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SUMMARY
In this paper, a new calibration method for open-chain robotic arms is developed. By incorporating
both prior parameter information and artifact measurement data, and by taking recourse to Bayesian
inference methods, not only are the robot kinematic parameters updated but also confidence bounds
are computed for all measurement data. In other words, for future measurement data not only the most
likely end-effector configuration is estimated but also the uncertainty represented as 95% confidence
bounds of that pose is computed. To validate the proposed calibration method, a three degree-of-
freedom robotic arm was designed, constructed, and calibrated using both typical regression methods
and the proposed calibration method. The results of an extensive set of experiments are presented to
gauge the accuracy and utility of the proposed calibration method.

KEYWORDS: Kinematic calibration; Bayesian updating; Likelihood function; Second-moment
Bayesian method.

Nomenclature
ϕ, ϕ̄, ϕ̃ Nominal, actual, and deviation of the kinematic parameters
l The length of the parameter vector ϕ

θ, η Inter-link joint angle and resolver or encoder reading (converted to angles)
m Number of measurements
p Position of the origin of the end effector coordinate frame
Lab, lab Artifact actual and predicted length between points a and b
μ, �, ρ Mean vector, co-variance matrix, and correlation matrix
L, � Likelihood function and its natural logarithm

1. Introduction
At a basic level, kinematic calibration can be thought of as a system identification problem. More
precisely, given a robotic manipulator with an assumed kinematic model, a nominal set of parameters,
and a set of measurements, kinematic calibration computes the deviations of the kinematic parameters
from their nominal values to improve the absolute positioning accuracy of the manipulator’s end-
effector. During manufacturing and assembly of a robotic arm, one could possibly reduce the deviations
from the nominal values. Nonetheless, without a final calibration procedure, the accuracy of the
manipulator can neither be improved nor assessed. In fact, similar to fingerprints in humans, each
robotic arm will have its own unique set of kinematic parameters even if it belongs to the same family
of robots. This is referred to as an “arm signature” which in turn necessitates the kinematic calibration
procedure.6

An important aspect of calibration is the assumed kinematic model of the robotic arm. Extensive
research has been conducted to identify the most suitable kinematic models for robotic arms. A
metric used to compare various models is completeness, which evaluates the arm’s capability to
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capture deviations of the kinematic parameters continuously and uniquely while utilizing the smallest
set of parameters.23 One of the most commonly used kinematic models for open-chain robotic arms
is the one devised by Denavit–Hartenberg in refs. [9,19]. This model exhibits singularity for robotic
arms that have almost parallel consecutive joint axes.48 Accordingly, the generalized D-H convention
was proposed to overcome this singularity at the cost of appending the kinematic parameters set
by an additional parameter per joint.21 Alternatively, researchers proposed using a “complete and
parametrically continuous” model for parameter identification namely the Product-Of-Exponential
formula to eliminate redundancy of the kinematic parameters in the error models as was respectively
shown in refs. [22,23,44,56]. Edwards and Galloway13 developed a calibration method that required a
single point measurement whereas40 devised a method that uses articulated single point measurement.
Along the same lines,4,18 and8 proposed methods that gauge the quality of potential measurement
configurations. Other calibration methods involved more elaborate measurements of the end-effector
either by using dedicated instrumentation or other measurement machines.34,43

It is worth noting that all the above models, being kinematic in nature, capture structural deviations
from nominal values that are due to physical imperfections such as assembly errors, encoder zero
versus robot home position (encoder offsets), joint axes misalignment, and manufacturing tolerances.33

However, other kinds of errors are not captured by kinematic models such as joint non-rigidity,
encoder advance and retard error, axis wobble, and temperature and humidity effects as depicted in
refs. [12,30,33,54]. The first family of errors pertaining to the kinematic models is typically referred
to as “geometric” errors whereas the second family of errors is labeled as “non-geometric” errors. It
is worth noting that “non-geometric” errors could account to up to 10% as was stated in ref. [46]. An
analysis of the number of errors to be identified versus the number of required measurements in the
context of manipulator calibration is presented in refs. [35,36]. It should be noted that error modeling
is an integral part of designing robust controllers for robotic arms. In ref. [55], dynamic modeling and
re-parametrization were used to design a hybrid controller for a robotic arm that maintains accuracy
and joint convergence speed performance in the presence of disturbance due to variations of the
payload.

In addition to the possibility of using various kinematics models, there are various calibration
methods that could be adopted. The commonality among all calibration methods is the usage of a
measurement process that either uses another measuring machine or an artifact with known relevant
attributes. For instance, the end-effector location and orientation could be measured via another
machine and the acquired information is used to compute the kinematic parameters by minimizing an
error (or cost) function. In this case, the output of the measuring equipment is used as ground truth.
This measurement process could use various modalities such as: visual or computer-aided theodolite
systems,10,33,54 laser-based setups,1,15,42,45,50 or coordinate measuring machines (CMM) in ref. [11].
Along the same lines, researchers developed calibration methods that utilize an integrated system such
as a manipulator and a stereo camera. Such methods calibrate the entire system by identifying the
kinematic parameters of both sub-systems as was depicted in ref. [3]. In fact, this integrated method
effectively closes the kinematic chain in which the manipulator is a sub-system. The complement of
the manipulator could be another mechanical structure which effectively calibrates a closed-kinematic
chain or a parallel robot.14,32 The utility and robustness of such closed-loop calibration approaches
were standardized in ref. [25].

Other common methods of calibration depend on the usage of an artifact with known and traceable
attributes. Examples of such calibration methods use line constraints in refs. [42, 46] or plane
constraints in ref. [28]. The traceability of the artifact features refers to the method used to measure
these features and how the measurement accuracy can be related to a certified lab or national standard.
The calibration method proposed in this paper belongs to the second family and uses a distance
constraint between two conic holes similar in nature to methods depicted in refs. [26,37]. This kind
of distance constraint is referred to as a “volumetric” measurement.

The work on robot calibration summarized above provides an improved estimate of the kinematic
parameters compared to their nominal values. In ref. [31], the Product-Of-Exponential model was
used together with a Gaussian Process regression to compensate for geometric and non-geometric
errors. Nonetheless, a statistical model can be devised such that not only the nominal means of
the kinematic parameters are estimated but the uncertainties in these parameters are also quantified.
Accordingly, one can define a prior statistical model that describes the probability distribution of each
of the nominal kinematic parameters. In this paper, a probabilistic calibration method is developed
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to update the prior knowledge of the statistics of the model parameters using Bayesian inference
methods. The updated model, typically referred to as a posterior model, not only provides an improved
estimate of the kinematic parameters means but also updates their probabilistic distributions, thus,
making posterior error analysis possible. Previous work has approached the kinematic calibration of
robotic manipulators by taking recourse to such statistical approaches. Namely,46 and27 made use of “a
priori” knowledge about the kinematic parameters by implementing a “maximum a posteriori” (MAP)
estimate. More specifically, in ref. [46], the authors utilized a D-H kinematic model in conjunction
with a measuring device that ensures that the end-effector is constrained to move along a straight line
to define a likelihood function. Based on geometric errors of the kinematic model and those of the
measuring devices, an algorithm based on maximum likelihood was developed to calibrate the model
parameters. The method presented in this current paper extends previous work by utilizing Bayesian
updating to compute confidence intervals on the measurement errors. While the work presented in ref.
[46] aimed at updating the geometric parameters by iteratively maximizing the likelihood function, the
Bayesian updating method presented in this paper was employed to update the geometric parameters
in a non-iterative approach. Another stark difference is that in this current paper, a “passive” artifact
(plate with conic holes) was used to calibrate the robot rather than using another machine that has its
own geometric and non-geometric errors.

In this paper, we shall limit the analysis to Cartesian Measuring Machines, a particular family of
robotic arms that only have encoders at the joint and no actuators. Such machines are used in metrology
applications where a technician articulates the robotic arm to do the measurements. Nonetheless, the
calibration method presented in this paper could be adapted to calibrate robotic manipulators by adding
geometric and non-geometric errors associated with actuators such as gear backlash and shaft flexing.
This paper is organized as follows. In Section 2, kinematic calibration is introduced along with all the
relevant background information such as kinematic models, kinematic parameters, and calibration
artifacts. In Section 3, typically regression-based calibration methods are presented along with well-
defined error and cost functions. The novel calibration method developed in this paper is presented
in Section 4 where the problem is formulated in the Bayesian inference framework, the statistical
characteristics of the model parameters are updated, and confidence bounds for the predicted lengths
are defined. In Sections 5 and 6, the details of the design and construction of the three degree-of-
freedom robotic arm and an extensive set of experiments to evaluate the proposed calibration method
and to compare it to conventional calibration approaches are, respectively presented. A discussion of
the results is presented in Section 7 and concluding remarks are left to Section 8. Finally, supporting
material such as the formulation of maximum likelihood calibration, the equivalence of regression and
maximum likelihood calibration methods, and the raw encoder data used for calibration are depicted,
respectively, in AppendicesA through C.

2. Kinematic Calibration
At the core of the kinematic calibration of robotic manipulators is devising a procedure that identifies
the parameters of a proposed kinematic model. Such a model is utilized to best capture the absolute
position and orientation of the end-effector given the kinematic parameters and a set of internal
joint configurations. As mentioned in Section 1, this paper does not concentrate on finding the best
kinematic model but rather on developing a calibration method to improve the accuracy of a robotic
manipulator by focusing on finding the “best” set of kinematic parameters and characterizing their
probability distributions.

In this paper, a robust kinematic model for the manipulator is assumed. Moreover, the adopted
methodology only considers open kinematic chains which are robotic arms that are comprised of
serially connected rigid links. Without loss of generality, it can be assumed that the links are connected
via revolute joints. Typically, a transducer is assembled within each joint to measure the relative motion
between the adjacent rigid links.

A kinematic model for such an open chain manipulator typically consists of two levels (as was
shown in ref. [48]). Level-1 relates the joint’s transducer reading to the actual inter-link joint angle,
whereas level-2 computes the end-effector pose given the joint angles and the kinematic parameters.
Both levels require their own set of parameters. For instance, letting η be a set of transducer or encoder
output readings, typically voltage signals, and θ be the set of actual joint angles, one can use a set of
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parameters, γ , to relate the two such that

θ = h (η, γ ). (1)

This level-1 model could possibly capture geometric errors such as joint offset and signal scaling;
however, in many cases, the encoders output angles directly where γ will be a single angular offset
parameter that captures the missalignment between the encoder’s zero and the home configuration
of the joint. Having computed the joint angles, the generalized D-H convention proposed in ref. [21]
could be used to construct a level-2 kinematic model. Letting φ be a set of kinematic parameters, one
can compute the end-effector pose(1), x, using the forward kinematic map, f , given by

x = f (θ, φ) . (2)

In this paper, the end-effector orientation is ignored, thus setting x(= p) as a three-dimensional
vector representing the position of the end-effector. Recall that using the generalized D-H convention,
coordinate frames are attached to all the individual links such that the transformation from the base
coordinate frame to the end-effector coordinate frame is computed by multiplying the adjacent inter-
link transformations in the right order. Accordingly, it suffices to enumerate a set of well-defined
kinematic parameters between consecutive links to be able to construct the kinematic model of a
robotic manipulator. Since the generalized D-H convention requires four parameters per joint, an
n-joint robotic manipulator would require 4n level-2 parameters.

Moreover, neglecting the electronics and signal noise of encoders and assuming that the encoders’
output captures the relative joint rotation, a level-1 model would only require a single offset angle
correction parameter per joint. This offset captures the misalignment between the encoder zero position
and the manipulators assumed home position. Thus, for the entire kinematic model, an additional
parameter per joint is required. In fact, for such a level-1 model, the additional parameter can be
lumped in the generalized D-H model such that each joint requires five parameters. Hence, for an n-
joint robotic manipulator, 5n parameters are required. The kinematic model, thus, can be represented
by

p = k (η, ϕ), (3)

where p represents the three-dimensional position of the origin of the end-effector’s frame, η represents
the joints’ encoder readings, and ϕ represents the combined level-1 and level-2 set of kinematic
parameters.

During the design stage, one can identify the nominal values of all the kinematic parameters of
the robot while during manufacturing and assembly, one could try to maintain these nominal values;
Nonetheless, this will require unrealistic part tolerances, complicated and costly assembly methods,
and extended manufacturing and testing procedures. Even with such costly procedures, it can not be
guaranteed that the values of the kinematic parameters will not deviate from their nominal values.
Hence, a robust calibration method must allow for quantification of the deviations of the kinematic
parameters. Letting ϕ represent the nominal kinematic parameters, and letting ϕ̃ represent the deviation
of the parameters from their nominal values, the actual kinematic parameters of the assembled robotic
arm, ϕ̄, are given by

ϕ̄ = ϕ + ϕ̃. (4)

In this paper, a simple point-to-point measurement on an artifact is used as a basis for the proposed
calibration method. Comparing the computed length – through the forward kinematics map – between
the two poses of the end-effector and the actual distance between the two points on the artifact gives
rise to the so-called volumetric errors.

(1)Note that, typically in robotics, x ∈ SE (3) which is the three-dimensional special Euclidean group. In matrix
representation, x is a 4 × 4 homogeneous matrix such that the top-left 3 × 3 sub-matrix, R, is an element of the
SO(3), the special orthogonal group that represents the orientation of the end-effector’s coordinate frame. The
top-right 3 × 1 sub-matrix, p, is an element of R3 that represents the position of the origin of the end-effector’s
coordinate frame.
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3. Typical Regression Calibration
In this section, the de-facto method of parameter identification for robotic arms, that is the regression
analysis, is presented. By placing the end-effector in two countersink holes and recording two
measurements, one effectively saves the two encoder readings ηa and ηb. Using the encoder readings
and the kinematic parameters, one can compute the locations of the end-effector through the forward
kinematics to get pa = k(ηa, ϕ̄) and pb = k(ηb, ϕ̄). Note that, k is the forward kinematics map
capturing both level-1 and level-2 models as shown in (3). Also, note that the actual kinematic
parameters, ϕ̄, which are related to the nominal parameter values as shown in (4) were used. Since
only the nominal values of the parameters, ϕ, are known, the computed end-effector positions, pa and
pb, depend on the errors in the kinematic parameter, ϕ̃ which are yet to be solved for.

Using the two end-effector positions, pa and pb, one can utilize the Euclidean metric to compute
the length between the three-dimensional locations, such that

lab(ϕ̃) =
√

(pa − pb)T · (pa − pb). (5)

Given that the end-effector was placed in the countersink holes on the artifact, the computed length
must match the known artifact length, Li

ab. In other words, one can define volumetric length errors for
each pair of end-effector measurements such that

erri
ab(ϕ̃) = Li

ab − l i
ab(ϕ̃). (6)

For a set of pairs of measurements, one can compute a list of errors, erri
ab(ϕ̃) = Li

ab − l i
ab(ϕ̃). Since

these errors can be either positive or negative, the RMS sum (RMS) being a sign-invariant sum, is used
to combine the contribution of all length errors. For an entire calibration with m pairs of end-effector
measurements, the total error, Err(ϕ̃), is given by

Err(ϕ̃) =
m∑

i=1

(
erri

ab(ϕ̃)
)2 =

m∑
i=1

(
Li

ab(ϕ̃) − l i
ab(ϕ̃)

)2
. (7)

The above computed total error is always a positive number. Thus, calibrating the manipulator is
rendered to finding a set of kinematic parameter errors, ϕ̃, that minimizes the total RMS error. In other
words,

ϕ̃reg = argmin Err(ϕ̃). (8)

The above minimization problem is referred to as the least sum of square minimization or
regression.38 There are readily available numerical algorithms that solve this typical minimization
problem. However, it is worth noting that the error or cost function in (7) is highly non-linear in terms
of its argument, ϕ̃. This is due to the trigonometric functions that are used to represent the forward
kinematics of the manipulator in (3).

Another conventional approach for calibrating the kinematic model parameters is based on
maximizing the likelihood of observing the set of length data or associated error data. This method is
presented in Appendix A and the equivalence of both calibration methods is discussed in Appendix B.

4. Bayesian Updating
Conventional approaches for calibrating the kinematic model parameters (regression and maximum
likelihood) lead to an optimal set of model parameters that would best fit the measured data. The
main shortcoming of these methods lies in the fact that the use of the optimal set of model parameters
results in a deterministic estimate of the predicted lengths and an associated deterministic error in the
prediction. Information about the reliability of the length estimates and their associated confidence
bounds is lacking. Moreover, the conventional approaches do not account for uncertainties that may
exist in the actual estimates of the kinematic model parameters and their impact on the estimated
lengths or error predictions.
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The novel calibration method that is proposed in this paper aims at overcoming these shortcomings
by (1) adopting a fully probabilistic model that characterizes the uncertainty in the length predictions
of the robotic arm, and (2) assuming that all parameters to be calibrated are random variables that are
characterized by probability distributions. The probabilistic nature of the model length predictions
and the kinematic model parameters allows for applying Bayesian updating techniques to calibrate the
model parameters and more importantly to associate each resulting length prediction with confidence
bounds that fully define the reliability of the prediction.

The flexibility of the method lies in its ability to propagate and combine all the sources of
uncertainty that affect the resulting length prediction while maintaining the uniqueness of the
individual measurements. In other words, the confidence bounds that will result from this exercise
will be unique for each measurement and will depend on the different configurations of the robot, that
is, pose and orientation of the end-effector. The proposed probabilistic approach provides a global
accuracy assessment of the manipulator and quantifies the uncertainty that is associated with each
future measurement that is taken by the manipulator. It is this “live” uncertainty feedback for each
measurement that allows the user to achieve better confidence intervals for any future measurement.

The novel calibration procedure is based on the well-known Bayesian inference method that allows
for combining prior knowledge about model parameters with a new set of measurements to update
the probability distribution of the model parameters. In the analysis, the length of an artifact is
represented probabilistically by considering that the length is a random variable with a mean and a
standard deviation that are represented by

μlab (ϕ̃) =
√

(pa − pb)T · (pa − pb) (9)

σlab = eλ, (10)

where pa = k(ηa, ϕ̃) and pb = k(ηb, ϕ̃) are the predicted locations of the end-effector which are
functions of the encoder readings ηa and ηb and the associated deviations of the kinematic parameters
(ϕ̃) that are to be updated. It should be noted that the model parameters (ϕ̃) fully define the mean of the
length prediction and that eλ reflects the standard deviation in the predicted length about the predicted
mean. The exponential term is used to ensure that the standard deviation is a positive quantity.

As mentioned previously, in the probabilistic model, it is assumed that each kinematic model
parameter, ϕ̄, is a random variable that is defined by the sum of a deterministic nominal value, ϕ,
and a random deviation from the nominal value, ϕ̃. The deviations, ϕ̃, from the nominal values are
assumed to be the random model parameters that are to be updated during the Bayesian exercise
while maintaining the same nominal value for any given parameter. Accordingly, the deviations ϕ̃ for
the different kinematic model parameters in addition to the model parameter λ (representing σLab) are
defined by their means, variances, and covariances.

Prior statistics for these model parameters have to be defined as indicated in the following section.
The prior statistics of the model parameters are then updated given the new set of length measurements
using Bayes’ theorem.

4.1. Prior model
The prior statistics of the model parameters (the deviations of the kinematic parameters from the
nominal values) and the prior statistics of the additional parameter, λ, need to be estimated prior to
the updating process. Ideally, if a company is producing hundreds of the same model manipulators,
one could estimate the means and standard deviation of the kinematic parameters using the regression
solutions of such production runs. However, the prior statistics of the model parameters of a
manipulator can still be estimated even without such historic data. In this paper, since the kinematic
model parameters represent deviations from a nominal value, the prior means of the model parameters
could be set to zeros such that

μ
pri
i = 0, for i = 1, . . . , l, (11)

where l is the number of parameters.
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Regarding the standard deviations of the kinematic model parameters, a prior estimate could
be computed at the design stage by analyzing part tolerance, assembly procedures, and encoder
resolutions. Let σ pri represent a set of standard deviations for the prior kinematic model parameters.
For parameters that are associated with encoder angles, a good estimate for the standard deviation is
half the encoder’s resolution. For a link length parameter, the standard deviation could be estimated
by the stacked manufacturing tolerances from either the shop drawings or the actual part inspections.

To complete the prior statistics of the model parameters, the possible correlation between the
different pairs of model parameters will need to be determined to fully model the covariance matrix of
the parameters. Since the model parameters belong to various families (i.e., rigid link lengths, encoder
angles, or measurement errors), one should expect different correlation levels between the different
parameter pairs. The sensitivity of the proposed calibration method to various prior correlation
assumptions will be assessed in Section 7. However, it will be initially assumed that the random
variables representing the parameters are statistically independent. As a result, the correlation matrix
will be given by

ρ pri = Il×l , (12)

where Il×l is the l × l identity matrix. Having, defined the prior standard deviations and the correlation
structure, one can compute the covariance matrix for the prior model, such that the i j-th element is
given by

�
pri
i j = ρ

pri
i j · σ

pri
i · σ

pri
j , for i, j = 1, . . . , l. (13)

4.2. Bayesian updating of model parameters
Bayesian techniques allow for updating the prior distributions of the model parameters given a new
set of length measurements. The updated posterior distribution (see Eq. (14)) is generally difficult to
evaluate except for some special cases where conjugate priors can be employed. In recent years, several
methods have been proposed as practical techniques for evaluating the updated model parameters.
Direct integration methods in ref. [7], Monte Carlo Markov Chains methods in refs. [5] and [47], system
identification methods in ref. [51], and the first-order second-moment Bayesian method (FSBM) in ref.
[17] are examples of methods that could be used for this purpose. Interested readers are referred to16

for additional details about recent computational techniques for estimating posterior distributions.
In this paper, the FSBM proposed by Gilbert17 will be used to calibrate the probabilistic model

parameters using a set of length measurements of an artifact with a known length. The FSBM was
developed to provide a practical Bayesian method for problems with multiple model parameters,
large data sets, and various data distributions. The method has been employed in calibrating model
parameters for different engineering applications such as in refs. [39,52,53], and [41]. Following the
derivation in Gilbert,17 the FSBM uses Bayes’ theorem in (14) to update the probability distribution
of the model parameters for a given set of data. Thus, letting

f�|ε (�|ε) = L(ε|�) f�(�)∫ +∞
−∞ · · · ∫ +∞

−∞ L(ε|�) f�(�)d�1 · · · d�l

, (14)

where f�|ε (�|ε) and f�(�) are the updated (given the new data ε) and prior joint distributions
of the model parameters �, L(ε|�) is the likelihood function, and the multi-dimensional integral∫ +∞
−∞ · · · ∫ +∞

−∞ L(ε|�) f�(�)d�1 · · · d�l is a normalization constant.
The first (updated mean vector μ�|ε) and second (updated covariance matrix cov�|ε) moments of the

calibrated model parameters are derived from a second-order approximation of (14) by approximating
the natural logarithm of the likelihood function, g(�) = lnL, with a second-order Taylor series.
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The expansion point �∗, which maximizes g(�) is then obtained and used to calculate
approximations for the updated mean vector μ�|ε, and the updated covariance matrix ��|ε using

μ�|ε = ��|ε

(( −∂2g

∂�i∂� j

∣∣∣∣
�∗

)
�∗ + �−1

� μ�

)
, where (15)

��|ε =
( −∂2g

∂�i∂� j

∣∣∣∣
�∗

+ �−1
�

)−1

. (16)

It should be noted that the updated moments that result from the FSBM method are approximate
values. These updated moments are based on prior information and the information contained in
the likelihood function. The above formulation assumes that the prior model parameters follow a
multivariate normal distribution, and as a result, the approximate distribution of the updated model
parameters is also a multivariate normal distribution. The updated mean value obtained using the
FSBM is a weighted average of the prior mean value and maximum likelihood point for the data
set.17 Therefore, if more information about a given parameter is provided in the data set (e.g., larger
data set of observed measurements), the more this information will be weighted compared to the
prior information. The updated covariance matrix (16) calculated by the FSBM provides the updated
variance of each parameter and the covariance between each parameter. In addition, correlation
coefficients can be calculated between each model parameter to identify related pairs of parameters.

The FSBM was developed to provide a practical Bayesian method for problems with multiple
model parameters, large data sets, and various data distributions. As with any First-Order Second-
Moment method, the results of the FSBM are considered approximate, especially for cases involving
non-linear models and large uncertainties in model parameters.

In this paper, a symbolic programming language, Mathematica R©, was used to explicitly compute
the first, �′(ϕ̃∗), and second, �′′(ϕ̃∗), derivatives of the logarithm of the likelihood function (given
in (A3)) evaluated at the expansion point ϕ̃∗. Thus, we have

�′(ϕ̃∗) = ∂�

∂ϕ̃i

∣∣∣∣
ϕ̃=ϕ̃∗

, and (17)

�′′(ϕ̃∗) = ∂2�

∂ϕ̃2
i

∣∣∣∣
ϕ̃=ϕ̃∗

. (18)

Note that �′(ϕ̃∗) is an l × 1 vector while �′′(ϕ̃∗) is an l × l matrix. Here, ϕ̃∗ is the expansion point
at which the Taylor series is evaluated and the likelihood is maximized, that is, we have ϕ̃∗ = ϕ̃MLE .
Once the derivatives are evaluated, one can estimate the updated mean and covariance matrix as
indicated in (15) and (16) to arrive at

μpos = �pos ·
((

�pri
)−1 · μpri

−�′′(ϕ̃∗) · ϕ̃∗ − �′(ϕ̃∗)
)

, where (19)

�pos =
((

�pri
)−1 − �′′(ϕ̃∗)

)−1
, (20)

where μpri and μpos are respectively the prior and posterior mean vector of model parameters, while
�pos and �pos are respectively the prior and posterior covariance matrices of the model parameters.

4.3. Error bounds
In this section, the value of the novel calibration method is assessed. A main contribution of the paper is
embodied in the confidence bounds that the proposed method computes for all measurements. Given
the probabilistic nature of the length predictions coupled with the fact that the model parameters
are also random variables, there is a need for a systematic approach for combining all sources of
uncertainty that affect the predicted length to calculate the expected value and the variance of any
length prediction.
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For the prior and updated cases, the expected value of any predicted length, E(lab), and its variance,
var(lab), could be evaluated using a first-order approximation to get

E(lab) = E(μlab|ϕ̃ ) (21)

var(lab) = E
(
σlab|ϕ̃

)2 + var
(
σlab|ϕ̃

) + var
(
μlab|ϕ̃

)
, (22)

where μlab|ϕ̃ and σlab|ϕ̃ are the mean value and standard deviation of lab as indicated in (9) and (10)
(both are random variables since they are functions of the uncertain model parameters ϕ̃). It should
be noted that (22) indicates that the uncertainty in lab arises from two sources: random variability that
is modeled by the model parameters, E

(
σlab|ϕ̃

)2
and uncertainty in the model parameters themselves,

var
(
σlab|ϕ̃

)
and var

(
μlab|ϕ̃

)
.

The first and second moments for μlab|ϕ̃ and σlab|ϕ̃ themselves can be approximated as functions
of the first and second moments of the model parameters ϕ̃, using first-order Taylor series expansion
such that

E
(
μlab|ϕ̃

) = hμ

(
μϕ̃

)
(23)

var
(
Elab|ϕ̃

) =
{

∂hμ

∂ϕ̃i

∣∣∣∣
μϕ̃

}T

�ϕ̃

{
∂hμ

∂ϕ̃i

∣∣∣∣
μϕ̃

}
(24)

E
(
σlab|ϕ̃

) = hσ

(
μϕ̃

)
(25)

var
(
σlab|ϕ̃

) =
{

∂hσ

∂ϕ̃i

∣∣∣∣
μϕ̃

}T

�ϕ̃

{
∂hσ

∂ϕ̃i

∣∣∣∣
μϕ̃

}
, (26)

where { ∂hμ

∂ϕ̃i
|μϕ̃

} and { ∂hσ

∂ϕ̃i
|μϕ̃

} are vectors containing the partial derivatives of hμ (ϕ̃) and hσ (ϕ̃),
respectively, evaluated at the mean values of the model parameters, and hμ (ϕ̃) and hσ (ϕ̃) are
the expressions of the probabilistic model of the μlab and σlab , respectively, as reflected in (9)

and (10). Hence, using these two equations, the derivatives are computed as followsJlab = ∂μlab
∂ϕ̃

|μϕ̃
and

Jσ = ∂σlab
∂λ

|μϕ̃
. Accordingly, the variance in the each measurement is comprised of three components,

σlab =
√

σ ′2 + σ ′′ + σ ′′′, where (27)

σ ′ = σlab|ϕ
∣∣
μϕ

, using (10),

σ ′′ = J T
σ · �ϕ̃ · Jσ , and

σ ′′′ = J T
lab

· �ϕ̃ · Jlab .

Given the expected value, E (lab), in (21) and the standard deviation, σ (lab), from (27) of the
resulting length prediction, lab, confidence bounds or intervals (e.g., 90% or 95% confidence bounds)
can be defined to indicate the expected range of the resulting measurement. This requires an assumption
of the probability distribution of lab, which will be considered in the paper to follow a normal
distribution as is the convention.

5. Experimental Setup
In this section, the design of a three degree-of-freedom open-chain robotic arm is introduced. This
robotic arm is designed to elaborate the effectiveness of the calibration method discussed in this paper
and to validate its utility.

5.1. Mechanical design
The design of the open-chain robotic arm is comprised of three passive revolute joints and four rigid
links. At each revolute joint, a rotary encoder is integrated such that it measures the inter-link angle.
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Encoder 1

Horizontal Revolute Axis
Encoder 2

Horizontal Revolute Axis
Encoder 3

Base

Link 1

Link 2

Link 3

(a) (b) (c)

Fig. 1. (a) A CAD sketch of the three degree-of-freedom manipulator. (b) The actual three degree-of-freedom
manipulator, the artifact, the DAQ card, and the computer used to run the calibration software. (c) The artifact
fixture used for calibration.

A CAD depiction of the proposed mechanical design is shown in Fig. 1(a). The links are enumerated
from 0 to 3 starting at the base and ending at the link on which the end-effector is rigidly attached.
Starting from the base, the axes of rotation are vertical, horizontal, and horizontal. The inter-link
joints are labeled by encoders 1–3. Note that, at the base, where relatively large forces and torques
are expected, the design incorporates a four-point contact bearing, whereas at the other two joints, the
integrated encoder bearings were deemed sufficient to carry the loads, and thus no additional bearings
were installed.

In this paper, the term manipulator is occasionally used despite the fact that the proposed robotic
arm does not have any actuators. Indeed, the robotic arm is completely passive and it requires an
operator to articulate its various joints. This robotic platform is similar in structure to measurement
robotic platforms used in the industry that are typically referred to as Portable Coordinate Measuring
Machines (pCMM),24 although the adopted design is comprised of a relatively smaller number of
joints.

The above manipulator was constructed as shown in Fig. 1(b), which also depicts the artifact with
six countersink holes, the data acquisition card, and the laptop that runs the system. The spherical
tip of the end-effector is realized by a grade 5 sphere that has a diameter of 12.7 mm. All three joint
encoders are Autonics� E50S8-500-3-T-5. Each encoder has 500 lines; that is, each encoder has a
maximum resolution of 2π/500/4 = 0.00314 rad. The three encoders are read simultaneously using
a high-speed National Instruments� data acquisition card, NI USB-6343 X Series DAQ. Finally, a
software was developed in Labview� to acquire data and to perform various simple measurement
tasks.

5.2. Kinematic model
Given that the last two joints have parallel axes of rotation, the generalized DH kinematic model
is considered robust enough to be used as recommended in refs. [20, 21]. Lumping the level-1 and
level-2 parameters into the DH parametrization, five nominal parameters are needed for each joint.
The transformation between consecutive coordinate frames can be represented by

i
i−1T = rotβi,yi .rotαi,xi .transai,xi .transdi,zi−1 .rotθi,zi−1, (28)

where rot and trans are homogeneous matrix representations of rotation and translation
transformations. Thus, using (3) and the above-mentioned equation one can set ϕi = (αi, ai, di, βi)
and θi = ηi + γi for i = 1, 2, 3. Here, the typical definitions of the parameters, (α, a, d, β ), given
in ref. [21], were used.

The kinematics of the manipulator is captured by the nominal generalized D-H parameters in
Table I. The link frame assignments using the D-H convention are shown in Fig. 2.
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Table I. Nominal generalized DH-parameters of the 3-DOF
manipulator (Angles αi, βi, and θi are in rad and lengths ai

and di are in m).

i αi ai di θi = ηi + γi βi

1 1.5708 0.000 0.400 η1 + 0.0000 0
2 0.0000 0.295 0.000 η2 + 2.5133 0
3 0.0000 0.305 −0.050 η3 − 0.0126 0

Fig. 2. The kinematic skeleton of the 3-DOF manipulator at its home configuration depicting its link’s coordinate
frames assigned according to the D-H convention and the revolute joints. The cylinders depict the revolute joints
while the sphere indicates the end-effector.

Note that the θ column in Table I has numerical values added to the actual encoder angles, η2 and
η3. These values (γ1 = 0.000 rad, γ2 = 2.5133 rad, and γ3 = −0.0126 rad) indicate offsets in the
encoder angles which are due to the level-1 kinematic model and are needed since during assembly,
at the home position of the robot as shown in Fig. 2, the encoders typically do not read zero values.
As for the first encoder angle, the offset correction is not needed as it just rotates the base frame with
respect to an inertial frame. Hence, for getting the nominal values for the DH angle offest parameters,
γ2 and γ3, the robot was held in its home position and the encoder readings were recorded and added
to the fifth column in Table I.

5.3. Parameter set reduction
It is well-known that the generalized DH parametrization is redundant. To make the numerical
optimization problem more robust, one should seek a minimal set of kinematic parameters. Referring
back to the generalized DH parameter set, it is clear that the parameters a1, γ1, d1, and β1 can all be
ignored. These parameters only affect the configuration of the base frame with respect to an inertial
frame. Hence, any volumetric cost function will be invariant with respect to these parameters, and
thus should be ignored.

Moreover, since the kinematic model used in this paper neglects the orientation of the end-effector
frame, one could possibly neglect more parameters such as α3 and β3. Finally, since both d2 and d3

are translation along almost parallel joint axes, one of these parameters could be neglected. In this
paper, d2 was chosen to be neglected.
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Fig. 3. (a) The locations (not to scale) of the conic holes on the acrylic Plexiglas artifact where the solid lines
are used for calibration while dashed lines are used for verification. (b) The various configurations in which the
artifact was measured where each rectangle denotes a configuration of the artifact.

Accordingly, only eight kinematic parameters, shaded cells in Table I, are needed for the kinematic
model, namely

ϕ = (
a2 a3 d3 α1 α2 γ2 γ3 β2

)
. (29)

5.4. Artifact and fixture
In this paper, the developed calibration algorithms use volumetric data that is based on length
measurements between two distinct locations of the end-effector. Accordingly, a special artifact was
designed and constructed from a 16 mm thick acrylic Plexiglas R© plate to include six countersink holes
on one face.

The artifact’s six countersink holes provide a stable and repeatable kinematic seat for the 12.7 mm
spherical end-effector. The locations of the countersink holes were measured by a NIST traceable
pCMM, 2500sc 7-axis Romer Cimcore Infinite 1.0 arm.24 All 15 possible length measurements
between all six holes are depicted in Fig. 3(a) and the lengths range from 63.658 mm to 508.683 mm.

Recall that, for a representative calibration, the manipulator should have measurements in all
its reachable and usable space. Accordingly, one needs to position the calibration artifact at many
positions and orientations within the manipulator’s working space. Additionally, during the artifact
measurements, both the artifact and the base of the manipulator should be held rigidly. Otherwise,
if a slight motion occurs, the length computed through the forward kinematics and the actual length
of the artifact will not be expected to be equivalent. Thus, a triangular fixture shown in Fig. 1(c)
was constructed to hold rigidly the artifact which was shown in Fig. 1(b) at various locations and
orientations. A single fixture can provide vertical and inclined orientations of the artifact, while two
fixtures can be combined – by mounting their inclined plates face-to-face – to allow various levels of
horizontal artifact locations.

5.5. Data splitting: calibration versus verification data
To validate the novel calibration method, a complete separation between the measurements used
for kinematic calibration and verification is enforced. Additionally, in line with the paramount
importance of ensuring uniform measurement distribution per joint and per three-dimensional space,
the same conditions are enforced for the calibration and validation data. In other words, the validation
measurements should also posses uniform measurement distribution in both the joint space and in the
reachable space.

In this paper, the idea of splitting the data for calibration and validation was adopted during the
early stages. In fact, this condition shaped the design of the artifact. Recall that the used artifact has
six countersink holes located on a rectangular grid on a Plexiglas plate. To separate the measured data,
only five holes are used for calibration whereas the sixth hole is used only for validation. Accordingly,
for each artifact configuration, a total of 10 length measurements are used for calibration, solid lines
in Fig. 3(a), and a total of 5 length measurements are used for validation, dashed lines in Fig. 3(a).
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Table II. The various configurations in which the artifact was measured.

Orientation Vertical level Second axis Number

Horizontal Low Not flipped 4
Horizontal Low Flipped 4
Horizontal High Not flipped 4
Horizontal High Flipped 4
Vertical Medium Not flipped 6
Vertical Medium Flipped 6
Inclined Up Not flipped 4
Inclined Up Flipped 4
Inclined Down Not flipped 4
Inclined Down Flipped 4

Total 44

Moreover, all the artifact configurations were used for both calibration and validation. This ensures
uniformity of measurements in the reachable three-dimensional space of the manipulators as shown
in Fig. 3(b).

5.6. Data collection
For calibration purposes, having measurements uniformly distributed for each joint is of paramount
importance. Accordingly, the number of measurements which were performed and the configurations
of the artifacts with respect to the manipulator were carefully designed to serve the above-mentioned
goal. To ensure a uniform distribution of measurements for the first vertical axis, for each configuration
of the artifact, the base of the robot was rotated either four or six times. The last column in Table II
indicates the number of rotations for each artifact configuration.

As for articulating the other two joints, Encoders 2 and 3, two measurement methods were
employed. The first technique changes the inclination of the artifact from horizontal, to inclined,
and finally to vertical. Additionally, horizontal measurements were performed at two vertical levels
to improve the uniformity of measurement coverage for Encoders 2 and 3. The first two columns in
Table II depict the used artifact configurations. The second technique that was employed to improve the
uniformity of measurement was flipping the second joint by almost deg 180. In fact, this capability of
flipping is a unique property of our manipulator design. Not only does flipping improve the uniformity
of measurement but it also shortens the duration of the calibration routine since flipping the second
axis is much faster than moving either the artifact or the base of the robot. In summary, a total of
44 configurations of the artifact were measured as depicted in Table II and all the configurations are
shown in Fig. 3(b). Note that each rectangular shape in Fig. 3(b) represents the location and orientation
of the artifact with respect to the base of the robot. The corners of the rectangles indicate the locations
of the six countersink holes on the artifact.

The uniformity of measurements for Encoder measurements are depicted in Fig. 4. Note that the
regions with no measurements indicate configurations in which either the second joint is folded back
on the vertical axis or the third joint is folded back on the second link. Both situations are not useful
reachable spaces for the manipulator.

6. Experimental Validation
In this section, kinematic calibration of the manipulator model parameters is conducted using the
conventional regression-based methodology and the novel probabilistic calibration method that is
based on the Bayesian inference technique.

6.1. Regression results
The 3-DOF robotic arm investigated in this paper requires the calibration of eight kinematic parameters
given in (29). Using the calibration data set of the length measurements (given in Appendix C), and
an assumed set of nominal parameter values (given in Table I), one can refer to (6) to compute
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Fig. 4. The histogram depicting the coverage of the measurements for each encoder for both the calibration and
verification data.

Fig. 5. The individual length measurement errors for the calibration (not shaded) and verification (shaded).

the total RMS error that is a function of the deviation of the kinematic model parameters such that
ERR(ϕ̃) = ERR(ã2, ã3, d̃3, α̃1, α̃2, γ̃2, γ̃3, β̃2).

The function, ERR(ϕ̃), is minimized using a non-linear solver to arrive at an optimal set
of calibration parameters depicted in Table III. The shaded cells in the table indicate the
parameters which were optimized, while all other parameters were held constant during the
optimization.

The resulting measured length errors for the calibration data are depicted in Fig. 5. Recall that
the artifact was measured 44 times and for each artifact configuration, 10 calibration lengths and 5
verification lengths were acquired. Hence, 440 = (44 × 10) calibration length errors were computed
as indicated in the non-shaded regions in Fig. 5, whereas 220 = (44 × 5) verification length errors
were computed and presented as the shaded regions in Fig. 5.

In the presentation of the individual length measurement errors in Fig. 5, the length errors were
sorted by length. Additionally, for each length, the dashed lines indicate the RMS of all the length
errors for that particular length. The bounds set by the dashed lines give a good indication of the
accuracy of the manipulator for that particular length. It is worth noting that this accuracy bound gets
larger for larger measured lengths.

Results in Fig. 5 indicate that the RMS errors for the calibration and verification data are 1.49 mm
and 1.81 mm, respectively (see Table IV). For comparison, the corresponding RMS errors for the
case where the nominal parameters are used in the kinematic model instead of the calibrated model
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Table III. The regression revised DH-parameters of the real 3-
DOF manipulator (Angles αi, βi, and θi are in rad and lengths

ai and di are in m).

i αi ai di θi = ηi + γi βi

1 1.5793 0.0000 0.4000 η1 0.0000
2 0.0091 0.2921 0.0000 η2 + 2.481 −0.0221
3 0.0000 0.3089 −0.0520 η3 − 0.0321 0.0000

Table IV. The calibration and verification root
mean square error for the nominal and calibrated

kinematic parameters.

Nominal Calibrated
RMS error mm parameters parameters
Err(ϕ̄) ϕ̄ = ϕ ϕ̄ = ϕ + ϕ̃

Calibration data 8.47 1.49
Verification data 10.4 1.81

parameters are very high, reaching RMS values of 8.47 mm for the calibration date and 10.4 mm
for the verification data (see also Table IV). These results indicate the importance of the calibration
procedure in determining the optimal parameters for any given robotic arm.

Finally, it is very important to treat the overall RMS error of the verification data as an estimate
of the accuracy of the manipulator. In fact, many CMM manufacturers use similar methods to
report the accuracy of their measuring products.2,29 Such certification methods do not measure the
uncertainty of the machine nor do they allow for the direct computation of the uncertainty in any
future measurement. The proposed probabilistic calibration method will be presented in the following
section.

6.2. Updating model parameters using Bayesian inference
In this section, the proposed calibration method is applied to the three degree-of-freedom robotic
platform. The section is divided into three major parts dealing with prior statistics, posterior statistics,
and error bounds.

6.2.1. Prior mean and covariance. In the probabilistic Bayesian approach that was presented in
Section 4, the length measurement is assumed to be a random variable that is characterized by a mean
and standard deviation which were defined by (9) and (10), respectively. The mean of the length
measurement in (9) is a function of the eight kinematic model parameters, which in the framework
of this paper, are defined as the deviations of the kinematic parameters from their nominal values. A
ninth parameter that completes the probabilistic model is the parameter λ, which defines the standard
deviation of the length measurement as indicated in Eq. (10). As a result, the parameters that need to
be updated based on the collected set of measurements are

ϕ̃ = (
ã2 ã3 d̃3 α̃1 α̃2 γ̃2 γ̃3 β̃2 λ̃

)
. (30)

The first step in the updating process involves defining the prior statistics of the model parameters
representing length, namely ã2, ã3, and d̃3, angles, namely α̃1, α̃2, γ̃2, γ̃3, and β̃2, the length
measurement uncertainty parameter λ̃.

The prior mean values of the kinematic model parameters can be estimated to be the nominal
values that are readily available from manufacturer’s data. This can be accomplished by utilizing
sub-assembly measurements or by controlling assembly procedures. Accordingly, once the nominal
values are estimated (see Table I), the prior mean values for the deviations of the kinematic parameters
can be estimated to be zero.

As for the measurement uncertainty, λ̃, which defines the standard deviation of the length
measurements, one can estimate its prior mean value from estimates of the anticipated volumetric
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error of the robotic arm. A quick simulation of the arm’s forward kinematics using the nominal values
of the kinematic parameters and the encoder resolution can be used to estimate the error in the position
of the end-effector. For the 3-DOF example presented in this paper, the expected standard deviation
of the length measurements is estimated to be in the order of 4 mm. Accordingly, the prior mean value
for the parameter λ̃ = log 0.004 = −5.521.

(
μpri, σ pri

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0 0.00100
0.0 0.00100
0.0 0.00100
0.0 0.00314
0.0 0.00314
0.0 0.00314
0.0 0.00314
0.0 0.00314

−5.521 0.19711

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

Regarding the prior standard deviations of the model parameters, it is estimated that the standard
deviations of the length and angle sets can be taken as εlen = 1 mm and εang = u0

2 = 0.00314 rad,
respectively. Here, 1 mm is the typical uncertainty due to manufacturing tolerances and assembly
variations whereas the angle uncertainty is equated to half the used encoder resolution u0. Note that,
for other manipulators, the prior standard deviations for kinematic parameters pertaining to lengths
and angles can be estimated using stacked tolerance analysis.49 Additionally, a manufacturer can
draw on information from the quality control department of inspections of parts and sub-assemblies
to estimate such prior information.

The prior standard deviation in the uncertainty measurement was estimated by assuming that the
range of σlab could be defined by the mean value (which is equal to 4.0 mm) ±1.5 mm, leading to a
range of 2.5 mm–5.5 mm. Assuming that this range covers plus and minus two standard deviations
about the estimated mean value of 4 mm, the prior standard deviation for the uncertainty measurement
could be estimated as

σ
pri
λ̃

= log(0.004 + 0.0015) − log(0.004 + 0.0015)

4

= 0.19711.

The resulting prior means and standard deviations of the nine random model parameters are given
in (31). In the initial analysis, it will be assumed that there is no statistical correlation between the
different model parameters, that is, ρ pri = I9×9. This results in a prior diagonal covariance matrix for

the model parameters such that, covpri
ii =

(
σ

pri
i

)2
.

6.2.2. Posterior mean and covariance. The set of length measurements which were designated for
calibration were used to update the prior statistics of the nine model parameters shown in (31).
The FSBM as formulated in ref. [17] was used for that purpose. The resulting updated/posterior
mean vector and covariance matrix of the model parameters are solved for and used to calculate
the vector of the standard deviations and the correlation matrix of the model parameters
using

ρ
pos
i j = covpos

i j

covpos
ii covpos

j j

, and (32)

σ
pos

i =
√

covpos
ii . (33)
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Accordingly, the posterior mean and standard deviations of the model parameters are computed to
get

(
μpos, σ pos

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.002602 0.000193
0.003528 0.000264

−0.003382 0.000687
0.006169 0.001221
0.005237 0.0018

−0.030443 0.000818
−0.02013 0.000682
−0.015833 0.00181
−6.12994 0.046337

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

A comparison between the prior and updated mean values of the deviations of the kinematic model
parameters indicates that the posterior mean deviations in the length parameters are in the order of
±3.5 mm from the prior nominal values. For the angle parameters, the posterior mean deviations
range from about −0.03 rad to 0.005 rad about the prior nominal values. With regard to the parameter
λ which defines the standard deviation in the length measurements, the posterior results indicate that
mean value of λ decreased from −5.52 (for the prior case) to a value of −6.13 (after updating). These
results indicate that the mean value of the standard deviation of the length measurements, which was
estimated in the prior model to be in the order 4 mm, was reduced almost in half to a value of 2.18
mm after calibration. It should be noted that the standard deviation of the length measurements is
expected to play a significant role in determining the confidence bounds of any length measurement
that is predicted using the robotic arm under study.

On the other hand, a comparison between the prior and posterior standard deviations of the model
parameters leads to several observations. For the length parameters, the estimates of the standard
deviations were reduced significantly following the updating process. The reduction was in the order
of 4–5 folds for parameters a2 and a3 (reduction from 1 mm to 0.2 mm and 0.26 mm, respectively) and
1.5 folds for d3 (reduction from 1 mm to 0.68 mm). Similar reductions in the standard deviations of the
angle parameters were observed with 1.7–4.6 folds reduction in the standard deviation. These results
are significant since they indicate that the Bayesian updating process not only leads to more realistic
estimates of the mean model parameters, but it also leads to reductions in the level of uncertainty in
the calibrated model parameters in comparison to the prior values. This will, in turn, lead to narrower
confidence bounds for any length prediction using the calibrated robotic arm. As to the parameter
λ, the updated model parameters indicate that the uncertainty in λ also decreased as reflected in the
standard deviation which was found to decrease from 0.197 to 0.046. These reductions reflect more
confidence in the updated standard deviation of the length measurements σlab which can be shown to
fall within the narrow range of 1.98 mm–2.38 mm for the posterior case, compared to the wide range
of 2.5 mm–5.5 mm in the prior case. Since the standard deviation of λ is a contributor to the total
uncertainty in any predicted length measurement (see Eq. (22)), it can be concluded that the updating
process results in a set of posterior model parameters that would provide narrower confidence bounds
and improved reliability compared to the prior cases.

In addition to the posterior mean and standard deviations, the Bayesian updating process allows
for the quantification of any statistical correlation that may exist among the different pairs of model
parameters. These correlations are reflected in the non-diagonal entries of the covariance matrices
of the model parameters and can be quantified through Eq. (32). For comparison, a plot showing
the prior and posterior correlation matrices is depicted in Fig. 6 where it is clear that although the
model parameters were assumed to be statistically independent in the prior case, the calibration data
resulted in updated correlation coefficients that are non-zero between several model parameters. As an
example, the posterior results indicate that negative correlation exists between γ1 and γ2 as reflected
in the correlation coefficient of −0.559, which is due to the fact that the second and third joint axes
are almost parallel. Another even stronger negative correlation is between d2 and β1. Referring to
Fig. 2, this also is understandable since the axes of joints second and third are almost parallel, and the
intersection of their common perpendicular with the first axis which defines d2 could vary wildly as
β1 changes. This result makes sense since both angles are rotations about almost parallel horizontal
axes. Moreover, the positive sense of rotations are both clockwise hence the negative correlation.
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Fig. 6. Correlation matrices of the prior and posterior covariance matrices, showing strong positive correlation
between α0 and d2 and strong negative correlation between β1 and d2 in the posterior model.

Another thing to note is the expected and realistically small to negligible correlation coefficients
between the length parameters and the angle parameters. Finally, note the “zero” correlation between
the measurement error parameter λ and all other parameters. This is expected given that λ is not a
kinematic parameter but rather a length measurement parameter.

6.2.3. Length confidence bounds for prior and posterior models. The added value of the fully
probabilistic length prediction model of the robotic platform lies in the ability to predict lengths in
the form of confidence bound intervals. This could be achieved for both the prior and updated model
parameters. Consider the measurements conducted for the shortest artifact length (L14 = 63.658)
between conic holes one and four in Fig. 3(a). Note that 44 length measurements with different
configurations were conducted for each artifact length as indicated in Section 5.6. For each of the 44
measurements, a mean predicted length E (l14) and an overall standard deviation σ (l14) can be obtained
using Eqs. (23) and (27), respectively. E (l14) and σ (l14) will differ depending on whether the prior
or updated model parameters are used. The difference between the mean predicted length E (l14) and
the actual artifact length (l14 = 63.658 mm) is an indication of the mean length measurement error.
This mean length error is shown in Fig. 7(a) for the 44 measurements corresponding to L14 using the
prior model parameters of the robotic arm. It is interesting to observe that even for the same artifact
length, the mean errors from the different measurements differ depending on the configuration of the
artifact and the robotic platform. The same applies to the predicted standard deviation of each length
measurement σl14 , which could be used to construct confidence bounds (or error bounds) for the length
measurement predicted by the robotic platform. For illustration, confidence bounds corresponding
to ±2σl14 are drawn in Fig. 7(a) for each measurement of l14 to reflect the uncertainty in the length
predictions. To add clarity to the presentation of the data, the 44 measurements were sorted such that
the measurements having the smallest error bounds are to the left and those with the largest bounds are
to the right (see Fig. 7(b)). It should be also noted that for a typical Gaussian distribution, confidence
intervals that are bounded by ±2σ reflect 95% confidence in the predicted value.

The results in Fig. 7 indicate that not all the predicted length errors for L14 in the prior model lie
within the 95% confidence bound interval. In fact, only 75% of the errors lie within the designated
bounds although the error bounds could be considered to be relatively large (around ± 8.5 mm). Note
that the dashed lines in Fig. 7 indicate predicted length error outside the scale of the plot. This result
is important since it indicates that the parameters that were assumed in the prior model may not be
accurate leading to wide error bounds that do not yield the desired level of confidence. The role of the
Bayesian updating methodology that was adopted in this paper is to use the data collected to update
the model parameters with the objective of getting narrower error bounds with a consistent target level
of confidence. This is clearly indicated in Fig. 7(c) and (d) which show the 44 mean length errors
and 95% confidence bounds for L14 using the updated model parameters. Results indicate that the
95% confidence bounds are much narrower (around ± 4 mm) owing to the improved mean estimates
of the updated model parameters and their reduced uncertainty. More importantly, all of the actual
artifact lengths fall within the 95% error bounds indicating a high level of reliability in reporting
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Fig. 7. Prior and posterior mean length errors and associated 95% confidence bounds for artifact length L14.

Fig. 8. Prior mean length errors: Calibration lengths are not shaded, verification lengths are shaded. Dashed lines
indicated the prior 95% error bounds.

confidence intervals in the updated model. Similar to the prior case, Fig. 7(c) and (d) present the same
information; however, in Fig. 7(d) the data is sorted by the magnitude of the 95% confidence bounds.

The data presented in Fig. 7 represents only one artifact length (L14) out of 10 “calibration” lengths
that were used in the calibration/updating exercise. The data collected in this study also includes an
additional five sets of length measurements that were designated as “verification”. The intent was
to use this data set to verify the performance of the calibrated/updated model with an independent
set of measurements. Both calibration and verification data for all artifact lengths were combined
in Fig. 8 (prior model) and Fig. 9 (updated model) to reflect the mean errors of the different length
predictions and their associated 95% confidence bounds. The data is essentially identical in format to
that analyzed in Fig. 7(b) and (d) for artifact length (L14), except that “calibration” cases are presented
in non-shaded columns while “verification” cases are presented in shaded columns.

Results shown in Fig. 8 indicate that for the “calibration” data set, only 83% of the actual
measurements fall within the 95% confidence bounds for the cases involving the prior model
parameters. This percentage increases to 88.4% for the “verification” data set. Additionally, the
RMS of the calibration and verification mean length errors were computed and found to be equal to
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Fig. 9. Posterior mean length errors: Calibration lengths are not shaded, verification lengths are shaded. Dashed
lines indicated the prior 95% error bounds.

Fig. 10. The various components of uncertainty for both the prior and posterior model.

8.474 mm and 10.398 mm, respectively. The above RMS mean length errors are considered to be large
indicating that the prior model parameters do not provide an efficient model for the robotic arm length
predictions. On the other hand, results pertaining to the updated posterior model parameters in Fig. 9
indicate a clear improvement in accuracy and reliability of the length predictions, with a substantial
observed reduction in the 95% confidence error bounds. For the updated case, the percentage of
“calibration” length errors that are within the ±2σ increased to 98.9% whereas the percentage of
“verification” length errors that are within the ±2σ increased to 98.4%. This improvement in length
errors that are within the denoted bounds was realized despite the fact that the error bounds themselves
were reduced dramatically. Moreover, an investigation of the RMS of the calibration and verification
mean length errors for the posterior cases indicates that the RMS of the “calibration” length errors was
reduced to 1.537 mm (compared to 8.474 mm for the prior case) while the RMS of the “verification”
length errors was reduced to 1.927 mm (compared to 10.398 mm).

It is worth noting that despite the significant reduction in the RMS for the posterior case, the
RMS values (1.537 mm and 1.927 mm) remain to be slightly larger than the RMS observed in the
regression analysis (1.49 mm and 1.81 mm). This is expected given the nature of the Bayesian updating
formulation which considers the weights of both the prior model parameters and the collected data in
its formulation.

It should be reiterated that the 95% confidence bounds that are shown in Figs. 7–9 are defined
based on the total standard deviation (prior or posterior) of the predicted artifact length. This standard
deviation is comprised of three components as indicated in (27). The contribution of these components
to the total uncertainty is illustrated in Fig. 10 for the calibration and verification data and for the prior
and posterior models. Results in Fig. 10 indicate that the main contributor to the total uncertainty
in the predicted artifact length is σ ′ which constitutes more than 2/3 of the total uncertainty in the
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Table V. The effect of prior correlation assumption on the updated calibration results. The units for all errors
are in mm while the last row is percentages. Shaded cells indicate values that are independent on the prior

correlation and thus remain fixed.

ρ = 0.0 ρ = 0.2 ρ = 0.5

Calibration Verification Calibration Verification Calibration Verification

Pri Pos Pri Pos Pri Pos Pri Pos Pri Pos Pri Pos

Err (ϕ̃) 8.474 1.537 10.398 1.927 8.474 1.564 10.398 1.960 8.474 1.654 10.398 2.078

σ ′ 4.000 2.177 4.000 2.177 4.000 2.177 4.000 2.177 4.000 2.177 4.000 2.177
σ ′′ 0.789 0.101 0.789 0.101 0.789 0.101 0.789 0.101 0.789 0.101 0.789 0.101
σ ′′′ 1.370 0.299 1.461 0.333 1.433 0.296 1.545 0.329 1.530 0.286 1.671 0.318

% errors 83.0 98.9 88.4 98.4 83.0 98.9 88.6 98.4 83.6 97.0 88.6 97.3
within C.I.

prior model and more than 85% of the total uncertainty in the updated model. The second major
contributor is σ ′′′ which reflects the uncertainty in the kinematic model parameters of the robotic arm.
The contribution of σ ′′′ is around 25% in the prior model decreasing to less than 15% in the posterior
model. Note that σ ′′′ varies from one measurement to the other whereas the other two components
of the total uncertainty are constant for all the measurements. The values of σ ′′′ that are reported in
Fig. 10 are average values for all measurements. Finally, the results on Fig. 10 show clearly how the
different source of uncertainty decrease substantially for the posterior case in comparison to the prior
case, leading to an overall reduced total uncertainty in the posterior model.

7. Discussion
Results presented in Section 6 indicate clearly the added value behind utilizing the Bayesian method
in a fully probabilistic framework that is aimed at calibrating the parameters of the robotic platform
and quantifying the uncertainty associated with the resulting length predictions. Given this added
value, questions could be raised regarding the sensitivity of the results to the assumptions made with
regard to the statistical properties of the prior model parameters. This section aims at answering
these questions by examining the sensitivity of the Bayesian results to the prior model assumptions
pertaining to (1) the assumed prior correlation between the different model parameters, and (2) the
assumed prior mean value for the parameter λ which defines the prior mean value of the standard
deviation of Lab.

The sensitivity of the posterior results to the assumed prior correlation between model parameters
was studied by considering three correlation cases. The first case is the base case where all parameters
are assumed to be statistically independent (adopted in the previous section). In addition to the base
case, two cases were studied whereby all “length” and “angle” parameters of the robotic arm were
assumed to be correlated positively. Several correlation coefficients were assumed in the sensitivity
analysis including ρ = 0 (no correlation), ρ = 0.2 (weak positive correlation), and ρ = 0.5 (stronger
positive correlation). Results of the Bayesian updating exercise are presented in Table V and indicate
that the assumption of the prior correlation between parameters has a negligible effect on the results.
With regard to the mean length error of the posterior length predictions, results in Table V indicate
that the RMS of the errors of the “verification” cases slightly increases from 1.927 mm (no correlation
ρ = 0) to 2.078 mm (for the case with correlation ρ = 0.5). On the other hand, an associated marginal
decrease in σ ′′′ is observed with values decreasing from 0.333 mm for the no correlation case to 0.318
mm for the case with a correlation coefficient of ρ = 0.5. As expected, these negligible effects of the
correlation assumption in the prior model did not have any major influence on the confidence bounds
intervals of the updated model. For illustration, the percentage of predictions that fall within the 95%
confidence bounds for the “verification” data decreased slightly from 98.4% to 97.3%.

Similarly, the sensitivity of the posterior results to the assumed prior mean value for the parameter
λ was studied by considering three cases. The first case is the base case where the prior mean of λ was
chosen to yield a prior mean standard deviation of Lab equal to 4 mm. This assumption was adopted
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Table VI. The effect of mean value for the parameter λ on the updated calibration results. The units for all errors
are in mm while the last row is percentages. Shaded cells indicate values that are independent on the prior

correlation and thus remain fixed.

eλ = 0.002 mm eλ = 0.004 mm eλ = 0.006 mm

Calibration Verification Calibration Verification Calibration Verification

Pri Pos Pri Pos Pri Pos Pri Pos Pri Pos Pri Pos

Err (ϕ̃) 8.474 1.537 10.398 1.927 8.474 1.537 10.398 1.927 8.474 1.537 10.398 1.927

σ ′ 2.000 2.100 2.000 2.100 4.000 2.177 4.000 2.177 6.000 2.388 6.000 2.388
σ ′′ 0.973 0.100 0.973 0.100 0.789 0.101 0.789 0.101 0.766 0.107 0.766 0.107
σ ′′′ 1.370 0.299 1.461 0.333 1.370 0.299 1.461 0.333 1.370 0.299 1.461 0.333

% errors 63.6 98.2 77.3 98.2 83.0 98.9 88.6 98.4 89.8 99.8 91.4 99.3
within C.I.

in all the analyses conducted in this study so far. In the sensitivity analysis, two other cases whereby
the prior mean standard deviation of Lab was taken as 2 mm and 6 mm were adopted. These cases
represent realistic lower and upper bounds of the prior mean estimate of the standard deviation of the
robotic platform. Results of the Bayesian updating exercise with different prior mean estimates of
the standard deviation of Lab are presented in Table VI and indicate a negligible effect on the results.
For example, the RMS of the posterior mean length errors of the “verification” cases remained fixed
at a value of about 1.927 mm, irrespective of the prior mean standard deviation of Lab. On the other
hand, the posterior values of σ ′ and σ ′′ (which are directly affected by the mean standard deviation of
Lab) exhibited slight decreases (see Table VI) for the case where the prior mean standard deviation of
Lab was reduced to 2 mm and slight increases for the case where the prior values were increased to 6
mm. In fact, the posterior value of σ ′ in the verification cases increased from 2.100 mm to 2.388 mm
when the prior estimate of the mean standard deviation of Lab was increased from 2 mm to 6 mm.
The corresponding increase in σ ′′ was from 0.100 mm to 0.107 mm. The effect of the changes on the
confidence bounds intervals of the updated models was negligible. For illustration, the percentage of
predictions that fall within the 95% confidence bounds for the “verification” data increased slightly
from 98.2% to 99.3%.

The above analyses indicate that the results of the updating process are relatively insensitive to
the assumed prior model parameters. This adds robustness to the results of the updating process and
increases confidence in the posterior model parameters.

8. Conclusion
In this paper, a novel probabilistic kinematic calibration method for serial robotic arms was presented.
In the proposed method, the parameters of the kinematic model of the robotic platform are considered
to be random variables that could be updated within a Bayesian framework using a new set of
measurements. As opposed to typical regression based calibration methods, the proposed technique
incorporates prior information about the kinematic model parameters and utilizes measured data
to update the statistical characteristics of the model parameters. The fully probabilistic nature of
the updated kinematic model allows for allocating realistic and reliable confidence bounds to the
individual length predictions that are associated with the calibrated robotic arm. This constitutes an
added value in comparison to other traditional calibration methods that are based on deterministic
methodologies.

To test the robustness of the proposed probabilistic calibration framework, a three degree-of-
freedom robotic arm was designed and constructed and extensive measurements were collected.
The real measurements indicated that the proposed probabilistic calibration approach is effective at
updating the prior model parameters and yields mean errors that are comparable to those obtained
using regression-based methods. The main advantage of the method is in its ability to yield reliable
95% confidence bound error intervals. The robustness of the method was proven through sensitivity
studies whereby the results of the updating process were shown to be relatively insensitive to
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some of the assumptions that need to be made in assigning prior estimates of some of the model
parameters.

Finally, it is worth noting that the approach that is proposed in this paper could be used in future
studies to identify sweet spots or manipulator configurations where tight error bounds exit.
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Appendix A: Calibration using maximum likelihood
For a pair of end-effector poses and a possible set of model parameters for the robot’s forward kinematic
model, one can compute the likelihood of obtaining the actual length (or error) of the artifact.
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For m measured length pairs, the likelihood function could be defined by assuming that the lengths
of the artifacts for the different pairs follow a multivariate normal distribution that is defined by a
mean vector and a covariance matrix thatare given by

μlab = lab(ϕ̃) and (A1)

� = diag(. . . , σ 2
i , . . .) for i = 1, 2, . . . , m, (A2)

where μlab is the mean vector that contains the predicted lengths from the robotic arm for all the
different measurement pairs and � is the covariance of the predicted lengths. Implicit in the mean
vector and covariance matrix are the deviations of the kinematic model parameters of the robotic arm,
ϕ̃, and the standard deviation, σi, which is assumed to be a model parameter that is also determined in
the calibration exercise. The standard deviation, σi, reflects the uncertainty in the length predictions
of the robotic arm and is assumed to be a constant positive number (σi = eλ where λ ∈ R) for all the
length measurements. In addition, it is assumed that the kinematic length predictions for the different
length pairs are statistically independent. This assumption leads to the diagonal covariance matrix �

for the length measurements as indicated in (A2).
Based on the above assumptions, the likelihood function that needs to be maximized is defined by

L(ϕ̃, λ) = e− 1
2 (Lab−μlab )·�−1·(Lab−μlab )T

(2π )m/2
√

det �
. (A3)

Conventional Maximum Likelihood Estimation (MLE) methods are then used to estimate the
deviations of the kinematic model parameters, ϕ̃, and the additional model parameter, λ, that would
maximize the likelihood of obtaining the measured length data pairs, lab. The resulting MLE parameter
set is obtained as

(
ϕ̃MLE , λMLE

) = argmaxL(ϕ̃, λ). (A4)

For the case where the length data is assumed to follow a multivariate normal distribution with
statistically independent length measurements that have a constant standard deviation, the kinematic
model parameters ϕ̃reg that result from minimizing the error function using regression in (8) are
expected to be equivalent to the parameters ϕ̃MLE solved by maximizing the likelihood function
in (A4). The only difference between the two approaches is the additional parameter, λMLE , which
captures the uncertainty in the length measurements in the MLE method and does not play a role in
the least square regression approach. The equivalence of the two approaches is proved in Appendix B.

Appendix B: Equivalence of regression and maximum likelihood methods
It should be noted that the likelihood function defined in (A3) could have been formulated in terms
of the length error data rather than actual length data. In that case, the error could be defined as the
difference between the actual artifact length and the length predicted by the robotic arm. Hence, the
expression of the likelihood function could be modified such that

L(ϕ̃, λ) = 1

(2π )m/2
√

det �
e− 1

2 Y ·�−1·Y T
.

Here, Y is an error vector that contains the difference between the actual and predicted lengths,
that is, Y (ϕ̃) = errab(ϕ̃) = Lab − lab(ϕ̃).

It could also be noted that in the process of estimation of the model parameters using the method
of maximum likelihood, it is more convenient to work with the natural logarithm, ln, of the likelihood
function. Since � is a constant diagonal matrix, we have

det � =
m∏

σ 2 = σ 2m = e2mλ.
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Fig. 11. The software flowchart depicted the main steps of the novel calibration approach to right of the dashed
line.

Computing explicitly the ln of the likelihood function we have

� = lnL

= ln e− 1
2 Y ·�−1·Y T − ln

√
det � − ln (2π )m/2

= −1

2
Y · �−1 · Y T − mλ − m

2
ln(2π )

= −1

2
e2λ

m∑
i=1

Y 2
i − mλ − m

2
ln(2π ). (B1)

From the last expression, one can clearly note that given a fixed uncertainty in the length
measurements (i.e., constant λ), estimating the parameters by maximizing the likelihood function
is equivalent to minimizing the RMS error of the length measurement. This can be deduced from the
fact that the last two terms in (B1) are constants, that is,

(
ϕ̃MLE = argmaxL(ϕ̃)

) ≡ (
argmin Err(ϕ̃) = ϕ̃reg

)
. (B2)

Finally, using MLE, one also estimates the variance of the length measurement uncertainty, σ

which constitutes an added advantage.

Appendix C: Raw data
In this section, a flowchart depicting the major blocks of the software which were used to implement
the novel calibration method is depicted in Fig. 11. It is worth noting that all computations and most
figures we produced using a commercially available software, Mathematica R©. The artifact data and
the raw encoder data that was used in this paper are included in Table VII. The second row of Table VII
depicts the three-dimensional locations of the six holes on the used artifact. One can compute the
actual length between any two pair of holes using the following equation li j = √

(pi − p j )T (pi − p j ).
Note that, since the artifact has a total of six points, one can compute up to 15 lengths from all possible
unique pair or points. In fact, these lengths attributes of the artifact are depicted in Block 5 in Fig. 11.
Moreover, 10 of these lengths were used for calibration, Block 4 while five of these lengths were used
for verification, Block 10.

Additionally, the second portion of Table VII includes the raw encoder angles, in degrees, for all
the measurements done with the system. For each row of the angle data, the artifact was held rigidly
with respect to the base of the manipulator and the end-effector was placed in all six holes on the
artifact in the correct sequence. Accordingly, starting with nominal geometric parameters, Block 1,
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Table VII. The three-dimensional location of the six holes on the artifact ( mm) and the raw encoder angles for all the measured configuration (Degrees).

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6

x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 x5 y5 z5 x6 y6 z6

40.609 133.038 9.365 232.819 119.738 9.429 542.214 91.415 9.638 35.226 69.608 9.424 223.947 42.366 9.541 536.528 19.801 9.634

η1
1 η1

2 η1
3 η2

1 η2
2 η2

3 η3
1 η3

2 η3
3 η4

1 η4
2 η4

3 η5
1 η5

2 η5
3 η6

1 η6
2 η6

3

255.78 53.46 73.62 211.32 55.26 88.92 157.14 54.54 62.10 249.66 54.72 63.00 214.38 53.28 76.68 166.50 57.96 48.24
97.02 −157.68 −70.02 62.82 −159.66 −85.50 −4.68 −158.76 −58.68 87.66 −158.94 −59.58 56.70 −157.50 −73.26 1.62 −162.36 −44.82

172.44 53.10 72.54 128.52 55.62 90.72 67.50 53.28 69.12 165.96 54.36 62.64 130.32 52.92 79.38 77.58 55.26 57.42
12.78 −157.50 −69.12 −16.74 −160.02 −87.30 −92.88 −157.50 −65.70 3.24 −158.58 −59.22 −25.56 −157.32 −75.96 −85.32 −159.66 −54.00

78.12 52.92 79.02 27.18 57.06 93.06 −27.90 54.18 64.98 71.28 53.10 70.20 31.86 53.28 82.62 −17.64 56.70 53.64
284.76 −157.14 −75.42 248.40 −161.64 −89.64 172.80 −158.58 −61.74 273.96 −157.50 −66.78 240.48 −157.68 −79.20 180.72 −160.92 −50.22
−18.90 53.28 77.40 −67.14 55.62 89.28 −116.28 56.16 56.16 −24.66 53.82 67.14 −61.74 53.46 77.04 −106.92 60.84 40.86
186.12 −157.50 −73.98 147.78 −160.02 −85.86 82.62 −160.56 −52.74 176.76 −158.22 −63.72 143.28 −157.68 −73.62 89.82 −165.06 −37.44

101.88 −73.62 −100.08 77.76 −51.84 −126.54 9.00 −64.26 −112.32 93.78 −81.00 −89.46 69.48 −65.70 −110.88 14.58 −73.80 −99.54
264.78 −30.24 103.68 231.48 −52.02 129.96 169.02 −39.60 115.74 258.84 −22.86 92.88 229.86 −38.16 114.48 178.20 −30.06 102.96
180.54 −29.16 101.52 149.40 −54.54 132.12 76.68 −47.34 124.56 173.88 −22.68 91.98 145.44 −41.22 117.72 86.94 −37.08 112.32
19.80 −74.88 −98.10 0.00 −49.32 −128.52 −75.96 −56.52 −121.14 11.52 −81.18 −88.56 −10.08 −62.64 −114.12 −69.84 −66.78 −108.90

−273.78 −33.30 107.10 −308.34 −58.14 135.36 −18.36 −44.46 121.68 79.02 −26.64 97.56 48.24 −43.74 120.60 −7.92 −34.92 109.98
286.56 −70.74 −103.50 263.70 −45.72 −131.76 186.12 −59.40 −118.26 277.56 −77.40 −94.14 253.08 −60.12 −117.18 192.96 −68.94 −106.56
−10.26 −33.84 108.18 −46.44 −54.90 132.84 −108.00 −37.98 114.12 −16.20 −26.28 97.74 −46.98 −40.50 117.18 −98.64 −28.80 101.70
190.08 −70.20 −104.76 163.62 −48.96 −129.24 93.60 −65.88 −110.70 181.98 −77.58 −94.32 155.70 −63.36 −113.76 99.90 −75.06 −98.28
49.50 −42.12 −134.10 14.40 −80.64 −127.62 −13.50 −136.62 −66.60 47.16 −55.62 −121.68 20.70 −86.76 −113.76 −6.48 −141.12 −54.18

197.64 −61.56 137.70 169.56 −23.40 131.22 151.74 32.40 70.20 203.58 −48.24 125.28 181.26 −17.10 117.36 160.02 36.90 57.78

−23.76 −36.54 −138.06 −64.98 −76.68 −135.90 −99.72 −133.02 −78.66 −29.52 −51.12 −125.82 −59.58 −82.80 −121.68 −92.16 −136.08 −68.22
−243.18 −67.32 141.66 −278.10 −27.36 139.50 −298.62 28.98 82.08 −238.68 −52.74 129.42 −265.14 −21.24 125.28 −289.44 32.04 71.82
−116.82 −27.54 −143.64 −164.34 −75.42 −140.04 −198.00 −133.20 −79.92 −124.02 −44.64 −131.94 −156.96 −80.82 −126.72 −189.72 −135.72 −71.10

15.48 −76.32 147.24 −20.34 −28.44 143.64 −37.08 29.16 83.52 22.32 −59.22 135.54 −4.68 −23.22 130.50 −27.36 31.50 74.70
136.44 −41.76 −134.46 102.24 −81.72 −126.18 75.42 −138.24 −62.82 135.36 −55.26 −122.22 109.44 −87.66 −112.86 82.62 −143.10 −50.22
−78.48 −61.92 138.06 −104.58 −22.32 129.78 −120.60 34.20 66.42 −71.28 −48.60 125.82 −92.70 −16.38 116.46 −112.32 38.70 53.82

200.52 26.28 111.24 176.22 −2.34 118.44 157.86 −14.76 78.12 205.38 25.92 99.72 185.76 2.34 103.86 165.42 −6.66 64.44
46.44 −130.50 −107.64 17.46 −101.70 −114.84 −8.46 −89.28 −74.52 45.54 −130.14 −96.12 22.68 −106.38 −100.26 −2.34 −97.38 −60.84

115.38 27.36 116.46 85.68 −4.32 127.44 65.16 −22.68 90.54 119.70 25.38 106.02 96.66 −1.08 113.40 73.62 −15.48 79.02
−33.30 −131.76 −113.04 −68.40 −99.72 −124.02 −99.90 −81.18 −86.94 −36.72 −129.60 −102.42 −63.18 −102.96 −109.80 −92.88 −88.38 −75.42
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Table VII. Continued.

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6

x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 x5 y5 z5 x6 y6 z6

14.40 30.60 122.22 −16.20 −4.32 132.30 −32.94 −23.58 92.52 21.42 26.46 112.86 −2.52 −2.34 119.88 −23.94 −17.46 82.98
−126.90 −135.00 −118.62 −167.94 −99.72 −128.88 −198.54 −80.28 −88.92 −130.86 −130.68 −109.44 −160.74 −101.70 −116.28 −190.80 −86.40 −79.38
−77.22 27.72 115.56 −101.70 −2.70 121.32 −117.54 −14.58 78.48 −70.38 25.92 105.12 −90.54 1.08 108.00 −109.62 −7.38 66.42

−227.52 −131.94 −111.96 −259.20 −101.34 −117.90 −284.58 −89.28 −74.88 −227.70 −130.14 −101.52 −252.18 −105.12 −104.58 −277.92 −96.66 −62.82

−149.94 52.20 54.18 −150.30 15.30 88.20 −149.58 −27.18 90.00 −141.12 52.38 53.64 −139.32 16.02 87.30 −139.68 −26.82 89.46
−315.36 −156.42 −50.58 −315.54 −119.52 −84.60 −315.00 −76.68 −86.40 −306.36 −156.60 −50.22 −304.56 −120.06 −83.70 −304.92 −77.22 −85.86

−0.54 −152.46 −65.52 −0.72 −115.20 −97.74 −0.18 −66.78 −99.54 8.82 −152.82 −64.44 10.80 −116.10 −95.94 10.26 −67.86 −98.10
−201.24 48.24 69.12 −201.60 11.16 101.16 −200.88 −37.08 102.96 −190.80 48.60 67.86 −189.00 12.06 99.36 −189.18 −36.00 101.52

−86.04 −153.00 −62.82 −86.40 −115.92 −95.22 −86.04 −68.58 −97.02 −75.96 −153.00 −62.46 −74.16 −116.46 −94.14 −74.88 −69.12 −96.30
76.86 48.78 66.42 76.32 11.88 98.64 76.68 −35.28 100.62 86.76 48.78 65.88 88.56 12.42 97.74 88.02 −34.74 99.90

−327.42 48.42 67.86 −328.14 11.52 100.08 −327.78 −36.18 101.88 −317.16 48.60 66.78 −315.54 12.24 98.46 −316.26 −35.28 100.62
−127.26 −152.82 −64.26 −127.62 −115.56 −96.48 −127.62 −67.68 −98.28 −117.36 −153.00 −63.36 −115.56 −116.46 −94.86 −116.46 −68.58 −97.02

−3.60 48.78 67.68 −4.32 11.70 99.90 −3.96 −35.82 101.52 5.76 49.32 65.16 7.38 12.96 96.66 6.48 −33.84 98.82
195.84 −153.00 −64.08 195.48 −115.92 −96.30 195.48 −68.22 −98.10 205.56 −153.54 −61.56 207.00 −117.00 −93.06 206.10 −70.20 −95.22

−105.30 50.94 59.04 −105.66 14.22 92.34 −105.12 −29.88 93.96 −95.94 51.30 57.60 −94.14 15.12 90.36 −94.50 −28.80 92.52
93.42 −155.16 −55.44 93.06 −118.26 −88.74 93.42 −73.98 −90.54 102.60 −155.70 −54.18 104.40 −119.16 −86.76 103.68 −75.06 −88.92
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one could use the raw angles of each row to compute six three-dimensional positions through the
forward kinematics, Block 3, of the manipulator. Then using the computed positions of the artifact,
one can compute lengths using pairs of points. Comparing the computed lengths to the actual lengths
of the artifact, one can construct either an error function, Block 6, or a likelihood function, Block 7.
Minimizing the error or maximizing the likelihood function equivalently solves for the deviations of
the geometric parameters, Block 2, which in turn can be used to revise the nominal parameters, Block
8. Using the verification data, Block 10 and the revised set of parameters, one can estimate the global
accuracy of the robotic arm, Block 9.

Finally, for the novel proposed method, starting with prior model parameters, Block 11, and the
likelihood function, Block 7, one can compute the posterior model parameters, Block 12, by using
Bayesian updating. Using the posterior model parameters, error bound can be computed for all
measurement, Blocks 13 and 14.
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