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Evolution of thermally stratified turbulent open
channel flow after removal of the heat source
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Evolution of thermally stratified open channel flow after removal of a volumetric
heat source is investigated using direct numerical simulation. The heat source models
radiative heating from above and varies with height due to progressive absorption.
After removal of the heat source the initial stable stratification breaks down and the
channel approaches a fully mixed isothermal state. The initial state consists of three
distinct regions: a near-wall region where stratification plays only a minor role, a
central region where stratification has a significant effect on flow dynamics and a
near-surface region where buoyancy effects dominate. We find that a state of local
energetic equilibrium observed in the central region of the channel in the initial
state persists until the late stages of the destratification process. In this region local
turbulence parameters such as eddy diffusivity kh and flux Richardson number Rf
are found to be functions only of the Prandtl number Pr and a mixed parameter
Q, which is equal to the ratio of the local buoyancy Reynolds number Reb and the
friction Reynolds number Reτ . Close to the top and bottom boundaries turbulence is
also affected by Reτ and vertical position z. In the initial heated equilibrium state the
laminar surface layer is stabilised by the heat source, which acts as a potential energy
sink. Removal of the heat source allows Kelvin–Helmholtz-like shear instabilities to
form that lead to a rapid transition to turbulence and significantly enhance the mixing
process. The destratifying flow is found to be governed by bulk parameters Reτ , Pr
and the friction Richardson number Riτ . The overall destratification rate D is found
to be a function of Riτ and Pr.

Key words: river dynamics, stratified flows, turbulent mixing

1. Introduction
When open channel flow is subjected to short-wave radiative heating from above

progressive absorption of radiation by the fluid leads to a volumetric heat source that
decreases with depth. This, combined with turbulence generation due to shear at the
solid bottom surface, leads to a non-uniform stable temperature stratification profile
in which stratification and its damping effects on turbulence are strongest close to
the surface and weaken with depth. This situation occurs in rivers, canals, estuaries
and shallow seas under the influence of solar heating. Damping of turbulence reduces
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mixing of solutes in the fluid body. In the context of the environmental flows listed
above, this can affect the levels and distribution of ecologically important chemical
species such as dissolved oxygen, carbon dioxide, contaminants and nutrients (Turner
& Erskine 2005).

For a given radiative forcing, the degree of turbulence damping that occurs increases
as the flow rate decreases due to the associated reduction in turbulence generation due
to shear at the channel bottom. Thus changes to natural flowing systems, such as the
extraction of water from river systems for human purposes for example, can lead to
reduced levels of dissolved oxygen along with increased contaminant concentrations,
causing long-term damage to ecosystems (Turner & Erskine 2005). Reduced flow rates
can also lead to acute ecological damage such as mass fish kills and cyanobacterial
outbreaks, commonly known as algal blooms. These events have been found to be
strongly associated with conditions in which high radiation levels combined with low
flow rate leads to strong and persistent stable stratification (Sherman et al. 1998;
Webster et al. 2000; Bormans, Ford & Fabbro 2005).

In previous work Williamson et al. (2015) studied the statistically steady state
reached by a turbulent open channel flow subjected to radiative heating. The radiative
heating was modelled using a volumetric heat source following the Beer–Lambert
law. The volumetric heat source acts as a sink of gravitational potential energy, so
the equilibrium flow state represents a state in which the turbulent kinetic energy
generated by shear within the channel is in global balance with a combination of
viscous dissipation and this potential energy sink. Conversion of turbulent kinetic
energy to potential energy occurs through a downwards buoyancy flux. This steady
state flow models the situation in a physical system in which solar heating has
occurred over a long enough period of time for steady state to be achieved, for
example the state of a river at the end of a sunny day.

In the current paper we study the evolution of the same flow when this heat source
is removed and both top and bottom boundaries are kept adiabatic. In terms of the
physical analogues mentioned above, this corresponds to situations in which solar
forcing is removed and there is negligible heat transfer across the upper surface
and bottom. This might occur when the sky becomes cloudy or the Sun sets while
air temperature and humidity remain relatively high. A study of the flow with a
non-adiabatic upper surface representing convective and radiative cooling that occurs
at night or as the result of the passing of a cold front is the subject of a second
paper.

With no heat input the temperature field gradually mixes and stratification weakens
progressively until it approaches a fully mixed isothermal state. This can again
be interpreted in terms of energy transfers. In this case, however, both mean flow
kinetic energy and turbulent kinetic energy are converted into potential energy. Since
the potential energy sink has been removed, potential energy increases as the flow
approaches a final isothermal state.

A key finding of the study by Williamson et al. (2015) was that the turbulence in
the central region of the steady state flow is in a state of local energetic equilibrium,
that is P ≈ B + ε, where P is shear production, B buoyancy destruction and ε

viscous dissipation of turbulent kinetic energy. As a consequence, this region exhibits
behaviour similar to that seen in studies of homogeneous stratified sheared turbulence
such as those of Shih et al. (2005) and Chung & Matheou (2012). In the destratifying
flow, we find that this region remains in energetic equilibrium as the flow evolves.
As a consequence, as the flow destratifies, it sweeps through large ranges of local
turbulence parameters such as the gradient Richardson number Ri and buoyancy
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Reynolds number Reb, making it a useful flow for determining scaling relationships
between these local turbulence parameters and local flow properties such as eddy
diffusivity kh.

Previous studies of stratified channel flow such as those of Garg et al. (2000),
Taylor, Sarkar & Armenio (2005) and Garcia-Villalba & del Alamo (2011) have
found the friction Richardson number Riτ to be a useful parameter for characterising
buoyancy effects in this context. Again, our destratifying flow sweeps through a large
range of this parameter allowing us to explore the relationships between Riτ and local
flow parameters and properties such as Reb and kh, as well as bulk flow behaviour
such as the destratification rate.

Studies of the time evolution of turbulent flows due to a change in thermal forcing
are relatively few in number. A recent experimental study by Van Buren et al. (2017)
investigates the effect on a turbulent boundary layer of decreasing wall temperature.
In their flow stratification is increasing with time, in contrast to our case where
stratification decreases.

The overarching aim of this paper is to determine a scaling relationship for the
destratification rate in terms of bulk parameters that can be predicted by large scale
forecasting models such as hydraulic river models. Global destratification rate is
dependent on vertical turbulent transport of heat within the channel, which depends
on eddy diffusivity. So our approach is to first investigate relationships between eddy
diffusivity kh and local turbulence parameters such as Ri and Reb. We then extend this
to include bulk parameters Reτ and Riτ . This leads finally to a scaling relationship
for destratification rate in terms of bulk parameters that is justifiable in terms of our
observations regarding the physical processes occurring locally within the channel.

The remainder of this paper is structured as follows. Section 2 describes the
mathematical formulation of the problem including the governing equations and
non-dimensionalisation approach used. Details of the numerical simulations including
the numerical methods used and the parameter ranges considered are given in § 3.
In § 4 we give an overview of the flow evolution and initial conditions. Section 5
shows how vertical profiles of important local turbulence parameters change as the
flow evolves. Section 6 discusses bulk flow energetics and energy transfers. Section 7
discusses relationships amongst local parameters in the central region of the channel
and introduces the mixed parameter Q = Reb/Reτ while § 8 addresses the dynamics
of the near-surface region. In § 9 we compare our data with various scalings based
on Monin–Obukhov theory while § 10 discusses scalings between local turbulence
parameters and the friction Richardson number Riτ . Finally in § 11 we derive a
scaling relationship for destratification rate in terms of bulk parameters and present
results to support this model.

2. Problem formulation
2.1. The initial heated equilibrium state flow

We use the framework for the radiatively heated equilibrium state flow described by
Williamson et al. (2015). A schematic of the flow is shown in figure 1. It is an
open channel flow with an adiabatic, no-slip wall at the lower surface, an adiabatic,
free-slip impermeable boundary at the upper surface and periodic boundaries in the
streamwise and spanwise directions. The flow is driven by a constant pressure gradient
in the streamwise direction and radiative heating is represented by a depth-dependent
volumetric heat source q̃r(z̃) following the Beer–Lambert law,

q̃r(z̃)= Ĩsα̃e(z̃−h̃)α̃. (2.1)
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FIGURE 1. Schematic of the radiatively heated equilibrium flow.

Here Ĩs is the short-wave radiative heat flux through the upper surface, α̃ the
attenuation coefficient due to turbidity and h̃ the channel depth. Here and throughout
this paper a tilde ·̃ indicates a dimensional quantity, whereas a variable with no tilde
is non-dimensional.

The temperature field φ̃ is decomposed into a time varying mean and a statistically
steady fluctuating component,

Φ̃(x̃, t̃)= Φ̃v(t̃)+ φ̃(x̃, t̃). (2.2)

Here Φ̃v(t̃) is the domain-averaged temperature at time t̃, which increases with time
according to

dΦ̃v

dt̃
=

Q̃r

ρ̃bc̃p
, (2.3)

where ρ̃b and c̃p are a reference density and the specific heat of the fluid, and Q̃r is
the domain averaged radiative heat source,

Q̃r =
1

h̃

∫ h̃

0
q̃r(z̃) dz̃. (2.4)

The heat source is non-dimensionalised as

qr(z)=
q̃r(z̃)− Q̃r

Q̃N

, (2.5)

where

Q̃N =
1

h̃2

∫ h̃

0
(Q̃r − q̃r(z̃))(h̃− z̃) dz̃. (2.6)

The temperature fluctuation field is non-dimensionalised as

φ(x, t)=
Φ̃(x̃, t̃)− Φ̃v(t̃)

Φ̃N
, (2.7)
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where

Φ̃N =
Q̃N h̃
ρ̃bc̃pũτ

. (2.8)

Here ũτ is the friction velocity associated with the shear stress on the lower solid
surface.

Williamson et al. (2015) define a non-dimensional bulk stability parameter,

λ= h̃/L̃, (2.9)

where L̃ is a bulk Obukhov length scale defined as

L̃=
ũ3
τ

g̃β̃ Ĩs/ρ̃bc̃p

(
1
2
−

1

α̃h̃

)−1

. (2.10)

Here g̃ is gravitational acceleration and β̃ the coefficient of thermal expansion, which
relates fluid density ρ̃ to temperature through dρ̃/ρ̃b=−β̃ dφ̃. This formulation of the
Obukhov length scale results from the current context in which the heat flux into the
domain takes the form of a volumetric heat source given in (2.1), which leads to

Q̃N ≈
Ĩs

h̃

(
1
2
−

1

α̃h̃

)
. (2.11)

Combining this with (2.8) gives an alternative expression for λ,

λ=
β̃g̃Φ̃N h̃

ũ2
τ

, (2.12)

which has the same form as a friction Richardson number.
The heated equilibrium state flow is governed by the Oberbeck–Boussinesq form of

the equations for conservation of mass, momentum and energy for an incompressible
fluid. These are written in non-dimensional Cartesian tensor form as

∂uj

∂xj
= 0, (2.13)

∂ui

∂t
+
∂uiuj

∂xj
=−

∂p
∂xi
+ ν

∂2ui

∂x2
j
+ δi1 + λ0φδi3, (2.14)

∂φ

∂t
+
∂φuj

∂xj
= σ

∂2φ

∂x2
j
+ qr. (2.15)

Here ui are the Cartesian components of the velocity vector u, p the pressure, xi the
components of the position vector x, t time, ν kinematic viscosity and σ thermal
diffusivity; δij represents the Kronecker delta. Summation over repeated indices
is assumed. The flow is driven by a constant uniform pressure gradient, δi1, in
the streamwise direction; qr is the radiative volumetric heat source given in (2.1)
and (2.5).
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The variables are non-dimensionalised using the following scheme,

u=
ũ

ũτ ,0
, φ =

φ̃

Φ̃N,0
, p=

p̃
ρ̃bũ2

τ ,0
, x=

x̃

h̃0

, t=
ũτ ,0 t̃

h̃0

,

ν =
ν̃

ũτ ,0h̃0

≡
1

Reτ ,0
, σ =

σ̃

ũτ ,0h̃0

≡
1

Reτ ,0Pr
.

 (2.16)

The subscript 0 indicates use of the characteristic length, velocity and temperature
scales for the equilibrium state, that is h̃0, ũτ ,0 and Φ̃N,0, respectively. This distinction
is necessary because in the subsequent destratifying flow the length scale h̃ and
velocity scale ũτ will typically vary with time.

Hence, for the equilibrium state, the friction Reynolds number is

Reτ ,0 =
ũτ ,0h̃0

ν̃
, (2.17)

the molecular Prandtl number,

Pr=
ν̃

σ̃
, (2.18)

the stability parameter,

λ0 =
β̃g̃Φ̃N,0h̃

ũ2
τ ,0

, (2.19)

and the characteristic temperature scale,

Φ̃N,0 =
Q̃N,0h̃0

ρ̃bc̃pũτ ,0
. (2.20)

Boundary conditions for the bottom (z= 0) and top (z= 1) boundaries are

z= 0 : u= v =w= 0;
∂φ

∂z
= 0, (2.21a,b)

z= 1 :
∂u
∂z
=
∂v

∂z
= 0; w= 0;

∂φ

∂z
= 0. (2.22a−c)

Boundary conditions for all lateral boundaries are periodic.
The equilibrium state flow is defined by specifying Reτ ,0, λ0, Pr and a non-

dimensional turbidity parameter α0 = α̃h̃0.
A random realisation of the equilibrium state flow is used as the initial conditions

of the destratifying flow.

2.2. The destratifying flow
When a physical open channel flow evolves from an initially stratified state to a final
neutrally stratified state, changes in the balance between turbulent and laminar shear
stresses within the channel lead to changes in the mean velocity profile, resulting
in an increase in the coefficient of friction, Cf = 2(ũτ/Ũb)

2. Here Ũb is the bulk
flow velocity. In a physical open channel flow, the flow will typically respond with a
change in height and deceleration of the flow.
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In our simulations the height h is fixed and the flow is driven by a constant pressure
gradient. As a result, an increase in Cf leads to an increase in the friction velocity,
leading to an imbalance between wall shear stress and the applied pressure gradient.
Over time, this imbalance causes the flow to gradually decelerate, reducing the friction
velocity, until the force balance is restored.

In order to model the physical flow, the equations for the simulations of the
destratifying flow are non-dimensionalised in terms of a time varying friction velocity
ũτ (t̃) and height h̃(t̃). The characteristic temperature scale used is fixed at the scale
of the initial equilibrium state Φ̃N,0. This gives governing equations

∂uj

∂xj
= 0, (2.23)

∂ui

∂t
+
∂uiuj

∂xj
=−

∂p
∂xi
+ ν

∂2ui

∂x2
j
+ δi1 + γφδi3, (2.24)

∂φ

∂t
+
∂φuj

∂xj
= σ

∂2φ

∂x2
j
, (2.25)

where

u=
ũ
ũτ
, φ =

φ̃

Φ̃N,0
, p=

p̃
ρ̃bũ2

τ

, x=
x̃

h̃
, ∂t=

ũτ∂ t̃

h̃
, t̂=

ũτ ,0 t̃

h̃0

,

ν =
ν̃

ũτ h̃
≡

1
Reτ

, σ =
σ̃

ũτ h̃
≡

1
ReτPr

, γ =
β̃g̃Φ̃N,0h̃

ũ2
τ

.

 (2.26)

The boundary conditions are the same as those for the equilibrium state flow.
Due to the time variation of the velocity and length scales used to

non-dimensionalise (2.23)–(2.25), integrating them in time is problematic. Instead, we
have chosen to solve a dynamically equivalent set of equations and then renormalise
the solution to give the solution to the equations above. This procedure is described
in appendix A.

Whilst (2.23)–(2.25) were not solved directly, they are useful in the context of
scaling analysis because they give the time rate of change of the dependent variables,
u, p and φ, relative to a characteristic friction time scale t̃τ = h̃/ũτ determined from
flow conditions at a particular instant in ‘measured time’, t̂. In our simulations,
measured time, t̂, is dimensional time t̃ normalised in terms of the initial friction
velocity and height as shown in (2.26). Thus, in the following, t is used only within
differentials ∂t and dt, while t̂ refers to the point in time within the process at which
a particular set of flow conditions occur.

In place of the stability parameter λ0, the buoyancy term of the momentum
equations for the destratifying flow (2.24) uses γ , which is defined as

γ =
β̃g̃Φ̃N,0h̃

ũ2
τ

. (2.27)

In the destratifying flow, λ0 no longer has the same function as it does in the
equilibrium state equations. In the equilibrium state equations, λ0, through its
dependence on QN , couples the heat source qr in the temperature equation to the
buoyancy term λ0φ in the momentum equations. At the same time it is also a function
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of the wall shear stress via friction velocity ũτ ,0. Through these interconnections it
determines the stability of the equilibrium state flow. In the transient flow simulations
this coupling no longer exists since qr has been removed and φ is normalised by
Φ̃N,0 frozen at its equilibrium state value.

Like λ, γ also has a form similar to the friction Richardson number,

Riτ =
β̃g̃1φ̃h̃

ũ2
τ

, (2.28)

where 1φ̃ is the difference between the mean temperature at the top and bottom of
the channel. Riτ can be reformulated in terms of our non-dimensional variables as

Riτ =
γ1φh

u2
τ

. (2.29)

The friction Richardson number Riτ is a bulk parameter that represents the ratio
between stabilising effects of temperature stratification and the destabilising effects of
shear at the wall. At high Riτ the effects of temperature stratification are dominant and
the flow is strongly affected by buoyancy. At low Riτ the effect of shear dominates
and the flow is only weakly affected by buoyancy. The destratification process involves
moving from an initial state in which the flow is strongly affected by buoyancy to a
final state in which buoyancy effects are insignificant.

The parameter Riτ has been found to be a useful bulk parameter for characterising
buoyancy effects in other types of stratified channel flow (see Garg et al. 2000; Garcia-
Villalba & del Alamo 2011, for example). Based on this, and given that λ determines
the stability of the heated equilibrium flow and has a form similar to Riτ , we suggest
that Riτ plays the equivalent function in the destratifying flow.

Thus the proposed governing parameters for the destratifying flow are Reτ , Riτ , Pr
with α0 and λ0 affecting the flow only via the initial conditions.

3. Numerical simulations
A set of initial states covering a range of turbulence and stability conditions was

generated by running direct numerical simulations (DNS) of the heated equilibrium
state flow solving (2.13)–(2.15). Equilibrium states were generated for the parameter
combinations shown in table 1. Whilst we have proposed that Riτ takes the place of
λ0 as a governing parameter for the destratifying flow, since it is not a governing
parameter for the equilibrium state flow it was not possible generate initial conditions
corresponding to specific values of Riτ . Instead we have varied λ0. The initial values
of the friction Richardson number Riτ ,0 are also shown.

Each simulation was run for an initial spin-up period of t= 0–30 for the λ0 = 0–1
cases and t = 0–40 for the λ0 = 2 cases. By these times bulk parameters such as
wall shear stress, bulk and mean velocities and the temperature difference between
the upper and lower surfaces had reached statistically steady state. Full realisations of
the flow state were then recorded over a further 20 time units at an interval of 0.5
time units to allow the calculation of equilibrium state statistics where required.

Using each of these equilibrium states as the initial conditions, a set of transient
simulations was run solving (2.23)–(2.25). Realisations of the transient flow were
recorded at intervals of 0.1 time units. The total integration time for transient
simulations depends on the initial conditions and ranged between approximately
5 and 15 time units.
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Case Reτ ,0 Reτ ,max λ0 Riτ ,0 Pr α0

1 540 570 0.5 30 0.71 8
2 540 610 1 101 0.71 8
3 540 660 2 284 0.71 8
4 225 285 2 175 0.71 8
5 360 445 2 233 0.71 8
6 360 410 1 82 0.71 8
7 360 410 1 64 0.5 8
8 360 415 1 117 1 8
9 360 410 1 74 0.71 4
10 360 410 1 97 0.71 16
11 360 360 0 0 0.71 8

TABLE 1. Simulation parameters defined in terms of initial heated equilibrium state.

Grid Reτ ,0 Nx ×Ny ×Nz Lx × Ly × Lz

A 225 480× 240× 162 2π×π× 1
B 360 768× 384× 200 2π×π× 1
C 540 1152× 576× 264 2π×π× 1
D 360 1152× 576× 264 2π×π× 1

TABLE 2. Grids and domain sizes used for each Reynolds number.

As discussed above, the friction velocity increases as the flow destratifies and
adapts to the changes in the turbulent shear stress profile. As a result the actual
friction Reynolds number of the time evolving simulations increases. This increase is
significant, especially for the high λ0 cases. The maximum Reynolds number reached
in each case is shown in table 1.

Simulations were performed using the PUFFIN code (Kirkpatrick 2002). The
equations are discretised in space using a finite volume formulation on a non-uniform,
staggered, Cartesian grid. The grid is uniform in the x and y directions. Here, the
grid cell sizes in viscous wall units are 1x+0 =1y+0 = 2.95. In the z direction the grid
is stretched from 1z+0 = 0.36 at the bottom boundary, to 1z+0 = 2.2 for z = 0.4–0.8
and then down to 1z+0 = 0.9 at the upper boundary. These values are based on the
initial Reynolds number of the simulation. For λ0 = 2 cases, in which the friction
velocity increases by approximately 20 % during the simulation, these ∆+ values will
also increase by approximately 20 %. The number of cells in each direction depends
on Reτ ,0 and is given in table 2.

A domain with dimensions 2π × π × 1 in the x, y and z directions, respectively,
was used for all simulations. Williamson et al. (2015) present results for the heated
equilibrium flow on domains of size up to 8π× 4π× 1. The differences between the
results on the 8π× 4π× 1 and 2π×π× 1 domain for the flow parameters that will
be discussed in this paper were found to be negligible.

The spatial discretisation uses fourth-order central differences for the advection
terms in the momentum and energy equations. The fourth-order interpolations are
computed using the scheme of Hokpunna & Manhart (2010). All other terms in
the momentum, energy and pressure correction equations are discretised using
second-order central differences. The equations are integrated in time using a
second-order accurate fractional step method. The momentum and energy equations
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are integrated using a second-order hybrid Adams–Bashforth/Adams–Moulton scheme
in which the diffusion terms are solved implicitly while all other terms are solved
explicitly. Mass conservation is enforced using the pressure-correction method of
van Kan (1986) and Bell, Colella & Glaz (1989). The time step 1t was adjusted
automatically to ensure that the maximum CFL (Courant–Friedrichs–Lewy) number
(1tui/1xi) in the domain remained in the range 0.18–0.2. Here 1xi is the cell width
in the direction of the velocity component ui.

Resolution relative to the Kolmogorov scale η can be estimated for Case 3 from
the plot of Kolmogorov scale given in figure 9. For this case the grid size in the x
and y directions is 1x=1y= 5.5× 10−3 while in the z direction the grid varies from
1z= 7× 10−4 at the bottom boundary, to 1z= 4× 10−3 for z= 0.4–0.8 and then to
1z= 1.7× 10−3 at the upper boundary. Vertical profiles of the Kolmogorov scale for
the equilibrium and time-evolving flows for Case 3 (figure 9) show that the minimum
values of η range from η≈ 2.2× 10−3 close to the bottom boundary to η≈ 4× 10−3 in
the central region of the channel and η≈ 8× 10−3 close to the top surface. Thus the
grid cell size relative to Kolmogorov scale ranges from approximately 1x/η=1y/η≈
2 close to the bottom boundary, to 1x/η=1y/η≈ 1.5 in the central region and then
1x/η = 1y/η ≈ 0.5 close to the upper surface. In the vertical direction 1z/η ≈ 0.3
close to the bottom boundary, 1z/η ≈ 1 in the central region and 1z/η ≈ 0.2 close
to the upper surface. Similar ratios apply to the other cases. Since the highest Prandtl
number case uses Pr= 1, the Batchelor scale, given by λB= η/Pr1/2 > η for all cases.
With our fourth-order spatial discretisation scheme and this degree of resolution the
simulations are expected to resolve scales of motion of the order of the Kolmogorov
and Batchelor scales.

To check the accuracy of the solutions Case 4 was rerun with Grid D which has
spatial and temporal resolution one and a half times higher than that used for the
remaining simulations. The increased resolution was found to have an indiscernible
effect on the results indicating that the errors due to the numerical discretisation
schemes with the grids used are negligible.

4. Overview of the flow evolution

Figures 2 and 3 show the time evolution of the temperature and vorticity fields for
Case 3 for which Reτ ,0= 540; λ0= 2; Pr= 0.71; α0= 8. The temperature fields are at
different scales in order to clearly show features. The vorticity field contours show the
absolute value of the vorticity vector, |ω|. The initial temperature state shows that the
channel is weakly stratified in the lower half of the channel and becomes progressively
more strongly stratified as the upper surface is approached. In the initial state the
vorticity field exhibits characteristic features of turbulent channel flow up to a height
of z ≈ 0.5, whereas in the region z = 0.5–0.8 the turbulence is intermittent, and the
strongly stratified region above z= 0.8 is essentially laminar. As the flow evolves the
turbulence in the flow becomes noticeably more energetic as the stratification breaks
down and the temperature field mixes through the channel. In particular, the flow for
t̂ = 1.5–7 contains a large number of shear instabilities that have features, such as
overturns in the temperature field and braided cat’s eyes in the vorticity field, that are
qualitatively similar to Kelvin–Helmholtz instabilities (see Smyth & Moum 2000, for
example). At the end of the flow evolution the flow returns to a less energetic state.

Figure 4 shows the buoyancy profiles for each of the initial equilibrium states. Here
buoyancy is calculated as λ0〈φ(z)−φb〉, where φb is the temperature at the bottom of
the channel and the angled brackets 〈 · 〉 indicate averaging over both horizontal planes

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

54
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.543


366 M. P. Kirkpatrick, N. Williamson, S. W. Armfield and V. Zecevic

1.0
0.8
0.6
0.4
0.2

0

z

1.0
0.8
0.6
0.4
0.2

0

z

1.0
0.8
0.6
0.4
0.2

0

z

1.0
0.8
0.6
0.4
0.2

0

z

1.0
0.8
0.6
0.4
0.2

0

z

1.0
0.8
0.6
0.4
0.2

0

z

1.0
0.8
0.6
0.4
0.2

0

z

t = 0

t = 1.5

t = 3

t = 4.5

t = 7

t = 9

t = 13.5

^

^

^

^

^

^

^

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIGURE 2. (Colour online) Evolution of the temperature field in the x–z plane during the
destratification process for Case 3: Reτ ,0= 540; λ0= 2; Pr= 0.71; α0= 8. The colour scale
varies in order to highlight features. Flow is from left to right.

and time. Increasing the stability parameter λ0 of the equilibrium state increases the
surface buoyancy directly via the presence of λ0 in λ0〈φ− φb〉. It is further increased
indirectly due to the increased stability. In the initial equilibrium state the radiative
heat source must be balanced by the combination of turbulent and molecular heat
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FIGURE 3. (Colour online) Evolution of the vorticity field in the x− z plane during the
destratification process for Case 3: Reτ ,0= 540; λ0= 2; Pr= 0.71; α0= 8. The colour scale
is the same in all images. Flow is from left to right.

fluxes in order to maintain a steady state. As λ0 increases, the turbulent heat flux in
the near-surface region decreases. As a result the vertical temperature gradient must
increase in order to provide the increased molecular heat flux required to balance the
radiative heat source.
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FIGURE 4. (Colour online) Equilibrium state buoyancy profiles for Cases 1–10.

Increasing Reynolds number Reτ ,0 also increases the surface buoyancy. This can be
understood by considering the case of constant ũτ ,0 and h̃0. In this situation increasing
Reτ ,0 implies decreasing molecular diffusivity. As with the indirect effect of λ0 above,
a larger temperature gradient is then required in order to provide the necessary
molecular heat flux. Increasing Pr leads directly to lower molecular diffusivity, again
requiring a larger temperature gradient, and hence increasing surface buoyancy and
stability.

The turbidity parameter α0 changes the vertical distribution of the radiative heat
source. As α0 increases, the absorption of radiation close to the surface increases while
less radiation is absorbed in lower layers leading to a higher temperature gradient and
increased stability close to the surface.

We refer the reader to Williamson et al. (2015) for a detailed discussion of the
turbulence characteristics of the heated equilibrium flow states.

After removal of the heat source the flow evolves over time from an initial stratified
state toward a fully mixed state with a uniform temperature. Figure 5 shows this
destratification process in the form of time series of the friction Richardson number
Riτ . Clearly the initial conditions affect the time required for destratification of the
channel to occur, with the time required increasing as the friction Richardson number
in the initial state Riτ ,0 increases. In the following sections we will discuss the effect
of the initial state, determined by Reτ ,0, λ0, Pr and α0, as well as the governing flow
parameters, Reτ , Riτ and Pr on the evolution of the flow during the destratification
process and the resultant effects on destratification rate.
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FIGURE 5. (Colour online) Value of Riτ as a function of time for Cases 1–10.

5. Vertical profiles

Vertical profiles showing the transient response of selected flow statistics for Case 3
(Reτ ,0= 540; λ0= 2; Pr= 0.71; α0= 8) are presented in figure 6. Statistics are shown
for the initial state, and then at five times during the evolution of the flow. The times
chosen correspond approximately to the flow field visualisations shown in figures 2
and 3. The statistics for the initial equilibrium state were calculated over 30 time
units with realisations sampled at 0.5 time unit intervals. This was not possible for the
statistics measured during the transient flow, however, in order to improve convergence
of the statistics the values given in the plots were obtained by averaging over intervals
of one time unit, using flow realisations sampled at intervals of 0.1 time units in
addition to averaging over horizontal planes.

Panels (a,b) show 〈û〉 and 〈u〉, the mean streamwise velocity normalised in terms of
the initial friction velocity uτ ,0, and time-varying friction velocity uτ respectively. The
former is the velocity that is actually generated in the simulation before the results are
renormalised (see appendix A). Panel (c) shows mean temperature 〈φ〉. Panels (d,e)
show profiles of turbulent shear stress 〈u′w′〉 and turbulent heat flux 〈φ′w′〉. Panel ( f )
shows the non-dimensional vertical eddy diffusivity,

kh =
−〈φ′w′〉
∂〈φ〉/∂z

, (5.1)
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FIGURE 6. Vertical profiles showing the transient response of selected flow statistics at
various times for Case 3. Here the thin dotted line corresponds to kh = σ , while the thin
dashed line corresponds to z= 0.75.

which is related to the dimensional eddy diffusivity,

k̃h =
−〈φ̃′w̃′〉

∂〈φ̃〉/∂ z̃
, (5.2)

through

kh =
k̃h

ũτ h̃
. (5.3)

Here fluctuating quantities relative to the horizontal mean 〈 · 〉 are denoted with primes,
(for example w′ and φ′).

As the flow evolves, the initial temperature stratification is broken down by turbulent
mixing and viscous diffusion and the system approaches a state with a uniform mean
temperature of 〈φ〉 = 0, corresponding to zero total potential energy. The downwards
turbulent heat flux has a maximum in the range z = 0.5 − 0.7. This region of low
turbulent heat flux divergence corresponds to the region in which the temperature
remains relatively constant at 〈φ〉 = 0 throughout the flow evolution.

In the initial state, the relatively high degree of stratification in the upper portion
of the channel leads to reduced turbulent mixing in this region. This is apparent in
the profiles of 〈u′w′〉, 〈φ′w′〉 and kh, which show a notable depression in magnitude
in the near-surface region. As a result, the momentum transport required to balance
the streamwise pressure gradient in this region must be provided predominantly by
viscous shear, leading to a substantial increase in the mean streamwise velocity close
to the surface relative to the final unstratified flow.
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FIGURE 7. Transient response of dominant terms in the turbulent kinetic energy equation
for Case 3. Legend as for figure 6.

In the early stages of the destratification process the turbulent shear stress 〈u′w′〉
increases substantially, before gradually decreasing to the neutral flow profile. As can
be seen from (a), this change in the balance between turbulent and viscous shear leads
to a redistribution of velocity over the height of the channel, with the near-surface
region slowing down, while the velocity close to the bottom surface increases. It is this
change that leads to the increase in the coefficient of friction Cf and friction velocity
uτ . The inflected initial velocity profile implies a surplus of mean flow kinetic energy,
K(z, t̂)= 1/2〈u〉2(z, t̂), in the initial flow relative to the final state.

The turbulent heat flux −〈φ′w′〉 also increases substantially, particularly in the upper
half of the channel before gradually decreasing again as the process proceeds. As will
be discussed in detail below, −〈φ′w′〉 provides a pathway for conversion of mean flow
kinetic energy and energy due to the pressure gradient into potential energy. The eddy
diffusivity kh increases substantially across the channel as the flow destratifies due to
the increase in −〈φ′w′〉 relative to the mean temperature gradient.

Figure 7 show the transient response of the dominant terms in the turbulent kinetic
energy equation. For this flow, which is homogeneous on x− y planes, the turbulent
kinetic energy equation can be written as

∂k
∂t
=
∂

∂z

[
−

1
2
〈w′u′iu

′

i〉 − 〈w
′p′〉 + 2ν〈si3u′i〉

]
− 〈u′w′〉

∂〈u〉
∂z
+ γ 〈φ′w′〉 − 2ν〈sijsij〉, (5.4)
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where turbulent kinetic energy k = 1/2〈u′iu
′

i〉 and sij is the strain rate due to velocity
fluctuations given by

sij =
1
2

(
∂u′i
∂xj
+
∂u′j
∂xi

)
. (5.5)

For this flow the dominant terms are the unsteady term Uk = ∂k/∂t, transport due
to turbulent fluctuations T =−1/2∂〈w′u′iu

′

i〉/∂z, shear production P=−〈u′w′〉∂〈u〉/∂z,
downwards buoyancy flux (or buoyancy destruction) B=−γ 〈φ′w′〉 and dissipation rate
ε= 2ν〈sijsij〉. Panels (a–f ) show P, ε, B, T , Uk and k, while in (g–j) the terms P, B,
T and Uk are presented as ratios of B+ ε.

As discussed above, conversion of turbulent kinetic energy into potential energy
occurs through the downward buoyancy flux −γ 〈φ′w′〉 or equivalently the buoyancy
destruction term B. The remainder of the turbulent kinetic energy is converted into
internal energy through viscous dissipation ε. In a real flow this increase in internal
energy can be viewed as raising the potential energy of the system (see Winters et al.
1995). The Oberbeck–Boussinesq form of the governing equations used for this study
neglects the transfer of energy from viscous dissipation to internal energy, so there is
no increase in temperature and hence Ep as a result of dissipation.

In the initial state, shear production, buoyancy destruction and viscous dissipation
are in balance across a region from z= 0.2–0.8 indicating that this region is in a state
of local energetic equilibrium. This balance can be seen most clearly in the profile of
P/(B+ ε) which is approximately equal to one in this region implying P≈ B+ ε.

Sudden removal of the radiative heat source, or potential energy sink, at the start
of the transient simulation leads to a step change in the energy balance within the
channel, resulting in a rapid increase in turbulent kinetic energy, particularly in the
near-surface region, during the initial stage of the flow evolution (t̂= 0–3). Turbulent
kinetic energy then remains relatively constant at this elevated state over the period
t̂ = 3–9.5 before decreasing again towards neutral conditions in the late stages of
the process. The rapid increase in k during t̂ = 0–3 is reflected in the profile of
the unsteady term Uk at t̂ = 1.5 shown in (e), which reaches a maximum value
of approximately 0.75 at this time before returning to values close to zero for the
remainder of the flow evolution. As seen from the profile of Uk/(B + ε) in ( j), in
the central region of the channel even this maximum value is small relative to other
terms.

The dominant budget terms, P, ε and B, in the central and upper part of the
channel also increase during the initial period (t̂= 1.5) as shown in (a–c). The profile
of P/(B+ ε) in (g) shows a distinct increase above the value of 1 for z= 0.75–0.9
indicating a surplus of shear production in this region, which accounts for the
significant Uk at this time. This shear production can be seen as a distinct band
of high vorticity in the flow field visualisations shown in figure 3. By t̂ = 3, local
energetic equilibrium has been restored and the local equilibrium region P/(B+ ε)≈ 1
has extended up to approximately z = 0.9. The region z = 0.2–0.9 then remains in
local equilibrium until t̂ ≈ 8 (see § 8) after which the extent gradually starts to
decrease as turbulent transport T starts to dominate above z= 0.7.

Thus, when the radiative heat source is removed, the flow ‘relaxes’ rapidly into
a new state in which the laminar surface layer becomes turbulent and the region of
energetic equilibrium extends up close to the surface. This new state is reached very
early in the destratification process (by t̂= 3 for Case 3). The fact that a large portion
of the flow remains in local equilibrium for most of the flow evolution implies that
local turbulent fluxes should be a function of global gradients in these regions. This
is explored further below.
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The normalised buoyancy flux B/(B+ ε) shown in figure 7(h) is equivalent to the
generalised form of the flux Richardson number defined by Ivey & Imberger (1991)
as

Rf = B/(B+ ε). (5.6)

Ivey & Imberger (1991) interpret this as the ratio of the rate of conversion of
turbulent kinetic energy k into background potential energy Eb, to the rate at which
net mechanical energy is being made available for turbulence generation. As such it is
often considered to represent the local mixing efficiency. Venayagamoorthy & Koseff
(2016) point out, however, that this definition does not correctly account for the effect
of counter-gradient fluxes that occur in strongly stratified flows. An example of this
can be seen in (h), which shows that Rf is negative in the strongly stratified region
close to the surface in the early stages of the flow evolution. When the flow is in
local equilibrium, Rf is equal to the standard form of the flux Richardson number,
defined as the ratio of buoyancy destruction to shear production, that is

Rif = B/P. (5.7)

The profiles of Rf show a number of distinct regions. In the initial equilibrium state
Rf is approximately constant over the range z = 0.4–0.75, with a value Rf ≈ 0.17.
This value of Rf persists until the late stages of the flow evolution and is similar
to the critical value Rf ,c ≈ 0.18–0.2 estimated from experimental measurements by
Britter (1974) and the theoretically derived value of Rf ,c∼ 0.15 determined by Ellison
(1957). Thus we consider Rf ,c = 0.17 to represent the critical value for our flow. In
this central region, vertical turbulent motions are constrained predominantly by the
buoyancy length scale, lb, so that turbulent fluxes are unaffected by height z. This
corresponds to the ‘z-less’ scaling regime in Monin–Obukhov theory.

In the region close to the bottom wall, proximity to the solid boundary places an
additional spatial constraint on turbulent motions, so that turbulent fluxes become a
function of both lb and z. This can be seen in the profiles. In the equilibrium state
and for times up to t̂ = 6, Rf decreases approximately linearly with z for z < 0.4.
For later times the region affected by z expands upwards. As the flow destratifies, lb

increases and its constraining effect on turbulent motions decreases accordingly. As a
result, the region in which z is the dominant length scale expands. (Please note that in
the discussion above we have used lb to denote a generic buoyancy length scale. We
will provide more precise definitions of a number of buoyancy length scales below.)

In the equilibrium state, in the region z = 0.75–0.85, Rf increases to a peak of
Rf ≈ 0.2. As can be seen from figure 6, this is the region where both velocity shear
and temperature gradient are highest. Visualisations of the equilibrium state flow fields
in (a) of figures 2 and 3 show that this region contains isolated incursions by shear
instabilities resembling Kelvin–Helmholtz billows. A similar peak of Rf ≈ 0.21 is seen
in the profile at t̂ = 1.5. In this case it is slightly higher at z = 0.9. At this time
figures 2 and 3 show the presence of an intense layer of shear instabilities for z =
0.75–0.85 with incursions up to z = 0.9. By t̂ = 3 the peak in Rf is very small and
the visualisations show vorticity extending to the upper surface of the channel, and
for all later times the peak has disappeared. Winters et al. (1995) found that pure
Kelvin–Helmholtz (K–H) instabilities lead to a significant increase in Rf . Thus the
peak in Rf seen in the early stages of our flow can be attributed to incursions by
Kelvin–Helmholtz-like instabilities occurring at the intermittency boundary between
the turbulent flow in the body of the channel and laminar surface layer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

54
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.543


374 M. P. Kirkpatrick, N. Williamson, S. W. Armfield and V. Zecevic

z

z

20 40 60 80

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

200 400 600 800 200 400 600 800

0.5 1.0

-100 0 100 -40 0 40

-0.5 0 0.5 1.0 -1.0 -0.5 0 0.5

Pƒ ç UƒTƒ

Pƒ/ç¯ƒ�ƒ�˘ Tƒ/ç Uƒ/ç

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 8. Transient response of dominant terms in the temperature variance equation for
Case 3. Legend as for figure 6.

Figure 8 shows the transient response of dominant terms in the temperature variance
equation for Case 3. For our flow the temperature variance equation can be written
as

∂〈φ′2〉

∂t
=
∂

∂z

[
−〈w′φ′2〉 + σ

∂〈φ′2〉

∂z

]
− 2〈φ′w′〉

∂〈φ〉

∂z
− 2σ

〈
∂φ′

∂xj

∂φ′

∂xj

〉
. (5.8)

Similar to the turbulent kinetic energy equation, for this flow the dominant terms are
the unsteady term Uφ = ∂〈φ

′2
〉/∂t, turbulent transport Tφ = −∂〈w′φ′2〉/∂z, production

Pφ =−2〈φ′w′〉∂〈φ〉/∂z and dissipation rate χ = 2σ 〈(∂φ′/∂xj)
2
〉. Panels (a–e) show Pφ ,

χ , Tφ , Uφ and 〈φ′2〉, while in ( f –h) the terms Pφ , Tφ and Uφ are presented as ratios
of χ .

As with the turbulent kinetic energy, a rapid increase in temperature variance 〈φ′2〉
is seen during the initial stage (t̂= 0–3) particularly in the near-surface region as this
region transitions from a laminar to a turbulent state. This is reflected in a region
of positive Uφ in the upper half of the channel at t̂ = 1.5. This burst of activity
is short-lived, however, with the peak 〈φ′2〉 decreasing substantially by t̂ = 3 and a
corresponding negative Uφ at this time. After t̂= 3 the temperature variance decreases
progressively until it is essentially zero at the end of the destratification process.
Unlike turbulent kinetic energy, with adiabatic boundaries and no internal heat source,
the only source of production of temperature variance is the internal temperature
gradient. As the flow destratifies this temperature gradient decays leading to a decay
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FIGURE 9. Transient response of turbulent length scales and related parameters for Case
3. Legend as for figure 6. (d) The thin dashed lines correspond to Ri= 0.18 and Ri= 1/4.
(e) The thin dashed line corresponds to ReS = 1. ( f ) The thin dashed line corresponds to
Reb = 5, while the two thin dotted lines correspond to Reb = 7 and Reb = 100. The thin
dot-dashed lines (d–f ) correspond to z= 0.76 and z= 0.86.

in the production term Pφ . Throughout the process there is turbulent transport Tφ out
of the central region of the channel and into the near-wall and near-surface regions.

During the period up to t̂ = 9.5 the production and dissipation terms remain in
balance so that Pφ/χ ≈ 1 over the region z = 0.25–0.9, similar to that seen for the
turbulent kinetic energy budget terms. This is somewhat surprising considering the
decay in 〈φ′2〉; however, Pφ and χ remain large in comparison with Tφ and Uφ during
this period so the decay in 〈φ′2〉 is due to a relatively small difference in two large
terms. In the late stages of the process this local equilibrium is lost as dissipation
exceeds production, χ > Pφ .

Figure 9 shows profiles of turbulence length scales and some non-dimensional
parameters that can be written in terms of these length scales. Panels (a–c) show:
the Kolmogorov scale η, the Corrsin scale lC, and the Ozmidov scale lO, which are
defined as

η=

(
ν3

ε

)1/4

, lC =

( ε
S3

)1/2
, lO =

( ε
N3

)1/2
. (5.9a−c)

The Kolmogorov scale characterises the smallest scales of turbulence, while the
Corrsin scale is indicative of the scale above which turbulence is affected by
background shear, and the Ozmidov scale, the scale above which turbulence is
affected by buoyancy.
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Panel (d) shows the gradient Richardson number

Ri=N2/S2, (5.10)

where the buoyancy frequency N is given by N2
= γ ∂〈φ〉/∂z, and mean vertical shear,

S = ∂〈u〉/∂z. Panel (e) shows the shear Reynolds number (see Chung & Matheou
2012),

ReS =
ε

νS2
, (5.11)

and panel ( f ) the local buoyancy Reynolds number (see Gargett, Osborn & Nasmyth
1984; Smyth & Moum 2000),

Reb =
ε

νN2
. (5.12)

As discussed by Brethouwer et al. (2007) and Chung & Matheou (2012), it is
useful to interpret these three non-dimensional parameters as ratios of turbulence
length scales, that is,

Ri=
(

lC

lO

)4/3

, ReS =

(
lC

η

)4/3

, Reb =

(
lO

η

)4/3

. (5.13a−c)

Typically lO > lC >η, thus Ri represents the degree of separation between the smallest
scales affected by background shear and the smallest scales affected by buoyancy,
while ReS represents the degree of separation between the smallest scales affected by
shear and the smallest scales of motion, and Reb the separation between the smallest
scales affected by buoyancy and the smallest scales of motion.

Shih et al. (2005) define three regimes for Reb in stably stratified turbulent shear
flows: a diffusive regime for Reb < 7 in which turbulence is strongly damped and
kh/ν < 1, an intermediate regime 7 < Reb < 100 in which kh/ν is related linearly to
Reb, that is kh/ν = 0.2Reb, and an energetic regime Reb > 100 in which the effects of
stratification become progressively weaker as Reb increases and kh/ν approaches its
neutral flow value.

Profiles of Reb in figure 9 show that Reb decreases with increasing z. This is seen
to be due primarily to a decrease in lO as a result of increasing buoyancy frequency
with height. In the initial state, Reb covers all three regions described above, with the
energetic regime seen for z= 0–0.35, the intermediate regime for z≈ 0.35–0.75 and
the diffusive regime for z> 0.75. As can be seen from the profile of kh in figure 6,
the region above z= 0.75 also corresponds to the region in which kh <σ in our flow.

The initial state profile for Ri also shows three distinct regimes spanning three
regions across the channel in a manner similar to that seen for the flux Richardson
number, Rf . For z= 0–0.5, Ri increases from Ri= 0 at the wall to a value of Ri≈ 0.18.
For z= 0.5–0.76, Ri is approximately constant at what appears to be a critical value
of Ric ≈ 0.18. Above z= 0.76, Ri increases significantly.

Comparable values of Ric for flows similar to the central region of our channel
are reported by other authors. Based on simulations of stratified channel flow with
the stratification maintained by constant density boundary conditions at the top
and bottom surfaces, Garcia-Villalba & del Alamo (2011) estimated Ric ≈ 0.2. For
stationary homogeneous stratified sheared turbulence, Shih et al. (2000) estimated
Ric ≈ 0.2 while Chung & Matheou (2012) give Ric ≈ 0.17. For stratified plane
Couette flow, Zhou, Taylor & Caulfield (2017) found the critical value of Ric to
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be 0.21, which is approached as the ratio of the channel height to Monin–Obukhov
length scale approaches zero.

While the central region of our flow is similar to the flows listed above, the
near-surface region is quite different. Here we have a strongly stratified layer that is
essentially laminar and separated from the solid lower wall by a turbulent boundary
layer. In the near-surface region the mean velocity and temperature profiles (see
figure 6) contain an inflection and hence are similar to the canonical conditions under
which Kelvin–Helmholtz and Holmboe instabilities form. Howland, Taylor & Caulfield
(2018) investigated marginal stability associated with the formation of K–H waves
from laminar initial conditions and showed the marginal stability limit to be Rim= 1/4.
In fact Kaminski, Caulfield & Taylor (2017) have shown that Kelvin–Helmholtz-like
billows can form for Ri up to 0.4 in the presence of perturbations that are sufficiently
large and that have the optimal structure for amplification.

Figure 9(e) shows that, in the equilibrium state, ReS < 1 for z > 0.76, which also
corresponds to the height for which Ri > 0.18. ReS < 1 implies lC < η, so this is a
reasonable criterion by which to define what we will refer to as ‘laminar flow’. As
seen in the profile of kh in figure 6, this is also very close to the point at which
kh= σ . Given that we have laminar flow above z= 0.76, we would expect the critical
Richardson number to be close to the marginal stability limit, Rim= 1/4; however, as
seen in figure 9(d,e), we have a region of laminar flow (ReS < 1) for 0.76< z< 0.86,
in which 0.18< Ri< 1/4.

This apparent inconsistency between our results and the theoretical analysis of
Howland et al. (2018) gives a clue to the mechanism underlying the ‘relaxation’
process that we have suggested occurs in the initial stages of the evolution of our
flow. An important point of difference between conditions in the near-surface region
of our equilibrium state flow and those in the analysis of Howland et al. (2018)
is that our flow is subject to a volumetric heat source that decays exponentially
with distance from the upper surface and so acts as a potential energy sink. As a
result, small temperature perturbations that are linearly unstable and would grow
into nonlinear instabilities in the unheated flow, are absorbed by the potential energy
sink before they are able to do so. This has the effect of depressing the Richardson
number stability limit so that a region of the flow that would be unstable with no
heat source is in fact stable. When the heat source is removed, however, conditions
in the region z= 0.76–0.86 suddenly become conducive to the formation and growth
of shear instabilities.

Evidence for this can be clearly seen in the visualisations of temperature and
vorticity fields at t̂ = 1.5 in (b) of figures 2 and 3, which show a proliferation
of the distinctive temperature overturns and braided cat’s eye vorticity structures
characteristic of K–H waves. These Kelvin–Helmholtz-like structures can be seen
(albeit with weaker intensity) in the images up to t̂= 7. The burst of activity during
the initial relaxation period is also evident in the sudden increase in the production
of kinetic energy P and temperature variance Pφ at t̂ = 1.5 seen in this region in
figures 7 and 8. The result is a rapid transition of this region to turbulent flow with
P> B+ ε and Pφ >χ at this time as was discussed above.

The intense activity also results in rapid mixing as is evident from the sudden
increase in B at t̂ = 1.5. This mixing expands the region in which Ri < Rim so that,
by t̂= 3, Ri<Rim for z< 0.95. The region of turbulent flow expands in line with this
with ReS reaching a minimum of ReS = 1 at z= 0.95 at t̂= 3. For t̂> 3, ReS > 1 up
to the top of the channel and we consider the initial relaxation period and transition
of the near-surface region to turbulent flow to be complete.
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FIGURE 10. Transient response of turbulent Prandtl number for Case 3. Legend as for
figure 6.

Kelvin–Helmholtz instabilities are a classic example of energy transfers in sheared
stratified flows and have been used extensively as a canonical flow to study the
energetics of mixing processes in this context (see Winters et al. 1995; Caulfield &
Peltier 2000; Salehipour & Peltier 2015; Kaminski et al. 2017; Howland et al. 2018,
for example). These studies typically use mathematically prescribed initial mean
vertical velocity and temperature profiles, and apply artificial perturbations in order
to catalyse the formation of the K–H instability. The time evolution of the resulting
flow is then studied using stability analysis or numerical simulation.

Our flow is an example of a real flow in which an analogous situation occurs. The
equilibrium state is stabilised by the internal heat source, generating a laminar near-
surface region with velocity and temperature profiles determined by the mathematical
form of heat source. A wide spectrum of ‘natural’ perturbations are supplied by the
turbulence in the lower regions of the channel. Sudden removal of the heat source
then allows these perturbations to grow and become unstable where conditions for
instability exist.

The energy transfers from mean flow kinetic energy to available potential energy
and then to background potential energy described in studies such as those of Winters
et al. (1995) and Caulfield & Peltier (2000) also occur in the near-surface region of
our flow. Our flow is more complicated, however, because the initial conditions in the
central and lower regions of the channel are turbulent, so that turbulent kinetic energy
generated at the lower boundary also takes part in the energy transfer process. This
will be discussed further in § 6.

Figure 10 shows evolution of the turbulent Prandtl number,

Prt =
km

kh
, (5.14)

where the vertical eddy viscosity km is calculated as

km =−
〈u′w′〉
∂〈u〉/∂z

. (5.15)

Garcia-Villalba & del Alamo (2011) found that Rif ≈Ri in the regions of their stably
stratified channel flow for which Ri < Ric. This implies that the turbulent Prandtl
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number Prt = Ri/Rif ≈ 1. Our simulations give similar behaviour, with Prt ≈ 1 in the
region from z = 0.1 to 0.8 in the initial equilibrium state, with the range extending
up to z = 0.95 as the flow in the near-surface layer becomes turbulent in response
to removal of the heat source. As the flow approaches the neutral state, Prt decreases
towards a neutral value of Prt≈ 0.8, which is similar to the value Prt≈ 0.74 estimated
by Chung & Matheou (2012).

6. Bulk flow energetics
This section presents results for bulk energy transfers within the flow. In the

following, all parameters are plotted at time intervals of 1t̂= 0.1 with the values of
parameters calculated by averaging over horizontal planes only (not time). Here, and
throughout this paper, an overline · will be used to indicate this type of averaging.
When used in this context, primes indicate fluctuations relative to this type of mean.

While non-dimensionalising in terms of the time-varying friction velocity uτ is
useful when discussing scalings between non-dimensional parameters, in the context
of a discussion of the actual time evolution of the flow it is more useful to present
results in terms of dependent variables non-dimensionalised in terms of the initial
friction velocity uτ ,0. In this form, the results can be related directly to the changes in
a physical flow subject to the same boundary conditions. As described in appendix A,
variables non-dimensionalised in terms of uτ ,0 are denoted with a hat ·̂ .

As discussed above, the destratification process can be viewed as a transfer of
energy from mean flow kinetic energy to potential energy via buoyancy fluxes. The
evolution equation for total potential energy Ep is

dEp

dt̂
=B(t̂)+M(t̂), (6.1)

where the domain-averaged total potential energy is calculated as

Ep(t̂)=−
1
V

∫
V
γ̂ φ̂(x, t̂)z dV, (6.2)

and the domain-averaged turbulent and molecular buoyancy fluxes are

B(t̂)=−
1
h

∫ h

0
γ̂ φ̂′ŵ′ dz and M(t̂)=

1
h

∫ h

0
γ̂
∂φ̂

∂z
dz. (6.3a,b)

Here V is the domain volume. For consistency with the previous definition of B these
fluxes are positive downwards, so that a positive flux is associated with an increase in
potential energy. The total potential energy that has been transferred by each of these
fluxes by a particular time is then given by

B∗(t̂)=
∫ t̂

0
B(t̂∗) dt̂∗ and M∗(t̂)=

∫ t̂

0
M(t̂∗) dt̂∗. (6.4a,b)

Figure 11(a) shows the change in total potential energy 1Ep over time relative to
the initial conditions, plotted alongside B∗ and M∗. Also shown is the sum of these
two fluxes, B∗+M∗. Potential energy Ep increases over the duration of the simulation,
with the most rapid change occurring early in the simulation and very little change
after t̂=9. It is balanced by the sum of the buoyancy fluxes B∗+M∗. While turbulent
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FIGURE 11. (Colour online) Domain-averaged components of the turbulent energy transfer
system for Case 3 as functions of time. (a) Shows: 1Ep (blue solid line), B∗ (green dashed
line), M∗ (red dot-dashed line) and B∗+M∗ (violet dotted line). (b) Shows: P (blue solid
line), B (green dashed line) and E (red dot-dashed line). (c) Shows: Ek (blue solid line)
and Ea (green dashed line). Please note the alternate axis for Ea in this plot.

buoyancy flux B dominates this energy transfer, the molecular buoyancy flux M also
plays a significant role, contributing approximately 15 % of the total flux for this case.

Shear production provides the pathway for transfer of energy from the mean flow
field into the turbulent flow field. Within the turbulent flow field, turbulent kinetic
energy is transferred to potential energy via buoyancy fluxes and to internal energy
via turbulent dissipation. Figure 11(b) shows domain-averaged production, P , turbulent
buoyancy flux B, and viscous dissipation E , where

P =−
1
h

∫ h

0
û′ŵ′

∂ û
∂z

dz and E(t̂)=
1
h

∫ h

0
2ν̂ ŝijŝij dz. (6.5a,b)

The energy transfer rates shown reflect the activity of shear instabilities discussed in
§ 5. Shear production P increases rapidly over the initial relaxation period, t̂ = 0–3,
in which there is rapid formation of shear instabilities in the near-surface region. It
then continues to increase gradually until t̂ = 9, after which it decreases back to a
level similar to its initial value. The time t̂= 9 corresponds approximately to the time
when shear instabilities become noticeably less prevalent in the visualisations. These
trends are mirrored by the buoyancy flux B and dissipation E . In the final state B is
close to zero and P ≈ E .

Available potential energy, Ea, is the potential energy change due to adiabatic or
reversible mixing and, as such, is the component of potential energy that could be
transferred back into kinetic energy (Lorenz 1955). This is in contrast to background
potential energy Eb, which is generated as the result of irreversible diabatic mixing.
Winters et al. (1995) define Eb as the minimum potential energy that can be achieved
as the result of an adiabatic redistribution of the density or, in our case, temperature
field. For a redistributed temperature field φ̂(z∗), where z∗(x, t̂) is the height in
the redistributed state of the fluid parcel at (x, t̂), the domain-averaged background
potential energy is given by

Eb =−
1
V

∫
V
γ̂ φ̂z∗(x, t̂) dV. (6.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

54
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.543


Evolution of thermally stratified turbulent open channel flow 381

Ea is then determined from the identity

Ea = Ep − Eb. (6.7)

Available potential energy Ea is shown in (c). In the initial state Ea is small but
positive due to turbulent fluctuations of the temperature field as well as mild overturns
in the shear layer at z≈ 0.8 as can be seen in figures 2 and 3. In the early stages of
the flow, Ea increases rapidly to a peak at t̂≈ 2 and then remains relatively constant
until t̂ ≈ 6 after which it decreases over the remainder of the process to a final
value of approximately zero. Thus the peak in Ea coincides with the initial relaxation
period (t̂ = 0–3), which, as discussed above, is characterised by destabilisation of
the near-surface region through the formation of K–H-like instabilities, while the
sudden increase in the rate of decay at t̂= 9 corresponds to the time at which these
instabilities disappear from the visualisations.

Studies of Kelvin–Helmholtz instabilities (see Winters et al. 1995, for example)
have shown that they lead to a similar time response for Ea as the initial overturn
lifts heavier fluid adiabatically, before the subsequent breakdown of this structure
generates smaller scale motions that drive irreversible mixing. In our flow Ea remains
relatively small compared with the overall change in Ep. This indicates that most of
the reversible buoyancy flux is rapidly transferred to Eb via irreversible mixing due
to interaction with turbulent eddies from the turbulent region of the channel below.
Similar small values of Ea relative to 1Ep have been observed by Brucker & Sarkar
(2007) and Kaminski & Smyth (2019) in studies of shear instabilities in initially
turbulent flows.

Domain-averaged turbulent kinetic energy Ek, also shown in (c), shows a rapid
increase during t̂ = 0–5 after which it remains relatively constant. The higher levels
of turbulent kinetic energy, Ek and available potential energy Ea during the early
periods of the flow evolution provide an intermediate stage in the transfer of energy
from mean flow kinetic energy, EK , to background potential energy Eb.

7. Relationships between local flow parameters in the central region
In this section we return to the relationships between local flow parameters, with a

focus on the central region of the channel (z= 0.3–0.7). As with the previous section,
all parameters are plotted at time intervals of 1t̂= 0.1 with the values of parameters
calculated by averaging over horizontal planes only.

As discussed above, in this paper the eddy diffusivity kh was calculated as the
ratio of turbulent temperature flux to the vertical gradient of mean temperature (5.2).
A number of alternative models for eddy diffusivity are commonly used. These include
the models of Osborn & Cox (1972) and Osborn (1980), which were derived in the
context of oceanographic studies as a means of estimating kh from measurements of
dissipation rates of turbulent kinetic energy and temperature variance respectively, and
allow kh to be estimated when the turbulent flux is not known. Ivey, Winters & Koseff
(2008) refer to the formulation for kh given in (5.2) as the ‘direct’ approach, and those
of Osborn & Cox (1972) and Osborn (1980) as ‘indirect’ approaches. We give a brief
outline of these two models below.

The model of Osborn (1980) is derived by assuming local energetic equilibrium,
P= B+ ε, and approximating the buoyancy flux as B= Rf /(1− Rf )ε. Combining this
with (5.12) gives

kh/ν =
Rf

1− Rf
Reb = Γ Reb, (7.1)
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where Γ =Rf /(1−Rf ). Using a critical value for the flux Richardson number of Rf ,c=

0.17, this gives an upper limit for Γ of Γ = 0.2. Thus an upper limit for kh can be
estimated based on measurements of ε and N. We will follow the common practice
of referring to the ‘Osborn model’ as (7.1) with Γ = 0.2.

The model of Osborn & Cox (1972) is derived from the temperature variance
equation. Assuming local equilibrium in temperature variance, that is, Pφ = χ , leads
to

kh/ν =
χ

2ν(∂φ/∂z)2
. (7.2)

Winters et al. (1995) note that none of these models differentiate between reversible
and irreversible mixing. To address this, Winters & D’Asaro (1996) proposed a new
model using an isoscalar coordinate system that calculates the diffusivity associated
only with irreversible mixing. This concept was extended by Caulfield & Peltier
(2000), who defined a related irreversible mixing efficiency. Salehipour & Peltier
(2015) recast the diascalar diffusivity of Winters & D’Asaro (1996) into what they
refer to as an ‘Osborn-like’ expression that is equivalent but easier to compute. They
then compared the eddy diffusivity calculated according to the direct model (5.2), as
well as the Osborn (7.1) and Osborn–Cox (7.2) models, to their diascalar diffusivity
for data generated by DNS of inhomogeneously stratified sheared turbulence. Amongst
these models, they found the eddy-diffusivity calculated by the Osborn–Cox model
to be closest to the diascalar diffusivity.

Recently Ivey, Bluteau & Jones (2018) combined the Osborn and Osborn–Cox
models to derive a model to estimate the flux Richardson number,

Rf =
1

1+D
, (7.3)

where the dimensionless ‘length scale ratio’ parameter D is given by

D=
2(∂φ/∂z)2ε

N2χ
. (7.4)

This model assumes that Pφ =χ , the flow is unaffected by the presence of boundaries
and Ri< 0.25.

Figure 12 shows a comparison of the various mixing models discussed above with
our DNS data for Case 3 measured at a height of z = 0.6 over the duration of the
transient simulation. Panel (a) compares kh/ν as a function of Reb calculated using
the direct model with the Osborn and Osborn–Cox models. For Reb < 100 all three
models give approximately the same value of kh/ν. This is consistent with the results
of Shih et al. (2005) who found that, for homogeneous sheared stratified turbulence,
the Osborn model holds well only in their intermediate regime 7 < Reb < 100. The
direct and Osborn–Cox models remain in good agreement up to Reb ≈ 1500 after
which they start to diverge. Panel (b) shows that this corresponds to the point in the
simulation when the assumption of Pφ/χ ≈1 implicit in the Osborn–Cox model begins
to break down. Panel (c) shows Rf as a function of D compared with the model of
Ivey et al. (2018). There is good agreement between the DNS data and the model up
to D≈ 20. As can be seen from (d), D= 20 corresponds to Reb ≈ 1500, and hence,
again, the point where the assumptions underlying this model begin to break down.

Another model for eddy diffusivity based on the Osborn model has recently been
suggested by Zhou et al. (2017). This model was developed in the context of stratified
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FIGURE 12. (Colour online) A comparison of various mixing models for Case 3 at z=0.6.
(a) Shows kh/ν calculated by the direct (5.2), Osborn (7.1) and Osborn–Cox (7.2) models
plotted against Reb. (b) Shows Pφ/χ plotted against Reb. (c) Shows Rf as a function of D
compared with the model of Ivey et al. (2018) (7.3). (d) Shows D as a function of Reb.

plane Couette flow, which is characterised by a central region in which turbulent
fluxes are approximately constant. Noting that in this region Ri≈ PrtRf and Prt ≈ 1,
substituting Ri≈ Rf into (7.1) they proposed modelling kh/ν as

kh/ν = Reb
Ri

1− Ri
. (7.5)

Figure 13(a) compares our measured values of kh/ν with values calculated using (7.5)
at different heights across the channel. The model gives a good prediction of kh/ν
across the central region of the channel and remains accurate down to z= 0.1, close
to the lower solid wall. Prediction close to the upper surface at z= 0.9 is poor. This
is expected since assumptions underpinning this model are not satisfied in this region.

The model of Zhou et al. (2017) diverges from the data somewhat for high
RebRi/(1 − Ri), which may be due to the fact that it assumes Prt = 1, whereas in
our flow we have shown that Prt decreases to Prt ≈ 0.8 once stratification becomes
weak. The model can be modified to include Prt explicitly by approximating Rf as
Rf ≈ Ri/Prt in (7.1). This gives an alternative model,

kh/ν = Reb
Ri

Prt − Ri
. (7.6)
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FIGURE 13. (Colour online) Comparison of data with models given in (7.5), and (7.6) at
different heights across the channel for Case 3.
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FIGURE 14. (Colour online) Relationships between P/(B+ ε), Reb and t̂ for Case 3 at
z= 0.3, 0.5 and 0.7.

Figure 13(b) compares our measured values of kh/ν with values calculated using our
modified model (7.6). This model offers an improvement over that of Zhou et al.
(2017), particularly in the weakly stratified regime. This improvement comes at the
expense of having to measure or estimate Prt.

In § 5 we defined the central region of the channel as comprising z= 0.3–0.7 on the
basis that, in this region, the balance P≈ (B+ ε) holds until late in the destratification
process. Figure 14 shows relationships between P/(B+ ε), Reb and time t̂ for Case 3
measured over the duration of the transient simulation at heights z= 0.3, 0.5 and 0.7.
Panel (a) shows that, at z= 0.3 and z= 0.5, P/(B+ ε)≈ 1 for the entire simulation,
while at z = 0.7, P/(B + ε) starts to drop below 1 for Reb ' 1000. In (b) it can be
seen that at z= 0.7 the flow passes Reb= 1000 at t̂= 13. Thus the region z= 0.3–0.7
remains in energetic equilibrium until the very late stages of the flow evolution.

Figure 15 shows relationships between kh/ν, Reb, Ri and Rf for Case 3 at heights
z=0.3, 0.5 and 0.7. The parameter relationships at different heights overlap, indicating
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FIGURE 15. (Colour online) Relationships between kh/ν, Reb, Rf and Ri for Case 3 at
z= 0.3, 0.5 and 0.7.

the dynamic balances within the flow are similar across the central region of the
channel. Most of the deviations seen are for data from the early stages of the flow
evolution when the flow is relaxing as described above.

The plot of kh/ν against Reb in (a) shows that our data adhere closely to the Osborn
(1980) relationship kh/ν = Γ Reb with Γ = 0.2 for Reb < 100 (the intermediate and
diffusive regimes of Shih et al. (2005)) at all heights. For Reb > 100 (the energetic
regime of Shih et al. (2005)) kh/ν approaches an asymptotic value of kh/ν ≈ 60.
Again, this asymptotic value is independent of z.

Panels (b,c) show Rf plotted against Reb on log-linear and log-log scales, with
the former emphasising trends in the data for low to intermediate Reb, while the
latter allowing easier interpretation of data at high Reb. For Reb < 100, Rf remains
constant at Rf ,c ≈ 0.17, while for Reb > 100, Rf decreases with increasing Reb. Thus
the transition from constant to Reb-dependent Rf corresponds to the transition from
the intermediate to the energetic regime.

The relationship between Rf and Reb has received considerable attention in the
literature (see Walter et al. 2014; Mater & Venayagamoorthy 2014a,b, for example)
due to its importance in geophysical measurements and modelling. Scotti & White
(2016) discuss the relationship between Reb and Rif (≈ Rf ) and note that the two
parameters approach a power law relationship of the form Rif =CRen

b at high Reb for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

54
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.543


386 M. P. Kirkpatrick, N. Williamson, S. W. Armfield and V. Zecevic

a data from a wide range of geophysical and small scale flows. They argue that, while
n has generally been found to lie in the range −1/2 to −2/3 (see Bluteau, Jones &
Ivey 2013; Walter et al. 2014, for example), there is no justification for a universal
exponent. The existence of a universal exponent implies that Rif depends on a single
non-dimensional parameter, whereas Mater & Venayagamoorthy (2014a,b) show that
Rif must depend on more than one parameter. Scotti & White (2016) present scaling
arguments that demonstrate that Rif is also a function of a ‘hidden’ scale that depends
on the nature of the flow. For Monin–Obukhov (M–O) layers in a semi-bounded flow,
this scale is the ratio of the height z above the bottom solid boundary to the Obukhov
length scale L (that is the M–O stability parameter ζ = z/L), whereas, in bounded
flows such as channel flow, the scale is an externally imposed confinement scale that
is related to the domain height h. For stratified plane Couette flow they show that
Rif is expected to approach an inverse linear relationship Rif ∼ Re−1

b for large Reb.
Our data support these arguments. For moderate Reb in the range 200<Reb< 3000,

the data fit well to a −2/3 power law with Rf = 4.2Re−2/3
b , while for Reb > 3000 the

data approach a −1 power law with Rf = 60Re−1
b . For Reb < 3000, buoyancy length

scales such as the Ozmidov scale lO are small in comparison to the confinement scale
lc associated with the channel height h, so the confinement due to the finite height of
the channel has a negligible effect on the turbulence dynamics. For Reb> 3000, as the
buoyancy length scale becomes comparable with and then greater than lc, the effects
of confinement influence the turbulence dynamics and mixing efficiency. These effects
are reflected in the scaling of Rf with Reb. This can be seen from the profiles of lO in
figure 9. Noting from figure 14 that, for z= 0.5, Reb = 3000 corresponds to t̂≈ 13.5,
the profile of lO in figure 9 shows that, at this stage, lO=O(1), implying lO≈ lc. (Note
that all of our length scales are non-dimensionalised by channel height.)

Panel (d) shows Ri plotted against Reb. The data for Ri show very similar trends
to those seen for Rf . This is expected given that, for equilibrium conditions, Ri ≈
PrtRf and Prt remains relatively constant. In the strongly stratified regime for Reb <

100, Ri ≈ Ric = 0.18. For 200 < Reb < 3000, Ri scales according to Ri = 3.5Re−2/3
b

while for large Reb it approaches Ri = 50Re−1
b . The ratio of the coefficients in the

asymptotic relations for Rf and Ri is approximately 0.8, which is consistent with our
finding above (see figure 10) that Prt approaches a neutral flow value of Prt,n ≈ 0.8.

A power law relationship of the form Ri = CRe−1
b for large Reb was also derived

by Chung & Matheou (2012), who use scaling arguments to show that

Ri∼ (κlc/η)
4/3Re−1

b . (7.7)

Here κ is the von Kármán constant and lc an externally imposed vertical confinement
length scale which, similar to above, is non-dimensionalised in terms of the vertical
dimension of their computational domain Lz. Using the fact that Rf ≡ Pr−1

t Ri, they
show that kh/ν is expected to approach an asymptotic value of

kh/ν ≈ (κlc/η)
4/3Pr−1

t,n , (7.8)

where Prt,n is the turbulent Prandtl number in neutral conditions.
Within this framework, the asymptotic relation for our data, Ri= 50Re−1

b , compared
with (7.7), gives (κlc/η)

4/3
≈ 50. For our flow case the non-dimensional Kolmogorov

scale η varies; however, figure 9 shows that, within the central region of the channel, it
is of order η≈5.5×10−3 as the flow approaches neutral conditions. Using a value κ=
0.41 for the von Kármán constant, this gives an estimate of the equivalent confinement
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FIGURE 16. (Colour online) Eddy diffusivity normalised by viscosity kh/ν and flux
Richardson number Rf plotted against buoyancy Reynolds number Reb at z= 0.5 for Cases
3, 4 and 5.

scale in our flow of lc ≈ 0.25, which is the same as the value Chung & Matheou
(2012) found for homogeneous sheared stratified turbulence. Substituting this into (7.8)
and using our value Prt,n = 0.8 gives kh/ν ≈ 60, which is the asymptotic value seen
in our data for Case 3.

In unstratified channel flow the Kolmogorov scale non-dimensionalised by channel
height varies with Reτ according to

η∼ Re−3/4
τ , (7.9)

so we expect this dependence to be reflected in the asymptotic value of kh/ν. This is
confirmed in figure 16(a), which shows kh/ν plotted against Reb for the Reτ ,0 = 225,
360 and 540 cases at a height of z = 0.5. The asymptotic value of kh/ν increases
with Reτ , consistent with a decreasing Kolmogorov scale. The value of Reb at
which the flow transitions away from the linear Osborn relationship kh/ν = Γ Reb
is also not constant, but increases with increasing Reτ . Panel (b) demonstrates that
the relationship between Rf and Reb is also Reτ -dependent. Although not shown, a
similar Reτ -dependence was also observed for Ri.

Dividing (7.8) by Reτ gives

(kh/ν)

Reτ
∼

1
Reτ

(
κlc

η

)4/3

Pr−1
t,n . (7.10)

Rearranging and noting that, in our non-dimensionalisation scheme, (kh/ν)/Reτ ≡
k̃h/(ũτ h̃)≡ kh gives

kh ∼

(
κlc

η/Re−3/4
τ

)4/3

Pr−1
t,n . (7.11)

Equation (7.9) implies that the right-hand side of (7.11) is a constant. To determine
this constant we consider the Reτ ,0 = 540 case shown in figure 15, for which the
asymptotic value of kh/ν was found to be kh/ν ≈ 60. The actual Reynolds number
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Case Reτ ,0 Reτ ,max λ0 Riτ ,0 Pr α0

3 540 660 2 284 0.71 8
4 225 285 2 175 0.71 8
7 360 410 1 64 0.5 8
9 360 410 1 74 0.71 4

TABLE 3. Simulation parameters for the reduced case set.

during the later stages of the simulation is Reτ ≈ 660, which implies an asymptotic
value for the non-dimensional eddy diffusivity kh,c≈ 0.1. From the analysis above this
value should be independent of Reτ . The value of kh,c deduced from our results is very
similar to the values of approximately 0.09–0.1 given by Kim & Moin (1989) for the
outer layer of turbulent channel flow at Reτ ≈ 180 with a passive scalar at Pr between
0.71 and 2.

The analysis above suggests a relationship between kh, Reb and Reτ of the form
kh = f (Reb/Reτ ). Hence, we define a parameter

Q=
Reb

Reτ
. (7.12)

In the weakly stratified regime, where k̃h/ν̃ becomes independent of Reb but scales
as k̃h/ν̃ ∼ Reτ , using kh ≡ k̃h/(ν̃Reτ ) removes this Reτ -dependence. (For clarity, we
have written k̃h/ν̃ in terms of dimensional variables here. Please note that, within our
non-dimensionalisation scheme, kh/ν ≡ k̃h/ν̃.) In the strongly stratified regime where
k̃h/ν̃ scales linearly with Reb and is independent of Reτ , the effect of Reτ within the
parameter Q is removed via cancellation, and the relation is equivalent to the linear
Osborn model,

kh ≡
k̃h

ν̃

1
Reτ
= Γ

Reb

Reτ
→

k̃h

ν̃
= Γ Reb. (7.13)

Thus, this parameter combines the effect of an externally imposed vertical confinement
scale h, which constrains turbulent motions in the weakly stratified regime – the
‘hidden scale’ for bounded flows of Scotti & White (2016) – with the local turbulence
parameterisation provided by Reb in the strongly stratified regime where the buoyancy
scale lO provides the dominant constraint.

Figure 17 shows relationships between kh, Q, Rf and P/(B+ ε) at z= 0.5. Data are
plotted for Cases 3, 4, 7 and 9. As shown in table 3, these cases give a range of each
parameter (Reτ ,0 ranging from 225 to 540, λ0 from 1 to 2, Pr from 0.5 to 0.71, α0
from 4 to 8). This reduced set of cases will be used in many of the following figures
because it can be shown more compactly than the full data set while still highlighting
any parameter dependencies. Figure 17 is similar to figures 14 and 15; however, here
we have plotted flow parameters against Q rather than Reb and compare results across
all parameters.

The data for kh as a function of Q shown in (a) collapse convincingly for the high
and low Reynolds number cases (Cases 3 and 4) with this scaling. Given that kh ≡

(kh/ν)/Reτ and the Osborn relationship (7.1) is linear, this relationship is maintained
for low Q, that is,

kh = ΓQ, (7.14)
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FIGURE 17. (Colour online) Relationships between kh, Q, Rf and P/(B + ε) at z = 0.5
for Cases 3, 4, 7 and 9. The dotted line is Q=Qtr = 0.15.

with Γ = 0.2. The point at which the flow transitions away from the linear regime is
independent of Reτ , with a value of Qtr ≈ 0.15. For Q'Qtr, kh approaches a single
asymptotic value of kh,c≈ 0.1, as suggested by the analysis above. This is in contrast
to the scaling of kh/ν with Reb (figure 16) for which the asymptotic value has a strong
dependence on Reτ .

The data for Case 9, in which λ0= 1 and α0= 4, compared with λ0= 2 and α0= 8
for Cases 3 and 4, also collapse; λ0 and α0 affect the flow only through their influence
on initial conditions such as vertical gradients of mean velocity and temperature. We
expect this to be accounted for by a local turbulence parameter such as Reb.

While there is quite a lot of scatter in the data, it appears that, for the low Prandtl
number case (Case 7), kh is somewhat higher than the other cases in the very weakly
stratified regime Q' 5. There also appears to be a Pr-dependence in the relationship
between Rf and Q shown in (b) for Q' 5. Due to its effect on molecular diffusivity,
Pr affects the balance between turbulent and molecular heat fluxes in the flow, which
in turn affects the mean temperature gradient. As a result it is expected to have an
influence on flux and gradient-based parameters.
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The dotted lines in each panel show the value Qtr = 0.15 at which kh transitions
from the linear regime governed by the Osborn relation to the nonlinear energetic
regime. As with the Reb scaling, Qtr also corresponds to the point at which Rf
transitions away from its critical value of 0.17. At moderate Q in the range
0.2 < Q < 3.5, Rf follows a −2/3 power law with Rf = 0.07Q−2/3. For Q > 3.5,
Rf approaches an inverse linear relationship of the form Rf = 0.1Q−1. These are
analogous to the relationships between Reb, and Rf discussed above.

Although not shown, similar trends and collapse of the data were observed when
Ri is plotted as a function of Q, with Ri=Ric= 0.18 for Qtr / 0.15, and approaching
an inverse linear relationship of the form Ri= 0.08Q−1 for high Q, as expected based
on Ri≈ PrtRf .

In (c) it can be seen that, for Case 3 at the mid-channel height, the flow passes
the transitional value Qtr = 0.15 at time t̂ = 6 which is relatively early in the flow
evolution. Panel (d) shows that local energetic equilibrium is maintained for the entire
destratification process at this height for all cases. These two panels are included
primarily for the purpose of comparison with the near-surface region that will be
discussed in § 8.

While kh is important in the context of turbulence modelling, a more relevant
parameter in our case is the total vertical heat flux, since this flux ultimately
determines the rate at which the channel destratifies. This was demonstrated in
§ 6 where it was shown that the rate of change of domain-averaged potential energy
Ep is equal to the sum of the domain-averaged turbulent and molecular buoyancy
fluxes, B and M. At a local level, the heat flux also determines local time evolution
of the flow. The total heat flux through a horizontal layer at height z and time t̂ is
given by

F=−σ
∂φ

∂z
+ φ′w′ ≡−(σ + kh)

∂φ

∂z
. (7.15)

As will be discussed in § 11, it is useful to normalise this flux by the temperature
difference across the channel, 1φ, to give a normalised total heat flux,

F =
1
1φ

(
−σ

∂φ

∂z
+ φ′w′

)
, (7.16)

where 1φ is defined as 1φ = φ(h)− φ(0).
Figure 18 shows the normalised total flux F plotted against Q for Cases 1–10.

Changing the stability parameter of the initial state λ0 results in different initial
points in (Q, F ) space for the initial flow conditions. This indicates that, in the
initial equilibrium flow, F depends on both Q and λ0. After an initial relaxation
period, however, the trajectories converge, so that, in the subsequent stages of the
destratifying flow, F depends only on Q. This is consistent with our argument that λ0
is not a governing parameter for the destratifying flow. Its effect is confined to the
initial conditions and the relaxation period at the start of the flow evolution (see § 5).

The data in (b,d) show that F scales with Q, independent of Reτ and α0. There
is, however, a clear dependence on Pr seen in (c). This is consistent with the Pr-
dependence seen in kh and Rf .

Thus it appears that local turbulent mixing in the central region of the channel is a
function of Q and Pr. The fact that the flux parameters F and Rf depend on both Q
and Pr makes intuitive sense, since Q incorporates the effects of turbulent fluctuations,
buoyancy and the large scale mean shear in the channel, while Pr represents the
effects molecular viscosity and thermal diffusivity.
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FIGURE 18. (Colour online) Normalised total flux F plotted against Q at z = 0.5 for
Cases 1–10. The solid line is F = 0.17Q. The dashed line represents the asymptotic value
F = 0.14. The dotted line is Q=Qtr = 0.15.

The effect of vertical location within the channel is shown in figure 19, which
shows kh and Rf as functions of Q at various heights across the channel for Case
3. Both kh and Rf are independent of height in the central region but attenuated in
the near-wall and near-surface regions, due to the constraining effects on the turbulent
motions of the nearby boundaries as discussed in § 5. This deviation does not occur
for low Q where the buoyancy length scale is small relative to the distance from the
boundary and hence acts as the dominant constraint.

8. Relationships between local flow parameters in the near-surface region
We now consider the near-surface region which, for consistency with our previous

definition of the central region, we define as z = 0.7–1. For neutral flow, Hunt &
Graham (1978) and Calmet & Magnaudet (2003) have shown that the depth of the
region affected by the free surface is related to the integral length scale l∞, which they
found to be approximately l∞≈ 0.2h. Hunt & Graham (1978) suggest that turbulence
in this region is dissipated by a viscous sublayer at the surface characterised by a
length scale lν that scales according to lν/l∞ ∼ Re−1/2

∞
, where Re∞ = Ublν/ν. This
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FIGURE 19. (Colour online) Values of kh and Rf plotted against Q at various heights for
Case 3. (a) The dashed line is kh = 0.1 and the solid line kh = ΓQ. (b) The dashed line
is Rf = 0.17 and the solid line Rf = 0.1Q−1.

implies a Reynolds number dependence for z' 0.8. Williamson et al. (2015) report a
significant Reynolds number dependence in horizontal turbulence intensity components
for both neutral and stratified cases. In our simulations, the radiative thermal forcing
applied to the initial state flow means that the near-surface region is also the region
most strongly affected by stratification, and, for λ0 > 1, the region above z = 0.8 is
essentially laminar in the initial state at the relatively low values of Reτ investigated
in this paper.

Figure 20 shows the same relationships for Cases 3, 4, 7 and 9 as figure 17 except,
in this case, the relationships are plotted at a height of z= 0.9, which is well within
the near-surface region, rather than at z= 0.5.

The relationship between kh and Q in (a) shows similar trends to that seen at z=
0.5, with the Osborn relationship kh=ΓQ maintained for low Q, and kh approaching
kh,c = 0.1 at high Q. The transition value, Qtr,s, is, however, significantly lower, with
a value of Qtr,s= 0.05 compared to the value, Qtr,c= 0.15, observed across the central
region. (Here we use subscripts ‘s’ and ‘c’ to distinguish between the near-surface and
central regions.) To aid interpretation, these two points are represented on the graphs
as dotted lines. Consistent with the discussion above, there is also a Reynolds number
dependence, with kh for the Reτ ,0= 225 case (Case 4) significantly lower than for the
Reτ ,0 = 540 case (Case 3).

The molecular diffusivity σ for the three Reynolds numbers is shown as dot-dashed
lines with the same colour coding as the data points. In all cases the initial state of the
flow has kh�σ at this height, indicating that initially the flow is laminar at this height
according to our definition of laminar in § 5. This is consistent with the discussion
above, and with the flow field visualisations shown in (a) of figures 2 and 3. We will
refer to this as the laminar–turbulent transition point, Qlt. The Reτ ,0=540 case crosses
this laminar–turbulent transition point at Qlt= 0.012, which is also shown on all plots
as a dotted line.

As can be seen in (d), the laminar–turbulent transition corresponds to the
flow reaching a state of local energetic equilibrium, which is maintained until
Q = Qtr,s = 0.05 after which P/(B + ε) decays. Thus it appears that, in contrast
to the situation in the central region, the transition away from the Osborn linear
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FIGURE 20. (Colour online) Relationships between kh, Q, Rf and P/(B + ε) at z = 0.9
for Cases 3, 4, 7 and 9. The dotted lines are Qlt = 0.012 (the laminar–turbulent transition
point for Case 3), Qtr,s = 0.05 for z = 0.9 and Qtr,c = 0.15 for z = 0.5. The dot-dashed
lines in (a) show kh = σ . The thin lines in (b) show the lines of best fit for the data at
z= 0.5.

relation, kh = ΓQ, in the near-surface region is associated with a transition away
from local equilibrium, rather than a transition to the energetic turbulence regime.

The relationship between Rf and Q shown in (b) shows similar trends to that seen
at z= 0.5. The lines of best fit for the data at z= 0.5 are shown as thin lines on the
figure. For low Q, Rf is maintained at the same critical value of Rf ,c = 0.17 seen at
z= 0.5, before transitioning at Q=Qtr,s to a power law relationship, Rf = 0.035Q−2/3.
The coefficient C = 0.035 here is half the coefficient C = 0.07 seen at z = 0.5,
indicating a significant reduction in mixing efficiency. Interestingly, there is no
indication of a transition from the −2/3 power law to a −1 power law as seen in
the central region. Instead the data follow Rf = 0.035Q−2/3 for their entire range. It
may be that our simulations do not reach high enough Q for this transition to occur.
Also in contrast to the data at z= 0.5, at z= 0.9 a Reynolds number dependence is
apparent, with Rf lower for the Reτ ,0 = 225 case (Case 4).
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FIGURE 21. (Colour online) Normalised total flux F plotted against Q at z = 0.9 for
Cases 3, 4, 7 and 9. The solid line is F = 0.1Q1/2. The dashed line represents the
asymptotic value F = 0.05. The dotted line is Q=Qtr = 0.15.

As can be seen from (c), for Case 3 the turbulent transition point, Qlt = 0.012,
corresponds to a time t̂ ≈ 2.5, while Qtr,s and Qt,c correspond to t̂ = 8 and t̂ = 10.5
respectively. Referring to the flow field visualisations in figures 2 and 3, at t̂ = 1.5
the region of intense shear production associated with the initial flow relaxation is
approaching z= 0.9. By t̂= 3 the flow in the region surrounding z= 0.9 contains the
distinctive Kelvin–Helmholtz-like shear instabilities that persist through to the images
at t̂= 7. From (d) it is seen that the period t̂= 2.5–8 is the period in which the flow at
z= 0.9 is in local equilibrium. After t̂= 8 local equilibrium conditions break down in
the near-surface region. The visualisations at t̂= 9 show that the K–H-like instabilities
have almost disappeared by this time.

As with the central region, a Prandtl number dependence is seen in the weakly
stratified regime for both kh and Rf at this height.

Figure 21 shows the normalised total flux F as a function of Q for Cases 3, 4, 7
and 9 at a height of z= 0.9. With regard to parameter dependence, the dependence on
Pr seen at z= 0.5 is not apparent at z= 0.9. Similarly the dependence on λ0 in the
initial state and early relaxation period is less distinct. There may be a dependence
on Reτ in the late stages of the flow evolution with a slight reduction in F with Reτ
apparent, although the large scatter in the Reτ ,0 = 225 data makes this impossible to
state with certainty. This would be consistent with the trends seen in kh in figure 20,
although varying Reτ could also result in a change in the mean temperature gradient
∂φ/∂z that could offset a variation in kh.

We conclude that at z = 0.9 the heat flux is primarily dependent on Q with a
possible dependence on Reτ due to a reduction in kh due to the effect of proximity
to the surface. At higher Reynolds numbers this effect would diminish as the viscous
length scale lν in the near-surface region decreases.

9. Monin–Obukhov similarity scaling
Given that we have shown that the turbulence dynamics in our flow can be

described in terms of Q, and that this parameter is functionally similar to the inverse
of an Obuhkov stability parameter, it is interesting to compare our results with
classical Monin–Obukhov theory. Monin–Obukhov similarity scaling (Monin 1970)
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was originally developed to describe exchange processes in the surface layer of the
atmospheric boundary layer and has been widely used to describe both stable and
unstable atmospheric boundary layers Foken (2006). The theory proposes a universal
length scale,

L=
u3
τ

κbs
, (9.1)

where bs is the surface buoyancy flux. The Monin–Obukhov length scale, L, is the
scale above which buoyancy is strongly felt, and is hence related to the Ozmidov scale.
Velocity and temperature profiles within the surface layer are then written as universal
functions of a stability parameter ζ = z/L where z is the height above the bottom solid
surface. Here z acts as a confinement scale that places a limit on the maximum size
of turbulent eddies. Turbulence is significantly affected by buoyancy effects for ζ > 1.

Recently, Monin–Obukhov theory has also been extended to characterise turbulence
in homogeneous stratified shear flows (Chung & Matheou 2012) and stratified plane
Couette flows (Deusebio, Caulfield & Taylor 2015; Zhou et al. 2017). As described
in § 2, a modified Obukhov length scale L forms the basis of the parameter λ= h/L
used in Williamson et al. (2015) and the current work to characterise buoyancy effects
in the equilibrium state of stably stratified channel flow with an internal heat source.

The original Monin–Obukhov theory was developed for the situation in which
turbulent fluxes of momentum and heat are constant, as occurs in the atmospheric
surface layer. As described by Zhou et al. (2017), these fluxes are also approximately
constant in the central region of stratified plane Couette flow. Based on this, they
developed a number of scalings for turbulence parameters as functions of L. As seen
from the vertical profiles of turbulent fluxes shown in figure 6(d,e), our flow does not
have a constant flux region, however, in the region z = 0.5–0.7 the vertical gradient
of 〈φ′w′〉 is small due to the turning point in this profile, while the vertical gradient
of 〈u′w′〉 is modest.

Flores & Riley (2011) showed that the Obukhov length scale normalised by the
viscous length scale,

L+ =
L
δν
, (9.2)

defines the intermittency boundary for stably stratified boundary layers. Here δν= ν/uτ .
For L+ / 100, turbulence becomes laminar with turbulent patches. Deusebio et al.
(2015) found the intermittency boundary to be L+ ≈ 200 for stratified plane Couette
flow.

Using scaling analysis, Zhou et al. (2017) show that

Reb ∼ κ
lh

lm

uτL
ν
= κ

lh

lm
L+. (9.3)

Here lm and lh are mixing lengths for momentum and temperature respectively and
their ratio is equal to the turbulent Prandtl number, lm/lh = Prt, giving

Reb ∼ κPr−1
t L+. (9.4)

Scotti & White (2016) use similar arguments to derive

Reb ∼ κ(1− Rif )L+. (9.5)
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FIGURE 22. (Colour online) Monin–Obukhov scalings for Reb and Q for Cases 3, 4, 7
and 9 at a height of z= 0.6. The solid line in (a) is Reb = 0.25κPr−1

t L+. The solid line
in (b) is Q= 0.25κPr−1

t ζ
−1
h .

Given κ , Prt and 1− Rif are close to unity, these scalings imply

Reb

L+
≈O(1). (9.6)

Arguing that Prt≈ 1, Zhou et al. (2017) compare Reb with L+ for their DNS data and
demonstrate that the data collapse reasonably well to the linear relationship Reb= κL+
over a wide range for Reynolds, Richardson and Prandtl numbers.

In our flow both boundaries are adiabatic and there is no internal heat source. In
order to define an Obukhov length scale we use the maximum of the layer-averaged
total downwards buoyancy flux at a given time, that is,

bmax(t̂)=Max
(
γ

[
σ
∂〈φ〉

∂z
− 〈φ′w′〉

])
, (9.7)

so that

L=
u3
τ

κbmax
, (9.8)

and

L+ =
Luτ
ν
=

L
h

Reτ . (9.9)

Figure 22(a) shows Reb plotted against κPr−1
t L+ at a height of z= 0.6, comparing

our DNS results with the scaling (9.4) of Zhou et al. (2017). (The scaling of Scotti &
White (2016) in (9.5) gives similar trends.) Data are plotted for our reduced parameter
set: Cases 3, 4, 7 and 9.

The height z= 0.6 was chosen because it is in the middle of the region z= 0.5–0.7
in which our flow approximates a constant flux layer. In contrast to Zhou et al.
(2017), we have included the factor Pr−1

t because, in our flow, Prt changes over time.
After the initial relaxation period the data collapse to a linear relationship of the form
Reb = 0.25κPr−1

t L+.
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An equivalent scaling for Q is derived by dividing (9.4) by Reτ and combining with
(9.9) to give

Q=
Reb

Reτ
∼ κPr−1

t
L
h
. (9.10)

The ratio of the channel height to the Obukhov length h/L is equivalent to the
Obukhov stability parameter calculated with respect to the height of the channel, so
we will refer to it as ζh = h/L, giving

Q= κPr−1
t ζ

−1
h . (9.11)

The stability parameter ζh represents the ratio of the large scale motions in the
channel relative to the Obukhov length scale and hence characterises the stability of
the channel as a whole. It is analogous to λ for the heated equilibrium flow. The
relation in (9.11) highlights the nature of Q, as representing a ratio of buoyancy and
inertial length scales.

Figure 22(b) shows our DNS data for Q plotted against κPr−1
t ζ

−1
h at a height of

z=0.6. The solid line is Q=0.25κPr−1
t ζ

−1
h which represents the scaling (9.11). Again,

the data collapse well to this scaling.
Monin–Obukhov theory gives a functional form for Ri in terms of ζ as

Ri= ζΦh/Φ
2
m, (9.12)

where Φh(ζ ) and Φm(ζ ) are the M-O stability functions, which must be determined
empirically. A number of different fits to atmospheric field data have been proposed.
We adopt the commonly used relations of Dyer (1974), which, for stable stratification
are

Φm =Φh = 1+ 5ζ . (9.13)

Figure 23(a) shows Ri plotted against ζ for Cases 3, 4, 7 and 9 at a height of
z= 0.6. The solid line is (9.12) with stability functions given in (9.13). Our data fit
the Monin–Obukhov scaling remarkably well, especially for the high Reynolds number
case (Case 3).

Another parameter commonly used to describe stably stratified turbulence is the
horizontal turbulent Froude number, Frh = ε/(Nu2

h) where uh is a turbulent horizontal
velocity scale (see Brethouwer et al. 2007, for example). Zhou et al. (2017) show that
for stratified plane Couette flow,

Frh ∼
ε

Nu2
τ

, (9.14)

and then use Monin–Obukhov scalings to derive

Fr2
h ∼ κ

lh

l2
m

L= Ri. (9.15)

Figure 23(b) shows Frh calculated using (9.14) as a function of Ri for Cases 3, 4, 7
and 9 at a height of z= 0.6. The solid line is Frh= 0.5Ri−1/2. Our data fit the scaling
well for Ri< Ric = 0.18.

As discussed above, our channel flow does not have a constant flux layer, so
relationships in terms of bulk Obukhov scales are not expected to be independent of
height across a substantial portion of the channel. An alternative is to use a local
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FIGURE 23. (Colour online) Monin–Obukhov scaling for Ri and Frh for Cases 3, 4, 7
and 9 at a height of z= 0.6. The solid line in (a) is (9.12) with stability functions given
in (9.13). The solid line in (b) is Frh = 0.5Ri−1/2.

Obukhov scaling. Based on analysis of the budgets of turbulent kinetic energy and
temperature variance, Nieuwstadt (1984) derived a local Obukhov length scale,

Λ(z)=
1
κ

u′w′3/2

b′w′
, (9.16)

where b′w′ is the buoyancy flux through a horizontal layer, and showed that this length
scale can be used to characterise atmospheric turbulence outside the surface layer. This
length scale can be used to form a Reynolds number,

ReΛ(z)=Λ
u′w′1/2

ν
, (9.17)

which is the local equivalent of L+. Using an assumption of local energetic
equilibrium, Williamson et al. (2015) show that

Reb ≈ κPr−1
t (1− Rf )ReΛ. (9.18)

Figure 24 shows Reb as a function of κPr−1
t (1 − Rf )ReΛ. Panel (a) shows data for

Cases 3, 4, 7 and 9 at a height of z = 0.6, while panel (b) shows data for Case 3
at various heights. The data for all cases collapse convincingly with this scaling. The
results are also independent of z for z= 0.3–0.7. At z= 0.9 the data follow the scaling
up to Reb≈ 100 but then diverge. As seen in § 8, Reb≈ 100 corresponds to the point
in the flow evolution where the flow moves away from local equilibrium at this height,
so that the assumptions underlying the derivation of (9.18) no longer hold.

10. Relationships between local flow parameters and friction Richardson number

For channel flow it is useful to find relationships between local flow parameters and
bulk flow parameters since bulk parameters are often what is measured in field studies
or predicted by large scale models. By analogy to the gradient Richardson number
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FIGURE 24. (Colour online) Local Monin–Obukhov scaling for Reb in terms of ReΛ.
(a) Shows data for Cases 3, 4, 7 and 9 at a height of z= 0.6. (b) Shows data for Case
3 at various heights. The solid lines are Reb = κPr−1

t (1− Rf )ReΛ.

Ri, the friction Richardson number Riτ can be interpreted as the ratio of the mean
buoyancy gradient in the channel to the mean shear at the wall, that is,

Riτ =
γ1φ

h

/(uτ
h

)2
. (10.1)

As such, it is a bulk measure of the strength of stratification within the channel
relative to the shear.

Figure 25 shows Q, Rf , kh and F plotted against Riτ at z = 0.5 for Cases 3, 4,
7 and 9. The short initial ‘ramps’ seen in the trajectories where the data do not
collapse correspond to the early stage in which the flow relaxes in response to sudden
removal of the heat source. As discussed above, during this early period the flow is
also affected by the value of the stability parameter λ0 for the initial state. Excluding
the ramps, the data for each of the parameters collapse convincingly when plotted
against Riτ .

In (a) it can be seen that Q follows relationships of the form

Q=CRin
τ , (10.2)

where the exponent n=−2/3 for Riτ > 2 and −1 for Riτ < 2. Thus there is clearly
a close relationship between the local parameter Q, which has been found above be
a dominant parameter governing local turbulence dynamics, and the bulk parameter
Riτ . At this height in the channel the dotted line representing Qtr = 0.15 intersects
the data at approximately Riτ = 100. Thus the transition away from the linear Osborn
relationship, kh = ΓQ, occurs for Riτ > 100 at this height.

The Q = Ri−1
τ power law for the very weakly stratified regime (Riτ < 2) can be

explained with the following scaling argument. Expanding Q gives

Q=
Reb

Reτ
=

ε

νN2

ν

uτh
=

ε

uτN2h
. (10.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

54
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.543


400 M. P. Kirkpatrick, N. Williamson, S. W. Armfield and V. Zecevic

101100102 10-1 10-2 101100102 10-1 10-2

101100102 10-1 10-2 101100102 10-1 10-2

10-1

10-2

10-1

10-2

10-1

10-2

10-3

102

101

100

10-1

Ri† Ri†

Rf

kh

q

f

(a) (b)

(c) (d)

Case 3
Case 4
Case 7
Case 9

FIGURE 25. (Colour online) Q, Rf , kh and F plotted against Riτ at z = 0.5 for Cases
3, 4, 7 and 9. In (a) the dashed line is Q= 3Ri−2/3

τ and the solid line Q= 3.3Ri−1
τ . In

(b) the dashed line is Rf = Rf ,c = 0.17 and the solid line Rf = 0.04Riτ . In (c) the dashed
line is kh= kh,c= 0.1 and the solid line kh= 0.65Ri−2/3

τ . In (d) the dashed line is F = 0.14,
the dot-dashed line F = 0.1Ri−1/8

τ and the solid line F = 0.28Ri−1/2
τ . The dotted lines in

(a,c) correspond to Riτ =100 and Q=Qtr=0.15. The dotted lines in (d) represent Riτ =15
and Riτ = 0.06. Note that the values of Riτ are plotted from highest to lowest.

Buoyancy frequency scales with the average buoyancy gradient across the channel
N2
∼ γ1φ/h, and for weakly stratified flow ε∼ u3

τ/h, which gives

Q∼
u2
τ

γ1φh
= Ri−1

τ . (10.4)

The relationship between Rf and Riτ shown in (b) is qualitatively similar to the
relationship between Rf and Q shown in figure 17 and approaches a power law
relationship Rf = 0.035Riτ for small Riτ . This is consistent with the fact that Rf was
found to approach an asymptotic relationship of the form and Rf ∼ Q−1 for large
Q, while from (a), Q ∼ Ri−1

τ for small Riτ . The transition towards this relationship
is gentler in the case of Rf and Riτ due to the fact that Q ∼ Ri−2/3

τ for Riτ > 2.
The linear relationship between Rf and Riτ implies that local fluxes and large scale
gradients approach a linear relationship as the stratification becomes very weak.
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FIGURE 26. (Colour online) Q and F plotted against Riτ at various heights for Case 3.
The lines are the same as those given in figure 25 and represent the best fit to the data
at z= 0.5.

The relationship between kh and Riτ shown in (c) is similar to the relationship
between kh and Q shown in figure 17. For Riτ > 100 (that is the linear Osborn
region, Q<Qtr = 0.15) it follows a power law relationship, kh= 0.65Ri−2/3

τ , which is
consistent with the combination of kh ∼Q and Q∼ Ri−2/3

τ .
The data for F shown in (d) follow similar trends to that of kh. Here we have

delineated two regions. For Riτ > 15, data for F fit well to the relationship F =
0.28Ri−1/2

τ . For Riτ < 15, F follows the relationship F = 0.1Ri−1/8
τ as it approaches

its asymptotic value of F = 0.14. These two functions intersect at Riτ = 0.06.
Consistent with the results presented in § 7, the relationships between the local

parameters kh, Rf , F and Q and the bulk parameter Riτ appear to be independent of
Reτ , λ0 and α0, while there is a dependence of kh, Rf and F on Pr in the very weakly
stratified regime (Riτ < 2). The relationship between Q and Riτ , however, appears
to be independent of Pr. This is consistent with the scaling argument presented in
(10.3)–(10.4) above.

Since Riτ is a bulk parameter, the relationships between local parameters and Riτ
are not independent of height within the channel. This can be seen in figure 26, which
shows Q and F plotted against Riτ at various heights across the channel for Case 3.
The curves of Q shown in (a) show a monotonic decrease in Q with height from
z= 0.3 to z= 0.9. In the central region of the channel (0.3< z< 0.7) the curves of Q
follow similar gradients, indicating that the exponent remains unchanged in this region.
In the near-surface region at z= 0.9 the exponents in the power law relationship are
somewhat higher. The curves for F shown in (b) are of particular interest in the
context of the destratification of the flow. The rate of change of temperature in a
horizontal layer is equal to the flux divergence, or ∂F/∂z. Thus the difference between
the F(z,Riτ ) curves for two different heights gives an indication of the rate of change
of temperature in the layer between those two heights relative to the bulk temperature
difference across the channel at that time.

11. Destratification rate
The finding in the previous section that the vertical heat flux F scales with Riτ

suggests that the bulk destratification rate in the channel should also be related to Riτ .
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Noting that the flow is horizontally homogeneous, the energy equation, (2.25), can be
averaged in x− y planes to give an equation for the rate of change of the horizontally
averaged temperature,

∂φ

∂t
= σ

∂2φ

∂z2
−
∂(φ′w′)
∂z

. (11.1)

As with the full set of governing equations, (2.23)–(2.25), due to the fact that
dependent variables here are non-dimensionalised in terms of the time-varying
friction velocity uτ , this equation cannot be integrated in time. It does, however,
give a function for the time rate of change, ∂φ/∂t, relative to a characteristic friction
time scale, t̃τ = h̃/ũτ , determined from flow conditions at a particular instant in
‘measured time’, t̂. Thus, t is used only within differentials ∂t and dt, while t̂ refers
to the point in time within the process at which the particular set of flow conditions
occur.

The first term on the right-hand side of (11.1) represents molecular diffusion, while
the second term is the turbulent heat flux, which, as noted above, can be modelled in
terms of the turbulent diffusivity kh and the temperature gradient to give

∂φ

∂t
=
∂

∂z

(
[σ + kh(z, t̂)]

∂φ

∂z

)
. (11.2)

Defining the total diffusivity as kt(z, t̂)= σ + kh(z, t̂) gives

∂φ

∂t
=
∂

∂z

(
kt(z, t̂)

∂φ

∂z

)
. (11.3)

This is a one-dimensional heat diffusion equation for which we require a solution
subject to adiabatic boundary conditions, ∂φ/∂z=0 at z=0 and 1, and the temperature
profile at a particular time t̂ (see figure 6). Dimensional analysis indicates that the
rate of change of the temperature difference across the channel 1φ at time t̂ is
characterised by a diffusion time scale of the form,

td(t̂)=
k∗(t̂)
h2

, (11.4)

where k∗(t̂) is a representative diffusivity across the channel at time t̂. This gives an
equation for the destratification rate,

d(1φ)
dt
=−k∗(t̂)

1φ

h2
. (11.5)

We define a normalised destratification rate as

D(t̂)=−
1

1φ(t̂)
d(1φ(t̂))

dt
. (11.6)

Combining this with (11.5), gives

D(t̂)= k∗(t̂)/h2. (11.7)

Clearly the representative diffusivity k∗(t̂) must be a function of kt(z, t̂), however,
because kt(z, t̂) varies with z, and sits within the outer differentiation operator ∂/∂z(·)
in (11.3), it will also be a function of the temperature gradient profile ∂φ(z, t̂)/∂z.
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FIGURE 27. Destratification profiles for Case 3. Legend as for figure 6.

In order to investigate this relationship more closely we recast the horizontally
averaged energy equation (11.1) in terms of the total heat flux through a horizontal
layer at height z, defined in § 7 as

F=−σ
∂φ

∂z
+ φ′w′ ≡−kt

∂φ

∂z
. (11.8)

Substituting into (11.1) gives

∂φ(z, t̂)
∂t

=−
∂F(z, t̂)
∂z

, (11.9)

and then differentiating both sides with respect to z gives

∂2φ(z, t̂)
∂z∂t

=−
∂2F(z, t̂)
∂z2

. (11.10)

Integrating this expression across the channel,

d
dt

∫ h

0

∂φ(z, t̂)
∂z

dz=−
∫ h

0

∂2F(z, t̂)
∂z2

dz, (11.11)

gives
d(1φ)

dt
(t̂)=−

1
h

∫ h

0

∂2F(z, t̂)
∂z2

dz, (11.12)

which can be recast in terms of D and F as

D(t̂)=
1
h

∫ h

0

∂2F(z, t̂)
∂z2

dz. (11.13)

Figure 27 shows vertical profiles of 〈φ〉, F, ∂F/∂z and ∂2F/∂z2 for Case 3. Here,
like 〈φ〉, the fluxes were averaged over one time unit as well as horizontal planes
in order to improve convergence of statistics, as was done for the vertical profiles
presented in § 5. For convenience the angled brackets are not shown. These profiles
give an overview of the mechanics of the destratification process from the perspective
of horizontal layers.
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Panel (a) shows that the height z ≈ 0.65 represents a nodal plane for the process.
Above this height the temperature 〈φ〉 decreases with time, while below this height
the temperature increases. The temperature at z≈ 0.65 remains constant.

The total heat flux F shown in (b) is downwards across the entire channel, with
heat being transferred down the temperature gradient.

As noted above, the flux divergence, ∂F/∂z, shown in (c) is equal to the time rate
of change of temperature at a given horizontal layer, ∂φ/∂t. This panel shows that
the layers close to the surface generally have the highest rate of temperature change
and that this rate of change decreases with time.

The profile at t̂ = 0 also represents the flux divergence profile for the heated
equilibrium state. Here the heated equilibrium flow is statistically stationary so
∂φ(z, t̂)/∂t= 0 and the flux divergence balances the radiative heat source. As a result,
the profile of ∂F/∂z is exponential matching the Beer–Lambert law.

The profile of ∂2F/∂z2 is shown in (d). As this is a second derivative and there is
limited scope for averaging in the time evolving flow, the raw profile is very noisy.
We have filtered this noise by applying a thirty point running average so that the
trends can be seen. Consequently, data are truncated close to the top and bottom of
the channel.

As discussed above, the representative diffusivity k∗(t̂) and destratification rate D(t̂)
at time t̂ are equal to the integral of ∂2F/∂z2 across the channel divided by 1φ(t̂).
Thus the profile of ∂2F/∂z2 gives an indication of the regions of the channel that make
the most significant contributions to k∗(t̂) and D(t̂). The profiles indicate that, for most
of the destratification process, the region above z = 0.3 makes the most significant
contribution, while the region close to the lower wall boundary makes only a very
small contribution. The dominant contribution comes from the region z= 0.6–0.9.

In previous sections we have shown that in the central region, z= 0.3–0.7, F is a
function of Riτ and Pr, while in the near-surface region (at least up to z= 0.9) it is a
function of Riτ only. From (11.13) it is clear that the normalised destratification rate
D is a function of F . Thus we expect D also to be a function of Riτ and Pr.

Figure 28 shows the normalised destratification rate D as a function of Riτ for all
simulation cases. Apart from the initial ramps that correspond to the early relaxation
period, the data collapse well for all cases. The Prandtl number dependence seen in F
is reflected in D, with higher destratification rates at lower Pr in the weakly stratified
regime.

Based on this we suggest the following empirical power law approximations to the
data over three ranges:

D= 1.1; Riτ < 0.06, (11.14a,b)

D= 0.78Ri−1/8
τ ; 0.06 6 Riτ 6 15, (11.15a,b)

D= 2.1Ri−1/2
τ ; Riτ > 15. (11.16a,b)

As expected, there are clear similarities in the relationship between D and Riτ and
that between F(z, t̂) and Riτ shown in figure 25. The exponents in the power law
relations and the values of the transitional values of Riτ are the same. Clearly the
range of data for Riτ <0.06 are very limited. The value of D=1.1 given for this range
was determined using Case 11 in which λ0 = 0 and hence Riτ = 0. For this case the
average destratification rate was found to be 1.1. These relations do not include any
dependence on Prandtl number. Accurate determination of such a dependence would
require simulations over a larger Pr range and is left to a future study.
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FIGURE 28. (Colour online) Normalised destratification rate D plotted against Riτ for
Cases 1–10. The solid line is D= 1.1, the dot-dashed line D= 0.78Ri−1/8

τ , and the dashed
line D= 2.1Ri−1/2

τ .

12. Concluding remarks
This paper has presented a study of destratification of thermally stratified open

channel flow after removal of the heat source. The radiative heat source in the initial
heated equilibrium state acts as a sink for potential energy and is in balance with
turbulent kinetic energy generated by shear within the channel. This leads to a flow
in which turbulence in the central region of the channel is in a state of energetic
equilibrium, with shear production balanced by viscous dissipation and buoyancy flux.

Stable stratification due to the heat source reduces turbulent momentum fluxes. Due
to the exponential nature of the heat source, this effect is most pronounced close
to the upper surface. As a result, a laminar surface layer forms close to the top
of the channel leading to a strongly inflected mean velocity profile and associated
shear layer in this region. Due to the inflected velocity profile, the stratified flow
contains a surplus of mean flow kinetic energy relative to a neutral flow with the same
streamwise pressure gradient.

Sudden removal of the heat source leads to a change in the energy balance within
the channel. As a result, energy transfers must readjust to the new conditions. The
flow undergoes an initial relaxation period during which the laminar layer close to
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the surface destabilises driving a rapid transition to turbulence. The resultant increase
in shear production opens up a pathway by which energy is transferred from mean
flow kinetic energy to the turbulent kinetic energy field, and from there via reversible
and irreversible buoyancy fluxes into background potential energy. For the remainder
of the destratification process energy transfers along this pathway are approximately
in balance and the region of energetic equilibrium seen in the initial state extends up
close to the surface before gradually contracting again as the process proceeds.

We proposed the following explanation for the rapid destabilisation of the laminar
surface layer seen during the initial relaxation period. In the initial state the potential
energy sink provides an extra stabilising influence on the laminar surface layer by
absorbing small perturbations before they are able to grow and become unstable. As
a result, the lower section of this layer has a gradient Richardson number that is
well below the critical gradient Richardson number Rim= 1/4 determined by Howland
et al. (2018) for marginal stability of an unheated fluid layer with respect to Kelvin–
Helmholtz instabilities. Removal of the heat source results in the lower section of the
laminar surface layer suddenly becoming unstable to small perturbations, leading to
the rapid formation of K–H-like instabilities.

This proposed mechanism is supported by visualisations of the flow, which show
that a layer of intense Kelvin–Helmholtz-like shear instabilities forms within this
region during the initial stages of the flow evolution. Quantitative evidence is seen
in a localised increase in flux Richardson number in this layer and as well as an
increase in available potential energy, both of which are have been found by authors
such as Winters et al. (1995) to be associated with Kelvin–Helmholtz instabilities.
The enhanced mixing efficiency due to the K–H-like instabilities causes vigorous
entrainment of the overlying laminar layers leading to a rapid transition to turbulence
up to the top of the channel.

The central region of the channel, 0.3 / z / 0.7, remains in energetic equilibrium
until late in the destratification process. In this region the flow exhibits behaviour
similar to that seen in homogeneous stratified shear flow. For low Reb, the
normalised eddy diffusivity kh/ν ≡ k̃h/ν̃ scales linearly with Reb, kh/ν = Γ Reb
where Γ = 0.2, in accordance with the model of Osborn (1980). For high Reb,
kh/ν approaches asymptotic values that are consistent with the scaling relationship
kh/ν≈ (κlc/η)

4/3Pr−1
t,n derived by Chung & Matheou (2012) for homogeneous stratified

shear flow. These relationships are, however, dependent on Reτ .
For channel flow, since η scales with Reτ , this asymptotic value varies with

Reτ . From the scaling relationship of Chung & Matheou (2012) above, we show
that this effect can be accounted for by reformulating the relations in terms of
a non-dimensional eddy diffusivity kh ≡ k̃h/(ũτ h̃) and a non-dimensional parameter,
Q≡Reb/Reτ . This scaling gives the correct dependence of kh/ν on Reτ in the weakly
stratified regime (Q�Qtr = 0.15), approaching a single asymptotic value kh,c ≈ 0.1,
while reverting to the Reτ -independent linear Osborn model, kh = ΓQ, in strongly
stratified conditions (Q/Qtr = 0.15).

Using Q also accounts for Reτ effects on other local parameters such as the flux
Richardson number Rf and gradient Richardson number Ri. For strongly stratified
conditions, Q< 0.15, Rf remains constant at a critical value of Rf ,c ≈ 0.17, while for
very weakly stratified conditions it approaches an inverse linear relation, Rf = 0.1Q−1.
The exponent here differs from the exponent n=−1/2 to −2/3 commonly reported
for geophysical flows; however, it is consistent with the theoretical analysis of
Scotti & White (2016), who demonstrate that there is no justification for a universal
relationship between Rf and Reb. In the context of bounded flows, Rf must also be
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affected by the externally imposed confinement scale, with this effect becoming more
dominant as the ratio of buoyancy length scale to confinement scale increases.

Within the central region of the channel all these relationships are shown to be
independent of height as well as the parameters Reτ , λ0 and α0. The data do, however,
indicate a dependence on Pr in the weakly stratified regime. We suggest that this is
due to the effect of Pr on the ratio between turbulent and viscous heat fluxes and the
mean vertical temperature gradient within the channel.

We also investigated these parameter relationships in upper region of the channel,
0.7 / z / 1. At a height, z = 0.9, qualitatively similar relationships are observed
to those seen in the central region; however, kh and Rf are reduced as a result
of constraints imposed on turbulent motions due to the proximity to the surface.
Nevertheless, kh and Rf are found to scale with Q independent of λ0, and α0. As
expected there is, however, some dependence on Reτ and Pr in this region as viscous
effects become important.

Given that the overarching aim of this paper is to determine the destratification rate,
we defined a normalised total heat flux, F = F/1φ, where 1φ is the temperature
difference across the channel and F the sum of the turbulent and molecular heat fluxes.
This flux also scales with Q and exhibits a Prandtl number dependence in a manner
similar to kh.

As described by Williamson et al. (2015), the stability of the heated equilibrium
flow is governed by a parameter λ0 formed as the ratio of the channel height h to an
Obukhov length scale L based on the radiative heat source. In the destratifying flow
there is no heat source and the flow is evolving in time. We found, however, that an
Obukhov length scale formed using the friction velocity uτ and the maximum total
buoyancy flux in the channel at a given time is useful in describing local turbulence.
We compared our data to a variety of scalings based on Monin–Obukhov theory and
found good agreement with these scalings.

Williamson et al. (2015) show that the equilibrium flow is governed by four
parameters, Reτ ,0, λ0, Pr and α0. For the destratifying flow in which the heat source
is removed, λ0 no longer determines the stability of the flow. Given the similarity
in form between λ0 and a friction Richardson number Riτ , we proposed that Riτ
can be used to describe the stability of the destratifying flow. Analysis of our DNS
data shows that this is indeed the case, with local turbulence quantities Q, kh, Rf
and F scaling with Riτ , independent of Reτ , λ0 and α0. Again, there is a small
dependence on Pr in the weakly stratified regime. Noting that, within the context of
our non-dimensionalisation scheme, Q and kh have an implicit dependence on Reτ ,
we conclude that the destratifying flow is governed by bulk parameters Riτ , Reτ and
Pr, with λ0 and α0 having an effect only through the initial conditions and during
the brief initial relaxation period.

Finally, based on these relationships we used scaling analysis to show that the bulk
destratification rate D in the channel is expected to be a function of Riτ and Pr.
Our DNS data indicate that this is indeed the case. Based on these data we have
determined approximations to this function in the form of power law relationships,
D≈CRi−n

τ .
Given the small range of Prandtl numbers used in this study we have not been able

to determine a scaling relationship for this parameter. We can, however, state that
destratification rate decreases with increasing Pr. A quantitative scaling relationship
might be determined through a future study in which simulations or experiments are
performed over a larger range of Pr.

Similarly, whilst a dependence of destratification rate on Reynolds number is
not apparent in our results, again, these results are for a small range of relatively
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low Reynolds numbers. The Reynolds number of typical stratified river flows is
significantly higher (Reτ =O(10 000)), so even a small Reynolds number dependence
would have an effect.

Thus, before using the destratification scaling relationship proposed here for
predicting destratification in rivers, it is necessary to first assess its validity against
field or experimental measurements taken at values of Reτ and Pr comparable with
actual thermally stratified river flows.
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Appendix A

This appendix discusses our approach for dealing with a time-varying coefficient of
friction.

As the flow destratifies, changes in the balance between turbulent and laminar shear
stresses within the channel result in the mean velocity profile evolving from an initial
inflected profile towards a non-inflected neutral boundary layer profile. This leads to
an increase in the coefficient of friction, Cf = 2(ũτ/Ũb)

2.
Because our simulations are driven by a constant pressure gradient, this change in

Cf leads to an increase in the actual friction velocity ûτ (t̂) measured at the bottom
boundary in the simulations. Here ·̂ is used to refer to the actual value of a variable
measured in the simulation. The increased wall shear stress then decelerates the flow
leading to a decrease in the bulk velocity. Eventually ûτ decreases again towards a
value of unity that is in balance with the applied pressure gradient. The increase in
ûτ depends primarily on λ0, reaching peak values of approximately 1.06, 1.11 and
1.23 for the λ0 = 0.5, 1 and 2 cases, respectively.

Whilst in our simulations the channel height ĥ remains constant at ĥ = h0, in a
physical channel flow the height of the fluid in the channel will typically also vary in
response to a change in Cf , so we have included the possibility of time-varying ĥ(t̂)
explicitly in our formulation to allow comparison with physical flows.

The governing equations given in § 2.2 are non-dimensionalised in terms of the time-
varying length scale h̃(t̃) and velocity scale ũτ (t̃), and the temperature scale associated
with the initial equilibrium state Φ̃N,0. Due to the time-varying scales, these equations
cannot actually be solved directly. Instead we solve the set of equations with length
and velocity scales frozen at their initial values, that is,
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∂ ûj

∂ x̂j
= 0, (A 1)

∂ ûi

∂ t̂
+
∂ ûiûj

∂ x̂j
=−

∂ p̂
∂ x̂i
+ ν̂

∂2ûi

∂ x̂2
j
+ δi1 + γ̂ φ̂δi3, (A 2)

∂φ̂

∂ t̂
+
∂φ̂ûj

∂ x̂j
= σ̂

∂2φ̂

∂ x̂2
j
. (A 3)

The variables in the above equations are normalised with respect to the friction
velocity ũτ ,0, characteristic temperature Φ̃N,0, and channel height h̃0 of the initial
state, that is

û=
ũ

ũτ ,0
, φ̂ =

φ̃

Φ̃N,0
, p̂=

p̃
ρ̃0ũ2

τ ,0
x̂=

x̃

h̃0

, t̂=
ũτ ,0
h̃0

t̃,

ν̂ =
ν̃

ũτ ,0h̃0

≡
1

Reτ ,0
, σ̂ =

σ̃

ũτ ,0h̃0

≡
1

Reτ ,0Pr
, γ̂ =

β̃g̃Φ̃N,0h̃0

ũ2
τ ,0

.

 (A 4)

In order to recover the solution to (2.23) to (2.25) formulated in terms of time
varying h̃(t̃) and velocity scale ũτ (t̃), we renormalise the solution according to the
following scheme:

u=
û

ûτ (t̂)
, φ = φ̂, p=

p̂
û2
τ (t̂)

, x=
x̂

ĥ(t̂)
, ∂t=

ûτ (t̂)∂ t̂

ĥ(t̂)
, t̂= t̂,

ν =
ν̂

ûτ (t̂)ĥ(t̂)
, σ =

σ̂

ûτ (t̂)ĥ(t̂)
, γ =

ĥ(t̂)γ̂
û2
τ (t̂)

.

 (A 5)

This renormalisation scheme is derived by redimensionalising equations (A 1)–(A 3)
and then non-dimensionalising them again in terms of the time-varying scales h̃(t̃) and
ũτ (t̃). For (A 1) and (A 3) this is equivalent to multiplying through by a factor

ũτ ,0
h̃0

h̃(t̃)
ũτ (t̃)

≡
ĥ(t̂)
ûτ (t̂)

, (A 6)

while for (A 2) the transformation requires multiplication by

ũ2
τ ,0

h̃0

h̃(t̃)
ũ2
τ (t̃)
≡

ĥ(t̂)
û2
τ (t̂)

. (A 7)

This results in the governing equations formulated in terms of the time varying h̃(t̃)
and velocity scale ũτ (t̃) given in (2.23) to (2.25).

Note that multiplication of the equations in this fashion implies a renormalisation
of the time differential ∂t only, as shown in (A 5), since

∂t=
ûτ (t̂)

ĥ(t̂)
∂ t̂ 6= ∂

(
ûτ (t̂)

ĥ(t̂)
t̂
)
. (A 8)

As a result, we can interpret our renormalised solutions as a series of ‘snapshots’ of
the flow that have been normalised in terms of a characteristic friction time scale
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t̃τ = h̃/ũτ based on the flow conditions in that particular instant in ‘measured time’, t̂.
For this reason, when results are presented we give them in terms of measured time
t̂ rather than a renormalised time.
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