 � τ 2

T /(2TL) (which is ∼τη from the K41 phenomenology), we have Aij →
u′2δij (Ω2 − Ω1)

2/(z2/2) = (τp2 − τp1)
2a2δij where the definitions of Ω , z and τT have

been used in the last step. As expected, for identical particles, the Aij term is
zero.

Results closely related or directly comparable to (2.19) have been derived from
several other models. Williams & Crane (1983) considered the relative velocities in
two limits with Ω � 1 and Ω � 1, and then gave a ‘universal’ solution by interpolating
those two limits. For the small particle limit, they argued that the particle separation
(back in time) can be neglected in the calculation of the particle velocity correlation
as long as one of the two particles is very small. With this assumption, they find that
the relative velocity variance, 〈w2

r 〉, is given by (see (19) in Williams & Crane 1983),

〈w2
r 〉 = u′2 (Ω2 − Ω1)

2

(Ω1 + Ω2)(1 + Ω1)(1 + Ω2)
. (2.20)

This result corresponds to our result for Aij because neglecting the backward
separation is essentially the same as neglecting the Dij term. The latter can be justified
if one of the two particles, say particle (1), has a very small friction time, i.e. τp1 → 0.

In that case, (2.14) is approximately given by
∫ 0

−∞ STij (r; 0, τ ′) exp(τ ′/τp2) dτ ′/τp2. For
r → 0 as considered by Williams & Crane (1983), we have STij (r, 0, τ ′) → 0 and thus
Dij → 0.

It is obvious that, if z is set to zero, (2.19) for Aij reduces to (2.20). This is expected
because, with z = 0, Φ takes the same single-exponential form used in the derivation
of (2.20) by Williams & Crane (1983). Without the z terms, (2.20) does not reproduce
the acceleration term in the ST limit. Kruis & Kusters (1997) generalized the model
by Williams & Crane (1983) and used a temporal velocity spectrum that accounts for
the acceleration field in the flow (corresponding to a correlation function similar to
our (2.16)) and obtained a formula that gives the acceleration term in (1.1) in the ST
limit.

In § 3.2, we find that for two particles of very different size the contribution to the
relative speed from Aij dominates over that from Dij , and thus (2.19) or (2.20) can
be used to estimate the relative velocities between very different particles (although
the justification above for neglecting Dij is only for the case with at least one tiny
particle). However, for similar particles, Dij is the dominant term, and thus the result
for Ω � 1 by Williams and Crane is not valid for similar-size particles. In the limit
of particles with Ω � 1, Williams & Crane (1983) considered particle separation. We
will give more comments on their model in §§ 2.2.3 and 4.

Yuu (1984) derived a formula for the relative velocity with a shear term and an
acceleration term. The derivation included an added mass term, b∂t u, in the particle
momentum equation (2.1). The coefficient b, given by 3ρf /(2ρp + ρf ), is small for
solid particles in a gaseous flow and the added mass effect (Kruis & Kuster 1997)
is not important. In that case the acceleration term given by Yuu (1984) is exactly
the same as (2.20). This means that the acceleration term by Yuu is generally in
agreement with our (2.19) for τp � τ 2

T /TL ∼ τη. His shear term thus corresponds to
our Dij term, which is the dominant term for similar particles. The problem in Yuu’s
shear term is that its derivation did not keep track of particle distance in the past,
and thus the resulting shear term does not account for particle’s memory of the flow
velocity difference. This would underestimate the relative velocity between similar
particles since the flow velocity difference was larger at earlier times when the particle
separation was larger.
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With the Lagrangian correlation function, (2.16), the first and third terms in (2.13),
representing the velocity variances of particle (1) and (2), (v′(1))2 and (v′(2))2, are
given by,

(
v′(1)

)2
= u′2 Ω1 + z2/2

Ω1 + Ω2
1 + z2/2

and
(
v′(2)

)2
= u′2 Ω2 + z2/2

Ω2 + Ω2
2 + z2/2

. (2.21)

For Ω1, Ω2 � 1, the particle r.m.s. velocity is close to the flow r.m.s. velocity u′. As
expected, in the limit Ω1, Ω2 � 1, the sum of the two terms reproduces (1.2) and (1.3)
for the relative velocity of large particles. This means that, in order to build a model
that gives correct prediction in the limit of very large τp , one needs to guarantee that
the sum of the other two terms in the model, i.e. the second term in (2.13) and Dij

(both from the cross-correlation of particle velocities), approaches zero as τp → ∞.
More specifically, the sum of those two terms has to approach zero faster than 1/τp

so that they do not dominate over (v′(1))2 and (v′(2))2 given by (2.21). We will show
that the model presented in the next subsection for the Dij term does satisfy this
constraint, and hence (1.2) and (1.3) are correctly reproduced in our model.

Finally, we point out that the assumption we adopted that the temporal correlation
of the flow velocity on an inertial particle’s trajectory can be approximated by the
Lagrangian correlation function may be invalid for large τp . The trajectory of a
large particle can be very different from that of a tracer particle. For example, if
τp ∼> TL or TE , the particle may not move significantly as the flow sweeps by. Thus
the correlation of the flow velocity along the trajectory of such a heavy particle
may be better approximated by the Eulerian temporal correlation. This means that
the flow–velocity correlation on a particle’s trajectory could make a transition from
Lagrangian-like to Eulerian-like as τp increases. In that case, replacing the Lagrangian
correlation timescale TL in (2.21) by the Eulerian correlation timescale, TEu, would
give a better estimate for the r.m.s. velocity of large particles. TL in (1.2) from
Abrahamson (1975) should also be replaced by TEu. If the Eulerian correlation
timescale is larger than TL (e.g. Yeung & Pope 1989; Kaneda & Gotoh 1991), our
model would underestimate the relative speed by a factor of (TEu/TL)1/2 in the limit
of τp � TL. A numerical study of the flow velocity correlation on particles’ trajectory
as a function of τp would be useful to improve our model.

2.3. Modelling Dij

In order to evaluate the generalized shear term, Dij , we need to model the trajectory
structure tensor, STij , which has not been directly measured. The tensor can be
formally written as

STij =

∫ ∫ 〈
δu

(p)
i (τ )δu(p)

j (τ ′)|ρ, ρ ′
〉

P (ρ, ρ ′; r, τ, τ ′) dρ dρ ′, (2.22)

where P is the joint probability distribution of the particle separations, ρ and ρ ′,
at τ and τ ′, respectively, and we have used δu

(p)
i (τ ) (≡ ui(X (1)(τ )) − ui (X (2)(τ ))) and

δu
(p)
j (τ ′) to denote the flow velocity difference ‘seen’ by the two particles. The ensemble

average term in the integrand is the velocity difference correlation conditioned on
the particle separations. A series of assumptions need to be made for the estimate
of STij since both the conditional correlation and the joint probability of the particle
separations are unknown.

The conditional correlation depends on both the separations, ρ and ρ ′, and the
two times, τ and τ ′. It may also have a direct dependence on r , in addition to
that through ρ and ρ ′. This possible dependence is neglected here. We assume that
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the amplitude of the velocity difference δu
(p)
i (τ ) on particles’ trajectories can be

approximated by the Eulerian velocity difference, δui(ρ, τ ), across the separation ρ.
This assumption is similar to the independence hypothesis by Corrsin (1959) (note
the similarity between (5) in Corrsin 1959 and our (2.22); see also Shlien & Corrsin
1974). Assuming that the displacement of a fluid particle (from its initial position)
is statistically independent from the particle’s current velocity, Corrsin (1959) gave
a relation between the Lagrangian correlation function and the Eulerian correlation.
The hypothesis by Corrsin essentially neglects a constraint between the particle
displacement and the velocity along the Lagrangian trajectory (i.e. the latter equals
the time derivative of the former). In the case of inertial particles, the constraint
neglected in our approximation is d2ρ/dt2 = (δu(p) − dρ/dt)/τp . The existence of this
constraint could give rise to a statistical correlation between δu(p) and ρ. For example,
a larger particle separation at a given time suggests a larger (on average) velocity
difference in the past, and perhaps a higher possibility of a large velocity difference
right at that time. Therefore, relative to the Eulerian velocity difference across a fixed
separation, the velocity difference along the particles’ trajectories may have a stronger
dependence on the particle separation. Setting δu

(p)
i to the Eulerian velocity difference,

δui(ρ), could thus underestimate the dependence of δu
(p)
i on ρ. The uncertainty and

reliability of our assumption here are subject to tests by future numerical experiments.
From the assumption above, we have 〈δu(p)

i (τ )δu(p)
j (τ ′)|ρ, ρ ′〉 	 〈δui(ρ, τ )δuj (ρ

′, τ ′)〉.
The correlation of the Eulerian velocity differences at two times is also unknown and
further approximations are needed. We first assume that it can be written as a product
of a separation-dependence term and a time-lag-dependence term. The separation-
dependence term is then assumed to take the form of the Eulerian structure function
of the flow, Sij . Note that, the conditional correlation actually depends on two
separations, ρ and ρ ′, but for simplicity we will approximate it by Sij (R), at a single
separation, R, characteristic of the particle distances between τ and τ ′. The choice
for the separation R as a function of ρ and ρ ′ will be discussed later. As a function
of the two stochastic vectors, R is also stochastic.

The time-lag-dependence accounts for the temporal correlation between the flow
velocity differences ‘seen’ by the two particles. This correlation depends on the
persistence of the ‘structure’ in question, which is a function of the ‘structure size’.
Here the size is essentially the distance between the two particles. Associated with
each structure, there is a correlation timescale, TR . To estimate TR , one needs to pick
up a size to characterize the structure that corresponds to particle distances at time
between τ and τ ′. We will take the size to be the same as the particle separation
R to characterize the separation-dependence. We point out that there is no physical
motivation for this particular choice, and that it could be better to choose the distance,
Rm, at the earlier one of the two times τ and τ ′, min(τ, τ ′), assuming the persistency
of a structure is determined by its initial size. The difference in the results from the
two choices will be discussed in § 3. The time-lag-dependence is assumed to take the
same function form as (2.16) for the Lagrangian temporal correlation in § 2.2. Namely,
we set the time-lag-dependence to be Φ(τ − τ ′; τT R(R), TR(R)), where the Lagrangian
timescale, TL, in (2.16) has been replaced by TR(R) and τT by τT R(R). The timescale
τT R(R) is an analogue of the Taylor micro timescale for a structure of size R (see
Zaichik et al. 2003, 2006).

The conditional correlation is now approximated by Sij (R)Φ(τ − τ ′; τT R(R), TR(R)).
In order to estimate the trajectory structure function, in principle one needs to integrate
the conditional correlation over the distribution P (ρ, ρ ′) (see (2.22)), or equivalently
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over the distribution, P (R), of R (in our approximation the conditional correlation
depends on the separations ρ and ρ only through R). We take a simple approach
here. We set the integral to be equal to the conditional correlation at a distance
corresponding to the r.m.s. of R. This means that the particle distance at a given
time is assumed to be single-valued, i.e. the distribution P (R) is a delta function at
the r.m.s. of R. A rough justification of this approximation will be given in § 2.3.3. The
direction of R probably has a random distribution due to the turbulent dispersion,
and we will average the structure tensor Sij (R), over the direction distribution of R.

For simplicity in notations, hereafter we will use R to denote the r.m.s. length of
R, i.e. R2 = 〈R2〉 (note that this is different from the conventional notation that R

denotes the length of a vector R, i.e. R2 = R2, without ensemble averaging). Similarly,
ρ(τ ) will denote the r.m.s. length of ρ(τ ). We refer to R and ρ as ‘r.m.s. distance’ or
simply ‘distance’, while using ‘separation’ for the corresponding stochastic vectors.

The approximations for the trajectory structure tensor are now complete:

STij (r; τ, τ ′) 	
〈
Sij (R)

〉
ang

Φ
(
τ − τ ′; τT R(R), TR(R)

)
, (2.23)

where the ensemble average for Sij (R) is over the direction distribution of R. The
angular average will be carried out in § 2.3.3.

Finally, we need to specify the r.m.s. distance R as a function of ρ(τ ) and ρ(τ ′). If
the flow velocity difference scales with the distance as a power law, which is probably
the case in well-developed, homogeneous and isotropic turbulence, a good choice
would be

R(τ, τ ′) =
(
ρ(τ )ρ(τ ′)

)1/2
. (2.24)

We note that, in their assumption for the Lagrangian structure tensor, Zaichik &
Alipchenkov (2003) apparently set R to be the particle separation at the earlier time
of τ and τ ′. We argue that (2.24) is probably a better assumption because STij is
expected to be zero if either ρ(τ ) or ρ(τ ′) is zero.

The assumption, (2.24), is expected to be valid when ρ and ρ ′ are in the same
length scale subrange since in that case the scaling of velocity difference across the
two separations follows the same power law (see § 2.3.1). On the other hand, if ρ

and ρ ′ are in different subranges, the structure function across R defined by (2.24)
may not correctly represent the product of the velocity difference amplitudes across
ρ and ρ ′. Fortunately, we find that this does not significantly affect our prediction of
the relative speed based on a consideration of the Φ term in the trajectory structure
tensor (the temporal correlation of the velocity differences). The Φ term gives an
exponential cutoff when the time lag is large, i.e. for very different τ and τ ′. Note that,
if ρ and ρ ′ are in different subranges, in general τ and τ ′ would also be very different
(although it is possible that the particle pair experiences a large separation change
during a short time interval, these extreme events should be rare, and not affect the
low-order statistics, i.e. the second-order particle structure function, we study here).
Therefore, the exponential cutoff from the Φ term would suppress the contribution
from very different ρ and ρ ′ to the integral for Dij . In other words, the temporal
decorrelation of the velocity difference over large time lags suggests that the main
contribution to Dij is probably from similar ρ and ρ ′, where (2.24) is valid.
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2.3.1. The flow structure tensor and the timescales

In homogeneous and isotropic turbulence, the Eulerian structure tensor at a
separation l can be written as (e.g. Monin & Yaglom 1975)

Sij (l) = Snn(l)δij +
(
Sll(l) − Snn(l)

) li lj

l2
, (2.25)

where Snn and Sll are, respectively, transverse and longitudinal structure functions.
For an incompressible velocity field, they are related by

Snn(l) = Sll(l) +
l

2

dSll(l)

dl
. (2.26)

The longitudinal structure function, Sll , in different ranges of length scales is given as
follows.

As mentioned in § 1, in the viscous subrange, Sll is given by

Sll(l) =
ε̄

15ν
l2 for l ∼<η. (2.27)

In the inertial subrange, we have,

Sll(l) = C(ε̄l)2/3 for η ∼< l ∼< L1, (2.28)

where the coefficient C for the velocity scaling in the inertial range is believed to be
universal and will be set to C = 2 (Monin & Yaglom 1975; Zaichik & Alipchenkov
2003).

For l larger than the integral scale, Sll is constant,

Sll(l) = 2u′2 for l ∼> L1. (2.29)

The characteristic scale at which Sll switches from the viscous-range scaling to
the inertial-range scaling can be obtained by equating (2.27) and (2.28). This gives a
transition scale of (15C)3/4η, which is about 13η for C = 2. It is consistent with the
simulation results given in Ishihara et al. (2009), where the switch occurs at about a
few tens of Kolmogorov scale, between η and the Taylor microscale λ. The scaling
changes from (2.28) to (2.29) at l 	 (2/C)3/2L where L = u′3/ε̄, as defined earlier. This
is also in general agreement with figure 7(b) in Ishihara et al. (2009), which shows
that Sll becomes constant at 	0.5–3L1 (L1 	 0.4L).

We will use the following formula from Zaichik et al. (2006) to connect the velocity
scalings in different subranges:

Sll(l) = 2u′2
[
1 − exp

(
− l

(15C)3/4η

)]4/3 (
l4

l4 + (2/C)6L4

)1/6

. (2.30)

The transverse structure function Snn then follows from (2.26).
The timescale TR as a function of the separation in (2.23) has different scalings in

the three subranges above as well. The theoretical model by Lundgren (1981) found
that in the viscous range

TR(l) =
√

5τη for l ∼<η, (2.31)

which was later confirmed by numerical simulations (Girimaji & Pope 1990).
In the inertial range, the similarity argument suggests that,

TR(l) = C2ε̄
−1/3l2/3 for η ∼< l ∼<L1. (2.32)
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Following Zaichik et al. (2006), we will take the coefficient C2 = 0.3 in our calculations.
Equations (2.31) and (2.32) connect at 	(

√
5/C2)

3/2η, which is 	20η for C2 = 0.3. This
is a little larger than the corresponding transition scale (13η) for Sll .

For l � L1, the flow velocities across l are independent, TR is thus expected to be
the correlation timescale of the velocity along the trajectory of each particle, which
is approximately given by the Lagrangian correlation timescale, TL (see Zaichik &
Alipchenkov 2003),

TR(l) = TL for l ∼>L1. (2.33)

This connects to the inertial-range scaling at about ε̄1/2(TL/C2)
3/2, which is 	L using

C2 = 0.3 and TL 	 0.3u′2/ε̄.
Similar to the case for Sll , a formula is used to connect TR in different subranges,

TR(l) = TL

[
1 − exp

(
−

(
C2√

5

)3/2
l

η

)]−2/3 (
l4

l4 + T 6
L (ε̄)2/C6

2

)1/6

, (2.34)

which is again adopted from Zaichik et al. (2006).
By analogy to the definition of the Taylor micro timescale, τT , we estimate τT R(l)

by τ 2
T R 	 2〈δu(l)2〉/〈δa(l)2〉, where δu(l) and δa(l) are the velocity and acceleration

difference across a distance l. This formula is simply a generalization of τT for
the one-particle Lagrangian correlation to that for two-particle Lagrangian structure
function. The correlation length scale of the acceleration field is expected to be short,
probably ∼η. In that case, for l in the inertial range 〈δa(l)2〉 	 2a2 with a the r.m.s.
acceleration and thus τT R ∝ δu(l) ∼ l1/3. From TR(l) ∼ l2/3, we have τT R(l) ∝ TR(l)1/2.
In our calculations, we will use τT R(l) = τT (TR(l)/TL)1/2. Note that this formula gives
τT R = τT for l ∼>L, as expected. It gives a constant τT R for l → 0. Zaichik et al.
(2003, 2006) assumed that τT R(l) = (τT /TL)TR(l) = zTR(l) without providing a physical
motivation. Our calculations find that the two different assumptions for τT R do not
give significant difference in the predicted relative speed.

2.3.2. Particle pair dispersion

We now consider the r.m.s. distance, ρ(τ ), of two particles as a function of time
τ , which is needed to evaluate R (see (2.24)). As mentioned earlier, the specific
question we ask here is how particles separate from each other backward in time,
given their separation, r , at time zero (we will also refer to r as the initial distance
for the backward dispersion from the viewpoint of the reversed time direction,
although with normal time direction it is the final distance of the two particles in
question).

The study of turbulent dispersion of inertial particles started only recently (Bec,
Cencini & Hillerbrand 2007; Fouxon & Horvai 2008; Bec et al. 2010b), Bec et al.
(2010b) gave a detailed report of simulation results for the separation behaviour
forward in time. They found that there are two temporal regimes with different
separation behaviours: a transient regime representing the relaxation of the particle
velocity towards the flow velocity, and a later regime where the particle pairs separate
in a similar way as tracer particles. The transient regime lasts for about a friction
timescale. For St ∼> 3, a ballistic separation is found in the transient regime and the
separation speed is equal to the initial velocity difference. The ballistic separation is
due to the particles’ memory for a period of ∼τp . In the later phase, the particle
separation is found to follow the Richardson–Obukhov (RO) separation law.

Although the study by Bec et al. (2010b) is for dispersion forward in time, their
results provide a very useful guideline for us, because we are are not aware of any
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investigations for the backward dispersion of inertial particles. A separation behaviour
similar to that found by Bec et al. (2010b) will be used in our calculations (§ 3.1.3).
We will show that a combination of an earlier ballistic phase and a later tracer-like
phase gives quite good fit to the numerical simulation results for the relative speed by
Wang, Wexler & Zhou (2000). For St ∼< 1, the particle separation appears to increase
slower than linearly with time in the transient phase according to figure 5 in Bec et al.
(2010b). However, no function fit to the separation behaviour in this regime is given
by Bec et al. (2010b). For simplicity, we will assume that the separation is ballistic
for the early phase of all particles. This assumption gives rise to uncertainty in our
prediction for the relative speed for particles with St ∼ 1.

In order to understand the results of our model with the two-phase separation, we
need to know the effect of each phase, and thus we first consider two simplified cases
assuming a complete ballistic behaviour (§ 3.1.1) and a complete tracer-like behaviour
(§ 3.1.2), respectively. The simplified cases give a very useful illustration for the effect
of particle separation on the predicted relative speed. For example, for both ballistic
and tracer-like separation behaviours, the relative speed as a function of the Stokes
number can be explained from an approximate analysis of the integral equation for
Dij . In particular, the analysis gives physical insights on the scaling of the relative
speed with the Stokes number in the inertial range for the monodisperse case. Once
the two simplified cases are understood, it is straightforward to interpret the prediction
of our model with the more realistic separation behaviour by a combination of two
phases (§ 3.1.3).

For ballistic motions, the particle distance goes linearly with time. Given the particle
distance, r , at time zero, the separation as a function of τ is

ρ2(τ ) = r2 + 〈w2〉τ 2, (2.35)

where 〈w2〉 = 〈(v(1) − v(2))2〉 = Spii (r) is the three-dimensional (3D) relative velocity
variance of the two particles at time zero. The separation speed at any time is taken
to be the same as that at time zero. Recall that in our notation ρ(τ ) is the r.m.s. of
ρ(τ ). The relative velocity variance, 〈w2〉, in (2.35) is unknown and is directly related
to the radial relative speed under pursuit. We will build an implicit equation for 〈w2〉
and 〈w2

r 〉 in § 3, which is then solved self-consistently.
The exponential cutoffs in the integrand of (2.14) imply that the primary

contribution to Dij is from −τp1 ∼<τ � 0 and −τp2 ∼<τ ′ � 0. This means that if
the ballistic behaviour lasts for about τp (Bec et al. 2010b), then using (2.35) at all
times when integrating (2.14) may give an acceptable order-of-magnitude estimate for
Dij , even though the separation is not ballistic at later time.

Williams & Crane (1983) (and also Kruis & Kusters 1997) take the particle
motions to be ballistic in their calculations for the limit with large particles (τp � TL).
Assuming the velocity correlation between two particles can be neglected for the
purpose of estimating the particle separation, they set the linear separation rate
to ((v′(1))2 + (v′(2))2)1/2. We note that this assumed separation rate may be a good
approximation only for very large particles. In the case of small to intermediate
particles, the velocities of nearby particles are correlated and the separation rate is
smaller than given by Williams & Crane (1983). Using their separation speed for
those particles would overestimate the relative speed because both Sij and Φ in (2.23)
increase with the particle distance, as can be seen from (2.30) and (2.34).

In the second simplified case, we will consider the separation behaviour similar to
that of tracer particle pairs (see Falkovich et al. 2001; Salazar & Collins 2009, for
detailed reviews on the pair dispersion of tracers). We are particularly interested in
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the effect of RO separation phase found in the forward dispersion of inertial particle
pairs. The RO separation law is written as

ρ2(τ ) ∝ gε̄|τ |3, (2.36)

where the dimensionless coefficient g is known as the Richardson constant. Bec et al.
(2010b) did not give best-fit values for g in the late-phase separation. Apparently g

needs to be adjusted to fit the simulation results (Bec et al. 2010b), and it probably has
a Stokes-number-dependence. Since the value of g for inertial particles is unknown,
we will first use g measured for tracer pairs as a reference. For tracers, theoretical
models and direct numerical simulations by Sawford, Yeung & Borgas (2005) show
that the dispersion backward in time is significantly faster than the forward dispersion.
Experimental measurements by Berg et al. (2006) found that g =0.55 for the forward
dispersion, and g = 1.15 for the dispersion backward in time. We will take g = 1.15 as
a reference value since it is the backward dispersion that is relevant in our problem.
In § 3.1.3, we show that a two-phase separation with g ∼ 1 in our model gives good
fit to the numerical results for the relative speed.

When the particle separation becomes larger than the integral scale, the flow
velocities ‘seen’ by the particle pair are uncorrelated and the separation is expected
to be diffusive. Thus we will switch from the RO law to the diffusive separation
when the particle distance exceeds L, i.e. we set ρ2(τ ) 	 2D|τ | for ρ � L where the
coefficient D is given by D = 6u′2TL. Note that D here is for the three-dimensional
diffusion, and it is twice larger than D for one-particle diffusion (from the Taylor
theorem) because the r.m.s. relative velocity of two faraway particles is 2u′2. We find
that the exact separation behaviour in the range ρ ∼>L in the diffusive regime is not
important for the integration of (2.14) because Sij and TR in (2.23) becomes constant
in this range of the particle distance.

The smallest initial separation considered by Bec et al. (2010b) is about 1η. For an
initial separation much below η, there probably exists an initial exponential separation
phase (similar to that of tracer pairs at small separations). The Lyapunov exponents
for particles with St ∼< 2 have been computed from simulation by Bec et al. (2006).
Although the exponential regime would also exist for larger particles as implied by
the chaoticity of the dynamics (see, e.g. Bec et al. 2007 for a theoretical model which
predicts that the Lyapunov exponent decreases as St−2/3 for large St), its relevance at
finite (but below η) scale separation is questionable at least in the large St limit. Here,
we will not consider the exponential phase, since it is unknown how long it lasts and
how it connects with the later phases. In most of our calculations we will give results
for r ∼ η. In the simulations by Wang et al. (2000) and Zhou, Wexler & Wang (2001)
that we will use to test our model, the relative speed is measured at a distance of η,
thus it is sufficient to use the result of Bec et al. as a guideline in the comparison
with those simulation results. It is straightforward to incorporate an exponential
phase into our model, and once the detailed separation behaviour of all particles at
distances well below η is known, our model can predict the relative speed at any
separation.

Based on our physical picture, a careful consideration of the particle pair dispersion
is necessary for an accurate estimate of the relative velocity. It is likely that the
physics of turbulent dispersion of particle pairs is implicitly incorporated into the
quite successful model by Zaichik and collaborators. In fact, their equation for
the joint p.d.f. of the particle separation and the relative velocity can be regarded as
one for the p.d.f. of the particle distance when integrated over the relative velocity
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(phase) space. For a comparison of our results with the model of Zaichik et al.,
it is useful to see how tracer pairs separate in their framework, i.e. the prediction
for particle separation from their formulation in the limit τp → 0. In this limit,
the joint p.d.f. equation can be reduced to an equation for the p.d.f. of the particle
distance. The p.d.f. equation turns out to be in the same form as that suggested
by Richardson (1926). With structure functions and timescales given in § 2.3 (same
as in Zaichik et al. 2006), the equation suggests that the Richardson constant,
g, is about 3, significantly larger than measured from experiments and numerical
simulations. It is not clear whether and how the quasi-normal assumption made
by Zaichik et al. to close the moment equations of the joint p.d.f. equation may
affect the particle dispersion, or what it physically corresponds to regarding the
separation.

2.3.3. Average over the direction of R

We calculate the average of Sij over the direction of R in (2.23). For R at
any given time, we define a separation difference �R = R − r , the change of
the separation from r at time zero. The direction of the separation difference is
expected to be completely random if the flow velocity is statistically isotropic.
This means that 〈�Ri�Rj 〉ang = (�R2/3)δij . We set l in (2.25) to be R = r + �R
and take the average over the direction of �R. A rigorous derivation of this
average needs to consider the dependence of Sij (R) on �R through the length
R = |r + �R| (e.g. in Sll and Snn) and that through the tensor RiRj simultaneously.
However, the derivation is very complicated and cannot be done analytically. For
simplicity, we neglect the dependence through R in the averaging process and only
consider the average of RiRj over the �R direction. With this approximation, we
find,

〈Sij (R)〉ang =

[(
2

3
+

r2

3R2

)
Snn(R) +

(
1

3
− r2

3R2

)
Sll(R)

]
δij + (Sll(R) − Snn(R))

rirj

R2
,

(2.37)

where we have used 〈�Rirj 〉ang = 0 and (�R)2 = R2 − r2.
The generalized shear term, Dij , then follows from (2.14), (2.23) and (2.37),

Dij (r) =

∫ 0

−∞

dτ

τp1

∫ 0

−∞

dτ ′

τp2

{[(
2

3
+

r2

3R2

)
Snn(R) +

(
1

3
− r2

3R2

)
Sll(R)

]
δij

+
(
Sll(R) − Snn(R)

)rirj

R2

}
× Φ

(
τ − τ ′; τT R(R), TR(R)

)
× exp

(
τ

τp1

)
exp

(
τ ′

τp2

)
. (2.38)

We will numerically integrate this equation in § 3 using the structure functions Sll and
Snn and the timescales τT R and TR given in § 2.3.1, and particle pair separation laws
for ρ and R given in § 2.3.2.

In (2.38), the structure functions, the timescale TR , and hence Φ (see (2.16)) increase
with R, which increases with |τ | and |τ ′|. Together with the exponential cutoffs, this
suggests that the integrand in (2.38) peaks at τ 	 −τp1 and τ ′ 	 −τp2. Therefore, the
main contribution to the integral is from τ ∼ −τp1 and τ ′ ∼ −τp2 (if τp1 and τp2 are
not very different) and an important factor to determine the value of the integral
is the distance, R, at τ ∼ −τp1 and τ ′ ∼ −τp2, which we will refer to as the primary
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distance. If τp1 and τp2 are both very small so that the primary distance is close to
r , Dij would approach Sij (r) as expected for the ST limit. If the primary distance is
much larger than the particle distance at time zero, r , the r2/R2 terms in (2.38) can
be neglected and Dij ∝ δij (meaning that Dll = Dnn = Dii/3).

If τp1 and τp2 are in the large limit and the primary distance is much larger than the
length scale L, then typically the structure tensor in the integral in (2.38) is ∼2u′2δij

(see (2.29)), and the Φ term would be the same as (2.16) because TR = TL (see (2.33))
for R ∼> L. This means that the integrand of (2.38) would be the same as that in the
second term on the right-hand side of (2.13) (with BTij given by the assumptions
in § 2.2) for the range of τ and τ ′ with R(τ, τ ′) ∼> L. On the other hand, at smaller
values of |τ | and |τ ′| (with R < L), the integrand for Dij is smaller than that in the
latter. Thus Dij given by (2.38) does not exactly cancel out the second term on the
right-hand side of (2.13). We find both numerically and analytically that the sum of
the two terms decreases faster than 1/τp in the limit τp → ∞ (it goes like τ−3/2

p for

the assumption of the ballistic separation and like ∼τ−2
p for the tracer-like separation

behaviour). Therefore, in the limit of large friction timescales our model satisfies the
constraint discussed at the end of § 2.1, namely, a good model needs to give a particle
velocity correlation that decreases with τp faster than the other terms.

As discussed earlier, we used the r.m.s. distance, ρ and R, in our estimate of the
trajectory structure tensor, STij , while a rigorous derivation needs to consider the
probability distribution function of the separation and take the average of STij over
this distribution. Here we give a justification for this approximation. The notation
used the following argument is a little different from the rest of the paper, where
R denotes the r.m.s. length of R. Here we take R to be a stochastic variable
representing the length of the stochastic vector R. The r.m.s. length of R will be
written explicitly as 〈R2〉1/2. This change of notation is for this paragraph only. First,
if the separation is in the viscous range, R ∼< η, Sij has a quadratic dependence on
the separation (see (2.27)) and Φ is independent of R (see (2.31)). This suggests that
the approximation is exact since the average of the quadratic dependence over the
separation distribution is exactly the square of the r.m.s. distance. If R is in the inertial
range, then Sij ∝ R2/3, and, roughly speaking, the Φ term provides another factor of
R2/3 (from the timescale TR(R), (2.32), over which the flow velocity difference ‘seen’
by the particles is correlated). Therefore, using a single r.m.s. distance to replace the
distance p.d.f. would overestimate STij (and hence Dij ) by a factor of 	〈R2〉2/3/〈R4/3〉.
If the R p.d.f. is 3D Gaussian as in the relative diffusion model by Batchelor (1952),
this factor is only 1.07. Numerical simulations (e.g. Boffetta & Sokolov 2002) show
that the separation p.d.f. of tracer pairs is highly non-Gaussian with a very broad tail.
The p.d.f. is found to be well fit by the solution of the p.d.f. equation proposed by
Richardson (1926). With this broader p.d.f., we find the factor is larger, 	1.20. Because
Sij and TR are independent of R for R ∼>L, our approximation is also expected to be
exact for R in that range. In conclusion, replacing the R p.d.f. by a delta function at
the r.m.s. distance is quite well justified. It may overestimate STij and Dij by ∼20 %,
or the relative speed by ∼10 %, if the primary distance is in the inertial range (which
is the case for τp in the inertial range).

3. Results
To calculate the radial relative velocity, we need the longitudinal particle structure

function, Spll , which in turn requires All and Dll . From (2.19), it is clear that All = Ann
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and

All =

(Ω2 − Ω1)
2

(
Ω1Ω2 + (Ω1 + Ω2)

z2

2

)

(Ω1 + Ω2)

(
Ω1 + Ω2

1 +
z2

2

)(
Ω2 + Ω2

2 +
z2

2

)u′2. (3.1)

We obtain Dll using the relation Dll = Dij rirj /r2. From (2.38) for Dij , we have

Dll(r) =

∫ 0

−∞

dτ

τp1

∫ 0

−∞

dτ ′

τp2

[(
1

3
+

2r2

3R2

)
Sll(R) +

(
2

3
− 2r2

3R2

)
Snn(R)

]

× Φ
(
τ − τ ′; τT R(R), TR(R)

)
exp

(
τ

τp1

)
exp

(
τ ′

τp2

)
. (3.2)

We will need the 3D relative velocity under the assumption of ballistic particle
separation. In that case, we take the 3D relative velocity variance, 〈w2〉, to be
Spii = Aii + Dii (see § 2.2). Using contractions of (2.19) and (2.38), we have

〈w2〉 = 3All +

∫ 0

−∞

dτ

τp1

∫ 0

−∞

dτ ′

τp2

(Sll(R) + 2Snn(R))Φ(τ − τ ′; τT R, TR)

× exp

(
τ

τp1

)
exp

(
τ ′

τp2

)
, (3.3)

where All is given by (3.1).

3.1. The monodisperse case

As discussed earlier, for identical particles with τp1 = τp2 = τp , Aij vanishes and
only Dij contributes to the particle velocity structure tensor, i.e. Spij = Dij . Thus the
longitudinal particle velocity structure function is given by

Spll (r) =

∫ 0

−∞

dτ

τp

∫ 0

−∞

dτ ′

τp

[(
1

3
+

2r2

3R2

)
Sll(R) +

(
2

3
− 2r2

3R2

)
Snn(R)

]

× Φ
(
τ − τ ′; τT R(R), TR(R)

)
exp

(
τ

τp

)
exp

(
τ ′

τp

)
. (3.4)

To solve this equation, one needs the particle dispersion laws for ρ to calculate the
distance R by (2.24). We start with the two simplified cases in order to study the
effect of each phase in the two-phase separation found by Bec et al. (2010b).

3.1.1. Ballistic separation behaviour

We first consider the effect of the ballistic separation phase by using (2.35) for the
particle distance at all times. Equation (3.3) gives the variance of the 3D relative
velocity, 〈w2〉, needed in (2.35). For identical particles, (3.3) becomes

〈w2〉 =

∫ 0

−∞

dτ

τp

∫ 0

−∞

dτ ′

τp

(Sll(R) + 2Snn(R))Φ(τ − τ ′; τT R, TR) exp

(
τ

τp

)
exp

(
τ ′

τp

)
.

(3.5)

Because the distance R in the integral on the right-hand side depends on 〈w2〉, (3.5) is
implicit for 〈w2〉. We numerically solve (3.5) by an iterative method. After obtaining
〈w2〉, we use it to calculate Spll from (3.4).

The results for the radial relative velocity, 〈|wr |〉, as a function of the Stokes number,
St , are shown in figure 1. We obtained 〈|wr |〉 from the conversion 〈|wr |〉 =

√
2Spll/π

assuming a Gaussian distribution for wr . We simply follow this convention here
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 0.1
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r|〉/
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Reλ = 300
Reλ = 1000
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r = 0.3 η

Figure 1. The radial relative velocity, 〈|wr |〉, as function of the Stokes number, St , for ballistic
particle separation. (a) Results for different Reλ. The distance r is fixed at η. A St1/2 scaling is
found between the ST limit and the large St limit. The Stokes number at the transition from
St1/2 to St−1/2 scalings increases linearly with Reλ. (b) The dependence on r with Reλ set to
300.

although we realize that the relative velocity distribution is broader than Gaussian
for small particles in high-Reynolds-number flows (e.g. Sundaram & Collins 1997;
Wang et al. 2000, see also Bec et al. (2010a) for the intermittency in inertial particle
velocity structures). We will give the relative speed across fixed distances as a function
of Stokes numbers (for convenience in the comparison with simulations in § 3.1.3),
although in coagulation models one needs to use the relative speed across the particle
size as a function of the size. The latter can be easily calculated from our model with
the Stokes number as a function of the particle size in a specific application.

In figure 1(a), we plot 〈|wr |〉 for particles at a distance r = η as a function of the
Stokes number and the Taylor–Reynolds number. The solution reproduces the ST
limit (with the relative speed independent of St) and the St−1/2 scaling in the limit
of large friction time. As in the model by Zaichik et al., the relative velocity is found
to scale as St1/2 for intermediate Stokes numbers. This scaling corresponds to the
inertial-range scaling of the turbulent flow and the St1/2 scaling range will be referred
to as the inertial range.

The St1/2 scaling can be understood as follows. As discussed earlier, the main
contribution to the integrals in (3.4) and (3.5) is from τ , τ ′ ∼ −τp , and the particle
distance, R, at τ , τ ′ ∼ −τp , called the primary distance in § 2.3.3, is important in
determining the relative velocity. We will denote the primary distance as Rp . The
primary distance as a function of τp is evaluated by Rp = R(−τp, −τp) using (2.22).
For intermediate Stokes numbers, Rp is much larger than r , we thus have Spll = 〈w2〉/3
from (3.4) and (3.5). Thus the scaling behaviour of 〈w2

r 〉 with τp is the same as that
of 〈w2〉. The latter can be obtained by analysing (3.5).

The Φ term in (3.5) represents the persistency of a structure of size R. It is
approximately given by exp(−|τ − τ ′|/TR(R)). The effect of this factor depends on
how TR(Rp) at the primary distance, Rp , compares to τp . If TR(Rp) is larger than τp ,
Φ would be essentially unity for τ and τ ′ values that significantly contribute to the
integral in (3.5). On the other hand, if TR at Rp is smaller than τp , a factor of TR(Rp)/τp

needs to be accounted because the Φ factor suggests that, for a given τ , only τ ′ that
satisfies |τ ′ −τ | ∼< TR (instead of the range −τp ∼<τ ′ � 0) contributes significantly to the
integral. We find the latter is the case from our numerical solution. Thus, considering
the main contribution to the integral is from the integrand at R ∼ Rp , we expect
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〈w2〉 ∝ [Sll(Rp) + 2Snn(Rp)]TR(Rp)/τp . For ballistic separation, the primary distance
Rp 	 〈w2〉1/2τp . And for R in the inertial range, we have Sll(R), Snn(R) ∝ R2/3 and
TR(R) ∝ R2/3 (see (2.28) and (2.32)). These scalings give 〈w2〉 ∝ 〈w2〉2/3τ 1/3

p , which
results in 〈w2〉 ∝ τp and hence the St1/2 scaling for the relative velocity.

As the Stokes number increases, the relative speed reaches a peak, and transitions
to the St−1/2 scaling. This change occurs when Rp 	 L and corresponds to the switch
of the scaling behaviours of Sll , Snn and TR from the inertial range to the outer
scales. As pointed out earlier, if the primary distance, Rp , is much larger than L,
the particle velocities are uncorrelated. A St−1/2 scaling is expected from the particle
velocity variances, (2.21). This scaling can also be obtained using an analysis similar
to that for the St1/2 scaling given above. If Rp � L, the structure functions and the
timescale TR that give the primary contribution to the integrals in (3.4) and (3.5)
are constant, i.e. Sll = Snn = 2u′2 and TR = TL ((2.29) and (2.33)). Therefore, (3.5) gives
〈w2〉 ∝ u′2TL/τp , and hence the St−1/2 scaling. Again the factor TL/τp comes from the
Φ term.

The Stokes number, Stm, or the friction time, τpm, at which the relative speed reaches
the maximum can be approximately obtained by setting Rp ∼ L. Using Rp 	 〈w2〉1/2τp

for the ballistic separation and 〈w2〉1/2 	 1.0St1/2uη in the inertial range from our

numerical solution, we find that Stm 	 Reλ/
√

15, or τpm 	 Te, where Te is defined as
u′2/ε̄. The order-of-magnitude estimate for Stm turns out to be in good quantitative
agreement with the numerical solution in figure 1(a), which also confirms the linear
increase of Stm with the Reλ.

Figure 1(b) shows the dependence of the relative velocity on r , the particle distance
at time zero. For r ∼<η of interest here, the relative velocity depends on r only in the
ST limit where it increases linearly with r (see the shear term in (1.1)). For larger
particles, it becomes independent of r . This is because in that case the contribution
is mainly from the particle memory of the flow velocity difference when the particle
distance was much larger than r .

We have used the same distance, R, for the timescale TR in the Φ term as that for
the structure functions. As discussed in § 2.2, for TR it might be a better choice to use
the particle distance, Rm, at the earlier one (min(τ, τ ′)) of the two times τ and τ ′. With
this choice, TR is larger because the separation is larger at earlier time. The predicted
relative velocity is also larger, and we find an increase by ∼30 % in the inertial
range.

3.1.2. Tracer-like separation behaviour

In this subsection, we examine the effect of the tracer-like separation phase. Our
main purpose here is to study how the relative velocity scales with the Stokes number
from the RO law.

Here we will consider an initial distance of r = η, and start the separation with
ρ(τ )2 = r2 + gε̄|τ |3. We switch to the diffusive regime when the separation exceeds L

(§ 2.3), and the connection is chosen such that ρ(τ )2 = L2 + 2D|τ − τd | for |τ | > |τd |,
where τd is the time when ρ reaches L. In figure 2, we show the results for the
relative velocity as a function of St and Reλ for particles at r = η. The Richardson
constant is set to be g =1.15. The solution correctly reproduces the limits at small-
and large-friction timescales as expected, and interestingly, we also find a St1/2 scaling
for the relative velocity in the intermediate range of St .

To explain the St1/2 scaling, we analyse again Spll by considering the integrand
in (3.4) at the primary distance, Rp . For Rp � r , (3.4) can be approximately written
as Spll ∼ [Sll(Rp) + 2Snn(Rp)]TR(Rp)/(3τp). The factor TR(R(τp))/τp (which is smaller
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(a) (b)

Figure 2. The radial relative velocity, 〈|wr |〉, at r = η as a function of the Stokes number, St ,
assuming the RO separation followed by a diffusive phase. (a) Results for different Reλ. As
in the case of ballistic separation, a St1/2 scaling is found in the inertial range. The Stokes
number where the curve peaks also increases linearly with Reλ. (b) Dependence of the relative
velocity on g. In the inertial range it increases with g as g1/3.

than 1 for any g ∼< 10) is based on the same reasoning as in § 3.1.1 for the ballistic
case. With the RO separation law, the primary distance is given by Rp 	 (gε̄τ 3

p)1/2.

Therefore, using the inertial-range scalings of Sll , Snn and TR , we have Spll ∝ g2/3τp .
This explains the St1/2 scaling for the radial relative velocity in the inertial range, and
also predicts that the relative velocity increases with the Richardson constant as g1/3.
The g1/3-dependence is confirmed by figure 2(b). The increase of the relative velocity
with g shows that faster particle separation gives larger relative velocity.

As in the ballistic case, the friction time, τpm, at which the relative velocity peaks,
is again obtained by setting the primary distance Rp to L. Using the RO separation
law for Rp , we find that τpm 	 g−1/3Te, with Te = u′2/ε̄. In units of the Kolmogorov

timescale, we have Stm 	 g−1/3Reλ/
√

15. This is consistent with the results in
figure 2(a).

We have finished the study for the effects of each separation phase in the two-phase
separation found by Bec et al. (2010b). We found that, in the inertial range, the
relative speed from using the RO law has the same scaling behaviour as from the
ballistic separation. Thus the same St1/2 scaling is also expected for a combination of
ballistic and RO separation behaviours. For g ∼ 1, the predicted value for the relative
speed in the inertial range from the RO separation is quantitatively very close to
that in the ballistic case, and so is the peak Stokes number Stm. Therefore for the
combined behaviour the prediction for the inertial range and for the switch to large
Stokes numbers would be similar to the two simplified cases (see figure 4). However,
in the transition region from the ST limit to inertial range, the predicted relative
speed is quite different for the two separation behaviours.

3.1.3. Combined separation behaviour and comparison with simulation results

We use the simulation results by Wang et al. (2000) to test our model. The Reynolds
numbers in their simulations are quite low with Reλ in the range 45–75. The results
by Wang et al. (2000) for three different Reynolds numbers are shown as data points
in figure 3. The relative speed is for particles at a separation of η. Due to the limited
resolution of these simulations, no inertial-range scaling is seen. For Reλ in the same
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r = η
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τc = –1.4 τp
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r|〉/

u η

Reλ = 45
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Reλ = 75

Figure 3. Comparison with the simulation results from Wang et al. (2000) at Reλ = 45
(squares), 58 (circles) and 75 (triangles). Lines are the predicted relative speed from our
model with a two-phase separation behaviour, a ballistic phase followed a tracer-like phase.
The ballistic separation is assumed to connect with the RO separation with g = 1 at −1.4τp .
See text for details on this connection.

range, our model with the two separation behaviours considered above does not show
the St1/2 scaling either (see Reλ = 100 curves in figures 1 and 2).

The separation behaviour of inertial particle pairs at Reynolds numbers as those
in the simulations by Wang et al. (2000) is unknown. We tried different separation
behaviours and compared the predictions for the relative speed with their results.
We find that a combination of an early ballistic phase and a later tracer-like phase,
as found by Bec et al. (2010b), can give a quite good fit to the results by Wang
et al. (2000) (while with a pure ballistic separation or a pure tracer-like separation no
satisfactory fit is found). The lines in figure 3 show the predicted relative velocities
with such a two-phase separation, which agree quite well with the simulation data.
The exact separation behaviour used in figure 3 is as follows. The separation starts
with a ballistic phase which lasts from time zero back to τc. At τc, it continuously
connects to the RO separation law, and finally switches to the diffusive regime when
the separation exceeds L. The connection between the ballistic phase (see (2.35)) and
the RO phase (see (2.36)) is chosen such that the particle distance at τ < τc is given by
ρ(τ )2 = ρ(τc)

2 + g|τ − τc|τ 2. This connection between the two phases is quite smooth.
Furthermore, we set τc = −1.4τp and g = 1. The connection between the RO regime
and the diffusive regime is the same as that for the tracer-like separation behaviour
discussed in § 3.1.2. Due to the low Reynolds numbers here, there is only a very short
period for the RO separation between the ballistic regime and the diffusive regime
in the chosen separation behaviour. How the ballistic phase exactly connects to the
RO phase in the backward dispersion of inertial particles is unknown. We also tried
other ways to connect the two phases, and found that, by adjusting τc and g, some
other connections can also give satisfactory fits. For example, if the two phases are
connected by ρ(τ )2 = ρ(τc)

2 + g(τ − τc)
2|τ | for τ < τc, fitting the simulation data gives

τc = −1.1τp and g = 1.5; and for a connection with ρ(τ )2 = ρ(τc)
2 + g|τ |3 − g|τc|3 in

the RO phase, we find a good fit with τc = 1.5τp and g =0.6.
Because Dij is an integral over the history of the particle distance, different

separations as a function of time could lead to the same predicted relative speed.
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Figure 4. The radial relative velocity, 〈|wr |〉, as a function of the Stokes number, St , with the
same two-phase separation used in figure 3. The dashed thin line is for ballistic separation only
and the solid thin line is for tracer-like behaviour only (with g = 1 for the RO separation).
Also shown is the prediction by the model of Zaichik et al.

Therefore, the exact backward dispersion behaviour cannot be determined by fitting
the simulation results for the relative speed. In other words, a separation law that fits
the data may not represent the exact dispersion behaviour for inertial particles in the
simulated flows by Wang et al. (2000), and a verification would need a direct numerical
study of the pair separation. However, the fact that the dispersion behaviour used in
figure 3 is generally consistent with the simulations results by Bec et al. (2010b) (see
their figure 8 where the connection between the ballistic phase and the RO phase
occurs between 1–2 τp) suggests that the adopted behaviour is at least qualitatively
correct. We will adopt the separation behaviour used in figure 3 for all the calculations
in the rest of the paper.

We find a significant deviation (up to 25 %) between the model prediction and
the simulation results for very large particles (St ∼> 20). It seems that the deviation
at these large Stokes numbers could not be removed by a reasonable change in the
separation behaviour without causing discrepancy at smaller St . This deviation also
occurs in the model of Zaichik et al. An immediate suspect for this deviation is the
assumption in our model (and in the model of Zaichik et al.) that the trajectories of
all particles are not far away from those of the fluid elements This assumption is not
well justified for very large particles. As discussed at the end of § 2.2, the temporal
correlation of the flow velocity (or the velocity difference) along the trajectories of
large particles may be close to the Eulerian correlation, while we used the Lagrangian
correlation timescale throughout the model. If the Eulerian correlation timescale
were used for these particles, and if the Eulerian correlation timescale is larger than
the Lagrangian timescale (see discussions in § 2.2), the predicted relative speed for
large particles would be larger, reducing the difference between the model and the
simulation results. Our approximation for the trajectory structure tensor in § 2.2 could
also contribute to the discrepancy.

Using the separation behaviour in figure 3 that well fits the simulation results, we
carried out calculations for larger Reynolds numbers. Figure 4 shows our prediction
for Reλ = 300. For comparison, we included results assuming pure ballistic separation
(the dashed thin line) and pure tracer-like separation (the solid thin line). For the
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latter we used g = 1 for the RO separation. We see that, in the two-phase case, the
relative velocity in the transition region from the ST limit to the inertial range lies
between the two cases with single separation behaviour. In this transition region, the
predicted relative speed relies on how the ballistic phase and the RO phase exactly
connects. In the inertial range, we again have the St1/2 scaling, which is expected
because both the ballistic behaviour and the RO separation law give that scaling. For
g ∼ 1, the predicted relative speed turns out to be very similar for all the three cases
in the inertial range. The predicted speed in the inertial range is not significantly
affected by the details of the connection between the ballistic and the RO phases.
The Stokes number at the transition from the inertial range to the St−1/2 range is
∼Reλ/

√
15 (i.e. τp ∼ Te), similar to both the pure ballistic case and the pure tracer-like

case.
Figure 4 also shows the relative speed predicted in the model by Zaichik et al. (the

thin dotted line). We obtained the results of their model by numerically solving the
set of differential equations given in Zaichik et al. (2006) (i.e. their (51)–(53)). The
transition from the ST limit to the inertial range in the model of Zaichik et al. is
quite steep. The relative speed in the inertial range in their model is 20 % larger than
the our model. This is probably because a faster particle separation is built into the
model by Zaichik et al. As pointed our earlier, in the limit of τp → 0, the formulation
by Zaichik et al. implies a Richardson constant significantly larger than 1.

3.2. The bidisperse case

We first point out the importance of gravity in the bidisperse case. In the monodisperse
case, the settling velocity by gravity is the same for all particles, and thus neglecting
gravity in that case may give approximately good estimates for the relative speed. The
situation is quite different in the bidisperse case where gravity may play a major role,
especially for large particles. The terminal velocity difference between two different
particle could give substantial or even dominant contribution to their relative speed.
Besides the direct contribution to the relative speed, differential settling can also
have an indirect effect by increasing the particle separation in the past. Since a
larger separation backward in time would increases the contribution from the particle
memory of the flow velocity difference, this indirect effect also tends to give a larger
collision speed.

We will neglect gravity in our model below. Clearly, this limits the application of
the model only to situations where the relative speed caused by differential settling
is negligible in comparison to the prediction of our model. However, understanding
the simpler case with turbulence alone is of theoretical importance because it serves
as the first step to a physical and accurate model for particle collisions in realistic
environments where both turbulence and gravity are present. The effect of gravity may
be included in our framework by accounting for both the direct effect of differential
settling and its indirect effect through the backward separation of the particles (e.g.
in a similar way as in Ayala et al. (2008), who, however, did not include the particle
separation by the turbulent flow).

In the bidisperse case, we include the contribution from the All term, (3.1), to the
relative speed. We use the same numerical method to solve Dll as in the monodisperse
case. The particle separation behaviour is chosen to be similar to the one that well fits
the simulation results in the monodisperse case. Note that in the ballistic phase, the
separation speed (i.e. the relative velocity variance, 〈w2〉) to be used for the calculation
of Dll has a contribution from the Aii term (see (3.3)). It is not clear how long the
ballistic phase lasts in the bidisperse case, since the friction timescales of the two
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u η
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Figure 5. Comparison with the simulation results from Zhou et al. (2001) at Reλ = 45
(squares), 58 (circles). Lines are the predicted relative speed from our model with a two-phase
separation behaviour, a ballistic separation followed by a tracer-like behaviour. The ballistic
separation is assumed to connect with the RO separation with g = 1 at −1.4τp . See the text
for details about the connection.

particles are different. We simply assume that the duration of the ballistic separation
is proportional to the average of the two friction timescales. Figure 5 shows the radial
relative velocity as a function of the Stokes number of particle (2) for a fixed Stokes
number, St1 = 1, of particle (1). The data points are simulation results from Zhou
et al. (2001) for r = η at Reλ = 45 and 58. These data are from figure 15 of Zhou et al.
(2001), but a different normalization is used here. The lines are the prediction of our
model where we adopted the same connection used in figure 3 for the monodisperse
case and set g =1 and τc = −1.4×(τp1+τp2)/2. The agreement of the model prediction
with the simulation results is quite good, except that it is slightly broader around
the dip. A possible reason is that the separation behaviour for different particles
is different from the one used here, which is based on the separation behaviour of
identical particle pairs.

We give more details for the relative speed between different particles in figure 6,
where the Taylor–Reynolds number is set to 300. The thick lines are for r = η. A
dip around St2 ∼ St1 is found in every curve with St1 ∼< 100. The existence of the dips
is related to the fact that the contribution from Aij for particles of similar sizes is
small. Physically, it means that the velocities of similar particles tend to have stronger
correlation than particles with very different friction timescales. Around each dip,
the contribution to the relative velocity is mainly from Dll , while far from the dip
it is dominated by All . A comparison of the two terms shows that they give similar
contributions when the Stokes number ratio is about 3-4. If the friction timescales
of the two particles differ by a factor much larger than 4, using the generalized
acceleration term alone may give a satisfactory result. The Dll and All terms in our
model are closely related to the two terms in the equation for the velocity difference
given in Bec et al. (2005) (their equation (13)). Their discussion on the relative
importance of those two terms provides physical insights to understand the dips in
figure 6. The relative speeds at the dip centres correspond to equal Stokes numbers.
Connecting these centres would give a curve identical to that for the monodisperse
case with the same separation behaviour and parameters.
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Figure 6. The radial relative velocity, 〈|wr |〉 as a function of St2 with fixed St1. The thick lines
give the relative speed at r = η. Each curve has a dip at St2 = St1. The three thin dotted lines
show the results for r = 0.3η with St = 1, 3 and 10.

On the far left of the dip, the relative velocity approaches a constant. The
constant corresponds to All in the limit Ω2 → 0, which, from (3.1), is given by
(Ω2

1/(Ω1 + Ω2
1 + z2/2))u′2. As St1 (or Ω1) increases, the dip moves to the right, and

the relative velocity on the far left increases. It reaches and stays at the maximum
(corresponding to All = u′2) after Ω1 becomes much larger than 1. The opposite occurs
on the far right of the dip, i.e. in the limit St2 � St1. In this limit, All approaches
((Ω1 + z2/2)/(Ω1 + Ω2

1 + z2/2))u′2, which has a maximum of u′2 at small St1. With
increasing St1 or Ω1, the relative velocity decreases on the far right of the dip, while
it increases on the other side.

The dip disappears for very large St1 (larger than ∼100 for the case shown in the
figure 6). This can be explained as follows. Physically, the dips are due to strong
velocity correlation between particles of similar sizes. Thus no dip would exist if the
friction time of particle (1) is such that its velocity is not significantly correlated with
any particle of similar size. This is the case for a particle with τp larger than τpm,
the friction timescale where the relative speed peaks in the monodisperse case (see
§ 3.1). The velocity of such a particle is not correlated even with an identical particle.
Therefore, no dip is expected around St2 	 St1 if τp1 ∼>τpm 	 Te. Clearly, this argument
suggests that the critical value of St1 where the dip starts to disappear is the same as
the Stokes number where the relative speed peaks in the monodisperse case.

The dependence of the relative velocity on the distance r for the bidisperse case
is also illustrated in figure 6, where the dotted thin lines show results for r = 0.3η.
The r dependence only comes from Dll , because All does not depend on r . Thus the
dependence may exist only around dips where Dll gives a significant contribution.
As in the monodisperse case, Dll is independent of r (again for r ∼<η) if the Stokes
numbers of both particles are much larger than 1. This suggests that, in the bidisperse
case, the relative velocity is a function of r only when St2 	 St1 ∼< 1. In figure 6 we
see that for St1 = 1 the depth of the dip increases with decreasing r , corresponding to
the decrease of the relative velocity with r in (1.1) for small identical particles. The
r-dependence is already weak for St1 = 3, and the relative velocity becomes completely
independent of r for St1 = 10.
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In summary, we find that in the bidisperse case the dominant contribution to the
relative velocity is from Dll if the ratio of the two Stokes numbers is not larger than
3–4, or from All if that ratio is larger. For a fixed Stokes number of one particle,
St1, the relative velocity as a function of the Stokes number of the other particle,
St2, shows a dip at St2 ∼ St1. The dip corresponds to a stronger velocity correlation
between particles of similar sizes than between very different particles. The existence
of a dip at equal Stokes numbers has consequences for the collision kernel (e.g. Bec
et al. 2005; Zaichik et al. 2006).

4. Comparison with other models
Our model has already been compared with some previous models earlier in the

paper. Here we discuss more models and present the comparisons more systematically.

4.1. Volk et al. (1980)

In the astrophysical literature, the relative velocities of dust grains, e.g. in the context
of the coagulation growth of dust grains in protoplanetary disks, has almost always
been estimated based on the model by Volk et al. (1980), and a later version of
that model by Markiewicz, Mizuno & Voelk (1991) (see also Cuzzi & Hogan 2003;
Ormel & Cuzzi 2007). Here we discuss this model for the particle relative velocity
and compare it with the physical picture presented in this paper.

Volk et al. (1980) derived both the one-particle rms velocity and the relative speed
between two particles. Their model started by considering the effects of turbulent
eddies of different sizes on a particle of a given friction timescale. They speculated
that the effect of an eddy on the particle depends on the eddy size. The particle would
basically move along with large eddies if the eddy turnover time is much larger than
the particle friction timescale. On the other hand, the effect of eddies with turnover
time much smaller than the friction time is argued to be like a ‘random kick’ because
the eddy would ‘die’ within a friction timescale. Apparently ‘random kick’ here only
means that the particle does not ‘receive’ the driving by these small eddies to a full
extent. There is also another way that an eddy may behave like a random kick. Due
to their inertia, particles have a different velocity from the flow. If the relative velocity
between a particle and a turbulent eddy of a given size is such that the particle crosses
and leaves the eddy within a friction timescale, then the particle would not receive
a ‘full’ kick from that eddy, and the effect of the eddy is a ‘random kick’. Based on
these considerations, Volk et al. defined a critical eddy size in Fourier space, k∗, such
that the effect of eddies below this size is like random kicks.

In the model by Volk et al. (1980) for the r.m.s. velocity of a single particle, the
wavenumber k∗ appears to be important because eddies of size smaller than the scale
l∗, corresponding to k∗, are expected to be less efficient at ‘driving’ particle motions
than larger ones because the particle does not have chance to ‘fully’ receive the energy
from these eddies.

Volk and his collaborators’ (Volk et al. 1980) derivation for the relative speed
between two particles did not consider the separation of two particles, which is
essential in our physical picture. In their calculation for the relative speed, they
continue to take k∗ as a crucial scale. They essentially assumed the velocities of
two particles induced by eddies with wavenumber larger than k∗ are not correlated,
and the contribution to the particle velocity correlation is from larger eddies. This
assumption is not justified.

We argue that it is unlikely that k∗ is crucial for the velocity correlation of two
particles (although k∗ may be an important scale for the one-particle r.m.s. velocity,
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as discussed above). Whether the particle relative motions induced by eddies at
a given scale are correlated or not is probably determined by how the particle
separation compares to the eddy size. If the distance of two particles is smaller
than the size of an eddy they encounter, the particle motions induced by this eddy
would be correlated even if the eddy size is smaller than l∗ (the contribution to
the two particles from a same eddy should be correlated). In this case, Volk and
his collaborators’ assumption would underestimate the correlation and overestimate
the relative velocity. On the other hand, contributions to the velocities of the two
particles from eddies of size smaller than the particle distance would be uncorrelated,
because each particle receives a contribution from a different eddy of that size
and motions in different eddies are likely to be independent. Therefore, contrary
to the assumption by Volk et al. (1980), particle motions induced by eddies of size
larger than l∗ are not always correlated. They are independent if the size of these
eddies is smaller than the particle separation. The argument above suggests that it
is the particle separation (instead of l∗ or k∗) that determines the particle velocity
correlation, and thus an explicit examination of the particle separation is required.

The model by Volk et al. (1980) for the relative speed for two particles may be
interpreted as one that implicitly assumes that the typical particle separation, R, is
around the scale k∗. However, this assumption cannot be physically justified since the
definition of k∗ has nothing to do with the distance between two particles. Even if the
value of k∗ turned out to be close the to typical distance between particles, it should
probably be taken as a coincidence. The model by Volk et al. (1980) may be improved
by incorporating the particle distance as a function of time within their formulation.

4.2. Williams & Crane (1983)

Williams & Crane (1983) started from the derivation of the relative velocities for
particles in two limits: τp � TL and τp � TL, and then obtained a ‘universal’ formula
by interpolation. In the limit of τp � TL, they assumed that the particle separation
back in time can be neglected (§ 2.2), and found the relative velocity is given by (2.20).
As argued in § 2.2, this result is not valid for similar particles especially for St � 1.
In the other limit of τp � TL, Williams & Crane (1983) considered a linear particle
separation, and chose the separation rate assuming the particle velocities are not
correlated in this limit.

Williams & Crane (1983) found a universal formula that reproduces the results
for two limits they considered. This formula is obtained from a mathematical
interpolation, and thus does not incorporate the physics of the relative velocities
between particles of intermediate inertia. We find that the formula gives a St3/2

scaling for identical particles with τp ∼<TL, which is probably incorrect.

4.3. Yuu (1984)

Yuu (1984) derived a formula for the relative velocity that consists of an acceleration
term and a shear term. Neglecting the effect of the added mass term (which is
negligible in gaseous flows) included in Yuu’s calculations, the acceleration term is
also given by (2.20), i.e. exactly the same as the result of Williams & Crane (1983) for
the small-particle limit. Yuu’s shear term is much smaller than our generalized shear
term, Dij , for intermediate to large particles, because his calculation did not consider
the particle separation back in time, and thus the shear term does not account for
particles’ memory of the larger flow velocity difference they ‘saw’ at earlier times. As
pointed out in § 2.2, this leads to a significant underestimate of the contribution from
Dij . As a consequence, Yuu’s model is not valid for similar particles with τp ∼> τη.
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4.4. Kruis & Kusters (1997)

Kruis & Kusters (1997) gave a generalization to the models of Williams & Crane
(1983) and Yuu (1984). They first noticed that Williams and Crane’s result for particles
with τp � TL and Yuu’s acceleration term (defined in (2.20)) do not reproduce that
in (1) for the ST limit. Replacing the temporal energy spectrum in Williams & Crane
(1983) by one that incorporates the flow acceleration and corresponds to a temporal
correlation function similar to our (2.16), they were able to derive a formula for
the τp � TL case that correctly reduces to the acceleration term in the ST limit. The
formula is the same as our result for Aij in the limit z � 1. Kruis & Kusters (1997)
also generalized the Williams and Crane model to include the added mass effect,
which was considered in Yuu (1984). The effect is negligible in a gaseous flow, but
may be important in liquid flows. Following Williams and Crane, a ‘universal’ solution
was obtained by interpolating the generalized results for the two limits. Therefore
the Kruis and Kusters model shares the same weakness as Williams & Crane (1983):
the physical importance of the particle separation for the relative velocity of similar
particles with τp ∼<TL is not included in the model, and the interpolated results for
that case are probably incorrect.

4.5. The analytical model of Zaichik et al. (2003, 2006)

In addition to their differential model discussed earlier in details, Zaichik and
collaborators also presented an analytical model. Assuming Gaussian statistics
for both the flow and the particle velocities, the analytical model calculates the
joint p.d.f. of the velocities of two particles, P (v(1), v(2)), from the two-point joint
p.d.f. of particle and flow velocities, P (v(1), v(2), u(1), u(2)). Zaichik et al. (2003, 2006)
approximated the latter by P (v(1)|u(1))P (v(2)|u(2))P (u(1), u(2)) under the assumption that
P (v(1)|v(2), u(1), u(2)) = P (v(1)|u(1)) and P (v(2)|u(1), u(2)) =P (v(2)|u(2)). This assumption is
valid in the limit τp → 0. The particle velocity is well approximated by the flow velocity
at the same point in this limit so that P (v(1)|v(2), u(1), u(2)) 	 δ(v(1) − u(1)). Therefore it
can be approximated by P (v(1)|u(1)), which is also δ(v(1) − u(1)) in the limit. A similar
argument applies to P (v(2)|u(1), u(2)) =P (v(2)|u(2)). In the other limit with τp � TL, we
find the assumption for the conditional p.d.f.s is also roughly valid. In this limit, due
to the long memory, the particle velocity, v(1) is not strongly correlated with the local
flow velocity u(1), nor with v(2) or u(2). Therefore P (v(1)|v(2), u(1), u(2)) = P (v(1)|u(1))
could be a good approximation in the large particle limit. (The predicted relative
velocity by this model could reproduce the two limits given in § 1). However, for τp

in the inertial range, all the four velocities are partially correlated. The assumption
that neglects the ‘direct’ correlation of the particle velocity at point (1) with the flow
and particle velocities at point (2) would, to some degree, underestimate the particle
velocity correlation.

From the two-point joint p.d.f. of particle and flow velocities, Zaichik et al. (2003)
derived the joint p.d.f. P (v(1), v(2)) and an analytical formula for the relative velocity. In
the derivation, the Lagrangian correlation function is needed to calculate the velocity
variance of each particle and the flow–particle velocity correlation at each point, which
fix P (v(1)|u(1)) and P (v(2)|u(2)) under the assumption of Gaussian statistics. With our
(2.16) for the Lagrangian correlation function, the model gives a linear scaling with
St in the inertial range for the monodisperse case. This is in contrast to the St1/2

scaling in both their differential model and our model. Because the analytical model
underestimates the velocity correlation, the predicted relative velocity for identical
particles in the inertial range is much larger than in the latter two models, as well as
than the results from simulations with low Reynolds numbers (Zaichik et al. 2003).
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Furthermore, the analytical model does not give a dip at St2 	 St1 in the bidisperse
case. This is again because the velocity correlation between similar particles is not
accurately evaluated. The model does not account for the fact that similar-size
particles tend to have stronger correlation than different size ones.

4.6. Derivich (2006)

The model of Derivich (2006) starts with a similar approach as in the differential
model of Zaichik et al. An equation for the joint p.d.f. of both positions and velocities
of the two particles is derived assuming Gaussian statistics for the flow velocity field.
The equation is equivalent to that for the joint p.d.f. of the particle separation and
the relative velocity in the model of Zaichik et al. Apparently, Derivich (2006) solved
the p.d.f. equation only in the limit of zero particle separation. This is different from
Zaichik et al. (2003, 2006) who included the separation dependence in their solution,
and could thus address the spatial clustering of particles. Neglecting the spatial
derivative terms in the joint p.d.f. equation, Derivich (2006) obtained a solution where
the p.d.f. of the velocities of the two particles is jointly Gaussian. The correlation of
the particle velocities in the solution depends on the particle separation as a function
of time. In his calculations, the particle separation is taken to be a Gaussian variable.
The time-dependence of the separation variance is neglected, and apparently for the
monodisperse case the variance is set to be a constant, corresponding to the particle
distance at τ , τ ′ = −τp in the ballistic separation behaviour assumed in our model.
We argue that this treatment with a constant particle separation variance is physically
inadequate.

4.7. Ayala et al. (2008)

Our formulation is very similar to that in Ayala et al. (2008). The model by Ayala
et al. (2008) included the particle separation due to gravity for sedimenting droplets in
turbulent flows, but neglected the particle separation by turbulent dispersion. In the
absence of gravity, particles do not separate in their model, and the model enormously
underestimates the relative velocity in the monodisperse case (where the separation
plays a crucial role), as can be seen from their figure 11(b). As explicitly pointed
out by Ayala et al. (2008), their model was not designed for particles of similar
sizes. In the presence of gravity, it is expected the accuracy of the model decreases
with increasing turbulence intensity. This can be seen from their figure 13 for the
monodisperse case, where the predicted relative velocity agrees with the simulation
results for the lower of the two turbulent intensities shown (ε̄ = 100 cm2 s−3), while it is
significantly smaller than the simulation results for the case with the higher intensity
(ε̄ =400 cm2 s−3). Clearly, with larger turbulent intensity, the turbulent dispersion is
faster and neglecting it would result in less reliable predictions. We also note that
Ayala et al. adopted a bi-exponential form (similar to the form of our (2.16) for the
Lagarangian temporal correlation function) for the spatial correlation function of
the flow velocity. The form corresponds to a linear velocity structure function and
hence a −2 energy spectrum in the inertial range (for comparison, see (2.29) for the
spatial correlation function adopted in our model), and is thus not consistent with
the Kolmogorov spectrum observed in turbulent flows of high Reynolds numbers.

5. Conclusions
We have examined the relative velocity of inertial particles suspended in turbulent

flows. A general formulation is established based on the calculation of the particle
velocity structure function. Our general result for the particle structure function, (2.12),
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has two terms, a generalized acceleration term, Aij (see (2.13)), and a generalized shear
term, Dij (see (2.14)). The generalized shear term, Dij , corresponds to the contribution
to the relative speed from particles’ memory of the flow velocity difference in the past.
We find that the backward-in-time dispersion of inertial particle pairs is needed to
evaluate this term. The two terms reduce to the acceleration term and the shear term,
respectively, in the ST limit. Our formulation can thus be viewed as a generalization
of Saffman and Turner’s result for the limit of small particles to particles of any size.

We have shown that our model with a separation behaviour similar to that found
by recent simulations for the forward (in time) dispersion of inertial pairs (Bec et al.
2010b), i.e. a ballistic separation followed by a tracer-like behaviour, gives quite good
fits to the relative speed measured from simulations by Wang et al. (2000) (for the
monodisperse case) and by Zhou et al. (2001) (for the bidisperse case).

For the monodisperse case, only Dij contributes to the relative velocity. At large
Reynolds numbers, a St1/2 scaling of the relative velocity in the inertial range is found
for both the ballistic separation or the Richardson separation. Therefore, for the two-
phase separation that well fits the simulation results, we have the same inertial-range
scaling. This scaling is consistent with that from the differential model by Zaichik and
collaborators (Zaichik & Alipchenkov 2003; Zaichik et al. 2003, 2006). Our model
provides a clear physical picture for this scaling.

Our calculations for the bidisperse case show that Aij dominates the contribution
to the relative velocity between particles of very different sizes, while for similar
particles the primary contribution is from Dij . In the relative velocity versus St2
curves with fixed St1, dips are found around St2 ∼ St1, indicating stronger velocity
correlation for similar-size particles than for different-size ones. Away from the dips,
the relative velocity is essentially given by the contribution from Aij .

The main assumptions in our model are those for the trajectory correlation and
trajectory structure tensors. The approximations for these tensors can be tested and
improved by numerical simulations, and our work thus provides a motivation for
direct studies of these correlations along the particle trajectories. A direct numerical
study of the separation behaviour of particles backward in time would also be of
interest, because we have shown that it plays an important role in modelling the
relative velocity between particles of similar sizes. With the help of future simulations,
the assumptions in our model could be considerably refined. The model may also be
extended to include gravity and other effects. The refined and extended model would
provide a reliable prediction of the relative velocity between inertial particles and
can be applied to many practical studies, such as raindrop formation in atmospheric
clouds and collisions of dust grains in astrophysical environments.

L.P. acknowledges support from NASA grants 08-NAI5-0018 and NNX09AD10G.
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