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Abstract

There is a fundamental concern regarding the prediction of kiwifruit yield based on the con-
centration of nutrients in the leaf (2–3 months before fruits harvesting). For this purpose, the
current study was designed to employ an artificial neural network (ANN) to evaluate the kiwi
yield of Hayward cultivar. In this regard, 31 kiwi orchards (6–7 years old) in different parts of
Rudsar, Guilan Province, Iran, with 101 plots (three trees in every plot) were selected. The
complete leaves of branches with fruits were harvested, and the concentration of nitrogen,
potassium, calcium, and magnesium measured. After fruit harvesting in late November, the
fruit yield of each plot was evaluated along with the fresh and dry weights of the fruit. The
ANN analyses were carried out using a multi-layer perceptron with the Langburge-
Marquardt training algorithm. Using calcium (Ca) as input data (Ca-model) was more accur-
ate than using nitrogen (N-model). The maximum R2 and the lowest root mean square error
was obtained when all nutrients and related ratios were considered as input variables. Since
the difference between the proposed model and the model fitted by the calcium variable
(Ca-model) was only about 6%, the Ca-model is recommended.

Introduction

One of the main issues in producing agricultural and garden crops is a lack of ability to fore-
cast production/yield using accessible and easily measured indicators. For instance, the estima-
tion of crop yield using the concentration of nutrients in the leaf, fruit, or soil is a matter of
concern. In this regard, a variety of methods have been introduced to estimate and predict the
various natural variables such as winter oilseed growth and yield of sugarcane (Bartoszek,
2014; Domínguez et al., 2015; Dias and Sentelhas, 2017). In this context, different regression
methods have been widely used to derive transitional functions (Sepaskhah et al., 2000;
Marashi et al., 2017, 2019), which can be handled by artificial neural networks (ANN)
using existing software such as Neurosolution software. Neural networks, like the human ner-
vous system, are smart modelling techniques that can learn to analyse information and make
generalizations (Francis, 1989). One advantage of ANN transitional functions over common
regression methods is that there is no need for a primary regression model to connect the
input and output data (Kumar et al., 2004; Mermoud and Xu, 2006; Dai et al., 2014;
Eslami et al., 2019).

An ANN is a set of computational elements, connected in a similar way to biological neu-
rons (Hertz et al., 1991; Saffari et al., 2009), that can be used in the discovery of intrinsic con-
nections between available data regarding the issue without any previous background (Farkas
et al., 2000). In addition, no physical correlation between converting inputs to outputs are
needed, which is an important advantage of ANN application in modelling: the only required
elements for this system are a set of input-output pairs (Hertz et al., 1991; Nayak et al., 2004).

An important factor in waste reduction, further improvements in quantitative and
qualitative performance, and extension of the storage life of harvested garden products is
the sufficient and balanced supply of nutrients to plants (Hargreaves et al., 2008;
Ashoorzadeh et al., 2016). In this regard, it is important to improve methods to determine
nutrient levels in fruit trees such as kiwifruit (Clark and Smith, 1988; Ferguson et al., 2003;
Golmohammadi et al., 2011).

Nutrient imbalances cause disorders and consequently affect yield (Maynard, 1979; Fageria,
2001; Gee et al., 2018). Investigation of the specific level of each nutrient satisfies that the
plant’s demand has attracted consideration (Halavatau et al., 1998; Dar et al., 2015).
Excessive application of chemical fertilizers has resulted in imbalances of nutrients
(Malakouti et al., 2008; Mohiti et al., 2011; Hushmandan Moghaddam Fard and Shams,
2016; Mohammadi Torkashvand et al., 2016; Amerian et al., 2018), besides disruption in
the biochemical and biological properties of soil (Halavatau et al., 1998; Amerian et al., 2018).
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Kiwi (Actinidia deliciosa, belonging to the family Actinidiacea)
is a flowering plant phylum Magnoliophyta. Only two species
of Actinidia are economically and commercially important;
A. deliciosa and A. chinensis, with the latter grown widely in
China. The fruits of the two species are delicious with appetizing
aroma and are rich in vitamin C (Khazaee Poul, 2003). The
number of kiwifruits produced globally was estimated at about
4 million tons in 2017, with 87% of this amount produced by
five countries: China, Italy, New Zealand, Iran and Chile (UN
Food and Agriculture Organization, Corporate Statistical
Database (FAOSTAT)).

In plants, metabolism is mainly carried out in the leaves
(Barker and Pilbeam, 2007; Lahiji et al., 2018), producing photo-
synthates that are then transported to other parts of the plant.
Therefore, nutrient concentrations in the leaf are related to differ-
ent qualitative attributes and yield of fruit crops, as they play an
important role in structural components, cellular maintenance,
energy transformer, and enzyme activity (Dar et al., 2015).
Growth and fruit yield are affected by several factors, of which
the most important is nutrition (Ferguson et al., 2003; Gee
et al., 2018). In this regard, variations in nutrient availability are
reflected in the leaf mineral composition. The quality and quan-
tity of fruit produced are strongly related to available nutrients
in leaves and their balance (Huang and Ferguson, 2003; Lahiji
et al., 2018). Today, fertilizer recommendation is based on soil
and leaf tests (Fageria et al., 2009; Paulo and Furlani, 2010):
most researchers believe that tissue analysis is a good guide to
assess the nutritional requirement of perennial fruit trees (Sauz
et al., 1992; Dar et al., 2015). Plant analysis one of the most useful
available tools available to assess the nutritional status of agricul-
tural products (Fageria, 2001; Zaremehrjardi et al., 2019). Recent
advances in the nutrition of fruit products have proven that leaf
analysis is a great tool for identifying the nutritional status of
plants (Nascente et al., 2016); Bhargava and Chadha (1993) pro-
posed that plant leaves are the best option for determining plant
nutrient status (Dar et al., 2015).

Plant grain and fruit yield depend on the concentration of
nutrients in leaves during the various growth stages
(Dumenil, 1961; Nachtigall and Dechen, 2006; Barker and
Pilbeam, 2007; Honarkarian and Mohammadi Torkashvand,
2018; Lahiji et al., 2018). Studies have shown that nutrient defi-
ciency, determined via decreasing concentration in leaves, reduced
plant yield, and fruit (Sauz et al., 1992; Ivanyi, 2011). Awasthi
et al. (1998) found a direct correlation between leaf nutrients and
the yield and quality of apples, while Lahiji et al. (2018) reported
a significant correlation between leaf nutrient concentrations and
olive yield.

The chemical composition of kiwifruit depends on several fac-
tors such as genotype, pre-harvest weather conditions, fruit
maturity at harvest time and storage conditions (Lee et al.,
2001). Considering plant nutrition, the availability and balance
between nutrients are important (Mohammadi Torkashvand
et al., 2016). For instance, nitrogen (N) deficiency leads to a
reduction in fruit size and zinc (Zn) deficiency increases fruit fall-
ing. The ratio of nitrogen to calcium (N/Ca) and potassium to cal-
cium (K/Ca) are among the most important factors in fruit
quality (Mengel and Kirkby, 2001). Calcium can cause a delay
in ageing, preserves quality and firmness of fruits, and improves
resistance to disease during storage (Chardonnet et al., 2003;
Hernandez-Munoz et al., 2006).

Numerous studies have been carried out to estimate soil vari-
ables through ANNs (Zhou et al., 2008; Bocco et al., 2010; Gago

et al., 2010; Parvizi et al., 2010; Peng et al., 2010; Ayoubi et al.,
2011; Mokhtari Karchegani et al., 2011; Besalatpour et al., 2013;
Dai et al., 2014; Aitkenhead et al., 2015). Also, some studies
have been conducted to predict crop yield by remote sensing, sto-
chastic, ANN and simulation models (Bannayan and Crout, 1999;
O’Neal et al., 2002; Bartoszek, 2014; Farjam et al., 2014;
Domínguez et al., 2015; Emamgholizadeh et al., 2015; Dias and
Sentelhas, 2017), based on weather, soil and growth characteristics
as input data.

Kiwi harvesting in northern Iran starts mainly in November,
so estimating the yield of this product 2–3 months before harvest-
ing can allow the farmer to forecast income and managers to plan
fruit marketing, exports and storage. However, according to our
knowledge, there have been no studies to estimate orchard fruit
yields with regard to the chemical properties of leaf or fruit that
have not been found. The goal of the current study was to predict
fruit yield in kiwifruit via a new ANN modelling approach, using
measurements of the concentrations of four nutrients in the leaves
during the growing season.

Materials and methods

Location and time of the experiment

The experiments were conducted by collecting data from 31 kiwi-
fruit orchards (6–7 years old) in Rudsar area, Guilan Province,
north of Iran, in August 2017, in order to estimate the yield of
kiwifruit ‘Hayward’ using nutrient concentrations and ratios.
Kiwifruit grows well in Guilan Province due to deep, fertile and
well-drained soil with a suitable pH (Mohammadian and
Eshaghi Teymoori, 1999). In these orchards, 101 plots (each
with three trees) were selected randomly for analysis. The selected
trees were similar regarding age, growing conditions, soil type,
shade and management practices including the amount of
water, fertilization and other farming conditions. The complete
leaves of branches with fruit were harvested and analysed for N,
K, Ca and Mg concentrations (Emami, 1996). Finally, the fruit
yield of each tree and the fresh and dry weights of fruit were mea-
sured after harvesting the fruit.

The fruits were harvested in mid-November when their sugar
content was approximately 7–8 °Brix. All the fruit samples from
each tree were picked and packed into separate baskets before
weighing, then transferred to the laboratory within 24 h to evalu-
ate indices such as the fresh and dry weight of the fruits.

Experiments using leaf and kiwifruit

The samples were collected from healthy leaves in the middle of
branches at average height. Six or seven leaves of each tree were
harvested, chopped, and dried in an oven at 75°C for 48 h. The
acid mixture for nutrient measurement was prepared by adding
6 g salicylic acid to 25 ml distilled water, then adding 100 ml
concentrated sulphuric acid. A sub-sample of the dried leaves
(0.3 g) was transferred to a 50 ml volumetric flask: 3 ml of the
above acid mixture and five drops of hydrogen peroxide were
added to the volumetric flasks, and the mixture heated to
180°C for 1 h. This step (adding hydrogen peroxide and heat-
ing) was repeated as many times as required to produce a
clear extract to prepare the fruit clear extract (Goos, 1995).
Total N in the extract was measured using the titration method
after distillation by Kjeldahl distillation apparatus (model
23130-20, company Hach, USA), K was measured using a
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Jenway flame photometer (model PFP7, Stone, UK), at a wave-
length of 766.5 nm (Goos, 1995), and Ca and Mg were mea-
sured using a flame atomic absorption spectroscopy
instrument (PINAACLE 900H, Perkin Elmer, Waltham, MA,
USA) (Emami, 1996).

Development and evaluation of artificial neural
networks models

After collecting data and before using them for training, two other
stages should be considered; the pre-processing of the data and
dividing the input data into sub-sets. If the pre-processing operation
is performed on input and output data, the neural networks can be
used more effectively. In the current study, 70% of the data
(training-dataset1) were randomly used for training, 15% (training-
dataset2) for validation of models and the remaining 15% (test-
dataset) were used for testing of the models. In this context, the test-
dataset was introduced to ANNmodels to assess their reliability; the
models’ responses were calculated, and R2 between actual (observed
values) and estimated values were determined.

As demonstrated in Table 1, different variables were included
as input variables in ANN models. The models were designed
based on previous studies in the kiwifruit orchards of Rudsar,
Guilan Province, Iran (Khoshnood and Mohammadi
Torkashvand, 2016; Mohammadi Torkashvand et al., 2016;
Honarkarian and Mohammadi Torkashvand, 2018). Khoshnood
and Mohammadi Torkashvand (2016) reported that significant
correlation coefficients (r) between N, K, Ca, Mg and N/Ca
ratio in leaf and yield of kiwi were 0.386, 0.270, 0.235, 0.215
and 0.355, respectively. Therefore, a set of these nutrients and
their ratios (N, K, Ca, Mg, N/K, N/Ca, K/Ca, and Ca/Mg) was
considered in the current paper (Khoshnood and Mohammadi
Torkashvand, 2016).

For training ANN models a multi-layer perceptron combined
with the Levenberg–Marquardt back-propagation training algo-
rithm, and a sigmoid function as a transition function were
used, and models were designed by Neuro Solutions 5.05 software
(Florida, USA, http://www.neurosolutions.com/).

In back-propagation training, the input data are multiplied by
the weight, and the bias is added and accumulated, then the
resulting value, which is the input of the nerve, is entered into
the transfer function. Then, the output neuron was calculated
by transfer functions and enters the output layer. The same pro-
cedure is performed on this layer, the output of the transfer func-
tion, which is linear, is compared to the expected value and the
error value is calculated. If this error value is greater than the spe-
cified value, the weights and bias values are corrected by the back-
propagation algorithm, and this process is repeated so that the
error value is less than the specified value. The coefficient of
determination or R squared (R2), the geometric mean of error
ratio (GMER), and root mean square error (RMSE) was used to
evaluate the ANN model:

R2 =
∑n

K=1 (Xk − �X)(Yk − �Y )∑n
K=1 (Xk − �X)2

∑N
Y=1 (Yk − �Y )2

[ ]2

(1)
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1
n

∑n
1

ln
Xk

Yk

( )( )
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1
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[Yk − Xk]
2
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where Xk is the measured value, Yk is the estimated value, �X is the
mean of measured values, �Y is the mean of estimated values, and
n is the total number of observations.

Results

The efficiency of the model

The parameters of the ANN are given in Tables 2 and 3, repre-
senting the efficiency and network error in predicting the yield
of kiwi for the training and validation data sets. The model
including all variables (four nutrients and their ratios) showed a
sharp increase in Epoch and the smallest final error in the valid-
ation phase. The lowest mean square error (MSE) and the mean
absolute magnitude error (MAE) was found in the all-variable
model.

Correlation between measured and predicted yield in the test
data sets

The accuracy and error of the model with different data sets in
estimating kiwi yield are shown in Table 4. When nitrogen was
the input variable (N-model), the coefficient of determination
was recorded as 0.56. However, this coefficient cannot be accurate
and feasible to estimate kiwi yield at harvest time, since 0.44 of the
variation has not been predicted.

In the neural network constructed with potassium concentra-
tion as an input variable (K-model), R2 of the model was 0.48, a
reduction of 0.0855 in comparison to the N-model (Table 4 and
Fig. 1). Figure 1 presents the correlation between the measured
and predicted factors in Ca-model.

According to Table 4, in the sets of data for the four nutrients,
the highest R2 besides the RMSE and GMER were related to the
Ca-model followed by the N-model, and also the RMSE of
Ca-model (4.43) was less than N-model (5.16).

The models in which nutrient ratios alone (N/K, N/Ca, K/Ca,
Ca/Mg) constitute the input variable had lower R2 than the

Table 1. Different data sets used as input data in modelling by artificial neural
network (ANN)

Dataset Input data The name of the model

1 Nitrogen (N) N-model

2 Potassium (K) K-model

3 Calcium (Ca) Ca-model

4 Magnesium (Mg) Mg-model

5 N/K N/K-model

6 N/Ca N/Ca-model

7 K/Ca K/Ca-model

8 Ca/Mg Ca/Mg-model

9 N, K, Ca, Mg Nutrients-model

10 N, K, Ca, Mg, N/K, N/Ca,
K/Ca, Ca/Mg

All variables-model
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models using Ca alone or all variables (Ca-model and All vari-
ables model), while in the N/Ca-model and Ca/Mg-model R2

was calculated as 0.56 and 0.61, respectively. The lowest and
the highest RMSE was related to K/Ca model and
Nutrients-model. When all four nutrients were used as input
data (nutrients-model), the R2 of the model was 0.62; the cor-
relation of the measured and predicted yield is shown in
Fig. 2. However, when calcium alone was the input variable,
R2 = 0.68 was greater than that of the nutrients-model. The
greatest R2 (0.73) and the smallest error (RMSE = 2.23 kg)
were observed in all variables-model: the relationship between
measured and estimated data is shown in Fig. 3. The GMER
showed that the conformity between measured and estimated
yield in the all-variables-model was greater than in the other
models. The models of N/K, K/Ca, and Ca/Mg had less RMSE
than in the Ca-model, but their R2 was also lower than
Ca-model. GMER of Ca-model was closer to the unit (1) indi-
cating greater conformity of the estimated values to the mea-
sured (actual) values.

Table 2. Parameters related to the neural network used to predict the yield of kiwi in ten data sets used in the network training and validation process

Dataset Model

Training Validation

Epoch Minimum MSE Final MSE Epoch Minimum MSE Final MSE

1 N-model 103 0.077 0.007 3 0.047 0.051

2 K-model 105 0.097 0.097 5 0.112 0.144

3 Ca-model 113 0.083 0.083 13 0.074 0.084

4 Mg-model 176 0.062 0.062 76 0.059 0.059

5 N/K-model 138 0.073 0.073 38 0.023 0.025

6 N/Ca-model 118 0.062 0.062 18 0.057 0.076

7 K/Ca-model 517 0.099 0.099 417 0.063 0.063

8 Ca/Mg-model 104 0.061 0.061 4 0.172 0.223

9 Nutrients-model 104 0.060 0.060 4 0.043 0.075

10 All variables-model 1000 0.056 0.056 1000 0.009 0.009

MSE, mean square error; N, nitrogen; K, potassium; Ca, calcium; Mg, magnesium.

Table 3. Model efficiency and artificial neural network error in estimating kiwi yield

Dataset Model MSE MAE Min Abs Error Max Abs Error

1 N-model 45.9 5.37 0.055 15.00

2 K-model 48.7 5.11 0.134 16.89

3 Ca-model 48.6 5.45 0.289 19.97

4 Mg-model 25.8 4.01 0.278 11.41

5 N/K-model 41.7 5.21 0.358 11.53

6 N/Ca-model 34.5 4.85 0.385 11.68

7 K/Ca-model 44.2 4.45 0.200 20.28

8 Ca/Mg-model 69.7 6.61 0.498 18.60

9 Nutrients-model 81.9 7.82 0.841 16.05

10 All variables-model 17.45 3.28 0.219 8.84

MSE, mean square error; MAE, absolute magnitude error; N, nitrogen; K, potassium; Ca, calcium; Mg, magnesium.

Table 4. Values of R2, GMER and RMSE of test data in different datasets in
artificial neural network model

Dataset Model R2 GMER RMSE

1 N-model 0.56 0.94 5.16

2 K-model 0.48 1.42 4.08

3 Ca-model 0.68 1.10 4.43

4 Mg-model 0.01 1.17 5.26

5 N/K-model 0.55 0.84 3.46

6 N/Ca-model 0.56 0.97 5.24

7 K/Ca-model 0.43 1.18 2.35

8 Ca/Mg-model 0.61 1.36 3.49

9 Nutrients-model 0.62 1.24 7.26

10 All variables-model 0.73 1.06 2.23

R2, determination coefficient; GMER, geometric mean of error ratio; RMSE, root mean square
error; N, nitrogen; K, potassium; Ca, calcium; Mg, magnesium.
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Discussion

Predictive models of yield usually use empirical-based data
(Vandendriessche, 2000; Domínguez et al., 2015) which makes
it difficult to build models for predicting yield before harvesting
(Niedbała, 2019). Forecasting models of plant yield are prognostic
tools that can be an important element in precision agriculture
(Shearer et al., 2000; Dias and Sentelhas, 2017; Mohammadi
Torkashvand et al., 2017) and the principal factor in decision-
making systems (Park et al., 2005). Artificial neural network

models have been used previously to estimate yield in other
plants, e.g. for sesame seeds (Emamgholizadeh et al., 2015) and
maize (O’Neal et al., 2002; Farjam et al., 2014). In the studies
mentioned above, the emphasis of models is on weather, soil,
and growth characteristics and the studies have mostly ignored
plant nutritional indices.

Kiwifruit, as with any other plant, can be influenced by many
factors, particularly soil fertilization and plant nutrition
(Mohammadi Torkashvand et al., 2016). It is, therefore, beneficial
to identify what parameters are most important for the aspect you

Fig. 1. Correlation and relation between measured
and predicted yield in Ca-model.
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wish to study, such as fruit/grain yield. For instance, Niedbała (2019)
used fertilization data for the development of an ANN model to pre-
dict the yield of winter rapeseed and reported plant nutrient status as
the most important parameter in predicting yield. Therefore, the
quality and quantity of yield are connected to nutrient levels and bal-
ance in leaves, as found for olives by Lahiji et al. (2018).

Between four nutrients (N, K, Ca and Mg), two models fitted
by nitrogen and calcium had a greater R2 and conformity (GMER
closer to the unit). With regards to models, a higher relationship
between Ca of leaves and yield was observed. The R2 and RMSE
values of the Mg-model were 0.01 and 5.26, respectively; but its
ratio with Ca caused to increase R2 to 0.61 and decrease RMSE
to 3.49.

Nutrients affect the quantity and quality of fruits equally
(Barker and Pilbeam, 2007). In this regard, nitrogen, zinc and cal-
cium are among the most effective factors in fruit formation
(Sharma, 2002). Without the existence of N, the protein will
not be produced. Nitrogen is used to make various plant tissues
such as wood, leaves, roots, stems, buds and, finally, flowers
and fruits (Sharples, 1980). In this regard, the incorporation of
N in the soil may affect some other elements, including Ca

content of the kiwi plant. Hence, increasing the amount of N
inside the plant can reduce the quality of kiwi fruit (Crisosto
and Kader, 1999). Calcium also plays a crucial role in pollination
and fruit formation (De Freitas and Mitcham, 2012). The exist-
ence of a large amount of Ca ions allows proper movement of
the pollen tube from style cells to seeding cells. The growth of
the pollen tube in the style is performed along the calcium gradi-
ent (Holdaway-Clarke et al., 2003).

The particular impact of K (Pacheco et al., 2008) and Mg
(Ashouri Vajari et al., 2015) on the kiwifruit yield and firmness
have been confirmed. Egilla et al. (2005) believed that increasing
K causes an increased photosynthesis; conversely, photosynthesis,
yield and dry matter decrease with decreasing K. Deficiency or
toxicity of Mg causes a decrease in yield and fruit quality
(Carvajal et al., 1999). Of course, K and Mg alone could not promote
model precision while compared with N and Ca alone. The preci-
sion of models of K and Mg was lower than models of N and Ca.

The ANN technique has been used in the estimation of differ-
ent characteristics of fruit and given satisfactory results (Chia

Fig. 2. Correlation and relation between measured and predicted yield in
Nutrients-model.

Fig. 3. Correlation and relation between measured and predicted yield in all
variables-model.
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et al., 2012). Prasad et al. (2017) proposed a model based on the
neural network to predict maximum biomass yield Centella asia-
tica using some nutrients as input data.

Concerning the greater R2 found in the Ca-model of the cur-
rent study than in the N, K and Mg-models, it indicates a further
relationship between Ca concentration in leaves and fruit yield.
According to Honarkarian and Mohammadi Torkashvand
(2018), Ca foliar spray increased dry matter and kiwi yield in
Guilan. Although N is a key element in plant growth and produc-
tion, and Ca is more effective on the resistance and quality of the
product, the present study shows that the role of Ca in estimating
kiwi yield is greater than that of N, K and Mg. Foliar spray of Ca
in 2–8 times by kiwifruit growers is a conventional operation that
can be a reason in closer relation between yield and Ca of leaves in
the harvesting stage. The same relationship between N and Ca of
kiwifruit and fruit firmness was reported by Mohammadi
Torkashvand et al. (2017). They tested and compared the per-
formance of ANN and multiple linear regressions (MLR) in pre-
dicting 6-month fruit firmness of kiwifruit with different input
datasets. They demonstrated that the optimum condition was
obtained using ANN with an RMSE of 0.539 and a correlation
coefficient of 0.85 (R2 = 0.72) when the N/Ca ratio was considered
as the input data. Prediction of 6-month fruit firmness using P1
(nutrient concentrations alone) and P3 (nutrient concentration
ratios alone) data sets resulted in the lowest R-value by ANN
and MLR, respectively (Mohammadi Torkashvand et al., 2017).

It should be noted that considering the ratio of Ca to Mg or all
the nutrients increased the accuracy of the model prediction in
the current study compared with the N variable. The maximum
R2 of the model (0.73) and the least MRSE (2.23 kg) are related
to the all variables-model.

Conclusion

The results of the current study showed that ANN models using
N, K and Mg concentration variables could predict kiwi yield. The
Ca-model was more accurate and responsive in compared with N,
K and Mg models Although consideration of all nutrients and
their ratios increased model accuracy and precision in each
index of R2, GMER and RMSE, by measuring the concentration
of Ca in the leaves alone, kiwi yield at harvest time can be pre-
dicted with a probability of 0.68; GMER and RMSE of 1.10 and
4.43. Evaluation of multivariate regression and neuro-fuzzy meth-
ods for prediction of kiwi yield and comparison with the neural
network model is recommended.
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