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Abstract
Reliance of modern economic activities on the use of energy, most of which still comes
from non-renewable sources, provokes concerns regarding the most efficient utilization of
energy inputs in production. While most theory expects directed technological change to
be biased towards the non-renewable input, there is rare macro-level evidence that techno-
logical change is actually biased towards energy rather than other main inputs. To fill this
gap, we apply stochastic frontier analysis to country data regarding output produced with
capital, labor and energy, and estimate a set of indicators for technological change. Findings
show that technological change is biased the most towards energy in general. In particu-
lar, although different groups of countries exhibit various patterns, there is strong evidence
that technological change favors energy more than labor. This is in line with the theoretical
expectation that technological change ought to be biased towards the non-renewable input
rather than the renewable ones.
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1. Introduction
Energy is, to the modern economy, what blood is to the body. In the past few decades,
in spite of major investments in renewable energy sources, fossil fuels still constitute
approximately 80 per cent of the world’s energy production (IEA, 2019). One may nat-
urally be concerned about how economic development can be guaranteed while energy,
as a key input, seems unlikely to be free from the peril of depletion, given the current
technology on its extraction and generation. Theoretically, consensus has long been
reached by economists that technological progress is the key to sustainable economic
growth that relies on the use of a limited stock of resources. Although policy makers are
aware of this, the implementation of policies is never a simple procedure, and it is impor-
tant to assess whether technological change is biased towards energy rather than other
input factors. Empirical work on the direction of technological change involving energy
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input has been arousing the interest of energy and environmental economists for years,
including Karanfil and Yeddir-Tamsamani (2010), Shao et al. (2016), Zha et al. (2017),
among others. However, macro-level evidence is still rare; in this paper, we illustrate the
situation of directed technological change in the world’s main economies.

Agents make R&D decisions in a market with imperfect competition, incomplete
information, government regulations, externalities in knowledge spillovers and other
frictions; it is difficult to determine from a theoretical perspective how, if at all, tech-
nological change is biased. Theoretically, technological change might be expected to
show a bias towards the non-renewable input(s) rather than the renewable one(s), as
the former gets depleted over time. Nevertheless, despite accumulated empirical effort
at the industry level, country-level evidence is still insufficient. An empirical study on
country-level directed technological change might improve our understanding of gen-
eral production patterns in the comtemporary world. Moreover, since many decisions
are made by agents in technical R&D, this analysis might also provide valuable infor-
mation for policy making regarding innovations related to the efficiency of energy
utilization.

Whether technological change is biased towards energy has been empirically exam-
ined at the industry level. Zha et al. (2017, 2018) estimate the CES production func-
tion for Chinese industrial sectors; Karanfil and Yeddir-Tamsamani (2010) estimate a
translog cost-share system for French economic sectors. The approaches in these studies
enable the analysis of the biasedness of technological change; nonetheless, we find the
production function approach of stochastic frontier analysis (SFA) to be more appro-
priate for our research purpose, as it allows the estimation of indicators that provide a
more comprehensive idea on the situation of technological change, including technical
inefficiency, output elasticities and total factor productivity (TFP) growth rate. In this
paper we apply SFA to country-level data and estimate a translog production function
with three main inputs: capital, labor and energy. We calculate the marginal products
(output elasticities) for each input, as well as the factor bias index first proposed by Dia-
mond (1965), in order to find out how technological change has been biased in recent
decades. We also calculate the growth rates of TFP, which indicate the general situation
of technological development in each country.

The analysis provides us with an idea of the role played by technological change
in macro-level production; it also reveals some patterns in economic growth of devel-
oped and developing countries. Based on our sample, we are going to show that, on
average, output elasticities of energy and labor are increasing, while the output elas-
ticity of capital is decreasing, and has negative values for some countries. Among the
three inputs, the output elasticity of labor is the highest for developed countries, and
the output elasticity of energy is the highest or very close to the highest for devel-
oping countries. For the average of the sample, and also for most countries in the
sample, technological change is biased the most towards energy. Moreover, there are
significant differences in the patterns of output elasticities, TFP growth rate and fac-
tor bias order for different (groups of) countries, which may provide insights for policy
making.

In addition to the methodologies commonly applied in SFA studies, we obtain confi-
dence intervals and levels of statistical significance for the abovementioned indicators, in
order to acquire a more rigorous result. Boostrap results show strong evidence of consis-
tency among countries, in the sense that technological change favors energy more than
labor. Such a finding supports the hypothesis that technological change is more likely to
be biased towards the non-renewable input rather than the renewable.
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The remainder of this paper is organized as follows. We review the literature on our
topic in section 2. In section 3 we address the methodology and data. Section 4 presents
the empirical results, along with related interpretation and discussion. Concluding
remarks are provided in section 5.

2. Literature review
The reliance of economic activities on natural resources, a significant part of which is
non-renewable, caught the attention of economists as early asHotelling (1931), who pro-
poses a basicmodel of the extraction of non-renewable resources, suggesting that perfect
competition yields an extraction path, chosen by firms, identical to the social opti-
mum. In the 1970s, a number of economists focused their attention on economic growth
with non-renewable resources, including Anderson (1972), Dasgupta and Heal (1974),
Solow (1974), Stiglitz (1974), Ingham and Simmons (1975), Hartwick (1977), Garg and
Sweeney (1978), among others. The world’s concern, as well as that of many economists,
has been how to sustain economic growth with exhaustible resources. These early stud-
ies share one feature: they all believe technological change should play a relevant role in
such progress.

Some economists seek solutions other than technological change. Groth and
Schou (2002, 2007) deem increasing returns to capital as the driver for growth; how-
ever, as we are going to show in our results, general production activities are more
likely to exhibit decreasing returns to scale. Benchekroun and Withagen (2011) high-
light the role of consumption (which hence affects investment), yet it seems less realistic
for policies to target consumption rather than technological progress. Most economists
consider technological change as the key to long-run economic growth with limited
resources: Grimaud and Rougé (2003) propose a Schumpeterian model of endogenous
growth and show that economic growth can be sustained even with non-renewable
resources, as long as an adequate level of technological change is guaranteed; a num-
ber of researchers share similar conclusions, including Smulders and De Nooij (2003),
Di Maria and Valente (2008) and André and Smulders (2014).

Governments concerned with the scarcity of fossil-fuel energy and its environmen-
tal consequences have proposed policies like environmental taxes, aimed at limiting the
use of fossil fuels. According to the belief of induced innovation by Hicks (1932), with
the price incentives created by such policies, technological change ought to take place so
that the efficiency of energy use is improved over time. There is also the prediction that
technological change is biased towards non-energy intensive products (Otto et al., 2007).
Although there is evidence that innovation is motivated by price factors (Newell et al.,
1999; Popp, 2002; Linn, 2008; Kumar andManagi, 2009), firms’ investment in R&Dmay
not be socially optimal as knowledge spillovers are not fully internalized (Grubb and
Ulph, 2002). Therefore, both taxation and research subsidies play a role in optimal pol-
icy making, as suggested by Jaffe et al. (2005), Grimaud et al. (2011) and Acemoglu
et al. (2012).

The growth model of directed technological change proposed by Acemoglu (2002,
2007) indicates that technological progress is affected by two counteracting effects,
the price effect and the market size effect. Specifically, when the menu of technologi-
cal possibilities only allows for factor-augmenting technologies, induced technological
change increases the relative marginal product of the factor becoming more abundant.
On the other hand, as suggested by Hicks (1932), Diamond (1965) and Kumbhakar
et al. (2000), among others, the technological change of an economy over time consists
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of two aspects: the change in TFP and the bias of technological change towards input
factors. Acemoglu (2002, 2007) leaves unanswered whether the result would still be the
same if technological change consisted of these two aspects.

Empirical support is needed regarding the direction of technological change in the
real world, as there are several factors undermining the reliability of the theoretical pre-
dictions. First, inmost of themodels regarding technological change and non-renewable
resources, only two inputs are considered, with labor often being excluded. Second, the
world is utilizing both renewable and non-renewable energy, so predictions considering
non-renewable resourcesmay not be accurate. Third, theoreticalmodels differ from each
other in their assumptions, and propose different conditions for the direction of tech-
nological changes. Comparative to our topic, Acemoglu (2010) discusses whether labor
scarcity encourages technological advances, with the answer depending on the economic
environment (functional form). Similar reasoning also stands if we talk about energy in
place of labor.

In the theoretical framework of Acemoglu (2002, 2007), the direction of technological
change depends on the elasticity of substitution between inputs. However, it is diffi-
cult to draw an empirical answer by estimating the elasticity of substitution, especially
when three input factors are involved. The actual threshold that decides the direction of
technological change is unclear, and including three inputs in the estimation requires a
nesting structure in the form (K, L)E, (K,E)L or (E, L)K (if we consider capital, labor and
energy as inputs), as in the cases of Kemfert andWelsch (2000), Su et al. (2012) and Dis-
sou et al. (2014). This complicates the analysis greatly, not to mention further research
that may include four or more inputs. This form also makes it difficult to compare the
technological change augmented to each input factor.

Different empirical methods andmeasures have been applied to analyze the direction
of technological change. Simple measures for technological progress regarding energy
include the ratio of energy input-to-GDP/GNP and cost shares of inputs (Hogan and
Jorgenson, 1991; Sanstad et al., 2006); the former does not allow us to compare the
technological change augmented to different inputs, and the latter does not perfectly
reflect the productivity change since a change in cost shares can result from multiple
reasons.

Considering only two input factors, Klump et al. (2007) estimate a supply-side sys-
tem of the U.S. economy from 1953 to 1998, and find that labor-augmenting technical
progress is exponential, while the growth of capital-augmenting progress is hyperbolic
or logarithmic. Dong et al. (2013) use inter-provincial panel data fromChina to find that
technological change is biased towards capital rather than labor. By studying the substi-
tutability between energy and capital in manufacturing sectors in 10 OECD countries,
Kim and Heo (2013) conclude that the the adoption of energy-saving technologies has
not been induced by increased energy prices. Yet the results of these studies are not fully
convincing as they leave a major input factor unconsidered. A comprehensive empirical
analysis of technological change regarding energy should at least take capital and labor
into account as well.

Stochastic frontier analysis was first introduced by Aigner et al. (1977) and Meeusen
and Van den Broeck (1977). Over the years this method has been developed by a great
number of subsequent studies, including Kumbhakar (1990), Kumbhakar et al. (2000),
Wang (2002), Wang and Schmidt (2002), Greene (2005), Kumbhakar andWang (2005),
Chen et al. (2014), Parmeter and Kumbhakar (2014), and others. It assumes that the
error term is composed of a noise term and an inefficiency term, and it was, at first,
used to discuss the inefficiency in production and its determinants. Althoughmore often
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applied in micro-level studies, SFA is also used to investigate macro-level production
processes, for example, byHeshmati andKumbhakar (2011) who use province-level data
from China and Kumbhakar and Wang (2005) who assume capital and labor as inputs.

In recent years, SFA has been applied in energy economics to address the issue of
directed technological change. Two approaches are most frequently applied: the dis-
tance function approach and the production function approach. The distance function
approach allows us to analyze the technical efficiency in a production procedure that
involves multiple outputs; recent applications in energy economics include Boyd and
Lee (2019) and Liu et al. (2019), among others. The production function approach, on
the other hand, facilitates the calculation of a set of indicators for technological change.
Wesseh and Lin (2016) analyze the effectiveness in using renewable and non-renewable
energy in African countries. Shao et al. (2016) study whether technological change has
taken place in away that alleviates the dependence of industrial production onCO2 emis-
sions in Shanghai. Yang et al. (2018) investigate whether technological change is biased
towards fossil energy or non-fossil energy in China’s industrial sector. Still, the literature
lacks an idea of the whole picture of the world’s directed technological change regard-
ing energy; analysis from a broader perspective is needed to assess how macro-level
technological change has been unfurling in the global context.

One of our study’s contributions is its empirical analysis of country-level production
in a worldwide perspective, with capital, labor and energy as inputs. Besides this general
contribution on theway changes have been taking place inmacro-level production in the
world (or at least in the sample countries), the methodology also allows the comparison
of different patterns of development between countries. Findings can be considered as
evidence that provides support to theoretical studies, as well as a reference for policy
making.

3. Methodology and data
3.1. Stochastic frontier production function and estimationmethod
Amethod is proposed in studies of SFA, such as Kumbhakar et al. (2000), for decompos-
ing productivity change into efficiency change, technical change and scale effects. The
authors also provide examples of TFP change decomposition at the industry level. Shao
et al. (2016) use panel data from 32 industrial subsectors in Shanghai from 1994–2011
to investigate and compare the degrees of technological change bias to four production
factors, i.e., capital, labor, energy, and carbon emissions. The results show that in most
subsectors, technological change was biased towards energy during the sample period.
Nevertheless, the study adopts the production function approach with carbon emission
as an input, which is a compromise to facilitate the analysis of the biasedness of tech-
nological change. Carbon emissions are, as a matter of fact, an output resulting from
production and the distance function is the most proper functional form to describe
such a process, as in Duman and Kasman (2018). In the macro context, since there is
not a global carbon emissions market where carbon emissions would incur comparable
costs, we opt not to take it as an input.

Thus we estimate a stochastic frontier model with three inputs: capital, labor and
energy, and try to assess the direction of technological progress.

Referring to Kumbhakar et al. (2000), Heshmati and Kumbhakar (2011) and Shao
et al. (2016), suppose the production function is

yit = f (xit , t) exp(−uit), (1)
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where i represents a country, t represents the number of the time period, and u ≥ 0
denotes output-oriented technical inefficiency. Technical change is defined as

TCit = ∂ ln f (xit , t)
∂t

. (2)

The overall productivity change is affected by both technical change and change in
technical efficiency (TEC). Assuming input quantities fixed, we have

∂ ln yit
∂t

= TCit + TECit , (3)

where TECit = −(∂uit/∂t). When input quantities change, productivity change is mea-
sured by TFP change which is defined as

·
TFP= ẏ −

∑
j
Saj ẋj, (4)

where Saj = wjxj/
∑

k wkxk, with wj being the price of input xj. The dot denotes time
growth rate. Differentiating (1) and using (4), we get

·
TFP = TC − ∂u

∂t
+

∑
j

(
fjxj
f

− Saj

)
ẋj

= (RTS − 1)
∑
j

λjẋj + TC + TEC +
∑
j

(λj − Saj )ẋj, (5)

where RTS = ∑
j(∂ ln y/∂ ln xj) = ∑

j(∂ ln f (·)/∂ ln xj) = ∑
j fj(·)xj/f (·) ≡ ∑

j ηj is the
measure of returns to scale; ηj are input elasticities defined at the production frontier,
f (x, t); λj = (fjxj/

∑
k fkxk) = ηj/RTS; and fj is the marginal product of input xj. There-

fore, TFP change is decomposed into scale components, technical change, technical
efficiency change and price effects.

In previous empirical studies (Shao et al., 2016; Wesseh and Lin, 2016; Yang et al.,
2018), a translog production function of a second-order Taylor approximation is gener-
ally adopted. It allows variable substitution elasticities and is very suitable for calculating
the biased technological change. As proposed by Greene (2005), and also done by Yang
et al. (2018), we let the model account for fixed effects, which is represented by coun-
try dummies. Considering capital, labor and energy as inputs, we build the following
translog production function:

lnYit = β0 + αiDi + βtt + βK lnKit + βL ln Lit + βE lnEit
+ βtKt lnKit + βtLt ln Lit + βtEt lnEit
+ βKL(lnKit ln Lit) + βKE(lnKit lnEit) + βLE(ln Lit lnEit)

+ βKK(lnKit)
2 + βLL(ln Lit)2 + βEE(lnEit)2 + Vit − Uit , (6)

Uit ∼ N+(0, σ 2
U),

where Y represents the total output; K, L, E denote capital input, labor input and energy
input, respectively; parameters βx are to be estimated; V is the noise term while U is the
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technical inefficiency term, hence the compounded residual variance σ 2 = σ 2
U + σ 2

V
1;

Di represents country dummies and αi are the corresponding coefficients. A parameter
γ = σ 2

U/(σ 2
U + σ 2

V)(0 ≤ γ ≤ 1) represents the share in the compounded residual vari-
ance derived from technical inefficiency. As the assumption is made such that the error
terms are not normally distributed and the conditional mean of the errors is different
from zero, the basic assumption of the ordinary least square method is violated. Fol-
lowing Battese and Coelli (1995) and Kumbhakar et al. (2015), we estimate the function
above with the maximum likelihood method, where the likelihood function is expressed
in terms of the variance parameters σ 2

U and σ 2
V .

Referring to Kumbhakar et al. (2000),2 the growth rate of the TFP can be decomposed
as

·
TFPit= TPit + TECit + SECit . (7)

The first term, TPit , denotes technological progress, which is defined as

TPit = ∂ lnYit

∂t
= βt + βtK lnKit + βtL ln Lit + βtE lnEit , (8)

where βt is the neutral technological change rate of the world, or our sample coun-
tries; and βtK lnK + βtL ln L + βtE lnEit is the non-neutral technological change, which
is heterogeneous across different countries.

The second term, TECit , denotes technical efficiency change over time:

TECit = TEit
TEi,t−1

− 1, (9)

where TEit = exp(−Uit).
The third term, SECit , denotes the scale efficiency change, which reflects the improve-

ment in productivity benefitting from scale economy:

SECit = (RTSit − 1)
∑
j

ηjit

RTSit
Ẋjit , (10)

where j=K,L,E denotes the input factor; Ẋjit is the growth rate of each input; and ηjit is
the output elasticity with respect to each input. The scale effect index is RTSit = ηKit +
ηLit + ηEit , where the output elasticities of capital, labor and energy, respectively, are
calculated as:

ηKit = ∂ lnYit

∂ lnKit
= βK + βtKt + βKL ln Lit + βKE lnEit + 2βKK lnKit ; (11)

1σ 2
U and σ 2

V are estimated as:

σ 2
U = exp(wU),

σ 2
V = exp(wV ),

where wU and wV are unrestricted constant parameters.
2Interested readers may refer to Kumbhakar et al. (2000) for a more complete derivation of the following

equations.
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ηLit = ∂ lnYit

∂ ln Lit
= βL + βtLt + βKL lnKit + βLE lnEit + 2βLL ln Lit ; (12)

ηEit = ∂ lnYit

∂ lnEit
= βE + βtEt + βKE lnKit + βLE ln Lit + 2βEE lnEit . (13)

An indicator for the biasedness of technological change, according to Shao et al. (2016)
and Yang et al. (2018), originating from Diamond (1965), the biased technological
change index Biassj can be used to estimate the relative biased degree of technological
change to each input:

Biassj = ∂(fs/fj)
∂t

/
fs
fj

= βts

ηs
− βtj

ηj
, (14)

where s and j represent different inputs; and fs or fj is the derivative of the function f with
respect to s or j.

Biassj > 0 means that the marginal output growth rate of s caused by technological
change is greater than that of j, indicating that technological change is biased to factor
s; and vice versa. If Biassj = 0, it means that technological change in the production is
Hicks neutral.

3.2. Data
We collect annual data from 1991 to 2014 for 16 developing and developed countries
located in different geographic areas of the world, namely the US, Japan, Germany,
the UK, Canada, France, Italy, Australia, China, India, Brazil, South Africa, Mexico,
Argentina, Indonesia and Russia. In selecting the countries to be included in our sam-
ple, we consider equal numbers of developed and developing countries, all chosen for
their weight in terms of real GDP in the world; we also selected countries in differ-
ent geographic areas (continents) of the world, in order to retain a certain degree of
diversity.

There are eight developing countries and eight developed countries in the sample.
The US, Japan, Germany, the UK, Canada, France, Italy and Australia are among the
nine developed countries with the highest real GDP in the world (ranking according
to the World Bank); Spain is in 8th place and is substituted with Australia, in order
to avoid excessive weight of European countries in the sample. Likewise, China, India,
Brazil, South Africa, Mexico, Argentina, Indonesia and Russia3 are among the 11 devel-
oping countries with the highest real GDP in the world. The real GDP of these countries
accounts for over 90 per cent of the world’s real GDP.4 Throughout the sample period or
for most of it, the US, Japan, Germany, the UK, France, Italy, China, India and Brazil are
energy importers; while Canada, Australia, South Africa, Mexico, Argentina, Indonesia
and Russia are energy exporters.5

3According to World Economic Situation and Prospects 2018 (United Nations, 2017), Russia is among
the economies in transition, and is thus not considered as a developed country.

4Calculated with data from the Federal Reserve and the World Bank (for the world’s real GDP). For
example, the real GDP of the 16 countries in 2014 adds up to 7.13 ∗ 1013 2009 dollars, the real GDP of the
world in 2014 being 7.36 ∗ 1013 2010 dollars.

5Information is from the Global Energy Statistical Yearbook 2018.
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Table 1. Descriptive statistics of input and output data

Variables (unit) Obs Mean Std. Dev. Min Max

Real GDP (millions of constant 2011 US$) 384 3088068 3474901 344670.5 1.72e+07
Capital stock (millions of constant 2011 US$) 384 1.05e+07 1.10e+07 948456.3 6.76e+07
Labor force (thousands of persons) 383 102013.6 165095.7 7585.462 673787.1

Total energy consumption (Mtoe) 384 474.906 613.2286 47.49662 3052.325

To estimate the stochastic frontier translog production function, we collect the
following data:

Y - real GDP collected from the database of the Federal Reserve (at https://fred.
stlouisfed.org/) in constant 2011 US$.

K - capital stock collected from the database of the Federal Reserve, in constant 2011
US$.

L - working population collected from the database of the Federal Reserve. For some
countries, direct data for theworking population is not available, andwe obtain such data
from the employment-to-population ratio (15–64 years) and the population between 15
and 64 (collected from the database of the World Bank at https://data.worldbank.org/)
in these countries.

In accounting for labor input, we choose to adopt working population as a proxy,
instead of other proxies that account for human capital. Nevertheless, there are a number
of different ways for estimating human capital (Stroombergen et al., 2002), and human
capital measurement is context-specific (Baron, 2011), so it is difficult to determine a
proper measure of human capital; in estimating human capital, inaccuracies may arise
that will generate trouble for our empirical analysis. Besides, the output elasticity of labor
that we calculate is by itself, to some degree, a measure of human capital.

E - total primary energy consumption in Mtoe (millions of tons of oil equivalent),
from the Global Energy Statistical Yearbook 2018.

Country data for the share of renewables in energy production is available; yet, we are
lacking the information on the share of renewables in energy consumption, which stops
us from treating renewable and non-renewable energy separately.

Following the true fixed effects model of Greene (2005), country dummies are
included in the estimation to account for country-level fixed effects. We drop the first
country dummy in order to avoid multicollinearity, thus we have 15 dummies left.

Hypotheses of unit roots are rejected for most countries.6 The descriptive statistics of
the data are shown in table 1.

4. Results and discussion
4.1. The production function
The first step of our empirical analysis is to estimate the translog production function (6).
Along with the estimation process, several specification tests are implemented in order
to make sure that the production function is well-defined. Then, based on the estimated

6The Levin-Lin-Chu test rejects null hypotheses for lnY , lnK; the test rejects null hypothesis for
ln L when the data for Russia is excluded since the test requires a strongly balanced panel; the test rejects
null hypothesis for lnE when the data for China and India is excluded.
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Table 2. Results of specification tests of the production function

Null hypothesis LR statistic χ20.05

σ 2U = 0 36.27(rejection) 2.705

βt = βtK = βtL = βtE = βKL = βKE = βLE = βKK = βLL = βEE = 0 452.80(rejection) 17.67

βt = βtK = βtL = βtE = 0 222.86(rejection) 8.761

βtK = βtL = βtE = 0 94.09(rejection) 7.045

α2 = α3 = · · · = α16 = 0 1447.92(rejection) 24.384

parameters, we derive the output elasticities, TFP growth rate, and factor bias index,
among other indexes.

To examinewhether the specification of the production function is valid and effective,
the following specification tests are necessary:

(1) Whether the stochastic frontier productionmodel is effective:H0 : σ 2
U = 0. If the

null hypothesis is not rejected, it means that no technical inefficiency exists and
that the SFA is not needed.

(2) Specification test of the production function form of the stochastic frontier
model:H0 : βt = βtK = βtL = βtE = βKL = βKE = βLE = βKK = βLL = βEE =
0. If the null hypothesis is not rejected, it means that the production function
should be Cobb–Douglas instead of the translog one.

(3) Whether there is technological progress in the frontier production function:H0 :
βt = βtK = βtL = βtE = 0. If the null hypothesis is not rejected, it would imply
that the production function does not vary through time, hence the technolog-
ical progress in the frontier production function does not exist. If technological
progress does exist, it is also necessary to test whether the technological progress
is neutral or not: H0 : βtK = βtL = βtE = 0.

(4) Whether there exist fixed effects across the 16 countries in the sample:H0 : α2 =
α3 = · · · = α16 = 0. Not rejecting the null hypothesis implies that there are no
fixed effects.

We use the generalized likelihood statistic LR = −2 ln[L(H0)/L(H1)] to test the
hypotheses, with L(H0) and L(H1) being the log likelihood function values of the null
hypothesis and the alternative hypothesis. The threshold values are according to Kodde
and Palm (1986). The results of the tests are shown in table 2.

As we can see from table 2, the null hypothesis of test (1) is rejected, meaning that
technical inefficiency does exist, and the assumption on residuals is valid. The null
hypothesis of test (2) is rejected, so that theCobb-Douglas production function is outper-
formed by the translog functional form which better describes the production process.
The result of test (3) implies that technological progress exists in the sample countries’
production and is not neutral.

The estimated results of the translog production function are shown in table 3. Most
parameters of the translog production function are statistically significant. As we see
from the maximum likelihood function value and the result of the LR test, the explana-
tory power of the model is quite convincing. We can calculate γ = σ 2

U/(σ 2
U + σ 2

V) =
0.9418, which implies that the variation of the compounded residual is mainly caused
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Table 3. Estimated results of the translog production function

Variable Coefficient Variable Coefficient

Constant 4.500(7.580) t .029(.029)

lnK .439(.847) lnK lnL .185***(.037)

lnL − .621(.783) lnK lnE − .328***(.0564)

lnE 2.181***(.807) lnE lnL .149**(.065)

tlnK − .003**(.0016) (lnK)2 − .015(.033)

tlnL − .002(.0018) (lnL)2 − .125***(.036)

tlnE .011***(.001) (lnE)2 .147***(.056)

(Country dummies omitted.)

σ 2U = .005∗∗∗(.0005837) σ 2V = .0003∗∗∗(.0001)

Related tests

Log likelihood 667.91086 LR test 194640.16

Note: Standard errors for coefficients are in parentheses.
Statistical significance: ***p<0.01, **p<0.05.

by technical inefficiency. The stochastic frontier model better describes the production
process of the sample countries than a model with classic assumptions on residuals.

Several equations alternative to (6) were considered in the estimation. For example,
when we include one time dummy (the value being 1 for the years starting from 2008)
or two time dummies (the value being 1 for the years starting from 1998 and 2008,
respectively) to account for economic crises, there is very little difference in the esti-
mated coefficients, or in the results for other subsequently calculated indicators. When
we include a dummy which takes the value as 1 for energy exporters instead of coun-
try dummies, although the average levels of the output elasticities are slightly different,
their trends remain similar, while the values of the bias indices are more volatile and
cannot provide information accurate enough for our analysis. Thus we decide to keep
the empirical model in the form of equation (6).

4.2. Output elasticities and total factor productivity growth rate
We use the formulas (7)–(13) to calculate the output elasticities with respect to each
input factor, as well as technological progress (TP), technical efficiency change (TEC),
scale efficiency change (SEC) and the growth rate of total factor productivity (TFPGR).
Table 4 shows the results for the average of the 16 countries in the sample. We obtain
confidence intervals from 1,000 bootstrap replications, which is shown in tables A1 and
A2 in the appendix. Levels of statistical significance are marked in table 4.

The growth rate of TFP in the sample countries was rather steady around the aver-
age growth rate until the early 2000s. Then the growth rate increased to a higher level
for a few years, and suffered from a sudden fall in 2008 and 2009, possibly as a conse-
quence of the financial crisis. A similar fluctuation also happened in 1998, possibly due
to the financial crisis that took place in East Asia and Russia. The values of technical effi-
ciency change (TEC) and scale efficiency change (SEC) fluctuate around zero, with their
absolute values being much smaller than those of technological progress (TP), which
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Table 4. Output elasticities of input factors and TFP growth rate: average of the 16 countries

Year K L E TP TEC SEC TFPGR

1991 .172* .389*** .315*** .013***

1992 .146* .397*** .346*** .014*** .0054 − .0001 .018**

1993 .134* .405*** .353*** .014*** − .0002 .0002 .014*

1994 .127* .410*** .358*** .014*** .0026 − .0013 .015*

1995 .116 .415*** .367*** .014*** − .0079 − .0007 .006

1996 .103 .422*** .376*** .014*** − .0006 − .0014 .012**

1997 .097 .427*** .379*** .014*** .0072 − .0018 .020**

1998 .091 .431*** .383*** .014*** − .0117 − .0015 .001

1999 .083 .433*** .393*** .014*** − .0046 − .0007 .009

2000 .075 .436*** .402*** .014*** .0062 − .0012 .019**

2001 .070 .438*** .407*** .014*** − .0007 − .0004 .013

2002 .065 .441*** .413*** .014*** − .0045 .0002 .010

2003 .051 .447*** .425*** .015*** − .0001 .0005 .015

2004 .037 .453*** .438*** .015*** .0002 − .0001 .015**

2005 .029 .457*** .446*** .015*** .0051 .0001 .020**

2006 .021 .461*** .453*** .015*** .0083*** − .00004 .023***

2007 .014 .465*** .457*** .015*** .0094* .0002 .025***

2008 .006 .470*** .462*** .015*** − .0078* − .0003 .007

2009 .005 .475*** .456*** .015*** − .0174*** .0019 − .001

2010 − .011 .485*** .466*** .015*** .0102* − .0001 .025***

2011 − .014 .488*** .465*** .015*** .0096** .0011 .025***

2012 − .020 .491*** .469*** .015*** − .0025 − .00007 .012

2013 − .026 .495*** .473*** .014*** − .0002 − .0004 .014***

2014 − .029 .497*** .475*** .014*** − .0044 − .0001 .010

Annual Average .056 .447*** .416*** .014*** .00006 − .00026 .014***

Significance: ***p<0.01, **p<0.05, *p<0.1, obtained from 1,000 bootstrap replications.

remains at a quite stable level. This indicates that the growth in TFP in the sample coun-
tries mostly depends on technological progress instead of improvements in technical
efficiency and scale efficiency.

Among the three input factors in ourmodel, the output elasticity for labor is the high-
est, followed by energy, while the output elasticity of capital is the lowest among the three.
This implies that in the contemporary world, the economy has already passed the phase
when its growth was mainly driven by the accumulation of capital. Instead, labor is play-
ing a central role in boosting production; the economy is also dependingmore andmore
on the use of energy.

The values for the output elasticity of labor and energy are all statistically significant;
the output elasticity of capital, for most time periods, is not statistically different from
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Figure 1. Average output elasticity for the sample countries.

zero. Nonetheless, the standard errors of the output elasticity of the three inputs are sim-
ilar, and for most time periods there is no intersection between the confidence intervals
of the output elasticity of capital and that of other inputs. So there is little doubt that the
output elasticity of capital is the lowest among the three inputs factors.

Figure 1 shows the average output elasticity for the sample countries over the years.
Generally, the output elasticity of capital is decreasing, while that of labor and energy is
increasing. In addition, the output elasticity of energy is increasing at such a high rate that
its gap from the output elasticity of labor is diminishing.Although there is an intersection
in the confidence intervals of the output elasticity of labor and that of energy, if we look
at table 5, we can find that the bias index E--L is statistically significant and positive in
most time periods, implying that technological change is indeed biased towards energy
rather than labor.

Figure 2 shows the returns to scale (RTS) of the 16 countries from 1991 to 2014. The
RTS of the countries range from 0.70 to 1.22; from 1991 to 2014, the average returns
to scale of the eight developed coutries is 0.843, while the average returns to scale of
the eight developing countries is 0.994, with the average of the 16 countries equal to
0.919. Developing countries have generally been enjoying higher returns to scale; China,
India and Russia have average returns to scale greater than 1. The average of the sample
countries, however, shows decreasing returns to scale, which is a phase that each country
will finally come to when they become better developed. Among the 16 countries, China
has the highest average returns to scale over the years. The average returns to scale of Italy
is the lowest, significantly lower than that of the other countries.While China, Russia and
India are all countries with immense populations and geographic areas, which may be
part of the reason for their high returns to scale, it is still hard to explain the gap between
the returns to scale of Italy and those of other countries.
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Table 5. Annual average factor bias index of the selected countries

Year Bias K–L Bias K–E Bias E–L Bias order

1991 .055** .028 .027 L<E<K

1992 .022 .002 .020 L<E<K

1993 .022 − .016 .038 L<K<E

1994 .008 − .020 .028 L<K<E

1995 − .014 − .026 .012 K<L<E

1996 .031 .030 .001 L<E<K

1997 .090*** .123** − .033 E<L<K

1998 .009 − .168*** .177*** L<K<E

1999 .044* − .066* .110*** L<K<E

2000 .021 − .051 .073*** L<K<E

2001 .013 − .052 .064*** L<K<E

2002 .005 − .052* .057*** L<K<E

2003 .021 − .028 .049** L<K<E

2004 .004 − .041 .045** L<K<E

2005 − .001 − .043 .042** K<L<E

2006 − .003 − .043 .041** K<L<E

2007 − .003 − .043 .040* K<L<E

2008 − .006 − .044 .039* K<L<E

2009 − .002 − .043 .040* K<L<E

2010 − .010 − .048* .038** K<L<E

2011 − .007 − .046 .038** K<L<E

2012 − .009 − .047 .038** K<L<E

2013 − .011 − .049 .038** K<L<E

2014 − .011 − .050* .038* K<L<E

Statistical significance: ***p<0.01, **p<0.05, *p<0.1, obtained from 1,000 bootstrap replications.

Figure 3 illustrates the averages over the years of the TFP growth rate and the output
elasticities of the three input factors for each country in our sample. Among capital, labor
and energy, the output elasticity of labor is the highest for developed countries, while in
developing countries the output elasticity for energy is the highest, or very close to the
highest (in the case of Brazil, Argentina and Indonesia). This reveals different patterns of
economic growth in developed and developing coutries. For developed countries, labor
plays more of a role as the driver for economic growth. The higher elasticities of labor in
developed countries reflect higher levels of education; as a consequence, industries that
require highly skilled workers (e.g., the IT sector, service sector and financial sector)
are better developed. Developing countries, on the other hand, rely more on the use of
energy to sustain their growth; there is great potential for them to boost their long-term
economic growth by improving education levels.
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Figure 2. Returns to scale of the 16 countries, 1991–2014.

Figure 3. Average TFP growth rate and output elasticities of various inputs for the 16 countries in the sample.

It is worth noticing that for some observations, e.g., the U.S. and China, there are
negative values for the output elasticity with respect to capital. The direct factor that
leads to such a phenomenon is the negative coefficient on the term lnK, along with the
large standard deviation in the data for capital. From a theoretical point of view, this is
not quite feasible since rational agents will not invest if the output elasticity is negative.

https://doi.org/10.1017/S1355770X2000008X Published online by Cambridge University Press

https://doi.org/10.1017/S1355770X2000008X


626 Zheng Hou et al.

Nevertheless, in our micro-level study (Hou et al., 2020), negative output elasticity is not
rare in firm-level observations. Meanwhile, we try to explain such phenomena with the
following possible reasons.7

(1) Limited information. Usually, agents do not mathematically calculate output
elasticity; they usually increase all inputs simultaneously and observe an increase
in production, so they keep investing in the same way.

(2) Investment externalities. From the perspective of individual agents, they may be
making optimal investment decisions, which are not necessarily also optimal for
the whole economy at themacro-level, as they do not take into account the exter-
nalities of their investment. Amicro-level studymight providemore information
regarding this topic.

(3) Real estate price. Increases in capital stock are partly due to rising real estate
prices, which have no effect on production.

(4) Preference for domestic investment. Some agents prefer to invest their money
in domestic markets, because of risk concerns or difficulties in investing their
money abroad (where the output elasticity of capital is higher).

We can also observe significant differences between the growth rates of TFP in differ-
ent countries in the sample. The growth rates of theUS, China andRussia are the highest,
while the growth rates of Italy, Brazil andMexico are the lowest. This reflects the progress
each country has made in technological development. For countries like Italy, Brazil and
Mexico, encouraging technological R&D and the adoption of new technologies might be
a solution for ameliorating their economic performance.

4.3. Directed technological change
According to equation (14), we calculate the factor bias index of technological change
for the 16 countries in the sample. Table 5 shows the average factor bias index of the
countries in the sample from 1991 to 2014, marked with levels of statistical significance
obtained from 1,000 bootstrap replications. We can observe that while some changes
take place in the first half of the sample period, the values of the bias indices and the bias
order is quite stable in the second half of the sample period. The main change is the bias
order for capital: in the beginning it takes the first place in the bias order of technological
change, but soon it loses the lead and moves to the second place; in the end, capital
is the least favored by technological change among the three input factors. For most
time periods, technological change is biased the most towards energy, which is what we
are trying to find out from our research. Technological change is not biased to labor at
first; from 2005 onwards, the bias order of labor exceeds that of capital. Throughout the
sample period, the main trend for the bias order is K<L<E, and this order is likely to
remain the same in the near future.

In the modern world where technology is highly developed, technological progress
usually takes place in a subtle manner. The absolute values of the bias indices are
usually small, hence sometimes they may not be statistically significant. Nevertheless,
in most time periods, the bias indices E--L are statistically significant, indicating that

7In our case, negative values are detected only in the output elasticities of capital. In the cases where there
are negative values in the ouput elasticities of other inputs, the first and second factors might still serve as
possible explanations.
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Table 6. Country average factor bias index

Country Bias K–L Bias K–E Bias E–L Bias order

The US .011* − .010 .021*** L<K<E

Japan .047** .013 .034*** L<E<K

Germany .123*** .077* .046*** L<E<K

The UK − .071 − .134 .063*** K<L<E

Canada .070*** .038* .032*** L<E<K

France .125*** .063 .062*** L<E<K

Italy − .056* − .173 .118 K<L<E

Australia − .047* − .104* .057** K<L<E

China .010 − .011 .021* L<K<E

India − .0003 − .036 .036** K<L<E

Brazil − .014 − .061 .047 K<L<E

South Africa − .032* − .061** .030** K<L<E

Mexico − .013 − .048* .035*** K<L<E

Argentina − .005 − .049 .044 K<L<E

Indonesia − .002 − .046 .044 K<L<E

Russia .031* .013 .018** L<E<K

Average .011 − .033 .044 L<K<E

Statistical significance: ***p<0.01, **p<0.05, *p<0.1, obtained from 1,000 bootstrap replications.

technological change is biased more towards energy than labor. The situation is simi-
lar in the bias indices for each country. Even though we cannot be fully confident in the
other bias indices judging from the levels of statistical significance, if we relate the results
in the bias indices with the trends in the change of output elasticities of the inputs, we
can infer that the overall technological change of the sample countries is biased the most
towards energy, followed by labor, and the least towards capital.

Table 6 shows the average factor bias index in the period 1991–2014 for each country
in the sample. The technological change bias order is L<K<E for the US and China;
L<E<K for Japan, Germany, Canada, France and Russia; and K<L<E for the other
countries in the sample. From an intuitive perspective, there are some patterns for
countries that share the same bias order. Two major economies in the contemporary
world, the US and China, share the bias order L<K<E; countries with the bias order
L<E<K arewell-developed countries or formermajor economies of theworld; andmost
developing countries have the bias order K<L<E.

We observe one common point In the bias orders of all 16 countries: technological
change is always biased more towards energy than labor. What makes the difference is
the position of capital, or in other words, how much capital is favored by technological
change. Though itmay not be practical to present bias indices for each single observation
in our paper, our results indicate that in most countries, the bias index K--L and bias
index K--E are decreasing, which can also be reflected in the change of values in table 5.
But the timewhen the sign of bias index changes (if it does) differs in each country, which
leads to the difference in overall bias orders. It seems to be a sequential issue. While, on
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the one hand, there may be further country-specific factors giving rise to this ‘sequential
issue’, on the other hand, we cannot exclude the effect of other potential determinants
on the bias orders. So there remains room for discussion regarding the determinant(s)
of the direction of technological change.

One may naturally wonder if there is a connection between the direction of techno-
logical change and the energy balance of trade. For all or most time periods, the US,
Japan, Germany, the UK, France, Italy, China, India and Brazil are energy importers;
while Canada, Australia, South Africa, Mexico, Argentina, Indonesia and Russia are
energy exporters. According to our finding, technological change is biased the most
towards energy in the energy-exporting countries except for Canada and Russia; mean-
while, there are energy-importing countries where technological change is also biased
the most towards energy. It is then quite difficult to conclude that the energy balance of
trade determines the direction of technological change. One possible explanation could
be that, on the one hand, due to underdevelopment in industries, most of the develop-
ing countries are not able to consume the total amount of energy produced nationally;
on the other hand, facing comparatively lower levels of education, a more direct way to
improve output could be better utilization of energy input.

Now we see that technological change is biased the most towards energy, both for
the average of the 16 countries and for most countries in the sample individually. In
particular, evidence is strong that technological change is biased more towards energy
rather than labor. Labor, of course, can be considered as a renewable input; energy input
is, at least partly, non-renewable. In this sense, our findings support the hypothesis that
technological change ismore likely to favor the non-renewable rather than the renewable
input.However, themain determinant of the biasedness of technological change remains
dubious. Is it market size, or price incentives, or other factors that decide the direction
of technological change? Do agents take into account the fact that some input is non-
renewable when they make R&D decisions? To answer such questions, we need not only
more empirical evidence, but theoretical support as well.

5. Conclusion
In this paper we apply stochastic frontier analysis to data for 16 countries in order to
assess the technological change in production at the macro-level with three input fac-
tors: capital, labor and energy. As has rarely been applied in SFA studies, we use bootstrap
to obtain confidence intervals and statistical significance levels, in order to have more
rigorous and convincing results.

Our findings indicate that, in the sample countries between 1991 and 2014, on
average, output elasticities of energy and labor are increasing; specifically, the output
elasticity of energy grows at a higher rate so that it is catching up with the output elastic-
ity of labor, which is supported by the statistically significant bias index between energy
and labor. The output elasticity of capital is decreasing, and has negative values for some
observations; yet agents keep investing in capital, possibly because of limited informa-
tion, investment preference, real estate prices or investment externalities. Among the
three input factors, the output elasticity of labor is the highest for developed countries,
and the output elasticity of energy is the highest or very close to the highest for devel-
oping countries. In addition, compared with developed countries, developing countries
are more likely to enjoy higher returns to scale in production.

Nonetheless, we find that the average production of all sample countries
demonstrates decreasing returns to scale. Results also show a significant difference
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between the TFP growth rates in the countries in the sample. For some countries, the
advice on policy making might be to encourage technological progress, in order to
sustain their economic growth.

By calculating the factor bias index, we find that for the general trend of the 16
countries and for most countries in the sample, technological change is biased the
most towards energy. Different countries demonstrate different technological change
bias orders, but technological change commonly favors energy rather than labor. This
could be evidence that technological change is more likely to be biased towards the
non-renewable input than the renewable.

The purpose of our study was to analyze directed technological change in worldwide
production activities; if, by any chance, it could provide a clue for studies in economic
growth or other fields of macroeconomics, it would be satisfying. However, it still leaves
some difficult questions to be answered. For countries with the same bias orders, is there
any common pattern? What determines the direction of technological change? These
topics can be addressed in future studies.
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Appendix

Table A1. Output elasticities of input factors: average of the 16 countries 95% bias-corrected confidence
intervals in parentheses, from 1,000 bootstrap replications

Year K L E

1991 .172(− .003/.335) .389(.214/.579) .315(.144/.490)

1992 .146(− .014/.315) .397(.229/.589) .346(.174/.530)

1993 .134(− .008/.328) .405(.249/.595) .353(.156/.529)

1994 .127(− .020/.304) .410(.233/.606) .358(.165/.545)

1995 .116(− .060/.305) .415(.257/.613) .367(.193/.554)

1996 .103(− .057/.279) .422(.256/.610) .376(.181/.551)

1997 .097(− .072/.264) .427(.261/.595) .379(.212/.559)

1998 .091(− .049/.256) .431(.272/.600) .383(.183/.554)

1999 .083(− .080/.248) .433(.277/.622) .393(.228/.572)

2000 .075(− .086/.239) .436(.277/.591) .402(.228/.579)

2001 .070(− .087/.242) .438(.285/.623) .407(.231/.584)

2002 .065(− .091/.237) .441(.262/.601) .413(.237/.588)

2003 .051(− .106/.224) .447(.290/.622) .425(.246/.591)

2004 .037(− .110/.220) .453(.289/.623) .438(.260/.596)

2005 .029(− .126/.205) .457(.303/.625) .446(.261/.614)

2006 .021(− .134/.175) .461(.312/.633) .453(.271/.614)

2007 .014(− .147/.176) .465(.312/.646) .457(.284/.624)

2008 .006(− .148/.169) .470(.318/.646) .462(.285/.637)

2009 .005(− .155/.155) .475(.316/.642) .456(.289/.612)

2010 − .011(− .162/.133) .485(.348/.664) .466(.254/.629)

2011 − .014(− .166/.166) .488(.329/.658) .465(.279/.627)

2012 − .020(− .179/.150) .491(.341/.653) .469(.274/.633)

2013 − .026(− .170/.150) .495(.353/.662) .473(.284/.636)

2014 − .029(− .185/.132) .497(.340/.664) .475(.309/.649)

Annual Average .056(− .041/.189) .447(.326/.574) .416(.293/.526)
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Table A2. Total factor productivity growth rate and its components: average of the 16 countries 95%
confidence intervals in parentheses, from 1,000 bootstrap replications

Year TP TEC SEC TFPGR

1991 .013(.007/.018)

1992 .014(.008/.019) .0054(− .006/.030) − .0001(− .004/.004) .018(.002/.037)

1993 .014(.008/.019) − .0002(− .016/.012) .0002(− .003/.005) .014(− .003/.025)

1994 .014(.008/.019) .0026(− .012/.012) − .0013(− .005/.003) .015(− .001/.023)

1995 .014(.008/.019) − .0079(− .025/.002) − .0007(− .004/.005) .006(− .013/.019)

1996 .014(.008/.019) − .0006(− .015/.010) − .0014(− .004/.002) .012(.001/.023)

1997 .014(.008/.019) .0072(− .003/.022) − .0018(− .006/.001) .020(.002/.035)

1998 .014(.009/.019) − .0117(− .061/.004) − .0015(− .005/.0007) .001(− .059/.017)

1999 .014(.009/.019) − .0046(− .015/.004) − .0007(− .004/.003) .009(− .009/.020)

2000 .014(.008/.019) .0062(− .006/.019) − .0012(− .004/.002) .019(.003/.036)

2001 .014(.010/.019) − .0007(− .012/.008) − .0004(− .003/.003) .013(− .004/.027)

2002 .014(.009/.019) − .0045(− .043/.006) .0002(− .002/.005) .010(− .029/.024)

2003 .015(.009/.019) − .0001(− .018/.016) .0005(− .004/.007) .015(− .005/.031)

2004 .015(.009/.019) .0002(− .016/.011) − .0001(− .005/.008) .015(.002/.030)

2005 .015(.009/.019) .0051(− .008/.023) .0001(− .003/.005) .020(.005/.035)

2006 .015(.010/.020) .0083(.004/.016) − .00004(− .004/.005) .023(.013/.034)

2007 .015(.010/.020) .0094(− .0003/.023) .0002(− .003/.005) .025(.014/.039)

2008 .015(.009/.020) − .0078(− .019/.001) − .0003(− .004/.003) .007(− .008/.022)

2009 .015(.009/.019) − .0174(− .037/− .005) .0019(− .003/.008) − .001(− .022/.017)

2010 .015(.010/.020) .0102(− .0009/.026) − .0001(− .004/.006) .025(.015/.040)

2011 .015(.009/.020) .0096(.0002/.022) .0011(− .002/.003) .025(.015/.038)

2012 .015(.009/.020) − .0025(− .013/.010) − .00007(− .003/.002) .012(− .002/.028)

2013 .014(.009/.020) − .0002(− .009/.015) − .0004(− .003/.002) .014(.004/.034)

2014 .014(.009/.020) − .0044(− .018/.008) − .0001(− .004/.002) .010(− .009/.025)

Annual Average .014(.010/.017) .00006(− .003/.003) − .00026(− .002/.002) .014(.009/.018)
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