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Abstract. Let f : X 99K X be a dominant rational self-map of a smooth projective variety
defined over Q. For each point P ∈ X (Q) whose forward f -orbit is well defined,
Silverman introduced the arithmetic degree α f (P), which measures the growth rate of
the heights of the points f n(P). Kawaguchi and Silverman conjectured that α f (P) is
well defined and that, as P varies, the set of values obtained by α f (P) is finite. Based on
constructions by Bedford and Kim and by McMullen, we give a counterexample to this
conjecture when X = P4.
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1. Introduction
Let f : X 99K X be a dominant rational map of a smooth projective variety defined over
Q. We let I f denote the indeterminacy locus of f , and X f (Q) denote the set of Q-points
of X whose forward f -orbit is well defined, that is, those P ∈ X (Q) such that f n(P) /∈
I f for all n ≥ 0. To each point P ∈ X f (Q), Silverman [Sil14] introduced the following
quantity which measures the arithmetic growth rate of f n(P). Fix an ample divisor H
on X and a logarithmic Weil height function hH : X (Q)→ R for H . Letting h+H (P)=
max(hH (P), 1), consider the quantities

α f (P)= lim inf
n→∞

h+H ( f n(P))1/n, α f (P)= lim sup
n→∞

h+H ( f n(P))1/n .

Kawaguchi and Silverman proved in [KS16b, Proposition 12] that these quantities are
independent of the choice of ample divisor H . When α f (P)= α f (P), the arithmetic
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degree α f (P) is defined to be the common limit. Kawaguchi and Silverman made the
following conjecture and proved it in the case when f is a morphism [KS16a, Theorem 3].

CONJECTURE 1. [KS16b, Conjecture 6abc] If P ∈ X f (Q), then the limit α f (P) exists.
Moreover,

{α f (Q) | Q ∈ X f (Q)}
is a finite set of algebraic integers.

We prove the following result which gives a counterexample to Conjecture 1.

THEOREM 2. Let f : P4 99K P4 be the birational map defined by

[X; Y ; Z; A; B] 7→ [XY + AX; Y Z + B X; X Z; AX; B X ].

Then there exists a sequence of points Pn ∈ X f (Q) for which α f (Pn) exists, and {α f (Pn)}n

is an infinite set.

The strategy we use to prove Theorem 2 is actually inspired by another conjecture of
Kawaguchi and Silverman [KS16b, Conjecture 6d], namely that if P ∈ X f (Q) and P has
Zariski dense orbit under f , then α f (P) is equal to the first dynamical degree λ1( f ).
Consider a family π : X→ T and a dominant rational map f : X 99K X which preserves
fibers and induces a dominant rational map ft : X t 99K X t on every fiber. For generic
values of t , the first dynamical degrees λ1( f ) and λ1( ft ) agree, but it is possible to have
a countable union of subvarieties T ⊂ T such that λ1( ft ) < λ1( f ) for all t ∈ T , and for
which infinitely many distinct values arise as λ1( ft ). Suppose that for all t ∈ T we can
find Pt ∈ X t (Q) whose forward orbit under ft is well defined and Zariski dense in X t .
Then we would expect that α f (Pt )= α ft (Pt )= λ1( ft ). Since the set of λ1( ft ) is infinite,
this would achieve infinitely many different values for α f .

There are a few issues we must handle in order to turn the above strategy into a
counterexample to Conjecture 1. First, we must produce a suitable map f , and ensure
that there are points Pt with dense orbit under ft and whose orbits avoid the indeterminacy
of f . Second, one would expect that α ft (Pt )= λ1( ft ), but this requires a proof. The
easiest way to show this is to work in a case where [KS16b, Conjecture 6d] is already
known to hold. For this reason, we consider a family of surface maps with f birational and
where ft extends to an automorphism of a birational model of X t , so that we can appeal
to [Kaw08, KS14], which proves that α f (P)= λ1( f ) in this case. We implement this
strategy based on constructions by Bedford and Kim [BK06] and by McMullen [McM07].

2. Proof of Theorem 2
We begin by taking the strategy described in the introduction and codifying it as the
following result.

PROPOSITION 3. Let X be a smooth projective variety over Q, and π : X→ T be a
projective morphism of Q-varieties with two-dimensional fibers. Let f : X 99K X be a
birational map defined over T and suppose there is an infinite sequence of parameters
tn ∈ T (Q) satisfying the following:
(1) for each n, there exists a birational model πtn : X̃ tn → X tn so that ftn extends to an

automorphism f̃tn : X̃ tn → X̃ tn ;
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(2) for each n, there exists a Q-point Pn of X tn , contained in the open set where πtn is an
isomorphism, and with well-defined f -orbit that is Zariski dense in X tn ;

(3) the set of values λ1( ftn ) is infinite.
Then the set of values of α f (Pn) is infinite.

Proof. Fix an ample divisor H on X . Since H restricts to an ample on X t , we see α f (P)=
α ft (P) for all P ∈ X t (Q) such that the arithmetic degree is well defined. So to complete
the proof, it is enough to show α ftn (Pn)= λ1( ftn ).

Let P̃n be the unique point of X̃ tn with πtn (P̃n)= Pn . We have α ftn (Pn)= α f̃tn
(P̃n)

by [MSS17, Theorem 3.4], and λ1( ftn )= λ1( f̃tn ) by [Dan17, Theorem 1.(2)] and the
discussion that follows it. Since f̃tn is a surface automorphism and P̃n has dense orbit,
[KS14, Theorem 2c] tells us that α f̃tn

(P̃n)= λ1( f̃tn ), completing the proof. �

We next use a construction due in various guises to Bedford and Kim [BK06] and to
McMullen [McM07]. The relation between these two constructions is explained in the
introduction of [BK09] as well as their remark on page 578. We collect the relevant facts
from these papers in the following proposition.

PROPOSITION 4. Let X = P2
× A2 and consider the map f : X 99K X whose fiber over

(a, b) ∈ A2 is given in affine coordinates by fa,b(x, y)= (y + a, y/x + b). There is
a sequence tn = (an, bn) ∈ A2(Q) indexed by the integers n ≥ 10 with the following
properties:
(1) the first dynamical degree λ1( ftn ) is given by the largest real root δn of the

polynomial xn−2(x3
− x − 1)+ x3

+ x2
− 1;

(2) the numbers δn increase monotonically in n to δ∗ ≈ 1.32472 . . . , the real root of
x3
− x − 1;

(3) there is an ftn -invariant cuspidal cubic curve Ctn ⊂ P2 with cusp qtn which is
invariant under ftn ;

(4) there is a birational model πtn : X̃ tn → P2 such that ftn extends to an automorphism
of X̃ tn ; specifically, πtn is a blow-up at n points in the smooth locus of Ctn ;

(5) the point qtn is not contained in the indeterminacy locus of f ;

(6) the derivative of ftn at qtn is given in suitable coordinates by
(δ−2

n 0
0 δ−3

n

)
.

Proof. First note that the indeterminacy locus of f is {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)} ×
A2.

Let tn = (an, bn) be as on page 39 of [McM07]. Let p1 = (0 : 0 : 1), p2 = (1 : 0 : 0),
p3 = (0 : 1 : 0), and p4+i = f i

tn (an : bn : 1) for 0≤ i ≤ n − 4. By construction (see §7),
the p j lie in the smooth locus of a cuspidal cubic curve Ctn , and letting πtn : X̃ tn → P2 be
the blow-up at the p j , the map ftn extends to an automorphism f̃tn of X̃ tn .† Moreover, f̃tn
preserves an irreducible curve Yn ⊂ X̃ tn in the complete linear system of the anti-canonical
bundle, and Ctn = πtn (Yn). Since the cusp qtn of Ctn is not a smooth point of the curve, qtn
is necessarily distinct from the p j . In particular, πtn is an isomorphism in a neighborhood

of qtn . Since Yn is preserved by f̃tn , we see qtn is fixed by f̃tn and hence ftn . Finally, qtn is
not in the indeterminacy locus of f as qtn /∈ {p1, p2, p3}. This handles statements (3)–(5).

† For reference, McMullen denotes Ctn , X̃ tn , and f̃tn by Xn , Sn , and Fn , respectively.
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By equation (9.1) of [McM07], the derivative of ftn at qtn has eigenvalues λ1( ftn )
−2

and λ1( ftn )
−3, so (6) will follow upon showing λ1( ftn )= δn in (1).

Finally, taking into account differences in notation explained in the remark on page 578
of [BK09], we see (an, bn) belongs to the locus Vn−3 as defined in their equation (0.2).
Statements (1) and (2) then follow from [BK06, Theorem 2] by taking α = (a, 0, 1) and
β = (b, 1, 0). �

We now prove the main result.

Proof of Theorem 2. We retain the notation of Proposition 4. By construction, f gives a
rational self-map of A4 sending (x, y, a, b) to (y + a, y/x + b, a, b). Taking projective
coordinates [X; Y ; Z; A; B] on P4, our map extends to the birational map f : P4 99K P4

given by
[X; Y ; Z; A; B] 7→ [XY + AX; Y Z + B X; X Z; AX; B X ].

To prove the theorem, we apply Proposition 3. Condition (1) of the proposition is met
by virtue of Proposition 4(4), and condition (3) follows from Proposition 4(1) and (2). So
we need only find Pn ∈ X tn (Q) whose forward orbit under f is well defined and Zariski
dense in X tn = P2, and for which Pn lies in the locus where πtn is an isomorphism.

Notice that by Proposition 4(1) and (2), for each n ≥ 10 we have λ1( ftn )= δn ≥ δ10 > 1.
From [Dan17, Theorem 1.(2)], we see λ1( f̃tn )= λ1( ftn ) > 1. Theorem 1.1(1) and
Lemma 2.4(1) of [Zha10] then show there are only finitely many f̃tn -periodic curves.

By Proposition 4(3) and (6), qtn is an attracting fixed point of ftn . Fixing a metric d on
P2(C), we find that there exists an analytic open set Un ⊂ P2(C) containing qtn for which
ftn (Un)⊆Un and for which there exists a constant C < 1 so that for any u in Un , we have
d( ftn (u), qtn ) < C d(u, qtn ). In particular, the set Un does not contain any ftn -periodic
point other than qtn . By (4) and (5), we can choose Un so that it avoids the indeterminacy
locus of f and such that πtn : Ũn = π

−1
tn (Un)→Un is an isomorphism.

Let P̃n be any Q-point of Ũn \
⋃

C is f̃tn -periodic C , and Pn = πtn (P̃n). Notice that the
f -orbit of Pn is contained in Un , so the orbit is well defined and contained in the locus
over which πtn is an isomorphism. By construction, P̃n is not contained in any f̃tn -periodic
curve. At last, since P̃n lies in Ũn , it is not f̃tn -periodic. Since P̃n is not periodic and does
not lie on any f̃tn -periodic curve, it must have Zariski dense orbit under f̃tn , so that Pn has
dense orbit under ftn . �

Remark 5. One can imagine various corrections to Conjecture 1 to circumvent the
counterexample of Theorem 2. For example, one might ask that the map f : X 99K X
does not preserve any fibration. This does not seem sufficient, however. Indeed, the map
g : P5 99K P5 defined by

[X; Y ; Z; A; B; C] 7→ [XY + AX; Y Z + B X; X Z; AX + CY ; B X + C Z; C2
]

does not appear to preserve a fibration, but the hyperplane C = 0 is g-invariant, and the
restriction of g to this hyperplane is the map f : P4 99K P4 of Theorem 2. One might
instead attempt to correct Conjecture 1 by requiring one of the following properties.
(1) There is no subvariety Z ⊂ X such that f |Z preserves a fibration.
(2) The points Pn are of bounded degree over Q.

We know of no counterexamples in these settings.
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