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We study the fluctuating motion of a Brownian-sized probe particle as it is dragged
by a constant external force through a colloidal dispersion. In this nonlinear-
microrheology problem, collisions between the probe and the background bath
particles, in addition to thermal fluctuations of the solvent, drive a long-time diffusive
spread of the probe’s trajectory. The influence of the former is determined by the
spatial configuration of the bath particles and the force with which the probe perturbs
it. With no external forcing the probe and bath particles form an equilibrium
microstructure that fluctuates thermally with the solvent. Probe motion through
the dispersion distorts the microstructure; the character of this deformation, and
hence its influence on the probe’s motion, depends on the strength with which the
probe is forced, F ext , compared to thermal forces, kT/b, defining a Péclet number,
Pe = F ext/(kT /b), where kT is the thermal energy and b the bath particle size. It is
shown that the long-time mean-square fluctuational motion of the probe is diffusive
and the effective diffusivity of the forced probe is determined for the full range of Péclet
number. At small Pe Brownian motion dominates and the diffusive behaviour of the
probe characteristic of passive microrheology is recovered, but with an incremental
flow-induced ‘microdiffusivity’ that scales as Dmicro ∼ DaPe2φb, where φb is the volume
fraction of bath particles and Da is the self-diffusivity of an isolated probe. At the
other extreme of high Péclet number the fluctuational motion is still diffusive, and the
diffusivity becomes primarily force induced, scaling as (F ext/η)φb, where η is the vis-
cosity of the solvent. The force-induced microdiffusivity is anisotropic, with diffusion
longitudinal to the direction of forcing larger in both limits compared to transverse
diffusion, but more strongly so in the high-Pe limit. The diffusivity is computed for
all Pe for a probe of size a in a bath of colloidal particles, all of size b, for arbitrary
size ratio a/b, neglecting hydrodynamic interactions. The results are compared with
the force-induced diffusion measured by Brownian dynamics simulation. The theory
is also compared to the analogous shear-induced diffusion of macrorheology, as well
as to experimental results for macroscopic falling-ball rheometry. The results of this
analysis may also be applied to the diffusive motion of self-propelled particles.
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1. Introduction
The motion of active microscale particles driven through complex fluids is a physical

process central to many current scientific problems: vesicle trafficking in cells, artificial

† Email address for correspondence: roseanna@caltech.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

16
06

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010001606


Single-particle motion in colloids: force-induced diffusion 189

nano-motors and nanotherapeutic drug delivery devices are a few important examples
(Janke et al. 2005; Shirai et al. 2005; Heath, Davis & Hood 2009). The increased
demand for knowledge of this small-scale behaviour has made microrheology a key
step in the understanding, use and design of such systems. Among the collection
of techniques known as microrheology, most involve tracking the movement of a
colloidal particle (or a set of particles) in order to determine the properties of the
surrounding environment (MacKintosh & Schmidt 1999). There are two main types of
particle tracking microrheology: passive – tracking the random motion due to thermal
fluctuations – and active – applying a constant or oscillatory force to the particles,
for example by using optical tweezers or magnetic fields. A detailed comparison can
be found in Khair & Brady (2006). Most microrheological work to date has focused
on passive microrheology, to obtain linear viscoelastic properties by correlating the
random thermally driven displacements of tracers to the complex modulus through a
generalized Stokes–Einstein–Sutherland relation – a process which is well understood
but limited in its scope to equilibrium systems. Yet as noted above, many systems
of practical interest are driven out of equilibrium and display (indeed, rely upon)
nonlinear behaviours. Recently a body of work has emerged focusing on this active
nonlinear microrheology regime (Habdas et al. 2004; Meyer et al. 2005; Squires &
Brady 2005; Khair & Brady 2006; Wilson et al. 2009). In such a system, tracer
particles undergo displacements not only due to random thermal fluctuations, but
also due to the application of an external force applied directly to the tracer, or
‘probe’. The dispersion is driven out of equilibrium, and as with macrorheology,
dynamic responses such as viscosity can be measured. Since the tracer interrogates
the material at its own (micro)scale, much smaller samples are required compared
to traditional macrorheology, and localized material heterogeneity can be explored.
This is a particular benefit for rare biological materials and small systems such
as cells. Khair & Brady (2006) recently established the theory that predicts the
microviscosity of dilute systems of colloids, and defined the relationship between
micro- and macroviscosity – a critical step in the development of microrheology as
an experimental tool. Recent experiments confirm the theory (and raise additional
questions) (Meyer et al. 2005; Squires 2008; Wilson et al. 2009).

But in both theory and experiment, the focus thus far has been on the mean
response of the material – the viscosity – and far less work has been devoted to
particle fluctuations that occur due to collisions between the probe and bath particles.
As the probe moves through the dispersion it must push neighbouring particles
out of its way; these collisions induce fluctuations in the probe’s velocity, scattering
it from its mean path. Is this scattering diffusive? Is it isotropic? How important
is the scattering compared to the Brownian diffusion the probe simultaneously
undergoes? The answers to these questions are fundamental to understanding the
motion of an active microscale particle – important for both scientific and technology
considerations. Little work has been published on this topic (Habdas et al. 2004), even
though it has major implications for a wide range of technologies beyond material
interrogation.

Previous study of particle fluctuations in colloidal macrorheology shows that
imposing a shearing flow on a suspension enhances particle diffusivity (Leighton &
Acrivos 1987; Morris & Brady 1996; Brady & Morris 1997; Breedveld et al. 1998).
The imposed shear flow drives the microstructure from equilibrium, giving rise
to mechanisms of diffusion not present in a quiescent suspension: a deformed
microstructure and interparticle collisions. A forced microrheological probe also
imposes a flow that drives the suspension from equilibrium, again leading to a
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Figure 1. Microstructural deformation under (a) macrorheological shear flow and (b) micror-
heological forcing. In simple shearing motion (a), bath particles accumulate along the
compressional axis and deplete along the extensional axis. A tracer at the origin (the dark
sphere) experiences both in-plane and out-of-plane bath particle gradients. In (b), the (dark)
tracer itself deforms the microstructure, accumulating particles on its upstream face and leaving
a wake of depletion behind, creating an axisymmetric structure with only longitudinal and
transverse components.

deformed microstructure and interparticle collisions – and hence to an analogous
force-induced diffusion, or ‘microdiffusivity’. It is the primary objective of this study
to extend the theoretical model of active nonlinear microrheology to one that is
explicit in the fluctuations of the microstructure, and thereby develop expressions for
predicting the resultant force-induced diffusion.

It is also useful to ask whether the qualitative agreement between micro- and
macroviscosity can be extended to the micro- and macrodiffusivity. Both the shear-
and force-induced diffusions grow out of fundamentally similar mechanisms: external
forcing causes the tracer to scatter off of the microstructure, rather than wander
passively through it. But the directionality and magnitude of the scattering depend
on the shape of the deformed microstructure, and this asymmetry is distinct for the
two cases, as illustrated in figure 1. The idea of whether a direct correlation between
macro shear-induced diffusion and micro force-induced diffusion is possible (or even
necessary) will be explored in this study, and a comparison is sought between the two.

To build up a physical model, we follow the example of Squires & Brady (2005)
and consider the motion of a Brownian probe driven by an externally applied force
through a dispersion of neutrally buoyant-force- and torque-free colloidal particles.
The size ratio of probe to bath particle is arbitrary. As the probe particle moves
through the suspension it must push neighbouring particles out of its way; a build-
up of background particle concentration forms in front of the advancing probe
and a deficit or wake trails it. The bath particles (including the probe) undergo
Brownian diffusion due to thermal fluctuations of the solvent, which acts to restore
the deformed microstructure to an equilibrium configuration. The ratio of advective
forcing to entropic restoring force is the Péclet number, Pe = F ext/(kT /b), where kT
is the thermal energy and b the bath particle size. In the linear-response regime
(Pe → 0), diffusion of the bath particles dominates. As the probe forcing increases
and Pe grows beyond ∼O(1) – the active nonlinear-response regime – advection
plays an increasingly important role in the shape of the distorted microstructure.
Since the details of this shape govern the strength and likelihood of collisions between
probe and bath particles, its determination is critical to understanding the resultant
force-induced diffusive spread of the probe’s trajectory.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

16
06

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010001606


Single-particle motion in colloids: force-induced diffusion 191

The spatiotemporal distribution of bath particles obeys a Smoluchowski equation.
Prior treatments of active microrheology formulated the expression for the steady
microstructure moving relative to a fixed probe. We extend this approach by
considering both the steady microstructure deformation and fluctuations in the
microstructure responsible for diffusion of the probe. The resulting Smoluchowski
equations are solved for all Pe by a combination of perturbation methods and
numerical computation to obtain both the steady microstructure along with a new
quantity, the probability-weighted collisional displacements of the probe relative to
the bath particles.

Scaling arguments are useful for predicting the behaviour for extreme values of the
Péclet number. For random-walk processes, the diffusivity scales as

D ∼ l2

τ
, (1.1)

where l is the size of a probe step and τ is the decorrelation time. For very weak
forcing, Pe � 1, Brownian diffusion dominates the motion; so the time scale is
τ ∼ (a + b)2/Da , where Da is the self-diffusivity of an isolated probe particle of size a.
In this linear-response regime, l ∼ Pe(a + b). The number of diffusive steps depends
on the number of bath particle collisions; thus, for very small Pe, the microdiffusivity
should scale quadratically in the forcing and linearly in volume fraction of bath
particles φb:

Dmicro ∼ Pe2φbDa, Pe � 1. (1.2)

For large forcing, Pe � 1, the time scale is now advective, τ ∼ (a + b)/U , the probe
can move l ∼ (a + b) in that time and the force-induced microdiffusivity should scale
linearly with the Péclet number and in volume fraction of bath particles:

Dmicro ∼ Pe φbDa, Pe � 1. (1.3)

In the remaining sections of this paper, we propose and examine an extended
model for active nonlinear microrheology that is explicit in the probe fluctuations, and
explore the resultant force-induced diffusion. In § 2, we formulate the Smoluchowski
equation that governs the evolution of the microstructure in physical space, along
with kinematic expressions for the probe flux. The latter comprises advective and
interparticle contributions, and from these the diffusive flux of the probe is extracted
and separated into Brownian and flow-induced components. To make analytical
progress an assumption of diluteness is made. In § 3 the Smoluchowski equation is
separated into steady and fluctuating components, completing the formulation of the
problem. In § 4.1 the case of asymptotically weak probe forcing, Pe � 1, is studied.
Regular perturbation expansions are sufficient to obtain the O(φb) correction to the
long-time self-diffusivity, which corresponds to passive diffusion: D ∼ Da(1 − 2φb),
where φb is the (dilute) volume fraction of bath particles and Da is the diffusivity
of an isolated probe (Batchelor 1976). Higher orders in φbPe are required in order
to find the first effect of the forcing on particle self-diffusion and we proceed to
O(φbPe2) whereupon the problem becomes singular, which requires the use of matched
asymptotic expansions. In § 4.2 we shift focus to the opposite extreme of very strong
probe forcing, or Pe � 1, and the nonlinear response of the microstructure is exposed.
This limit is also singular with a boundary layer at the probe surface. To solve for
probe fluctuations at arbitrary values of the Péclet number, a numerical solution
is required, and a finite difference scheme is employed to this end in § 4.3. In § 5
we present an alternative solution of the problem based upon measurements of
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192 R. N. Zia and J. F. Brady

the probe’s displacements obtained by Brownian dynamics simulation, presented
juxtaposed to the Smoluchowski results. Section 6 is devoted to a comparison of
microdiffusivity to the macrodiffusivity (theory and experiments). Throughout, we
consider a simplified model that neglects hydrodynamic interactions between particles;
this simplification affords insight into the basic physics of diffusive behaviour arising
from interparticle forcing, but could be extended to include other interparticle forces
such as hydrodynamic interactions; the approach also offers a direct solution to related
problems such as self-propelled objects. The study is concluded with a discussion in
§ 7, including a brief discussion of hydrodynamic interactions, self-propulsion and
non-spherical shapes.

2. Microdiffusivity
The theoretical framework of active microrheology begins with a simple model: a

single Brownian probe particle of radius a is dragged by a constant external force
Fext through a dispersion of colloidal particles, all of size b, which are immersed in
a solvent of density ρ and viscosity η. The importance of fluid inertia relative to the
viscous shearing forces is characterized by the Reynolds number, Re = ρUa/η, where
U is the characteristic velocity of the moving probe, and for micrometre-sized probes
Re � 1, so that the fluid mechanics are governed by Stokes flow. The advective forcing
of the probe acts to deform the microstructure of the bath, while the Brownian motion
of the bath particles counteracts it in an attempt to restore equilibrium. This interplay
drives fluctuations in the probe’s velocity that give rise to diffusive behaviour. The
primary goals of this section are to examine the dispersive contributions to the probe’s
flux relative to the bath, formulate the expression for the force-induced component
and show that the force-induced dispersive motion is indeed diffusive.

We begin by defining the hard-sphere model for the interactive potential V (r)
between a particle of size a and a particle of size b located at positions x1 and x2,
respectively; they are separated by r = x2 − x1. Thus defined, the particles exert no
force on each other until their surfaces touch, r = a + b, at which point an infinite
repulsive potential is exerted to prevent their overlap:

V (r) =

{
∞, r < a + b,

0, r > a + b.
(2.1)

In general, the radii a and b at which particles exert the hard-sphere force are not the
same as their hydrodynamic radii, ah and bh, the surface at which the no-slip boundary
condition is obeyed. Various physical conditions of the colloids or the solvent can
extend the effective size of the particle beyond the hydrodynamic radius, e.g. steric
hindrance or an ionic screening layer; two particles may then experience a hard-sphere
repulsive force at overlap of their increased effective or ‘thermodynamic’ radii.

Following the excluded annulus model of Morris & Brady (1996) and Bergenholtz
et al. (2002), the ratios λa = a/ah and λb = b/bh give the relative importance
of hydrodynamic interactions between particles (figure 2). When λa, λb ∼ O(1),
hydrodynamic interactions strongly affect the particle configuration; as λa, λb → 1,
the particles get close enough that short-range lubrication forces become important.
We shall assume a system of particles for which λa, λb � 1, where hydrodynamic
interactions are negligible compared to interparticle and thermal forces. This model
captures the essential features of the dispersive process while keeping the analyses
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Figure 2. Pair interaction for the probe and bath particle.

as simple as possible; the effect of hydrodynamic interactions are discussed briefly
in § 7.

We consider the probe amid a dispersion of N − 1 bath particles in a configuration
xN . The distribution of particles is given by an N-particle probability density,
PN (x1, x2, . . . , xN ; t), which obeys a Smoluchowski equation

∂PN

∂t
+

N∑
i=1

∇i · j i = 0, (2.2)

where the sum is over all particles in the dispersion, and the flux of particle i is given
by

j i = U iPN (xN ; t) −
N∑

j=1

Dij · ∇j (lnPN (xN ; t) + VN/kT )PN (xN ; t). (2.3)

Here, kT is the thermal energy, Dij = kT M ij is the relative Brownian diffusivity
between particles i and j and M ij is the mobility tensor relating the velocity of
particle i to the force exerted on particle j . The first term on the right-hand side of
(2.3) is the advective flux of particle i with velocity U i , the second term is the flux
due to entropic gradients in the microstructure and Dij · (∇jVN/kT )PN gives the flux
of particle i due to the forcing of interactive potential with particle j .

In the dilute limit, only pair interactions are important, and the probability PN in
(2.2) and (2.3) reduces to the pair probability of finding the probe at position x1 and
a bath particle at position x2. To analyse the relative flux between probe and bath, it
is convenient to change to a frame of reference moving with the probe, placing the
probe at z= x1, and a bath particle at r = x2 − x1. The pair Smoluchowski equation
becomes

∂P2(z, r; t)

∂t
+ ∇z · j a + ∇r · ( j b − j a) = 0. (2.4)

Here, the subscripts a and b refer to the probe and the bath particle, respectively. We
are interested in the flux of the probe relative to any other particle, and so we integrate
P2(z, r; t) over all possible positions of a bath particle, to obtain the single-particle
Smoluchowski equation for the probe particle. Applying the divergence theorem and
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noting that relative flux is zero at contact and at infinity, we have

∂P1(z; t)

∂t
+ ∇z · 〈 j a〉 = 0, (2.5)

where 〈 j a〉 ≡
∫

j adr . The unbounded domain of the probe makes a transformation
to Fourier space convenient. Taking the Fourier transform, denoted by ,̂ of the
Smoluchowski equation (2.5) yields

∂P̂1(k; t)

∂t
+ ik · 〈 ĵ a〉 = 0, (2.6)

where the average flux 〈 ĵ a〉 from (2.3) has also been transformed to Fourier space:

〈 ĵ a〉 = (Ua − ikDa) P̂1(k; t) + Da

∫
∇r P̂2(k, r; t) dr. (2.7)

Here, Ua = Fext/6πηa is the probe velocity due to the imposed constant external
force, D11 ≡ Da the probe self-diffusivity, i the imaginary unit and the angle brackets
〈 〉 denote an ensemble average over all possible suspension configurations. P̂2(k, r; t)
and P̂1(k; t) are the Fourier transforms of P2(z, r; t) and P1(z; t), respectively.

The last term in (2.7) explicitly preserves the effect of bath particles on the probe.
In order to determine the average probe flux, the distribution of the bath relative to
the probe must be determined. To this end we define the structure function g(k, r t):

P̂2(k, r; t) ≡ nbg(k, r; t)P̂1(k; t), (2.8)

where nb is the undisturbed number density of bath particles far from the probe.
Expression (2.8) is similar to the familiar definition of the pair-distribution function

in physical space, P2(z, r; t) = nanb g(z, r; t) (since z is the origin, it is typically omitted).
But g(k, r; t) is not simply the Fourier transform of g(z, r; t). Rather, we have
defined in Fourier space the microstructure g(k, r; t) where the k-dependence explicitly
preserves fluctuations of the probe relative to the origin.

Also note that g(k, r, t) is not to be confused with the structure factor,
S(z, q, t) = Fr [P2(z, r, t)], corresponding to a Fourier transform with respect to the
separation vector r between the probe and the bath particle. Indeed, we solve for
the distribution of bath particles relative to the probe in physical (real) space r . The
Fourier transform variable k is with respect to the absolute position of the probe,
z. To determine the diffusive motion of the probe one imagines a concentration
gradient of a dilute collection of probes; these physical-space gradients correspond to
algebraic multiples of the wave vector, k, in Fourier space. The probe flux down this
concentration gradient is influenced by the interaction with bath particles distributed
according to g(k, r, t), a distribution that must be determined for all r .

Combining (2.7) and (2.8) we obtain the following for the steady average probe
flux:

〈 ĵ a〉 =

[
Ua − Daik + nbDa

∫
∇rg(k, r) dr

]
P̂1(k). (2.9)

For the long-time self-diffusion of the probe, we consider the short wave vector (long
length scale) limit and expand g(k, r) for small k, corresponding to a weak gradient
in the ‘concentration of probes’:

g(k, r) = g0(r) + ik · d(r) + · · · , (2.10)
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which immediately yields the two terms governing the scattering of the probe: the
steady microstructure, g0(r), and the probability-weighted displacement of the probe,
d(r) – i.e. the likelihood of a collision and the strength and direction of the probe
displacement upon collision, respectively. Substituting this into the expression for
probe flux yields

〈 ĵ a〉 =

([
Ua + nb Da

∫
∇g0(r) dr

]
− Daik ·

[
I − nb

∫
∇r d(r) dr

])
P̂1(k), (2.11)

where I is the identity tensor. Examination of (2.11) reveals the effect of the bath
particles on both the mean (O(1)) and fluctuating (O(k)) response of the overall
suspension. The first bracketed term gives the probe’s average speed through the fluid:
Ua is reduced by the entropic reactive force of the microstructure, as given by the
integral term. This reduction in probe speed due to the suspended particles was used by
Squires & Brady (2005) to define the microviscosity. Recalling that ik terms represent
diffusion, the second bracketed group gives the effective diffusivity of the probe; the
third term its free Brownian diffusion, plus an increment due to interactions with the
bath. This increment corresponds to hard-sphere interactions between the probe and
bath that scatter the probe’s mean path. From a phenomenological perspective, the
effect of the bath particles is to reduce the mean velocity of the probe and increase
the diffusive spread of its trajectory – the effective diffusivity. Defining the second
bracketed group as the effective diffusivity of the probe and integrating by parts we
obtain

Deff ≡ Da

[
I − nb

∮
r=a+b

nd dS

]
, (2.12)

where n is the unit surface normal pointing outwards from the probe.
In the limit Pe → 0, the entropically hindered diffusion of a particle in a

dilute suspension without hydrodynamic interactions must be recovered, Deff = Ds
∞ =

Da(1 − 2φb) (Batchelor 1976), for a/b = 1. Motivated by this fact, we denote the
corresponding displacement field for the unforced probe dentropic ≡ d(Pe = 0). Hence,
we express the total displacement field as a sum of entropic and mechanical
contributions:

d = dentropic + d ′, (2.13)

where d ′ is the probe fluctuation over and above that for hindered passive diffusion.
As we show below, dentropic contributes −2φbDa to the effective diffusivity; so we write

Deff = Da I (1 − 2φb) + Dmicro, (2.14)

where we have defined

Dmicro ≡ nbDa

∮
n d ′ dS. (2.15)

The effective diffusivity of a tracer particle is its bare diffusivity, Da I , minus the
entropic hindrance of the bath, 2φbDa I , plus an enhancement due to mechanical
scattering by the other bath particles, Dmicro . The force-induced microdiffusivity is
proportional to the number density of bath particles, the isolated probe self-diffusivity,
and to the first moment of the hard-sphere deflections.

It remains only to obtain the steady microstructure g0(r) and the first fluctuation
correction, d ′(r).
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Pe = 0.01 Pe = 1 Pe = 5 Pe = 20

Figure 3. (Colour online) Theoretical predictions for the deformed microstructure around a
moving probe particle in the absence of hydrodynamic interactions at the pair level. The test
particle is moving to the right and there is a build-up of background particle density in front
(red) of the probe and a deficit (dark blue) in the trailing wake (Squires & Brady 2005).

3. Non-equilibrium microstructure
The goal of this section is to formulate an expression governing the evolution of

the microstructure g(k, r). The Smoluchowski equation governing the pair probability
in Fourier space gives the evolution of the fluctuating microstructure:

∂P̂2

∂t
+ ∇r · [Ur − Dr∇r ] P̂2 + Daik · ∇r P̂2 + ik · ĵ a = 0, (3.1)

where we have defined the relative Brownian diffusivity between the probe and the
bath particle, Dr ≡ Da + Db and Ur ≡ Ua − Ub. With the definition of g(k, r) in (2.8)
and substituting (2.6) into (3.1) we have leading order in diluteness, at steady state:

∇r · [Ur − Dr∇r ] g + 2Daik · ∇rg = 0, (3.2)

n · [Urg − Dr∇rg + Daik g] = 0 at r = a + b, (3.3)

g ∼ 1 as r → ∞, (3.4)

in which conservation requires a no-flux boundary condition at contact and there is
no long-range order. The equations are made dimensionless by scaling quantities as

r ∼ a + b, U ∼ F ext/6πη a, D ∼ Da + Db =
kT

6πη

(
1

a
+

1

b

)
, (3.5)

and together with of the expansion (2.10) of g(k, r), the steady microstructure obeys

∇2g0 − Pe u · ∇g0 = 0, (3.6)

n · [∇g0 − Pe u g0] = 0 at r = 1, (3.7)

g0 ∼ 1 as r → ∞, (3.8)

where u is the unit vector parallel to probe forcing. Squires & Brady (2005) have
solved this problem analytically for all Pe = F ext/(kT /b). A contour plot in figure 3
shows the perturbed steady microstructure g0 for a range of Pe.

The expression governing the probability-weighted displacement also forms an
advection–diffusion equation, but is forced by gradients in the steady microstructure:

∇2d − Pe u · ∇d = β∇g0, (3.9)

n · (∇d − Pe ud) = 1
2
βg0 at r = 1, (3.10)

d ∼ 0 as r → ∞, (3.11)
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where β ≡ 2/(1 + a/b). Hence, the displacement field d is coupled to g0. In the next
section the coupled system is solved analytically in the limit of small and large Pe,
and numerically for arbitrary values of the Péclet number.

4. Results
4.1. Low-Pe limit

For small Péclet number, Brownian diffusion of the bath particles easily repairs the
deformation of the microstructure caused by the probe’s motion. Since the bath is
hardly displaced from equilibrium, we approach the solution with a perturbation
expansion in small Pe. Recalling (3.6)–(3.8), however, it is apparent that the problem
is singular: at some distance ρ ∼ rPe from the probe, advection is as important as
diffusion. The domain is divided into two regions, and matched asymptotic expansions
yield the expression for the steady microstructure g0 to O(Pe2):

g0(r; Pe) = 1 − 1

2
u · r

r3
Pe +

1

4

(
1

r
− 1

3
uu :

[
I
r3

− 3
r r
r5

]
− uu :

r r
r3

)
Pe2, (4.1)

which agrees with the solution that Squires & Brady obtained to O(Pe), which we
have extended here to O(Pe2).

A similar method is applied to (3.9)–(3.11) to obtain the fluctuation field. The Pe0

term of the expansion of d yields the solution

dentropic ≡ d(0) = −1

4
β

r
r3

, (4.2)

which gives

Deff (Pe = 0) = Da

[
1 − 1

2
(1 + a/b)2 φb

]
, (4.3)

which, for equal probe and bath particle size, recovers the long-time self-diffusivity
of an isolated sphere in a quiescent solvent reported by Batchelor (1976),
Deff (Pe = 0) = Ds

∞ = Da(1−2φb). Since there is no flow at Pe =0, this O(φb) correction
is due to the entropic hindrance of the bath.

It is interesting to note that the O(1) solution for d is the same as the O(Pe)
solution for g0. In fact the problems for g0 and d are identical in the limit Pe → 0.
In the linear-response regime, whether the forcing is by external means, g0, or by
thermal fluctuation, d, the resulting mobility reduction or diffusivity – kT times the
mobility – is the same.

At the next order in Pe, we resolve the vector d into scalar components parallel
and transverse to the direction of the probe’s velocity, d‖ = dzu, d⊥,x = dxex and
d⊥,y = dyey . The O(φbPe) fluctuation makes no contribution to the microdiffusivity –

in keeping with scaling predictions, since nd(1) ∼ u · nnn and the displacement of a
sphere has no coupling to odd tensors.

Proceeding to the next order in Pe, the singular nature of the problem becomes
evident, as the solution by regular perturbation expansion fails to decay to zero
far from the probe. An asymptotic expansion in the inner region is matched to
the solution in the outer region, giving the proper far-field condition for the inner
solution. The first correction to the fluctuation that gives rise to microdiffusive
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behaviour is then

d
(2)
‖ = β

[
−13

48
−

(
67

360

r
r3

− 11

480

[
3

r
r5

− 5uu :
r r r
r7

])
· u

]
− β

[
13

144

([ r
r3

− 3uu :
r r r
r5

]
− 1

96

(
41

r
r

− 15uu :
r r r
r3

))
· u

]
, (4.4)

d
(2)
⊥ = β

{
− 7

80r2
+

13

48
uu :

r r
r4

+
11

480

[
1

r4
− 5uu :

r r
r6

]
+

5

32
[1 − uu : r r]r · ey

}
, (4.5)

which yields for the microdiffusivity in the limit of Pe � 1 (plotted in figure 6):

Dmicro
‖ =

79

180

(
1 +

a

b

)2

Da Pe2φb, (4.6)

Dmicro
⊥ =

11

60

(
1 +

a

b

)2

Da Pe2φb. (4.7)

When forced very weakly through a dilute suspension, a probe particle diffuses with
its bare diffusivity Da minus an entropic hindrance due to the presence of the bath
particles that scales as φbDa plus an enhancement due to hard-sphere collisions with
the bath particles – characteristic of the Taylor dispersion for particles in a bulk
flow. As predicted by scaling arguments in § 1, in the low-Pe limit, the force-induced
enhancement to the diffusion is quadratic in the forcing; it is also linear in the
volume fraction of bath particles, φb, and anisotropic, preferentially diffusing along
the direction of forcing (as compared to the transverse direction) by a factor of 2.39.

4.2. High-Pe limit

For very large Péclet number, the shape of the microstructure in front of the probe
is deformed into two distinct regions: an outer region in which advection dominates
diffusion and the microstructure is undisturbed, and an inner region – a 1/Pe-thin
boundary layer that forms on the upstream face of the probe – where diffusion
balances advection. A Pe-long wake of particle deficit forms behind the probe, where
probability for a probe/bath particle collision is small. The particles that reside
inside the boundary layer provide the most probability for a strong hard-sphere
deflection of the probe (cf. figure 3). Inside the boundary layer, a coordinate rescaling
R =(r −1)Pe ∼ O(1) preserves the diffusive term, properly reflecting the physics of the
inner region and allowing satisfaction of the no-flux condition at contact. A singular
perturbation expansion in powers of Pe−1 then obtains the deflection field in the
boundary layer on the upstream face of the probe, π/2 � θ � π:

d‖ = − β

12

u · n
(u · eθ )2

(
1 + (u · n)3

)
ePe(r−1)u · nPe + O(1), (4.8)

d⊥ = − β

12
(u · n)(u · eθ )(n · ey) ePe(r−1)u · nPe + O(1), (4.9)

where u · n � 0, θ is the angle between u and the normal n and eθ is a unit vector in
the direction of θ . As expected from earlier scaling arguments, the microdiffusivity is
linear in the forcing when Pe � 1:

Dmicro
‖ =

1

4

(
1 +

a

b

)2 (
ln 2 − 1

4

)
Da Pe φb + O(1), (4.10)

Dmicro
⊥ =

1

32

(
1 +

a

b

)2

Da Pe φb + O(1). (4.11)
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Pe = 20Pe = 5Pe = 1Pe = 0.01

Figure 4. (Colour online) The fluctuation field longitudinal to probe forcing. Blue areas
indicate regions of weak or no deflection; red areas indicate probability of strong deflection.

Pe = 20Pe = 5Pe = 1Pe = 0.01

Figure 5. (Colour online) The fluctuation field transverse to probe forcing. Blue areas
indicate regions of weak or no deflection; red areas indicate probability of strong deflection.

As in the low-Pe limit, the large Pe microdiffusivity is also transversely anisotropic,
with a longitudinal-to-transverse preference of approximately 7/2. The effect of the
hard-sphere collisions is a Pe-large diffusive scattering of the probe’s trajectory.

The high-Pe analytical results are shown in figure 6 alongside those for small Pe.
When scaled with the volume fraction of bath particles and the probe’s bare diffusivity
Da , the asymptotic limits of Pe � 1 and Pe � 1 form a framework to guide the analysis
for intermediate values of the Péclet number, which is developed in the next section.

4.3. Numerical solution for arbitrary Pe

To obtain the fluctuating microstructure over the full range of Pe, a numerical solution
of the full Smoluchowski equations (3.6)–(3.8) and (3.9)–(3.11) is required. The radial
coordinate is rescaled with Pe−1 to obtain the stretched coordinate R = Pe(r − 1).
Because the flow is axisymmetric about the line of external forcing, derivatives of g0

and d ′ in the azimuthal angle are zero.
A central difference scheme is used to discretize gradients over the two-dimensional

domain. Once a boundary layer forms, i.e. beyond Pe � O(1), the radial gradients in
the microstructure are almost entirely confined to the boundary layer. As Pe continues
to grow and the boundary layer thins, a grid point concentration function that varies
with Pe increases the density of grid points close to contact, yet retains sufficient
resolution far from the probe to capture the physics throughout the upstream domain.
The difference coefficients and operators for both radial and angular directions are
compactly arranged into first- and second-order sparse matrices (Swaroop 2004). The
solutions for the steady and fluctuating pair-distribution function are then obtained
in Matlab using a LaPack iterative banded solver.

The steady microstructure is solved first (figure 3), and the gradients ∇g0 used
to drive the fluctuation field d ′. Contour plots for the deflection field are shown in
figures 4 and 5; the anisotropy is evident. The longitudinal fluctuations show that at
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10–2

10–1

100

101

102

(D
m

ic
ro

/D
a)

/φ
b

10–2 10–1 100 101 102

Pe = Fextb/kT

(ln 2 –      )

Pe2φb
79
45

Pe2φb
11
15

Peφb
1
8

Peφb
1
4

Figure 6. The force-induced diffusivity Dmicro , scaled with the probe bare diffusivity Da and
the volume fraction of bath particles φb . Analytical solutions for asymptotically small and large
forcing are shown by solid lines (longitudinal) and dotted lines (transverse). Curved asymptotes
exclude the entropic contribution (dashed for longitudinal; dash-dotted for transverse). Open
symbols represent the numerical solution of the full Smoluchowski equation (circles for the
longitudinal microdiffusivity, squares for the transverse microdiffusivity).

very small Pe (similar to Pe =0.01 in the figure), the fluctuations form a dipole about
the probe, with highest probability of a strong kick at the upstream face of the probe,
and decaying as ∼1/r2. As the Péclet number is increased, the boundary layer thins
(similar to Pe = 20 in figure 4), and strong kicks to the probe result from particles
swept into the boundary layer on the front of the probe. Particles diffuse and weakly
advect around the probe, the boundary layer detaches and a wake forms behind it –
resulting in strong fore–aft asymmetry of probe fluctuations.

The transverse probe fluctuation field is shown in figure 5; for very weak forcing
(similar to Pe =0.01 in the figure), the region of highest probability for a strong
deflection is at θ = π/2, with the distribution mirrored across the axis of symmetry.
The resulting probe deflection is perpendicular to its mean motion. As Pe is increased,
the probability of a lateral deflection is confined to the boundary layer.

The first moment of the fluctuation is numerically integrated over the surface of
contact between the probe and the bath to obtain the microdiffusivity for a range of
0.01 <Pe < 1000, as shown in figure 6. For very weak and very strong forcing, the
numerical solution matches the analytical asymptotes.

Note that two sets of asymptotes are shown for Pe � 1 in figure 6. The straight
asymptotes correspond to the high-Pe microdiffusivity as given by (4.10) and (4.11).
Recall that for the large-Pe analytical solution we found d, the total fluctuation
field, rather than that due to force-induced collisions only, d ′ (cf. (2.13)). This is
asymptotically correct for Dmicro as Pe → ∞. But Dmicro is defined in terms of d ′ and,
therefore, to be consistent, we should use d ′ rather than d – which gives the curved
asymptote. For large values of the Péclet number the two coincide.
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5. Solution via Brownian dynamics simulation
The dynamics of probe and bath particle motion are governed by the Langevin

equation, a force balance which includes Brownian, external, hydrodynamic and other
interparticle forces. In the present case this equation reads

0 = Fext + FB + FP , (5.1)

where the left-hand side is zero because inertia is not important in colloidal
dispersions, and Fext = 0 for all particles except the probe. A probe of size a is
placed among a randomly distributed bath of particles of size b. The external force
is prescribed, and the other forces in (5.1) are given by

FB = 0 FB(0)FB(t) = 2kT (6πηai)Iδ(t), (5.2)

FP = FHS. (5.3)

Here, the overbar denotes a time average and δ(t) is the Dirac delta function; ai ≡ a

for the probe and ai ≡ b for a bath particle. At each time step in the simulation the
particle positions are updated with a Brownian step and in the case of the probe, an
externally forced step. The hard-sphere displacement due to a collision between probe
and bath particle is added next; since the hard-sphere force is singular – non-zero at
contact only – special treatment is needed. To this end we use a modified ‘potential-
free’ algorithm (Heyes & Melrose 1993; Carpen & Brady 2005), in which overlaps
resulting from the external and Brownian steps are corrected along the line of centres
of the two particles, for a hard-sphere step 	xHS . For a complete description of
Brownian dynamics of active microrheology, see Carpen & Brady (2005).

A dilute bath can be achieved in two ways: first, a single bath particle and a
single probe can be placed in the simulation cell and many, many simulations run in
order to obtain a statistically large number of interparticle collisions. Alternatively,
many ‘ideal-gas’ bath particles can be placed in the cell with one probe – i.e. only
probe–bath particle collisions occur, and the bath particles simply pass through each
other. Thus, an individual time step contains only one deterministic and one Brownian
step – for each particle in the cell – but it could contain zero, one or several hard-
sphere displacements, depending on the number of bath particles within one step of
contacting the probe. Since the bath particles do not directly see each other, they have
no size except when they encounter the probe. It is their number concentration nb,
the contact length scale (a + b) and the Brownian diffusivities Da and Db that govern
the system dynamics. Varying the value of φb thus provides a means to compress the
time required to obtain a sufficient number of collisions for statistical analysis, and
should have no effect on probe diffusivity (although this turns out not to be precisely
the case, as we show below). To this end, volume fractions of bath particles from
0.1 � φb � 0.9 were tested.

Simulations were conducted with values of the Péclet number ranging from 0.1
to 100, volume fractions φb =0.1, 0.3, 0.5, 0.7 and 0.9, and a/b = 1. On average, a
hard-sphere collision occurs during approximately 2 % of the total number of time
steps. Hence, to obtain sufficient resolution of the data, a set of 480 simulations of
106 time steps each was run for each Pe and for each φb. The overall displacement of
the probe, x(t), was recorded at each time step.

The effective diffusivity of the probe, Deff , is obtained from the time rate of change
of the mean-square displacement of the probe according to

Deff (t) =
1

2

d

dt
〈 x ′(t) x ′(t) 〉, (5.4)
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Figure 7. Longitudinal mean-square displacement of the probe as a function of time
via Brownian dynamics simulation. Volume fraction of bath particles shown is φb = 0.1.
Displacements are made dimensionless as (a + b); time is scaled with the correlation time τ ,
where τ ∼ a2/Da for Pe � 1 and τ ∼ a/U for Pe > 1. Each curve is an ensemble average over
480 simulations.

where x ′ ≡ x(t) − 〈 x(t) 〉 and the angle brackets 〈 〉 denote an ensemble average over
time and over all simulations. A plot of the probe’s average mean-square displacement
versus time is shown in figure 7, where it can be seen that at long times 〈x ′x ′〉 grows
linearly in time – confirming that the force-induced dispersion of the probe is indeed
diffusive, with a constant diffusivity.

To determine the effect of external forcing on the probe’s diffusivity, the effective
diffusivity in the absence of flow, i.e. at Pe ≡ 0, is subtracted from Deff to yield the
force-induced diffusion Dmicro:

Dmicro = Deff − Deff (Pe = 0), (5.5)

which corresponds to (2.14) defined in text. Results are plotted in figure 8, where
Dmicro is made dimensionless with probe self-diffusivity Da and scaled with the volume
fraction of bath particles φb.

For φb = 0.1, the Brownian dynamics data match the theoretical solution over the
full range of Pe, but the data for other values of φb do not collapse together as
expected. The data follow the same qualitative trend, but for φb > 0.1 lie beneath
the numerical solution, indicating a dependence on volume fraction – even though
the bath is modelled as an ideal gas. This surprising result can be understood by
noting that the bath particles’ motion is correlated via their interactions with the
probe. Although the bath particles do not interact directly, a probe–bath particle
collision changes the position of the probe relative to the other nearby particles,
giving rise to a correlation between the bath particles. That this correlation must
exist can be seen from the dilute pairwise expression for the equilibrium long-time
self-diffusivity of a probe equal in size to the bath particles, Ds

∞ = (1 − 2φb)Da . This
result predicts a negative diffusion coefficient for φb > 0.5 if only pairwise interaction
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Figure 8. Microdiffusivity from Brownian dynamics simulation with ideal gas bath, a/b = 1,
no hydrodynamic interactions, and φb as shown in legend, plotted with analytical and numerical
solutions of the Smoluchowski equation (only longitudinal direction only is shown). Solution
of Smoluchowski equation is shown by solid asymptotes (analytical results) and filled circles
(numerical results). Error bars are of the order of marker size; each marker represents a set of
480 simulations.

were important. Clearly the correlated behaviour via interaction with the probe is
critical even though the bath particles are an ideal gas. In figure 9 we show the
actual long-time self-diffusivity of the probe as determined by Brownian dynamics
simulation. Also shown in the figure is a theoretical prediction for Ds

∞, which follows
from the approach of Brady (1994), who determined the long-time self-diffusivity of
hard spheres in concentrated suspensions as

Ds
∞(φb) = Da[1 + 2φbg0(2; φb)]

−1. (5.6)

For ideal-gas bath particles the equilibrium pair-distribution function at contact is
g0 = 1, and we have

Ds
∞(φb) = Da

1

(1 + 2φb)
, (5.7)

which is in reasonable agreement with the results from Brownian dynamics simulations
in figure 9 (where a/b ∼ O(1)).

The correlated collisions make the bath more resistive to the motion of the probe
as evidenced by the smaller long-time self-diffusivity – in the linear-response regime
the diffusivity and the resistance to external forcing are the same – and so what is
important is the actual probe speed 〈U〉 rather than the imposed external force in
setting the Péclet number. The probe perturbs the microstructure with this average
speed. Away from the probe, the bath particles again form an ideal gas and restore
the microstructure under their own Brownian motion which is unhindered. This gives
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Figure 9. Effective diffusivity of the unforced probe for various concentrations of bath
particles (probe to bath particle size ratio taken to be unity). (�) Results measured via
Brownian dynamics simulation; (�) Results that correspond to theory, Ds

∞ = 1/(1+2φb). Error
bars are of the order of marker size; each marker represents a set of 480 simulations.

an effective Péclet number:

Peeff =
〈U〉 a

Db

, (5.8)

where Db is the bare diffusivity of the bath particles away from the probe and 〈U〉 is
the average probe velocity determined by simulation.

The scaling of Dmicro with the isolated probe diffusivity Da (the vertical axis in
figure 8) emerged from the kinematic expression for probe flux (see (2.3)) where the
diffusive flux of the probe was assumed to depend on unhindered probe diffusion.
But for small Pe the probe forcing should be proportional to Ds

∞ rather than Da

as the deformation to the microstructure is sensitive to the correlated bath particle
behaviour. At very large Pe (when the boundary layer is thin) the unhindered forcing,
Da , is appropriate. We apply this rescaling of the Péclet number over the full range
of Pe, and of Dmicro for 0 � Pe � 20, as seen in figure 10. The Brownian dynamics
results now collapse onto the theoretical results in a universal curve for a/b = 1.

6. Comparison to macrodiffusivity
Previous studies of particle motion in macrorheology show that imposing a shear

flow on a colloidal dispersion increases particle diffusivity (Leighton & Acrivos 1987;
Morris & Brady 1996; Brady & Morris 1997; Breedveld et al. 1998). In the non-
colloidal regime, the dispersivity of a sphere falling through a neutrally buoyant
suspension at low Reynolds number and high Péclet number has also been studied
both analytically (Davis & Hill 1992) and experimentally (Abbot et al. 1997). It is
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Figure 10. Brownian dynamics simulation data, shown with analytical (solid lines) and
numerical solution (filled circles) of the Smoluchowski equation (longitudinal). The
force-induced microdiffusivity, Dmicro , is scaled with volume fraction of bath particles, φb ,
and made dimensionless with D∗, which corresponds to Ds

∞ for 0 � Pe � 20 and to Da for
Pe > 20. It is plotted against the effective Péclet number, which reflects the correlation of the
bath particles. Error bars are of the order of marker size; each marker represents a set of 480
simulations.

of interest to seek comparison between such macroscale behaviour and the results of
this investigation.

Both shear-induced macrodiffusivity and force-induced microdiffusivity result from
the scattering of a tracer, or probe, particle by the deformed microstructure.
Brady & Morris (1996, 1997) determined the shear-induced long-time diffusion
tensor Dmacro for weak shearing and strong shearing. Both Dmicro and Dmacro scale
as ∼O(φbPe) for Pe � 1. At small values of the Péclet number, the dependence
of force-induced diffusion on Pe changes in both micro and macro cases as the
correlation time scale becomes diffusive; while the former scales as ∼O(φbPe2),
the latter scales as ∼O(φbPe3/2) – reflecting the different symmetry and forcing of
the two microstructures. Further, in both flows the distorted bath microstructure is
asymmetric (cf. figure 1), which gives rise to an anisotropic diffusion tensor. Brady &
Morris (1997) also showed that the shear-induced diffusion tensor could be directly
related to the bulk stress tensor for the suspension, and its anisotropy to the normal
stress differences – a hallmark of the rheological behaviour of far-from-equilibrium
complex fluids. We have shown that the microdiffusivity tensor is also anisotropic;
the notion of normal stress differences in the context of active microrheology is an
intriguing one, and this connection should be explored further.

The settling of a non-Brownian ball through a neutrally buoyant quiescent
suspension of non-colloidal spheres is the macroscale analogue of our model at
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very high Pe (in the falling-ball regime, the Péclet number is very large due to
particle size). The dispersion of the ball’s trajectory arises due to many uncorrelated
hydrodynamic interactions with the background suspended balls. Davis & Hill (1991)
theoretically determined the hydrodynamic diffusivity of a falling ball in the dilute
limit for all size ratios a/b. For size ratio of order unity, they give the hydrodynamic
diffusivity as

DH
theory

Ua
� 1.33

(
b

a

)2

φb. (6.1)

Here, U =F grav/6πηa is the Stokes velocity of the falling ball, F grav is the net force due
to gravity, η is the solvent viscosity and the superscript H denotes the hydrodynamic
diffusivity. Abbot et al. (1997) conducted experiments in which they measured the
dispersion of a ball of size a as it fell through a suspension of balls of size b, for
several volume fractions φb and a range of probe-to-background ball size ratios, a/b.
At the smallest volume fraction measured, φb =0.15, for O(1) � a/b � O(10) they
found the diffusivity of the falling ball to be

DH
meas

〈U〉a = 1.067

(
b

a

)1.93+0.53
−0.26

φb, (6.2)

where the error shown corresponds to 95 % confidence limits and 〈U〉 is the
average vertical speed of the falling ball. We recall the O(Pe) result for the parallel
microdiffusvity from § 4.2:

Dmicro
theory

〈U〉a =
1

4

(
ln 2 − 1

4

)(
b

a

)(
1 +

a

b

)2

φb, (6.3)

The hydrodynamic interactions, particularly the near-field lubrication interactions,
between the non-colloidal spheres produce a dependence on size ratio that is
qualitatively different than the size ratio dependence in the case of no hydrodynamic
interactions considered in this study. Hydrodynamic interactions can be included in
the theory developed here and is left for a future study. However, the same scaling in
Peb and φb is obtained.

7. Summary and concluding remarks
We have extended the model of active nonlinear microrheology to account for

fluctuations in probe motion. A dilute colloidal dispersion of hard spheres through
which a Brownian probe is driven by a constant external force was studied. Collisions
between the probe and bath particles were shown to drive a long-time diffusive
spread of the probe’s trajectory – a force-induced diffusion, or ‘microdiffusivity’. The
microdiffusivity increases the probe’s long-time self-diffusion. In the limit Pe → 0,
Dmicro scales quadratically: Dmicro ∼ Pe2φbDa . At the opposite extreme where Pe → ∞
the microdiffusivity is linear in the forcing, Dmicro ∼ PeφbDa ∼ (F ext/η)φb, and the
force-induced diffusion dominates the spread of the probe’s trajectory.

For all values of Pe, it was found that the dependence of the microdiffusivity on
the volume fraction of bath particles, φb, is not strictly linear even when only pairwise
interactions are considered and the bath particles are an ideal gas. The motion of
the bath particles becomes correlated via their interactions with the probe, and when
φb � 0.1, the effect of the correlation becomes important. A key effect of the bath
particle correlation is a reduction in the mean speed of the probe; since now 〈U〉 is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

16
06

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010001606


Single-particle motion in colloids: force-induced diffusion 207

the speed with which the microstructure is perturbed, the appropriate Péclet number
is given by Peeff = 〈U〉a/Db. Similarly, the diffusive flux of the probe is hindered by
the bath particles at small Pe, but for larger Pe its relaxation through the boundary
layer is set by its bare diffusion coefficient Da . The microdiffusivity should then be
made dimensionless by Ds

∞ for 0 � Pe � 20 and by its bare diffusivity Da for Pe � 20,
where it is proposed that Ds

∞ = Da/(1 + 2φb) accounts for the correlation. A rescaling
of all Pe for φb > 0.1 that reflects this physical process collapses the data onto a single
curve given by the dilute theory, as shown in figure 10. This correlated behaviour of
the bath particles raises the issue of excluded volume interactions between the bath
particles, a subject that merits further study.

It was found that for all Pe, neglecting hydrodynamic interactions, the
microdiffusivity is proportional to the scale factor (1 + a/b)2. In the limit of a small
probe, a/b → 0, this factor reduces to unity and the microdiffusivity scales with Pe and
φb as expected. However, when a/b is large, the analysis predicts a microdiffusivity that
grows as (a/b)2. This result is counter to what one would expect, because very small
bath particles should produce correspondingly small effects. There are two sources for
this behaviour. The first is the neglect of hydrodynamic interactions between the probe
and the bath particles. A large probe would appear as a rigid surface to the small
bath particles and it may be a poor approximation to have neglected the long-range
hydrodynamic interactions. The other contributor to the apparent paradox is the
way we have stated the standard (macro)rheological condition for diluteness: φb � 1
dictates only that the typical distance between bath particles must be small. But in
microrheology, for the probe to move through a dilute bath, it is required that the
probe encounter only one bath particle at a time. The probe’s contact area scales as a2,
and the number of colliders nb within one collision distance, b, must be small, that is, a
shell of thickness b around the probe can contain at most one bath particle at any given
time in order to assure that only pair collisions occur: nba

2b � 1. Hence, the diluteness
condition is more properly stated as φb(a/b)2 � 1. With this constraint, the microdif-
fusivity, e.g. at large Pe, is Dmicro ∼ (a/b)2φbDaPe and remains small for a/b � 1.

Next, a comparison between tracer motion in a sheared suspension and probe
motion in active microrheology showed that both flows give rise to an enhancement
to long-time self-diffusivity. Further, for both systems the asymmetry of the deformed
microstructure produces an anisotropic diffusion tensor, which prompts the question
of normal stress differences. Understanding the close qualitative relationship between
macrodiffusivity and microdiffusivity and their connection to normal stress differences
can enable the use of the latter as a material interrogation technique – e.g. the
measurement of the long-time self-diffusion of the probe may yield normal stresses, a
subject of a future study.

The comparison between falling-ball rheometry in the dilute limit and active
microrheology in the dual limit Pe → ∞, φb � 1 shows that in both regimes the
diffusivity of the probe scales linearly in both the forcing and the volume fraction of
bath particles. A key physical difference between the two problems is that the falling-
ball dispersivity is a purely hydrodynamic phenomenon, whereas our model for active
microrheology excludes all but hard-sphere mechanical interactions. This difference
manifests in the dependence of force-induced diffusion on probe/background-particle
size ratio a/b. The effect of hydrodynamic interactions between colloidal particles is
not expected to change the scaling in φb, but is likely to yield a different dependence
on particle size ratio.

Indeed, an important area for future study is how hydrodynamic interactions
affect the force-induced diffusion. When hydrodynamic interactions are important,
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the probe flux changes; its ensemble average (see (2.7)) now contains an additional
term, R−1

FU · FP P̂1. As before, the terms in the average probe flux can be arranged
to more readily identify the physical process associated with each one (cf. (2.11)).
The new hydrodynamic contribution appears in the first bracketed term, which is a
coefficient of the probability density P̂1 – hydrodynamics affect the probe’s average
speed. Furthermore, since the bare diffusion tensor for the probe, Da , now depends
on relative positions of probe and bath particles, it remains inside the integrals in
(2.11). This gives only a geometric scale-factor difference in the general expression
for the effective diffusivity, (2.12). Now for large Pe, hydrodynamic interactions
also qualitatively alter the deformed microstructure; the scaling of g0 in Pe varies
in the presence of hydrodynamic interactions. In the so-called pure hydrodynamic
limit, a/ah ≡ 1 (Khair & Brady 2006), the scaling becomes g0 ∼ Pe0.78, and varies
continuously up to g0 ∼ Pe for a/ah → ∞; a similar qualitative change in Pe-scaling is
expected for the deflection field. Thus the presence of hydrodynamic interactions will
give rise to a quantitative change in the bare diffusion coefficient and at high Pe, a
qualitative change in the deflection field d (cf. (3.9)–(3.11)). Since the microdiffusivity
is the first moment of the deflection field at contact, its scaling in Pe is expected
to change accordingly. And as noted above, significant qualitative changes in the
size-ratio dependence (not in Pe) can occur at high Pe in the case of disparate
probe-to-bath-particle size ratio.

Often the particles studied experimentally have a shape that deviates from that of a
sphere – sometimes significantly so. An ellipsoidal-type probe particle in a dispersion
of spherical bath particles can be studied, where an external force is applied through
the probe’s centre. The new length scales added by the minor and major axes of the
probe gives rise to a quantitative difference in the diffusivity – the size dependence of
the diffusivity would reflect the new length scales. One would also need to consider the
importance of rotational diffusion. As the probe moves through the bath, the angle its
major axis forms with the line of action of the external force changes. For small Pe,
all orientations are equally likely; the rotational diffusion would make the probe act
as a ‘sphere’ of size Ravg , the rotational average of the major and minor axes, and thus
still give the same forcing (dipolar microstructural disturbance). The scaling in Pe is
identical, since the flow is the same. At high Pe, rotational diffusion is slow compared
to advection, and one expects the probe particle to attain a stable orientation with
its major axis transverse to the forcing, as found by Khair & Brady (2008) for a
constant-velocity ellipsoidal-type probe. They also found that the perturbation to the
microstructure scales linearly in Pe for Pe � 1 in the absence of hydrodynamics, and
so the scaling in Pe remains the same. For intermediate values of Pe, in the case of
constant forcing, rotational diffusion matters. But one would predict that a balance
in kicks from bath particles would again align the probe transverse to the flow as
at high Pe. Thus, the contribution to the diffusion coefficient is at most a geometric
scaling of the size dependence.

An important outcome of this study is its general applicability to a wider class
of problems. Thus far we have studied the diffusive motion of a particle moving
due to an externally applied force through a bath of other particles. Many systems
of interest, however, consist of self-propelled objects; biological microswimmers are
important examples. Can such motion be related to that of the externally forced
particle studied here? In fact, it turns out that the results obtained here are the
same as those one would obtain for many self-propelled particles. What is important
is the relative motion of the probe to the bath particles; so if one can neglect
hydrodynamic interactions, the results in the case of a microscale swimmer would
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be identical to those obtained in this study (with Pe based on Uprobe rather than an
external force). A self-propelled object must be torque- and force-free; so if the object
is a swimmer, velocity decays as ∼1/r2. Thus, neglecting hydrodynamic interactions
may be a reasonable approximation. In the case of electrophoretic motion, the
velocity disturbance decays as ∼1/r3 and neglecting hydrodynamics is an even better
approximation. (Including hydrodynamics would make only a quantitative difference
at small Pe, as discussed above.) The solution presented for the microdiffusivity
is therefore applicable to a very wide range of problems in which hydrodynamic
interactions can be neglected – both externally forced and self-propulsive systems.
Important future work includes experimental verification of this idea, development of
theory for general-shape swimmers and extension to groups of swimmers or propelled
objects. The crowded interior of a cell also provides a fascinating opportunity to
combine the effects of a concentrated bath with self-propulsion to study the motion
of objects diffusing through the intracellular fluid.

Several other interesting questions remain. We have investigated the steady-state
behaviour of the suspension, but its transient behaviour is as yet unexplored. Other
open questions include the connection of diffusivity to normal stress differences, and
the ‘continuum’ limit for large size ratios a/b � 1. Notwithstanding, the simplifications
invoked in the model thus far provide important conclusions about the fluctuating
motion of a tracer particle in the active nonlinear microrheology regime. That this
motion is diffusive, with a simple dependence on few parameters, and widely applicable
to a range of problems may open new techniques for researchers in material science,
the biosciences and nanoscale technology.
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