Radiocarbon, Vol 58, Nr 1, 2016, p 55–68 DC © 2016 by the Arizona Board of Regents on behalf of the University of Arizona

NATURALLY DYED WOOL AND SILK AND THEIR ATOMIC C:N RATIO FOR QUALITY CONTROL OF ¹⁴C SAMPLE TREATMENT

Mathieu Boudin* • Marco Bonafini • Ina Vanden Berghe • Marie-Christine Maquoi

Royal Institute for Cultural Heritage, Brussels, Belgium.

ABSTRACT. Quality control of sample material (e.g. charcoal, collagen) is receiving considerable attention in the effort to obtain more reliable ¹⁴C dates. The atomic carbon to nitrogen (C:N) ratio is a useful indicator of contamination and/or degradation of bone collagen. Wool and silk are also composed of proteinaceous material such as bone collagen, and the C:N ratio may also be a useful quality indicator for archaeological wool and silk. Analyses of modern undyed, mordanted, non-mordanted, and naturally dyed silk and wool were done in order to determine a C:N range that indicates the sample quality. The C:N range can be different for every material as the amino acid composition of wool, silk, and bone collagen are distinct. The measured minimum and maximum C:N values were used to set up a C:N range of uncontamined and undegraded wool and silk. Then, the C:N ratio and ¹⁴C were analyzed of archaeological wool and silk samples. The applicability of the C:N ratio as a quality indicator for archaeological silk and wool was shown by the good agreement of the ¹⁴C dates with the presumed historical dates for the uncontaminated samples and the disagreement of the ¹⁴C dates with the presumed historical dates for contaminated samples.

KEYWORDS: C:N ratio, wool, silk, quality control.

INTRODUCTION

Wool and silk, and textiles in general, are gaining more attention as suitable radiocarbon dating material due to their short lifespan, potentially presenting the true age of an object made of these materials (Rageth 2004; Van Strydonck et al. 2004; van der Plicht et al. 2004; Kim et al. 2008; Mannering et al. 2010; Kuzmin et al. 2012; Van Strydonck and Grömer 2013; Vedeler and Bender Jørgensen 2013; Hajdas et al. 2014).

The quality control of sample material (e.g. charcoal, collagen) is receiving considerable attention in order to obtain more reliable ¹⁴C dates (DeNiro 1985; Alon et al. 2002; Van Strydonck et al. 2005; Boudin et al. 2011). Boudin et al. (2011) demonstrated that humic substances are a major contaminant in archaeological wool and silk samples by nondestructive fluorescence spectroscopy analyses. However, degraded wool and silk may contain other contaminants such as mold, fungus, dirt, or other carbon-containing materials (Kim et al. 2008). Therefore, the atomic carbon to nitrogen (C:N) ratio could serve as a quality control indicator of archaeological wool and silk as it does for bone collagen to indicate contamination and/or degradation (DeNiro 1985; Schoeninger et al. 1989; Ambrose 1990). The C:N range can be different for every protein-containing material as the amino acid composition of wool, silk, and collagen are distinct. Wool consists mainly of the protein keratin, which is a α -helix structure with cystine, leucine, glutamic acid, arginine, and serine as the most abundant amino acids (Sibley and Jakes 1984). However, wool proteins are composed mainly of 21 amino acids, with variations in amino acid content due to breed of sheep, diet, climate, and other external influences (Gillespie et al. 1969; Maclaren and Milligan 1981; Leeder and Marshall 1982; Jones et al. 1998). Silk protein (fibroin) is a polypeptide polymer comprising 15 amino acids; the largest percentage (80%) in the fiber consists of the amino acids glycine, alanine, and serine in an approximate 3:2:1 ratio. These substances are small in size, with no large side groups. Therefore, the polypeptide chains can pack together closely as β -sheets (Sibley and Jakes 1984; Becker et al. 1997). For archaeological human and animal hair isotopic analysis, the C:N ratio can be used to indicate if the hair keratin is contaminated or not. Analysis of modern human hair defines a C:N range for uncontaminated archaeological hair between 2.9 and 3.8 (O'Connell

^{*}Corresponding author. Email: mathieu.boudin@kikirpa.be.

and Hedges 1999a, 1999b; O'Connell et al. 2001). Taylor et al. (1995) conducted ¹⁴C, C:N, and amino acid composition analyses on hair. The glycine/glutamine and glycine/aspartic acid ratios indicate well-preserved chemical structures of the hair. The C:N ratios of the archaeological hair fall within the range of 2.9 and 3.8, determined by modern human hair analyses. The ¹⁴C dates of the hair were also in agreement with the archaeological expectations. This suggests that the C:N ratio may be a useful indicator for quality ¹⁴C control of human hair and undyed wool (animal hair). However, mordanting and/or dyeing may alter the C:N ratio. Boudin et al. (2013) proposed a C:N range for modern undyed, mordanted, non-mordanted, and naturally dyed silk (all *Bombyx mori*). Based on their analyses of a small data set, the value was found be between 2.9 and 3.4.

Dyeing is an ancient art, which predates written records. It was practiced during the Bronze Age in Europe. Primitive dyeing techniques included sticking plants to fabric or rubbing crushed pigments into cloth. The methods became more sophisticated with time and techniques were developed using natural dyes from crushed fruits, berries, and other plants, which were boiled into the fabric and gave light and water fastness (resistance). Until the mid-19th century all dyestuffs were made from natural material, mainly vegetable and animal matter. Synthetic organic dyes were introduced in the mid-19th century, with mauveïne as the first synthetic organic dye produced in AD 1856 (Herbst and Hunger 1997).

Few natural dyes are color-fast with fibers. Mordants are substances used to fix a dye to the fibers (IUPAC 2006). Different types of mordants are available, including metals in the form of salts (chrome, cupper, tin, iron, aluminium), tannins, cream of tartar, baking soda, and vinegar. Different mordants will give different color with the same dye (Aspland 1997).

The classification of natural dyestuffs can be determined on the basis of the following:

- Chemical constitution of the dyestuff molecule. This can be based on the chromophore structure, as with anthraquinones (e.g. madder) or flavonoids (e.g. weld) or the derivatives of one dye (Dedhia 1998; Hofenk de Graaff 2004).
- The application method of the dyestuff. In the case of natural dyestuffs, only three groups are of importance (Gulrajani and Gupta 1992; Hofenk de Graaff 2004):
- 1. Dyestuffs that are soluble in water but form metal complexes on the fiber. They can only be applied with the help of water-soluble metal salts (mordants) and are therefore called *mordant dyes*.
- 2. Dyestuffs that are insoluble in water and therefore have to be first converted to their water-soluble form before application to the fibers. These are *vat dyestuffs*.
- 3. Dyestuffs that dissolve in water and can be applied as such. These are *direct dyestuffs*.

Mordanting and dyeing of wool and silk may alter the C:N ratio because most dyes and some mordants contain carbon and/or nitrogen atoms in their molecular structure, which are added to the textile fiber or fabric. Therefore, in this study, the C:N ratio of modern undyed, mordanted, non-mordanted, and naturally dyed silk (*Bombyx mori*) and wool were measured to determine a C:N range of uncontaminated and undegraded wool and silk. The viability of the established C:N range as a quality indicator for archaeological silk and wool was tested by comparing ¹⁴C analysis of archaeological wool and silk with the presumed historical dates.

MATERIALS AND METHODS

Sample Selection

Different modern wool and silk fibers were dyed in the Textile Laboratory of the Royal Institute of Cultural Heritage (RICH), Brussels, Belgium. Some of the most frequently applied dyestuffs as listed in Table 1 (kermes, cochineal, madder, brazilwood, red sandalwood, Persian berries, barberry root, safflower, turmeric, dyer's broom, woad, indigo, orchil, galls) for wool and silk were used, but also less common dyestuffs were applied in this study as listed in Table 2.

Archaeological silk and wool samples from different geographical origins and with different color were selected to study (see Tables 4 and 5).

Design

First, C:N analyses of modern undyed, mordanted, non-mordanted, and naturally dyed silk and wool were conducted in order to determine their C:N range, by using the minimum and maximum value, for uncontamined and undegraded wool and silk. This study design is based on the papers of DeNiro (1985) and O'Connell and Hedges (1999a) wherein modern bone collagen and hair were analyzed to define a C:N range for uncontaminated bone collagen and hair.

Secondly, the C:N ratio, dye, and ¹⁴C analyses were conducted of archaeological wool and silk samples. The viability of the C:N ratio as a quality indicator for archaeological silk and wool was tested by comparing the ¹⁴C dates with the presumed historical dates. If the C:N ratio of the bulk did not fall within the proposed C:N range in this study and indicated contamination, cross-flow nanofiltration on the bulk samples was performed to remove contaminants and improve the sample quality by observing a C:N decrease (bulk samples that underwent cross-flow nanofiltration are referred to as permeate). The efficiency of cross-flow nanofiltration to obtain better sample quality and the used protocol are described in Boudin et al. (2013, 2014).

METHODS

Sample Pretreatment

Preliminary tests with the standard pretreatment protocol for archaeological wool and silk were performed on modern wool and silk. No C:N alteration of modern wool and silk was observed. Therefore, the modern undyed and dyed silk and wool samples were not pretreated prior to analysis. The archaeological wool and silk samples (also referred to as bulk samples) were pretreated with hexane, acetone, ethanol, Milli-QTM water (Merck Millipore, Belgium), 1% NaOH, and 1% HCl for bulk ¹⁴C and C:N analyses as described in detail in Boudin et al. (2011).

Atomic C:N Ratio

Analyses were performed in duplicate on a ThermoFlash EA/HT elemental analyzer. The standard used was acetanilide (0.5–1 mg was used).

¹⁴C Dating

¹⁴C dates were measured on the AMS at the Leibniz Labor für Altersbestimmung und Isotopenforschung in Kiel, Germany (lab code KIA) (Nadeau et al. 1998) or at the Royal

1	Timescale of dye practice	Dye practice location
Red dyestuffs		
Alkanna	Antiquity	Egypt, Mesopotamia, Romans
Henna	Antiquity	Palestine, Syria, Egypt
Coccid dyestuffs	1 2	
Kermes	Since antiquity	Europe, Near East, Asia
Polish cochineal	Since antiquity	Europe and Mediterranean countries
Armenian cochineal Cochineal	Since antiquity Since AD 1518 in Europe Since ancient times in Mexico Since antiquity in India and Japan Since AD 1790 in Europe	Europe, Near East, Far East
Madder-type dyestuffs	Since AD 1790 in Europe	
Madder	Since antiquity	Worldwide
Wild madder	Since antiquity	Mediterranean countries
Munieet	Since antiquity in Ear East	Wediterranean countries
Winjeet	Since 13th century in Europe	
Chay root	Since 15th century in Europe	India
Galium species	Since ancient times	Worldwide
Relbunium species	Pre-Columbian	South and Middle America
Indian mulberry	Since antiquity	India, Indonesia, and Polynesian Islands
Redwoods		
Brazilwood	Since ancient times in Orient and Far East	
	Since Early Middle Ages in Europe	
Red sandalwood	Since ancient times in India	
	Since middle of 16th century AD in Europe	
Safflower	Since antiquity in the Orient and southern Asia 2nd century BC in China and Japan 6th century BC in Persia Since 18th century in Europe	
Yellow dyestuffs Annatto	Pre-Colombian in Peru	
	Since 16th century in Europe	
Barberry root	Before AD 1200	China North and South America Tibet
Yellowwoods		
Young fustic	Since antiquity	
Fustic	Since 16th century	Europe, Brazil, Argentina, Middle
	-	America
Quercitron	Since 16th century AD	Europe
Persian berries	Since antiquity	Europe, Near East
Saffron	Since antiquity	Far and Near East, and on a lesser scale in Europe
Turmeric (curcuma)	Since classical times	Polynesia, Micronesia, Melanesia, East Indies, Mesopotamia, Rome, and Greece
Weld	Before AD 1492	Europe
Dyer's broom Sawwort	Since prehistoric times and early Middle Ages Medieval times	Europe Europe

Table 1 The most frequently used natural dyestuffs for wool and silk, the timescale of practice, and its practice location (Hofenk de Graaff 2004).

Blue dyestuffs Logwood Indigoid dyestuffs Woad Indigo Indigo carmine	Since 16th century AD Since antiquity Sine antiquity in India Since early 17th century AD in Europe Since AD 1740	Europe Europe, Egypt, Mesopotamia, Syria and Palestine Europe
Purple dyestuff		
Tyrian purple Orchil	Since antiquity, but production declined after AD 700 in Greece, Persia, and ancient Rome Dyeing continued until AD 1200 in Byzantium and Sicily Produced from <i>Murex</i> shells: provokes reservoir effect Antiquity but its use seems to have been lost in Middle Ages. In AD 1300, orchil was again imported into Europe by a Florentine merchant and more often used in Europe in the 16th century	
Black dyestuffs		
Gallotannin dyestuffs	A maint time an analderida fan aille	
Galls	Medieval times western Europe for wool	
Alder bark	Since antiquity	worldwide
Sumac Catechu	Since antiquity Since antiquity	worldwide Far East
Black walnut	Since ancient times in the Near East Medieval times in Europe and America	i ur Luot

Institute for Cultural Heritage, Brussels (lab code RICH) (Boudin et al. 2015). CO_2 was obtained by sample combustion in the presence of CuO and Ag. Graphitization was done with H₂ over a Fe catalyst. Targets were prepared at the Royal Institute for Cultural Heritage in Brussels (Van Strydonck and Van der Borg 1990–1991). ¹⁴C calibrations were performed using OxCal 3 (Bronk Ramsey 1995, 2001) and IntCal13 calibration curve data (Reimer et al. 2013).

Dye Analysis

Each dye analysis requires a sample between 0.2 and 0.5 mg. After pre-examination with a binocular microscope to avoid visible contamination, the dyes were extracted from the yarn using the following extraction method. To the sample of yarn, $250 \,\mu\text{L}$ water/methanol/37% hydro-chloric acid (1/1/2, v/v/v) is added. The mixture is heated for 10 min at 105°C in open PyrexTM tubes in a heating block. After cooling, it is filtered through a porous polyethylene frit. The filtrate is dried in an evacuated desiccator over NaOH pellets. The dry residues are taken up in 50 mL of methanol/water (1/1, v/v) and 20 mL of this solution is injected for analysis. The high-performance liquid chromatography (HPLC) equipment consists of a high-pressure pump (Model M615, Waters, USA), a photodiode array detector (Model 996, Waters, USA), and a system for data storage, manipulation, and retrieval (Empower, Waters, USA).

Table 2	Name	(species)	of dye	source	and	its	dye	color	of	uncommon	natural	dyes	used	in
this study	у.		-				-					-		

Name (species) of dye source	Dye color
Grass (Miscanthus tinctorius)	yellow to light brown
Pagoda tree (Sophora japonica)	yellow to olive green
Red cedar (Juniperus berries)	brown
Pot marygold (<i>Calendula officinalis</i>)	yellow
Yellow chamomile (Anthemis tinctoria)	yellow
Birch (Betula)	yellow (leaves)-green (leaves)-reddish brown
	(bark)- yellowish brown (lichen)
Chamomile (Chamaemelum nobile)	yellow
Elder (Sambucus nigra)	green
Black mangrove (Bruguiera gymnorrhiza)	red-brown

Chromatographic conditions were applied using a temperature-controlled ($20-22^{\circ}$ C) Lichrosorb RP-18 column ($4.0 \times 125 \text{ mm}$, 5 mm particle size, VWR, Belgium). Three solvents are used: water, methanol, and 5% (w/v) phosphoric acid in water. The elution program is 60A/30B/10C for 3 min, followed by a linear gradient to 10A/80B/10C for 26 min. A flow rate of 1.2 mL/min was used.

Identification of the dye components was done by comparison of the spectral data with the reference spectra in the RICH database (130 references) at the maximum absorbance wavelength of each peak (Wouters 1985; Van den Berghe et al. 2009).

RESULTS AND DISCUSSION

C:N Analyses of Modern Wool and Silk

Comparing the C:N ratios of untreated textiles with mordanted and/or dyed textiles indicates that mordanting and/or dyeing may slightly change the C:N ratio (see Table 3). However, almost all mordanted and/or dyed textiles fall into the C:N ranges (see Table 3):

- 1. For hair/wool, proposed by O'Connell and colleagues (O'Connell and Hedges 1999a, 1999b; O'Connell et al. 2001): between 2.9 and 3.8;
- 2. For silk, proposed by Boudin et al. (2013): between 2.9 and 3.4.

This means that the C:N ratio may be a good indicator to control the sample quality of naturally dyed (until AD 1856) archaeological wool and silk for ¹⁴C dating. The minimum value for wool in this study is 3.4 and is in perfect agreement with the theoretical C:N value of keratine. This allows us to refine the C:N range proposed by O'Connell and colleagues (O'Connell and Hedges 1999a, 1999b; O'Connell et al. 2001). The C:N range for uncontaminated wool should be between 3.4 and 3.8. The C:N range proposed by Boudin et al. (2013) for silk is valid for dyed and/or mordanted wool or silk, based on this data set, and can thus serve as an indication if a sample is contaminated or not.

Sample material	Dye and/or mordant	Atomic C:N
SILK		
Silk yarn I		
	Barberry root: mordanted and unmordanted	3.2
	Indigo: different dyeing duration	3.2
	Grass (Miscanthus tinctorius): alum mordant	3.8
	Pagoda tree (Sophora japonica): alum mordant	3.3
<i>a.u.</i>	Madder	3.1
Silk yarn J	T T , , 1	2.1
	Untreated	3.1
		3.0
	Brazilwood: alum mordant	3.0
Silk yarn K		
~	Cochineal: alum mordant	3.0
	Indigo: unmordanted	3.0
	Mordanted (alum + cream of tartar)	3.0
	Dyer's broom: alum mordant (with potash)	3.1
WOOL		
Rowan purelife British sheep breeds dk		
	Untreated	3.4
	Mordanted, undyed	3.5
	Indigo	3.5
	Persian berrie (<i>Rhamnus catharticus</i>): mordant: 8% alum + 7% cream of tartar	3.6
	Kermes: alum mordant	3.5
	Woad	3.5
	Red cedar (<i>Juniperus</i> berries): mordant: 8% alum + 7% cream of tartar	3.6
	Pot marygold (<i>Calendula officinalis</i>): mordant: 8% alum + 7% cream of tartar	3.6
	Safflower: mordant: 8% alum + 7% cream of tartar	3.6
	Red sandalwood: mordant: 8% alum + 7% cream of tartar	3.6
	Indian lac: mordant: 8% alum + 7% cream of tartar	3.6
	Turmeric: mordant: 8% alum + 7% cream of tartar	3.6
	Anatto: mordant: 8% alum + 7% cream of tartar	3.6
	Yellow chamomile (Anthemis tinctoria): mordant: 8%	3.7
	alum + 7% cream of tartar	
	Birch (<i>Betula</i> sp.): mordant: 8% alum + 7% cream of tartar	3.7
	Chamomile (<i>Chamaemelum nobile</i>): mordant: 8% alum + 7% cream of tartar	3.7
	Dyer's broom: mordant: 8% alum + 7% cream of tartar	3.6
	Elder (<i>Sambucus nigra</i>): mordant: 8% alum + 7% cream of tartar	3.8
	Galls	3.7
	Madder	3.6

Table 3 Atomic C:N ratio of undyed/dyed/mordanted modern wool and silk. The typical values are 3.0–3.2 for silk and 3.4–3.7 for wool.

Table 3 (Continued)

Sample material	Dye and/or mordant	Atomic C:N
	Brazilwood	3.6
	Orchil	3.6
	Alum mordant medieval dyeing	3.6
	<i>Caesalpinia</i> ; mordant: 25% alum, method extraction vinager	3.6
	Rubia tinctoria: mordant: 25% alum or 100% clubmoss	3.6
	Cudbear powder, unmordanted	3.5
	<i>Bruguiera gymnorrhiza</i> , mordanted alum or unmordanted	3.5
	Miscanthus tinctorius, mordanted alum or unmordanted	4.2
HZ 1. 4	Sophora japonica, mordanted alum or unmordanted	4.3
Wool A	Untreated	3 /
	Washed	3.4
	Mordanted	3.4
	Green weed no potassy (alum mordanted wool)	3.5
	Dver's green weed with notassium	3 5
	Indigo on wool	3.5
	Indigo on wool (recipe I) (no mordanted wool)	3.4
	Safflower vellow	3.5
	Safflower (red) on wool	3.6
	Sappanwood on wool (mordanted)	3.5
	Cochineal, alum mordanted	3.4
	Gallic acid, mordanted with FeSO ₄ and/or CuSO ₄	4.1
	Rubia peregrina, dyes extracted from different plants	3.6
	Cocheneal, unmordanted, and mordanted with CuSO ₄ or	3.6
	ZnCl ₂	
Wool B		
	Ochrolechia tartarea (lichen, moss)	3.6
	Umbilicaria pustulata (lichen, moss)	3.6
	Parmelia omphalodes (lichen, moss)	3.7
	Parmelia saxatilis (lichen, moss)	3.6
	Xanthoria parietina (lichen, moss)	3.7

The only exceptions (marked bold in Table 3) are the textiles dyed with *Miscanthus tinctorius*, *Sophora japonica*, and gallic acid. *Miscanthus tinctorius* and *Sophora japonica* were only used in Eastern Asian textiles (Bechtold and Mussak 2009). *Miscanthus tinctorius* ranges in color from yellow to light brown depending on the mordant, while *Sophora japonica* is yellow to olive green depending on the mordant. Gallic acid was used globally. Although gallic acid was often applied as a mordant, it can also be used as a dye, but very rarely (like in this study). When applied as a dye, it is more concentrated and consequently increases the C:N more than when used as a mordant. The obtained color of the dye gallic acid varies from yellowish brown to dark brown depending on the mordant.

Table 4 Archaeolc calibrated ages (2 σ)	gical site, sample), presumed histor	color (used dye shuical date, and atom	own 1n pa1 iic C:N rat	rentheses if dye a io of analyzed a	ınalysıs was con rchaeological ur	iducted), laboratory co icontaminated wool sai	de, ¹⁻ C ages (BP), mples.
Sample name	Archaeological site	Sample color	Atomic C:N	Lab code	¹⁴ C age (BP)	Calibrated age (2σ)	Presumed historical date
WOOL E29479	Egypt	ochre vellow	3.7	KIA-42363	1555 ± 30	AD 420 (95.4%) 580	AD 400–700
E31963	Egypt	red	3.7	KIA-42370	1560 ± 35	AD 410 (95.4%) 580	AD 400–700
N1027	Egypt	vellow-beige	3.7	KIA-42369	890 ± 30	AD 1040 (95.4%) 1220	ż
E29477	Egypt	vellow-beige	3.7	KIA-42372	1530 ± 30	AD 430 (95.4%) 600	AD 400–700
KTN 2298	Egypt	beige	3.7	KIA-47945	1510 ± 25	AD 430 (10.3%) 490	AD 500–700
Colutus	Eevnt	blue (indigoid)	3.8	RICH-20058	1663 + 31	AD 250 (02:170) 020 AD 250 (7.8%) 300	AD 400–500
			2			AD 310 (85.2%) 440 AD 400 7 4%) 530	
Bourrelet	Egypt	red	3.7	KIA-39433	1675 ± 30	AD 250 (11.8%) 300	ż
						AD 320 (83.6%) 430	
E32155	Egypt	yellow	3.8	RICH-20309	1520 ± 30	AD 430 (95.4%) 610	1st millennium AD
E31971	Egypt	orange	3.8	RICH-20305	1318 ± 30	AD 650 (95.4%) 780	1st millennium AD
E31972	Egypt	red	3.8	RICH-20308	1515 ± 30	AD 430 (95.4%) 620	1st millennium AD
E29477 bourrelet	Egypt	yellow	3.7	KIA-42372	1530 ± 30	AD 420 (95.4%) 580	ż
E31963 bourrelet	Egypt	red	3.7	KIA-42370	1560 ± 30	AD 410 (95.4%) 580	ż
KTN 2187	Egypt	yellow-brown	3.7	RICH-20382	1562 ± 32	AD 430 (95.4%) 610	AD 600-800
KTN 857-03	Egypt	red-orange	3.7	RICH-20377	1315 ± 28	AD 650 (95.4%) 780	AD 400-700
KTN 614	Egypt	green-red-yellow	3.7	RICH-20380	1321 ± 29	AD 650 (95.4%) 780	AD 600-800
Hallstat 79-448	Austria	yellow-beige	3.6	KIA-42753	2485 ± 30	780 (92.1%) 490 BC	800–400 BC
		-		01001 4171		4/0 (0/0.0) 410 DC	
Hallstatt 0/-005 C	Austria	red	5.8	KIA-42/49	2980 ± 30	13/0 (2.1%) 1340 BC 1320 (93.3%) 1110 BC	1300 BC
Hallstatt 78-551	Austria	red-brown	3.8	KIA-42754	2445 ± 30	760 (23.7%) 680 BC	800-400 BC
						670 (10.5%) 610 BC 600 (61 2%) 400 BC	
Hallstatt 79-429	Austria	vellow-hrown	36	KIA-42752	2525+30	800 (29 5%) 720 BC	800-400 BC
			2			700 (65.9%) 530 BC	
Hallstatt 79-442	Austria	blue-black	3.6	KIA-42750	2555 ± 30	810 (53.5%) 740 BC	800-400 BC
						690 (16.4%) 660 BC 650 (25 5%) 550 BC	
Hallstatt 78-552	Austria	light brown	3.5	KIA-42755	2380 ± 30	720 (2.8%) 690 BC	800–400 BC
						240 (92.6%) 390 BC	

14

Naturally Dyed Wool and Silk and Their Atomic C:N Ratio 63

	64	M	Boudin	et	al
--	----	---	--------	----	----

Sample name	Archaeological site	Sample color	Atomic C:N	Lab code	¹⁴ C age (BP)	Calibrated age (2σ)	Presumed historical date
SILK Zandaniji Maaseik	South Iran	yellow-green (Reseda luteola +	3.1	KIA-40826	1325±25	AD 650 (77.5%) 720	AD 700-900
Davidszijde Tx 606	? Iraq	Morus type) red (Indian lac) red-orange-green	3.2 3.1	KIA-40827 KIA-48819	1285 ± 25 1245 ± 35	AD 660 (95.4%) 780 AD 670 (95.4%) 880	AD 700–800 AD 744–750
Fx 372	East Iran or Central Asia	yellowish brown (ellagic acid) - dark blue (red wood) -	3.1	KIA-48816	1190 ± 35	AD 710 (5.1%) 750 AD 760 (83.2%) 900	(Marwan II) AD 700-900
Fx 373 Fx 609	Byzantium Byzantium	berge (indigoid) brown dark brown-dark green-dark red (mainly tannic	3.3 3.1	KIA-48815 KIA-48818	1255 ± 30 1085 ± 30	AD 670 (95.4%) 870 AD 890 (95.4%) 1020	AD 700–900 AD 700–900
Fx 371	Byzantium	acids, kermes, madder, indigoid) orange (kermes, madder, traces of tannic acids)-	3.0	KIA-48817	1195±30	AD 710 (4.3%) 750 AD 760 (88.8%) 900 AD 920 (2.2%) 940	AD 700-900
KTN 2400	Central Asia	green-white brown	3.2	RICH-20059	1338 ± 31	AD 640 (80.9%) 720	AD 600–800
KTN 2480 DM1923-01	Central Asia Egypt	brown beige	3.1 3.1	RICH-20059 KIA-42113	1288 ± 28 1220 ± 35	AD /40 (14.3%) 770 AD 660 (95.4%) 780 AD 680 (95.4%) 890	AD 600–800 AD 600–900

Table 5 Arch: C:N ratio of an	aeological site, sample lalyzed archaeological	e color, laborato contaminated w	ry code, ¹⁴ C ool and silk se	ages (BP), cali amples before (ibrated ages (2c bulk) and after	 presumed historical d (permeate) cross-flow nar 	ate, and atomic nofiltration.
Sample name	Archaeological site	Sample color	Atomic C:N ratio	Lab code	¹⁴ C age (BP)	Calibrated age (2σ)	Presumed historical date
WOOL Beerlegem bulk permeate	Belgium	brown	3.9 3.4	KIA-42365 KIA-46083	1705 ± 30 1510 ± 25	AD 250 (95.4%) 410 AD 430 (10.3%) 490	AD 587
Mainz 2 bulk permeate	Germany	black	4.0 3.5	KIA-41535 KIA-46193	2075 ± 25 2005 ± 20	AD 530 (85.1%) 620 180 (95.4%) 30 BC 50 BC (95.4%) AD 55	5 BC
Mainz 5 bulk	Germany	black	4.0	KIA-37616	2080 ± 30	200 (94.3%) 20 BC	5 BC
permeate			3.5	KIA-47417	1915 ± 35	10 BC (1.1%) AD AD (92.8%) 180 AD 190 (2.6%) 220	
SILK Baldwin 46 bulk	Belgium	dark brown	3.6	KIA-47415	1260 ± 30	AD 660 (91.9%) 830	AD 1068
permeate			2.9	KIA-47418	1175 ± 30	AD 770 (83.1%) 900 AD 770 (83.1%) 900 AD 910 (12.3%) 970	
Baldwin 43 <i>bulk</i>	Belgium	dark brown	3.7	KIA-47414	1210 ± 30	AD 690 (12.2%) 750	AD 1068
permeate			2.9	KIA-47811	1180 ± 30	AD 700 (85.2%) 900 AD 770 (86.0%) 900 AD 910 (9.4%) 970	

C:N Ratio, Dye, and ¹⁴C Analyses of Archaeological Wool and Silk

Table 4 lists all the archaeological wool and silk samples from which the C:N ratio falls within the proposed C:N range of 3.4–3.8 for wool and 2.9–3.4 for silk, indicating uncontaminated samples. The ¹⁴C dates of all the samples are in perfect agreement with the presumed historical date, suggesting the samples are not contaminated.

The sample color was visually determined prior to analysis and dye analyses were conducted on some samples. The detected dyes are shown in parentheses next to the determined sample color in Table 4. The analyzed archaeological yellowish and brown silk and wool samples from Egypt, Austria, south Iran, Byzantium, and Central Asia have a C:N ratio lower than the upper boundary, respectively, 3.8 for wool and 3.4 for silk. This excludes exogenous contamination or the use of gallic acid as a dye (see Table 4).

The C:N ratios of the bulk samples (wool and silk) fall outside the proposed C:N ranges, indicating contamination (see Table 5). Moreover, the ¹⁴C ages of samples with untypical C:N ratios do not show a good agreement with the presumed historical date. Cross-flow nanofiltration decreased the C:N ratio and thus improved the sample quality. The obtained C:N ratio of the permeates falls within the proposed C:N ranges of uncontaminated wool and silk, indicating the absence of contaminants in the permeates. The ¹⁴C dates of the cross-flow nanofiltrated wool samples (permeate) are in perfect agreement with the presumed historical dates, suggesting uncontaminated wool samples (Baldwin 46 and Baldwin 43) are not in agreement with the presumed historical date, but this disagreement is probably due to the reuse of older (parts of) textiles as suggested by Van Strydonck and Bénazeth (2014).

The brown color of the contaminated samples Beerlegem, Baldwin 46, and Baldwin 43 are likely due to the presence of humic substances, as shown by nondestructive spectrofluorescence analyses in Boudin et al. (2011, 2014), and also demonstrated by the decrease of C:N ratio of the permeate after cross-flow nanofiltration as well as the good agreement of the ¹⁴C date with the presumed historical date.

CONCLUSION

The C:N ratio is a good indicator for sample quality (contamination) of naturally dyed (until AD 1856) archaeological wool and silk for ¹⁴C dating. The C:N range indicating good (uncontaminated) sample quality is between 2.9 and 3.4 for silk and between 3.4 and 3.8 for wool. If the C:N ratio of the archaeological sample is greater than the upper boundary of the C:N range of wool and silk, respectively, 3.8 and 3.4, then the following may be true:

- 1. The sample may be dyed with *Miscanthus tinctorius* or with *Sophora japonica* in the case of Eastern Asian textiles or with gallic acid (used worldwide). A dye analysis can reveal if one of these three dyes was applied on the textile. If the dye analysis is positive, the sample is not contaminated and can undergo ¹⁴C analysis.
- 2. However, if the dye analysis is negative (none of the aforementioned dyes detected), the sample is contaminated and should be rejected for ¹⁴C dating, with the too-high C:N ratio indicating contamination. An option to avoid dye analysis is taking samples for ¹⁴C dating with a different color than the color obtained by applying these three dyes.

REFERENCES

- Alon D, Mintz G, Cohen I, Weiner S, Boaretto E. 2002. The use of Raman spectroscopy to monitor the removal of humic substances from charcoal: quality control for ¹⁴C dating of charcoal. *Radiocarbon* 44(1):1–11.
- Ambrose SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. *Journal of Archaeological Science* 17(4):431–51.
- Aspland JR. 1997. Textile Dyeing and Coloration. Durham: American Association of Textile Chemists and Colorists. p 244–5.
- Bechtold T, Mussak R. 2009. *Handbook of Natural Colorants*. Chichester: Wiley & Sons.
- Becker MA, Magoshi Y, Sakai T, Tuross NC. 1997. Chemical and physical properties of old silk fabrics + biochemical analysis of 17 Japanese silk kimono lining fabrics. *Studies in Conservation* 42(1):27–37.
- Boudin M, Boeckx P, Vandenabeele P, Mitschke S, Van Strydonck M. 2011. Monitoring the presence of humic substances in wool and silk by the use of nondestructive fluorescence spectroscopy: quality control for ¹⁴C dating of wool and silk. *Radiocarbon* 53(3):429–42.
- Boudin M, Boeckx P, Vandenabeele P, Van Strydonck M. 2013. Improved radiocarbon dating for contaminated archaeological bone collagen, silk, wool and hair samples via cross-flow nanofiltrated amino acids. *Rapid Communications* for Mass Spectrometry 27(18):2039–50.
- Boudin M, Boeckx P, Vandenabeele P, Van Strydonck M. 2014. An archaeological mystery revealed by radiocarbon dating of cross-flow nanofiltrated amino acids derived from bone collagen, silk, and hair: case study of the bishops Baldwin I and Radbot II from Noyon-Tournai. *Radiocarbon* 56(2):603–17.
- Boudin M, Van Strydonck M, van den Brande T, Synal H-A, Wacker L. 2015. A new AMS facility at the Royal Institute for Cultural Heritage, Brussels, Belgium. Nuclear Instruments and Methods in Physics Research B 361:120–3.
- Bronk Ramsey C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. *Radiocarbon* 37(2):425–30.
- Bronk Ramsey C. 2001. Development of the radiocarbon calibration program. *Radiocarbon* 43(2A):355–63.
- Dedhia EM. 1998. Natural dyes. Colourage 45(3):45-9.
- DeNiro MJ. 1985. Postmortem preservation and alteration of *in vivo* bone collagen isotope ratios in relation to palaeodietary reconstruction. *Nature* 317(6040):806–9.
- Gillespie JM, Broad A, Reis PJ. 1969. Further study on the dietary-regulated biosynthesis of highsulphur wool proteins. *Biochemical Journal* 112 (1):41–9.
- Gulrajani ML, Gupta D. 1992. Natural Dyes and Application to Textiles. New Delhi: Department

of Textile Technology, Indian Institute of Technology.

- Hajdas I, Cristi C, Bonani G, Maurer M. 2014. Textiles and radiocarbon dating. *Radiocarbon* 56(2):637–43.
- Herbst W, Hunger K. 1997. Industrial organic pigments. Production, properties, applications. *Journal* of American Institute of Conservation 45:107–25.
- Hofenk de Graaff J. 2004. The Colourful Past: Origins, Chemistry and Identification of Natural Dyestuffs. London: Archetype Publications.
- Holme I. 2006. Sir William Henry Perkin: a review of his life, work and legacy. *Coloration Technology* 122(5):235–51.
- IUPAC. 2006. Compendium of Chemical Terminology, 2nd edition (the "Gold Book"). Compiled by A D McNaught and A Wilkinson. Oxford: Blackwell Scientific Publications (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M Nic, J Jirat, B Kosata; updates compiled by A Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook
- Jones LN, Rivett DE, Tucker DJ. 1998. Wool and related mammalian fibres. In: Lewin M, Pearce EM, editors. *Handbook of Fibre Chemistry*. New York: Marcel Dekker. p 356–414.
- Kim K, Southon J, Imamura M, Sparks R. 2008. Development of sample pretreatment of silk for radiocarbon dating. *Radiocarbon* 50(1):131–8.
- Kuzmin Y, Keally C, Jull A, Burr G, Klyuev N. 2012. The earliest surviving textiles in East Asia from Chertovy Vorota Cave, Primorye Province, Russian Far East. *Antiquity* 86(332): 325–37.
- Leeder JD, Marshall RC. 1982. Readily-extracted proteins from merino wool. *Textile Research Journal* 52(4):245–9.
- Ling HT. 2009. Natural dyes in Eastern Asia, Vietnam and neighbouring countries. In: Bechtold T, Mussak R, editors. *Handbook of Natural Colorants*. Chichester: Wiley & Sons. p 65–72.
- Maclaren JA, Milligan B. 1981. Wool Science The Chemical Reactivity of the Wool Fibre. Marrickville: Science Press. p 1–16.
- Mannering U, Possnert G, Heinemeier J, Gleba M. 2010. Dating Danish textiles and skins from bog finds by means of ¹⁴C AMS. *Journal of Archae*ological Science 37(2):261–8.
- Nadeau M-J, Grootes PM, Schliecher M, Hasselberg P, Rieck A, Bitterling M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. *Radiocarbon* 40(1):239–45.
- O'Connell TC, Hedges REM. 1999a. Investigations into the effect of diet on modern human hair isotopic values. *American Journal of Physical Anthropology* 108(4):409–25.
- O'Connell TC, Hedges REM. 1999b. Isotopic comparison of hair and bone: archaeological analyses. *Journal of Archaeological Science* 26(6):661–5.

- O'Connell TC, Hedges REM, Healey MA, Simpson AHRW. 2001. Isotopic comparison of hair, nail and bone: modern analyses. *Journal of Archaeological Science* 28(11):1247–55.
- Rageth J. 2004. Radiocarbon dating of textiles. *Orientations* 35(4):57–62.
- Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J. 2013. IntCall3 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. *Radiocarbon* 55(4):1869–87.
- Schoeninger MJ, Moore KM, Murray ML, Kingston JD. 1989. Detection of bone preservation in archaeological and fossil samples. *Applied Geochemistry* 4:281–92.
- Sibley LR, Jakes KA. 1984. Survival of protein fibers in archaeological contexts. *Science and Archaeology* 26:17–27.
- Taylor RE, Hare E, Prior CA, Kirner DL, Wan L, Burky RR. 1995. Radiocarbon dating of biochemically characterized hair. *Radiocarbon* 37 (2):319–30.
- Van den Berghe I, Gleba M, Mannering U. 2009. Towards the identification of dyestuffs in Early Iron Age Scandinavian peat bog textiles. *Journal of Archaeological Science* 36(9):1910–21.
- van der Plicht J, van der Sanden WAB, Aerts AT, Streurma HJ. 2004. Dating bog bodies by means of ¹⁴C-AMS. *Journal of Archaeological Science* 31:471–91.

- Van Strydonck Bénazeth D. 2014. Four Coptic textiles from the Louvre collection ¹⁴C redated after 55 years. *Radiocarbon* 56(1):1–5.
- Van Strydonck M, Grömer K. 2013. Analysis reports ¹⁴C-dating of textiles from the Hallstatt salt mine. In: Grömer K, Kern A, Reschreiter H, Rösel- Mautendorfer H, editors. *Textiles from Hallstatt.* Weaving Culture in Bronze and Iron Age Salt Mines. *Textilien aus Hallstatt. Gewebte Kultur aus* dem bronze- und eisenzeitlichen Salzbergwerk. Budapest: Archaeolingua 29. p 189–92.
- Van Strydonck M, Van der Borg K. 1990–1991. The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage, Brussels. Bulletin Koninklijk Instituut voor Kunstpatrimonium 23:228–34.
- Van Strydonck M, De Moor A, Bénazeth D. 2004. ¹⁴C dating compared to art historical dating of Roman and Coptic textiles from Egypt. *Radiocarbon* 46(1):231–44.
- Van Strydonck M, Boudin M, Ervynck A. 2005. Humans and myotragus: the issue of sample integrity in radiocarbon dating. In: Alcover JA, Bover P, editors. Proceedings of the International Symposium "Insular Vertebrate Evolution: The Palaeontological Approach." Palma. Onografies de la Societat d'Història Natural de les Balears 12:369–76.
- Vedeler M, Bender Jørgensen L. 2013. Out of the Norwegian glaciers: Lendbreen—a tunic from the early first millennium AD. *Antiquity* 87(337): 788–801.
- Wouters J. 1985. High performance liquid chromatography of anthaquinones analysis of plant and insect extracts and dyed textiles. *Studies in Conservation* 30:119–28.