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Microorganisms are commonly found swimming in complex biological fluids such as
mucus and these fluids respond elastically to deformation. These viscoelastic fluids have
been previously shown to affect the swimming kinematics of these microorganisms in
non-trivial ways depending on the rheology of the fluid, the particular swimming gait and
the structural properties of the immersed body. In this report we put forth a previously
unmentioned mechanism by which swimming organisms can experience a speed increase
in a viscoelastic fluid. Using numerical simulations and asymptotic theory we find that
significant swirling flow around a microscopic swimmer couples with the elasticity of
the fluid to generate a marked increase in the swimming speed. We show that the speed
enhancement is related to the introduction of mixed flow behind the swimmer and the
presence of hoop stresses along its body. Furthermore, this effect persists when varying
the fluid rheology and when considering different swimming gaits. This, combined with
the generality of the phenomenon (i.e. the coupling of vortical flow with fluid elasticity
near a microscopic swimmer), leads us to believe that this method of speed enhancement
could be present for a wide range of microorganisms moving through complex fluids.
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1. Introduction

Recently, scientists have taken a keen interest in the motion of microorganisms
swimming in complex fluids (Spagnolie 2015; Patteson, Gopinath & Arratia 2016).
Examples of microscopic ‘swimmers’ moving through complicated biofluids abound:
spermatozoa swims through the cervical mucus of the reproductive tract (Fauci & Dillon
2006; Suarez & Pacey 2006; Katz, Mills & Pritchett 2008), the bacteria Escherichia
coli resides in the mucus of the intestine (Sillankorva, Oliveira & Azeredo 2012)
and Borrelia burgdorferi (the organism responsible for causing Lyme disease) must
traverse the extracellular matrix of mammalian skin (Harman et al. 2012). In each of
these cases, the fluid in which the microorganism is immersed exhibits non-Newtonian
behaviour due to the presence of large biological molecules creating a rich underlying
microstructure (Spagnolie 2015). Understanding motility in these environments is not
only interesting from a scientific perspective, but may also aid researchers in a variety of
engineering applications, including preventing the spread of disease by disrupting biofilm
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formation (Costerton, Stewart & Greenberg 1999). A fundamental understanding of how
microorganisms propel in complex fluids also enables the development of more advanced
synthetic swimmers, which have been designed for targeted drug delivery (Patra et al.
2013; Gao & Wang 2014), minimally invasive surgery (Yan et al. 2017) and various other
biomedical applications (Li et al. 2017).

It is now known that elasticity can impact the ability of an organism to swim, but this
varies greatly depending on the kinematics of the gait (Godínez et al. 2015; Elfring &
Goyal 2016), the structural properties of the immersed body and the rheology of the
surrounding fluid (Dasgupta et al. 2013). In many cases, it has been observed that fluid
elasticity can lead to a decrease in the swimming speed (Fu, Powers & Wolgemuth 2007;
Lauga 2007; Fu, Wolgemuth & Powers 2009; Shen & Arratia 2011; Zhu et al. 2011;
Zhu, Lauga & Brandt 2012; Binagia, Guido & Shaqfeh 2019). One may then ask under
what conditions can elasticity actually enhance the speed of a swimming microorganism?
Several mechanisms for viscoelastic speed enhancement have been put forth, beginning
with Teran, Fauci & Shelley (2010), who showed that large-amplitude undulatory motion
could lead to a speed increase. Shortly thereafter, Liu, Powers & Breuer (2011) and
Spagnolie, Liu & Powers (2013) found that large-amplitude motion was also required to
observe a speed enhancement for the case of helical motion. Thomases et al. and Riley
et al. later demonstrated the importance of the elasticity of the immersed body, finding
that microorganisms with sufficiently flexibility would swim faster in viscoelastic fluids
(Riley & Lauga 2014; Thomases & Guy 2014, 2017). Lastly, phase separation resulting
from the depletion of polymer molecules near bacterial flagellum creates an apparent slip
that allows microorganisms to swim faster in shear-thinning fluids (Martinez et al. 2014;
Man & Lauga 2015; Zöttl & Yeomans 2019).

In this report we propose an alternative mechanism for the speed enhancement of
swimming microorganisms that originates from the coupling of fluid elasticity and local
swirling flow. Indeed, previous studies have demonstrated that rotational motion can
engender net translational motion in a viscoelastic fluid via hoop stresses that are created
by the stretching of polymer molecules around the immersed body (Pak et al. 2012;
Rogowski et al. 2018; Puente-Velázquez et al. 2019). To date, however, no one has
explicitly considered how this rotational–translational coupling may affect the propulsion
of self-propelled swimming microorganisms. Certainly, it is not immediately clear what
the effect will be; while the aforementioned studies consider a synthetic swimmer driven to
rotate by an applied torque (created for example by a rotating magnetic field), swimming
microorganisms are wholly self-propelled, capable of swimming in the absence of any
external forces/torques. In studying this phenomenon, we are particularly motivated by
recent experimental work studying the motion of E. coli in a viscoelastic fluid (Patteson
et al. 2015). There, it was hypothesized that the increase in speed as a function of polymer
concentration that was observed (Patteson et al. 2016) might be a result of normal stress
differences that could decrease cell ‘wobbling’ and create straighter and longer swimming
trajectories. In this study we use a combination of numerical simulations and asymptotic
theory to show that even a microswimmer constrained to swim in a straight line will
experience a speed enhancement in a viscoelastic fluid so long as there is sufficient
azimuthal swirl in its gait.

2. Mathematical model

2.1. The squirmer model
We first introduce the squirmer model (Lighthill 1952; Blake 1971), which is a spherical
microscopic swimmer with a prescribed gait (given as a slip velocity at its surface).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

45
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.456


Swimming with swirl in a viscoelastic fluid 900 A4-3

This model has been widely used in the area of biological fluid mechanics to better
understand the hydrodynamics of swimming microorganisms (Pedley 2016). It has
especially been used to examine the effect that complex fluid rheology has on the
swimming dynamics (Lauga 2009; Zhu et al. 2011; Zhu, Lauga & Brandt 2012; Li,
Karimi & Ardekani 2014; Datt et al. 2015, 2017; De Corato et al. 2015; Datt & Elfring
2019; Pietrzyk et al. 2019). The general slip velocity for a steady axisymmetric squirmer
exhibiting purely tangential deformations is given by Pak & Lauga as (Pak & Lauga 2014)

us(θ, φ) = sin(θ)

{ ∞∑
n=1

2P′
n

(n + 1)n
Bneθ +

∞∑
n=1

P′
n

an+1
Cneφ

}
, (2.1)

where a is the squirmer’s radius, θ is the polar angle (0 ≤ θ ≤ π ) and φ is the azimuthal
angle (0 ≤ φ < 2π ); P′

n(μ) is the first derivative of the Legendre polynomial of degree n,
where μ = cos(θ). The polar and azimuthal squirming modes are given by Bn and Cn , and
eθ and eφ are the unit vectors in the polar and azimuthal directions, respectively.

Typically, authors only consider the first two polar squirming modes, those related to
the coefficients B1 and B2 in (2.1). This is usually done because in a Newtonian fluid the
swimming speed is determined solely by the value of B1, i.e. UN = 2

3 B1 (Lighthill 1952;
Blake 1971), while B2 is the only coefficient appearing in the particle stresslet (Ishikawa,
Simmonds & Pedley 2006). Furthermore, these are the only two modes necessary to
differentiate between pushers, i.e. swimmers who generate thrust from behind their body
(e.g. E. coli) and pullers, swimmers who generate thrust from the front of their body
(e.g. Chlamydomonas reinhardtii). Only recently have authors started to consider the effect
of higher-order polar squirming modes (Datt et al. 2015; De Corato & D’Avino 2017;
Pietrzyk et al. 2019) or the azimuthal squirming modes (Ghose & Adhikari 2014; Pak &
Lauga 2014; Felderhof & Jones 2016; Pedley 2016; Pedley, Brumley & Goldstein 2016).
To date, however, no one has considered how the presence of the azimuthal modes of the
squirmer model impacts swimming kinematics in a complex fluid.

2.2. Governing equations
We proceed by considering the flow generated by the swimming microorganism, which
must obey conservation of momentum and the continuity equation. In dimensionless form
these equations are given by

Re
(
∂u
∂t

+ u · ∇u
)

= ∇ · σ , ∇ · u = 0, (2.2a,b)

where u is the fluid velocity, p is pressure and σ is the Cauchy stress tensor. We have
scaled velocities with the first swimming mode B1, lengths with the squirmer radius a,
time with the convective time scale a/B1 and stresses with μ0B1/a, where μ0 is the total
zero-shear viscosity of the fluid. The Reynolds number is given by Re = ρB1a/μ0 where ρ
is the fluid density. Owing to their small size and the viscous environments in which they
are commonly found, microorganisms swim at virtually zero Reynolds number (Purcell
1977). Thus, we assume Stokes flow (Re = 0) for our asymptotic theory, and conduct our
numerical simulations at sufficiently low Re such that the kinematics are not significantly
affected by inertia; we find Re = 0.1 to be sufficient for these purposes.

For a viscoelastic fluid, the total stress σ can be expressed as

σ = −pI + β(∇u + ∇uT)+ τ p, (2.3)

where τ p is the polymer extra-stress tensor and β = μs/(μs + μp) = μs/μ0 is the
viscosity ratio for a fluid with solvent viscosity μs and polymer viscosity μp; τ p is
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determined with the Giesekus constitutive model (Giesekus 1982)

τ p = 1 − β

Wi
(c − I) (2.4)

Wi
�
c + (c − I)+ αm(c − I)2 = 0. (2.5)

In (2.4) and (2.5), c is the polymer conformation tensor,
�
c = ∂c/∂t + u · ∇c − ∇uT · c −

c · ∇u is the upper-convected time derivative, and Wi = λB1/a is the Weissenberg number,
which describes the degree of fluid elasticity. The Giesekus constitutive equation considers
the polymer molecules in the fluid to be Hookean dumbbells, and allows for anisotropic
drag on these dumbbells via the Giesekus mobility parameter αm (Bird, Armstrong &
Hassager 1977).

3. Solution methodology

3.1. Numerical solution
We numerically solve the above set of equations as follows. We consider the co-moving
frame of reference, i.e. the stationary squirmer experiences a uniform flow given by −Uez.
This uniform flow is imposed on the outer walls of a cylindrical domain with length 40a
and radius 20a. This simulation set-up is shown in figure 1(a). This uniform flow is also
specified at the inlet (top) of the box, where additionally the conformation tensor is set to
identity, c = I . A convective outlet boundary condition is used at the exit of the simulation
box.

As a minimal model for a squirmer with swirl, we consider the slip velocity given by
(2.1) with the first two polar modes (corresponding to B1 and B2) and the second azimuthal
mode (corresponding to C2) as being non-zero. Thus, in the chosen frame of reference, the
boundary condition at the surface of the squirmer is

u|r=1 =
(

sin(θ)+ ξ

2
sin(2θ)

)
eθ +

(
Ω sin(θ)+ 3ζ

2
sin(2θ)

)
eφ. (3.1)

As previously discussed, ξ = B2/B1 denotes the type of swimmer: pushers have ξ < 0,
pullers have ξ > 0 and ‘neutral’ squirmers have ξ = 0. The new dimensionless group
ζ = C2/(B1a3) denotes the relative magnitude of the azimuthal to the polar flow around
the swimming organism. The reason we consider the C2 swirling mode, corresponding to
a rotlet dipole flow (Pak & Lauga 2014), is to produce in a simple way the flow field of a
microorganism with a rotating flagellum and counter-rotating body. To illustrate this flow
qualitatively, in figure 1(b), we visualize streamlines around a neutral squirmer (ξ = 0) for
ζ = 5 and Wi = 0.

We solve the above governing equations and boundary conditions using a third-order
accurate finite volume flow solver developed by Stanford’s Center for Turbulence Research
(Ham, Mattsson & Iaccarino 2006). Equation (2.5) is solved as six scalar equations (since
c is symmetric) using a log-conformation approach to ensure c remains positive–definite
(Fattal & Kupferman 2004; Hulsen, Fattal & Kupferman 2005). Further details of the
method described thus far, including extensive validation studies and comparison with
experiments, can be found in previously published works (Richter, Iaccarino & Shaqfeh
2010; Padhy et al. 2013; Yang, Krishnan & Shaqfeh 2016; Castillo et al. 2019). Since
a microorganism swimming at low Reynolds number must be force and torque free
(Lauga & Powers 2009), we iteratively calculate U and Ω through time stepping until the
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(a)

U

a

U

Outlet

(b) z
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FIGURE 1. (a) Simulation set-up for a squirmer with swirl as seen in the co-moving frame
(swimming in the positive z direction). Note that the dimensions are not drawn to scale.
(b) Streamlines around the neutral squirmer (ξ ) at Wi = 0 and ζ = 5, shown to illustrate the
qualitative shape of the flow that results from the inclusion of the term related to azimuthal swirl
in (3.1).

z-components of the measured net force and torque on the squirmer vanish at steady state
(the other components of force and torque vanish due to the axisymmetry of the problem).
Since we work in the co-moving frame of reference, it is natural to use a body-fitted
mesh; thus we make use of an unstructured mesh of tetrahedral elements with increasing
resolution near the squirmer. We have conducted a series of studies on successively refined
meshes in space and time to ensure the accuracy of our simulations; the kinematic results
presented change by no more than 1 % when moving to a mesh size or time step size that
is two times as coarse.

3.2. Asymptotic solution
We augment our simulations with an asymptotic theory valid in the limit of Wi � 1.
Specifically, we consider a regular perturbation expansion to obtain U and Ω as a power
series in Wi. The theoretical analysis is performed using (2.2), (2.3) and (2.5) for zero
Reynolds numbers (Re = 0), an unbounded flow, and assuming steady state. Because of
the particle geometry, the equations are expressed conveniently in a spherical coordinate
system rθφ where r is the distance from the centre of the particle, θ is the polar angle
(0 ≤ θ ≤ π ) and φ is the azimuthal angle (0 ≤ φ < 2π ). The domain of definition of
the governing equations is D = {1 < r < ∞, 0 < θ < π, 0 ≤ φ < 2π}. Although all
the components of the velocity are non-zero, the flow is axisymmetric, i.e. there is no
dependence of the dependent flow variables on φ:

p = p(r, θ), u =
∑

i=r,θ,φ

ui(r, θ) ei, τ p =
∑

i,j=r,θ,φ

τ
p
i,j(r, θ) eiej, c =

∑
i,j=r,θ,φ

ci,j(r, θ) eiej.

(3.2a–d)

Note that τ p and c are connected linearly (see (2.4) above). In the spherical coordinate
system, the boundary conditions on the surface of the particle are

ur = 0, uθ = sin(θ)+ ξ

2
sin(2θ), uφ = Ω sin(θ)+ 3

2
ζ sin(2θ) at r = 1. (3.3)
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The above conditions in conjunction with the continuity equation give

∂ur

∂r

∣∣∣∣
r=1

= −ξ
2

− 2 cos(θ)− 3ξ
2

cos(2θ). (3.4)

Far from the particle, the far-field flow is given as

u∞
r = −U cos(θ), u∞

θ = U sin(θ), u∞
φ = 0, p∞ = 0, (3.5a–d)

where the superscript ∞ denotes value at infinity (r → ∞).
The unknown far-field flow velocity, U, and rotation rate of the particle, Ω , are

determined by ensuring the microswimmer is force and torque free (Lauga & Powers 2009)

∫
r=1

er · σ dS = 0,
∫

r=1
er × (er · σ ) dS = 0. (3.6a,b)

The non-trivial components of the force-free condition (FFC) and the torque-free
condition (TFC) are, respectively,

∫ π

0

{(p
2

sin(2θ)
)

+ β

((
1
r
∂ur

∂θ
+ ∂uθ
∂r

− uθ
r

)
sin2(θ)− ∂ur

∂r
sin(2θ)

)

+
(
τ

p
rθ sin2(θ)− τ p

rr
sin(2θ)

2

)}
dθ = 0 (3.7)

∫ π

0

(
β

(
∂uφ
∂r

− uφ
r

)
+ τ

p
rφ

)
sin2(θ) dθ = 0. (3.8)

Although (3.7) and (3.8) are evaluated at r = 1 in order to determine U and Ω , one can
prove that, under steady state and creeping conditions, they hold at any radial position,
r ≥ 1. Finally, note that with the asymptotic analysis, no boundary conditions are applied
(and cannot be imposed) for the polymer extra stress τ p.

In order to solve (2.2), (2.3) and (2.5) accompanied by the auxiliary conditions ((3.3)
to (3.5) and (3.8) and § 3.2), we use a regular perturbation scheme in terms of the
Weissenberg number. In particular, for a weakly viscoelastic fluid, i.e. 0 < Wi << 1, the
solution for all the dependent variables is given as a standard power series expansion in
terms of Wi

X ≈ X0 + Wi X1 + Wi2 X2 + · · ·
X = U,Ω, p, ur, uθ , uφ, τ p

rr, τ
p
θθ , τ

p
rθ , τ

p
φφ, τ

p
rφ, τ

p
θφ

}
, (3.9)

where the zero-order term, X0, corresponds to the simple Newtonian fluid. In this type of
analysis, the remaining parameters am, β, ζ, ξ are considered O(1) quantities. The solution
procedure for a similar flow problem with no-slip boundary conditions has been described
in recent work by Housiadas (2019) and the interested reader is referred thereto for more
details.
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The analytical solution for the Newtonian fluid, i.e. for the Stokes equations, is

ur,0 = ξ

4

(
1
r4

− 1
r2

)
(1 + 3 cos(2θ))+ U0

(
1
r3

− 1
)

cos(θ), (3.10)

uθ,0 = U0

(
1 + 1

2r3

)
sin(θ)+ ξ

2r4
sin(2θ), (3.11)

uφ,0 = Ω0

r2
sin(θ)+ 3ζ

2r3
sin(2θ), (3.12)

p0 = − ξ

2r3
(1 + 3 cos(2θ)) . (3.13)

Note that U0 = 2
3 andΩ0 = 0 have been determined. We have also solved the perturbation

equations analytically up to O(Wi4) using the ‘Mathematica’ software (Wolfram Research,
Inc. 2019). The most important results are the velocity at infinity and the rotation rate of
the swimmer. We find

U ≈ 2
3

+ (1 − β)Wi
(
U1 + Wi U2 + Wi2 U3 + Wi3 U4

)
, (3.14)

where U1 and U2, respectively, are

U1 = 2
15
(αm − 1)ξ (3.15)

U2 =
(

− 772
2145

− 64αm

65
+ 128α2

m

195

)

+ ξ 2

(
− 6218

15015
− 101168am

45045
+ 7376a2

m

5005
+

(
− 58

1365
+ 3032am

45045
− 86a2

m

3465

)
(1 − β)

)

+ ζ 2

(
468
385

− 21744αm

5005
+ 15744a2

m

5005
+

(
−4392

5005
+ 1944am

1001
− 5328a2

m

5005

)
(1 − β)

)
.

(3.16)

For the rotation rate of the particle, we have found the solution up to fifth order in Wi

Ω ≈ ζ Wi(1 − β)
(
Ω1 + WiΩ2 + Wi2Ω3 + Wi3Ω4 + Wi4Ω5

)
, (3.17)

where Ω1 and Ω2 are given below.

Ω1 = 6
5
(1 − αm), (3.18)

Ω2 = ξ
12(1043 + 2912αm − 2000α2

m)− 6(623 − 1158αm + 535α2
m)(1 − β)

5005
. (3.19)

The higher-order corrections for U and Ω are available upon request. Note that setting
ζ = 0 and β = 0 recovers the solution of Datt & Elfring (2019, 2020) through O(Wi3).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

45
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.456


900 A4-8 J. P. Binagia, A. Phoa, K. D. Housiadas and E. S. G. Shaqfeh

4. Results and discussion

4.1. The effect of azimuthal swirl on the swimming speed
We begin by looking at the effect of azimuthal swirl on the kinematics of the swimmer.
Note that, while the rotation rate for our particular swimming gait is zero in a Newtonian
fluid and under creeping flow conditions (Re = 0), i.e. ΩN = −C1ez/a3 as given by Pak &
Lauga (2014), it is actually non-zero but small (Ω ≤ 0.25) for finite Wi due to the nonlinear
coupling between rotation and translation in a viscoelastic fluid (Castillo et al. 2019).
Interestingly enough, the effect of this coupling on rotation rate even vanishes in the
presence of significant fluid elasticity. We illustrate this in figure 2(b), where we plot the
rotation rate scaled by its dominant scaling (as found in the previous section) for the case
of a neutral squirmer. From this plot we see that there will only be a slight rotation due
to the azimuthal swirl solely for small but finite Wi (i.e. 0.1 � Wi � 1). Because of this,
we will focus our attention on the change in translational speed for the remainder of this
report. Unless otherwise stated, we will consider β = 0.5 and αm = 0.2 for the rheological
properties of the fluid.

We first recall the effect of elasticity for the case of no swirl, where it was found that
squirmers swim slower in a viscoelastic fluid for all Wi (Zhu et al. 2011, 2012). This
result corresponds to the case of ζ = 0 in figure 2, where we plot the swimming speed
of the neutral squirmer (ξ = 0) normalized by the Newtonian swimming speed UN as a
function of Wi and ζ . Our results for ζ = 0 differ by no more than 2.8 % from those of Zhu
et al. (2012), serving as one validation of our current results. Without loss of generality
we consider only positive ζ since changing its sign does not alter its effect on U from
symmetry. For the cases of zero (ζ = 0) or relatively small (ζ = 1) azimuthal swirl we see
that the squirmer swims slower in a viscoelastic fluid than it does in a Newtonian fluid.
In stark contrast, for significant swirling flow (ζ = 3, 5), the normalized speed exceeds
unity indicating speed enhancement. Increasing Wi causes the effect to become more
pronounced before appearing to reach an asymptotic value at large Wi. For all values
of ζ , our numerical results are corroborated by the asymptotic theory (shown as dashed
curves, cf. figures 2a and 3a) for small Wi, i.e. (3.14). The reason the agreement of the
numerical solution with the asymptotic results is good only for small Wi is the strongly
nonlinear character of the swirling slip velocity with viscoelasticity. It is also an indication
of a coil–stretch transition at a finite Weissenberg number Wic, a case that does not allow
for accurate predictions of the flow close to Wic using high-order perturbations methods
(Housiadas 2017).

As mentioned in § 2.1, we nominally perform our simulations at a Re small enough
such that the effect of inertia is minimized. We have also performed an additional set of
simulations whereby we solved (2.2) only after completely discarding the second term,
which represents convective forces in the fluid. In this way, we can carefully examine
the impact inertia has in regards to creating a speed enhancement. These simulations
are shown for the case of a neutral squirmer with swirl (ζ = 3, 5) in figure 3(b). From
this figure, we see that at most the error in retaining all terms of the Navier–Stokes
equation is approximately 7 % (seen at the largest value of Wi = 3 and ζ = 5). For
smaller ζ , the difference is reduced to a few percentage points; indeed, one expects the
difference in these two solution methodologies to vanish as ζ decreases since ζ controls
the relative amount of rotational inertia in the fluid. An additional conclusion to be made
from figure 3(b) is that the nonlinear rotational–translational coupling originating from
fluid inertia (rather than fluid elasticity) appears to act synergistically with the latter to
further increase the swimming speed. Since we are primarily interested in this work in the
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FIGURE 2. (a) Normalized swimming speed (U/UN) and (b) scaled rotation rate as a function
of Wi and ζ for the neutral squirmer (ξ = 0). Filled circles refer to numerical simulations while
dashed lines refer to the asymptotic theory through O(Wi2) for U and through O(Wi3) forΩ . The
results are presented in this way since only even (odd) terms with respect to Wi are non-zero in
the asymptotic expansion for U (Ω) for the neutral squirmer. For significant swirl (ζ = 3, 5), the
squirmer swims faster in the viscoelastic fluid, with the speed increase growing with increasing
fluid elasticity (Wi).

(a) (b)
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FIGURE 3. Normalized swimming speed (U/UN) as a function of Wi and ζ for the neutral
squirmer (ξ = 0). In (a) we recapitulate the results of figure 2(a) to better visualize the trends
at low Wi. Dashed lines refer to the O(Wi2) solutions. In (b) we examine how the results change
in the presence and absence of inertia (Re = 0.1 and 0, respectively). The latter (Re = 0) results
were obtained by solving (2.2) after discarding the nonlinear convective term.

coupling originating from fluid elasticity rather than inertia, all subsequent simulations
where we expect rotational inertia to be significant (i.e. ζ ≥ 3) are conducted at Re = 0
unless stated otherwise. In this way, our simulation results will present a lower bound
on the effect of swirl in a viscoelastic fluid since any real swimming microorganism will
experience some finite amount of inertia.

4.2. The relationship between speed enhancement and the polymer stress in the
surrounding flow

To better understand the origin of the speed enhancement seen in figure 2, we examined
the polymer stress field around the neutral squirmer in the case of no azimuthal swirl
(ζ = 0) and a significant degree of swirl (ζ = 5) in figure 4. In figure 4, we are viewing
the y = 0 plane for a swimmer moving in the positive z-direction. We first look at the
z–z component of the polymer stress tensor, shown in figure 4(a) as a function of ζ . It
is seen that the large amount of extensional stress in the swimmer’s wake in the case of
no swirl diminishes dramatically in the presence of significant swirling flow. This follows
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(a) (b) ζ = 5ζ = 5 ζ = 0ζ = 0
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FIGURE 4. Components of the polymer stress tensor (τ p) surrounding the neutral squirmer
(swimming in the positive z direction) at Wi = 2. (a) The z–z component of the polymer stress
(τ p

zz) is largest behind the swimmer and diminishes once swirl is introduced (ζ = 5). (b) In
contrast, the φ–φ component of the polymer stress (τ p

φφ) is essentially non-existent in the case of
no swirl (ζ = 0) and becomes the dominant component of the polymer stress tensor at ζ = 5.

since for no swirl the back of the swimmer is an extensional point in the flow field, where
polymers can readily deform and cause marked decrease in swimming speeds (Shen &
Arratia 2011; Binagia et al. 2019). By changing the slip velocity to include an azimuthal
component, we necessarily introduce a vortical component to the flow near this location,
thereby decreasing its extensional character. With the diminution of extensional stress, we
see the creation of hoop stresses (corresponding to τ p

φφ in spherical coordinates) when
azimuthal swirl is included in the model (cf. figure 4b). Note that this is the type of stress
alluded to by Patteson et al. (2015), who hypothesized that hoop stresses could decrease
cell wobbling and thereby lead to straighter swimming trajectories and consequently faster
speeds.

These trends for the polymer stress suggest a possible mechanisms for the speed
enhancement seen in figure 2. As the large extensional τ p

zz stress found behind the swimmer
in the case of no swirl (ζ = 0) was previously reported to be responsible for speed
hindrance (Zhu et al. 2012), we expect its diminution to lead to an increase in the
swimming speed.

To examine this hypothesis in more detail we consider the force tractions acting on
the surface of the swimming microorganism. The net force acting on the particle in the
swimming direction is given in indicial notation by Fz = ∫

S σz jnj dS = 0. This net force
can be decomposed into pressure, viscous and polymeric contributions according to (2.3):
i.e. Fz = Fpres

z + Fvisc
z + Fpoly

z = 0. We plot each of these contributions to the net force in
figure 5 as a function of Wi for ζ = 0 and ζ = 5. We also further decompose the polymer
contribution into that related to the normal stress τ p

zz and the shear stress τ p
zρ (where ρ

refers to the radial coordinate in cylindrical coordinates). That is, Fpoly
z = ∫

S τ
p
zznz dS +∫

S τ
p
zρnρ dS (with no contribution related to τ

p
zφ since nφ = 0). We see from figure 5

that the inclusion of azimuthal swirl (i.e. moving from figures 5a to 5b) only causes a
slight change in the contribution related to the polymer shear stress τ p

zρ . In contrast, the
presence of swirl significantly affects the normal stress (τ p

zz) contribution to the net force,
causing it to not only increase but actually become propulsive for all Wi. This trend can
be anticipated from figure 4(a), where the inclusion of swirl removes the region of high
extensional resistance behind the swimmer but does not significantly change the small
regions located at the front half of the swimmer that yield positive contributions to the net
force.

To better visualize this, in figure 6 we plot the surface tractions related to τ p
zz and τ p

zρ
as a function of the polar angle θ . We immediately see that the biggest change with the
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(a) (b)
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FIGURE 5. Net force contributions acting in the swimming (z) direction in the case of
(a) ζ = 0 and (b) ζ = 5. The pressure, viscous and polymer contributions are given in cylindrical
coordinates by Fpres

z = − ∫
S pnz dS, Fvisc

z = β
∫

S(∇zuj + ∇juz)nj dS and Fpoly
z = ∫

S τ
p
zjnj dS,

respectively (i.e. Fz = Fpres
z + Fvisc

z + Fpoly
z = 0). The polymer stress contribution, Fpoly

z , is
further broken down into portions related to normal polymeric stresses (τ p

zz) and shear polymeric
stresses (τ p

zρ); notably, the former becomes positive (acting as a thrust) for all Wi in the presence
of significant swirl (ζ = 5).

(a () b)
2

1

–1

0

0

–7.5

–5.0

–2.5

0

1 2 3

θ

0 1 2 3

θ

τzznzp τzρnρp

ζ = 5

ζ = 0

FIGURE 6. Surface tractions (a) τ p
zznz and (b) τ p

zρnz as a function of the polar angle θ and
the degree of azimuthal swirl, ζ , for a neutral squirmer at Wi = 2. With increasing swirl, τ p

zznz
degrees in magnitude near the back of the squirmer (θ = π ). In contrast, τ p

zρnz increases with
increasing ζ for most values of θ , except near θ = π where it decreases significantly and actually
changes sign.

addition of swirl occurs at the back of the swimmer, i.e. near θ = π . Notably, τ p
zznz, which

nominally is responsible for the slow down in the case of no swirl (Zhu et al. 2012),
severely decreases in magnitude as ζ is increased. All else equal, one would expect this to
lead to an increase in the swimming speed. Of course the net effect depends on how the
surface tractions related to the hoop stresses, i.e. τ p

zρnρ , vary with ζ . From figure 6(b),
we that while there is an increase of τ p

zρnρ for most values of θ in the presence of
swirl, a significant decrease is seen near θ = π . These two trends appear to offset each
other; this explains the minimal change in the component of Fz related to τ p

zρ seen in
figure 5. We thus argue that it is the change in the extensional stress that dominates the
change in speed. Thus, taking the results of figures 4 to 6 together, we conclude that the
microswimmer experiences an increase in its swimming speed when the rotational flow
originating from the rotlet dipole squirming mode is significant enough to disrupt the
predominantly extensional flow behind the squirmer.
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FIGURE 7. Normalized swimming speed (U/UN) as a function of fluid elasticity (Wi), swimmer
type (ξ ) and fluid rheology (αm) in the case of significant swirl (ζ = 5). Filled circles refer to
numerical simulations while dashed lines refer to the asymptotic theory through O(Wi2).

4.3. The effect of the swimmer type (ξ ) and Giesekus mobility parameter (αm)
We would now like to examine how robust the results seen in figure 2 (namely the speed
enhancement for significant azimuthal swirl) are to changes in the swimmer type and the
degree of shear-thinning present in the viscoelastic fluid (tuned via the Giesekus mobility
parameter αm). In figure 7 we plot the normalized swimming speed for a pusher (ξ = −1),
a puller (ξ = 1), and a neutral squirmer (ξ = 0) as a function of Wi at ζ = 5. We see that
the effect of swimming type is modest; pullers exhibit a slightly more pronounced speed
enhancement than that of neutral squirmers while the effect is diminished for pushers.
This makes sense in light of the results of Zhu et al. (2012), where it was found that the
pusher had the greatest region of extensional stress behind the swimmer by a large margin
when compared with that of the other swimmer types. Given the mechanism we described
in the preceding paragraph, we therefore expect the pusher to experience a smaller speed
increase compared with the other swimmer types in the presence of significant swirl given
that there is a greater degree of extensional resistance in the wake to overcome.

In figure 7(b) we plot the normalized swimming speed for the neutral squirmer (ξ = 0)
as a function of Wi and the Giesekus mobility parameter (αm). Note that, in the limit
of αm = 0, the Oldroyd-B model is recovered, which does not exhibit shear thinning
(Giesekus 1982). Thus, decreasing αm amounts to systematically removing shear thinning
from the predictions of the constitutive model for pure shearing. Interestingly, we see from
figure 7(b) that the speed enhancement seen in figure 2 for αm = 0.2 actually becomes
more pronounced as αm is decreased for all but the largest value of Wi = 3. We explore
this effect further in figure 8, where we examine the swimming speed for a neutral squirmer
with significant swirl (ξ = 0, ζ = 5) at Wi = 0.5 as a function of αm. We see that as αm
approaches zero, both theory (specifically, the diagonal Padé [2/2] approximant of (3.14);
Housiadas 2017) and simulation predict an increase in the normalized speed. This suggests
that the effect of shear thinning is to diminish the enhancement in speed created by the
swirling flow; additionally, it means that the results presented at αm = 0.2 effectively
serve as a conservative estimate of the amount by which the swimming speed will be
enhanced in a viscoelastic fluid. Thus, after examining figures 7(b) and 8, we believe
the mechanism for speed enhancement is not related to the fluid thinning around the
swimming microorganism but is rather solely related to the elasticity of the surrounding
fluid.

The other rheological parameter that remains to be explored is the viscosity ratio β.
In figure 9 we examine the effect of β for a neutral squirmer exhibiting a significant
degree of swirl, ζ = 5. Starting from a Newtonian fluid (β = 1), it appears that the
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FIGURE 8. Normalized swimming speed (U/UN) as a function of the Giesekus mobility
parameter (αm) for a neutral squirmer (ξ = 0) with significant swirl (ζ = 5) at Wi = 0.5. Both
the Padé [2/2] approximant of the asymptotic theory (blue, solid line) and numerical simulations
(black, dashed line) predict a further enhancement in speed as αm tends to zero, indicating that
the value of αm = 0.2 chosen for the majority of this study is a conservative estimate for the
effect of swirl on speed.
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FIGURE 9. Normalized swimming speed (U/UN) for the neutral squirmer (ξ = 0) having a
significant degree of azimuthal swirl (ζ = 5) (a) as a function of Wi for discrete values of β and
(b) as a function of β at Wi = 1.

normalized swimming speed is greater than unity for all Wi for β as low as 0.5. As β
is decreased further (i.e. larger fraction of polymer in solution), there comes a critical
value of the viscosity ratio where the normalized speed actually becomes less than 1
for all Wi. Intuitively, this makes sense, since as β decreases we expect the viscoelastic
wake seen in figure 4(a) (which nominally leads to a decrease in the swimming speed) to
become more pronounced. This non-monotonic trend with respect to β can also be seen
in figure 9(b), where we plot the normalized swimming speed at Wi = 1, ζ = 5, ξ = 0
for a range of β. From this figure we see that the swimming speed increases from unity
until a maximum speed enhancement is reached near β = 0.625 for this value of Wi. Past
this value, decreasing β leads to a speed decrease until the normalized speed becomes less
than one for sufficiently small viscosity ratios.

4.4. Estimating ζ and ξ for a real swimming microorganism
Could the phenomenon observed in this paper be responsible for the recent observation
that E. coli swims faster in a viscoelastic fluid (Patteson et al. 2015)? To assess the
relative significance of the azimuthal flow created by E. coli’s rotating flagellum and
counter-rotating body, we would like to estimate ξ and ζ for a typical swimming E. coli.
In regards to ξ = B2/B1, B1 is set via the Newtonian swimming speed since UN = 2

3 B1
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(Lighthill 1952; Blake 1971), where UN = 8.3 µm s−1 (Patteson et al. 2015), and B2 is
calculated via the experimentally measured dipole strength of E. coli (Drescher et al.
2011). We do so by comparing the analytical expression for the far-field disturbance flow
of the squirmer (Ishikawa et al. 2006) to the experimentally measured force dipole flow
of E. coli (Drescher et al. 2011), giving an estimate of B2 ≈ −3.5 µm s−1 and thus ξ ≈
−0.28, which is well within the regime considered in figure 2. To calculate ζ = C2/(a3B1),
we estimate C2/a3 by relating the linear velocity of E. coli’s rotating helix (rotating at
100 Hz and having a helical diameter of 0.5 µm (Lauga 2016)) to the average azimuthal
velocity on the back half of the squirmer. We find that ζ = C2/(a3B1) ≈ 4.2, indicating
that the effect of azimuthal swirl should be quite significant for E. coli swimming in an
elastic fluid given the results seen in figure 2.

4.5. The effect of changing the fluid constitutive equation
A natural question at this point is how robust the prior results (e.g. figure 2) are to the
particular choice of polymer constitutive equation. To answer this, we have conducted
simulations using the FENE-P model (Peterlin 1966) as opposed to the Giesekus model
seen above. The FENE-P model defines the extra polymer stress in terms of c as

τ p = 1 − β

Wi

(
c
ψ

− I
)

(4.1)

Wi
�
c +

(
c
ψ

− I
)

= 0, (4.2)

where ψ = 1 − cii/L2 is the spring-stiffening function and cii is the trace of the
conformation tensor. The FENE-P model considers polymer molecules to be dumbbells
with a finite extensibility L. Thus, we see that for large L, ψ → 1 and the FENE-P model
reduces to the Oldroyd-B constitutive equation.

In figure 10(a), we examine the effect of swirl on the swimming speed of a neutral
squirmer (ξ = 0) using the FENE-P model with L = 5. Note that for this value of L
the maximum polymer stretch (i.e. cii) in the surrounding flow field nearly matches that
measured for our previous results with the Giesekus model using αm = 0.2. For example,
max cii (where the maximum is taken over the computational domain) differs by less than
2 % when comparing the pair of simulations using different constitutive models at ζ = 0,
Wi = 1. Still, from viewing figure 10(b), we see that increasing L only induces a slight
quantitative change in the swimming speed for all Wi. Note that this range of L spans two
orders of magnitude for ψ since it is the square of L that appears in the spring-stiffening
function.

For small to intermediate values of Wi, the effect of swirl is as before (i.e. figure 2);
increasing swirl (ζ ) increases the swimming speed, even leading to a speed enhancement
for large enough values of ζ . In contrast to the results seen using the Giesekus constitutive
equation, we see a non-monotonic trend of U/UN with respect to Wi for non-zero swirl.
Notably, there appears to be a maximum speed enhancement observed near Wi = 0.5
before the normalized speed decreases monotonically at large Wi.

This result implies that qualitative differences can be seen for the effect of fluid rheology
on the swimming kinematics if Wi is sufficiently large. Intuitively this is what we expect;
at such large Wi the specific way in which the polymer stress is modelled will of course
become more pronounced. It should be noted, though, that these values of Wi are unlikely
to be seen for real swimming microorganisms. For example, in the work of Patteson
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FIGURE 10. (a) Normalized swimming speed (U/UN) as a function of Wi and ζ for the neutral
squirmer (ξ = 0) using the FENE-P constitutive equation (L = 5, β = 0.5). (b) Normalized
swimming speed as a function of Wi and L for a neutral squirmer with ζ = 3 at Re = 0.1.

et al. (2015), the maximum mean cell velocity that they observed, 12.4 µm s−1, occurs in
their most elastic fluid, which has a relaxation time λ = 3.96 × 10−2. Thus a conservative
estimate for Wi (using an effective length of the bacteria l = 7 µm) is Wi = λU0/l ≈ 0.07.
Note that our definition of Wi throughout this report defines Wi = λB1/a for the squirmer
model; U ≈ 2/3B1 at small Wi, so we conclude that Wi � 0.1 is the relevant regime for
microorganisms swimming in viscoelastic fluids. Thus for biologically relevant conditions,
our model (regardless of the polymer model used) predicts a speed enhancement for
swimmers creating a significant amount of azimuthal flow.

We would also like to examine how the choice of the polymer constitutive equation
affects the force decomposition illustrated in figure 5. Interestingly enough, we see that
analogous to figure 5, azimuthal swirl has little to no effect on the net force originating
from the off-diagonal component of polymer stress, τ p

zρ . In contrast, an increase of swirl
from ζ = 0 to ζ = 5 is again associated with an increase in the net force related to τ p

zz
for all Wi. It is interesting to note that in contrast to that seen in figure 5, for the FENE-P
model the viscous contribution to Fz is non-monotonic for ζ = 5. In fact, the local minima
for the viscous contribution in figure 11(b) occurs at the same Wi for which the maximum
speed enhancement is observed (cf. figure 10). Taken together with figure 5, we see that
the trends exhibited by the viscous net force are correlated to the normalized swimming
speed. That is, Fvisc

z > 0 appears to be associated with speed reduction while Fvisc
z < 0 is

indicative of speed enhancement.

4.6. Hydrodynamic power and efficiency
Finally, we would like to briefly discuss how the energy expenditure of a squirmer varies
with the amount of azimuthal swirl present in its gait. The hydrodynamic power P and
efficiency η are given by P = − ∫

S u · σ · n dS and η = FU/P, respectively, where F is
the force required to tow a passive sphere of the same size as the squirmer at a constant
speed U (Zhu et al. 2012). In figure 12, we plot each of these quantities, normalized by
their values in a Newtonian fluid, PN and ηN . We define PN and ηN as the power and
efficiency of a squirmer swimming in a Newtonian fluid that has the same gait (i.e. same
value of ξ and ζ ) as that under consideration (meaning PN and ηN are themselves functions
of ζ ). In particular, PN is given by PN = 2π( 48

5 ζ
2 + 4

3(2 + ξ 2)). With the normalization
suitably defined, we can see from figure 12(a) that the power expenditure for a given gait
always decreases with increasing fluid elasticity, with the rate of this decrease proportional
to the amount of azimuthal swirl present in swimmer’s gait. Conversely, the efficiency
increases with increasing Wi for each gait; the rate of this increase again proportional to
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FIGURE 11. Net force contributions acting in the swimming (z) direction in the case of (a) ζ = 0
and (b) ζ = 5 when using the FENE-P constitutive equation (L = 5, β = 0.5). The polymer
stress contribution, Fpoly

z = ∫
S τ

p
zjnj dS, is broken down into portions related to normal polymeric

stresses (τ p
zz) and shear polymeric stresses (τ p

zρ).
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FIGURE 12. Normalized hydrodynamic power and efficiency as a function of Wi and degree of
swirl, ζ , for a neutral squirmer (ξ = 0). PN and ηN are defined as the power and efficiency at
Wi = 0 for a squirmer with the same gait (i.e. value of ζ and ξ ). (a) For all gaits, power decreases
with increasing fluid elasticity; the rate of decreases increases with increasing azimuthal swirl.
(b) Efficiency increases as a function of Wi for all gaits. The magnitude of this increase is in
proportion to the amount of swirl present in the swimmer’s gait.

the amount of swirl present. Note that each gait is more efficient in an elastic fluid than its
Newtonian counterpart since η/ηN > 1 for every Wi and ζ . This implies that a swimmer
with significant azimuthal swirl not only swims faster in a viscoelastic fluid but is also
more energy efficient in its power expenditure than its Newtonian counterpart. It should
be noted, however, that all else considered equal (e.g. holding Wi constant), increasing ζ
leads to a monotonic increase in power expended. For example at Wi = 0, PN(ζ = 0) ≈
0.22PN(ζ = 1) ≈ 0.030PN(ζ = 3) ≈ 0.011PN(ζ = 5). Thus, if we were to normalize all
data in figure 12 by PN(ζ = 0), we would see that power increases and efficiency decrease
with respect to increasing swirl. Hence, for a given gait, increasing Wi leads to a relative
increase in hydrodynamic efficiency (η/ηN), while increasing ζ leads to a decrease in
absolute efficiency η. We further remark that comparisons of power and efficiency for
swimmers having different gaits (i.e. different values of ξ and ζ ) should be undertaken
with caution given recent results suggesting that the squirmer model underestimates
the true power expenditure of swimming microorganisms (Ito, Omori & Ishikawa
2019).
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5. Conclusion

In conclusion, we have studied how flow acting in the azimuthal direction (created
by, say, a rotating flagellum) can change swimming kinematics in a viscoelastic fluid.
Specifically, we found that when ζ , characterizing the relative extent of the swirling flow,
is sufficiently large, that our numerical simulations and asymptotic theory predict a speed
enhancement relative to that in a Newtonian fluid. Through an analysis of the polymer
stress in the surrounding flow field and the surface tractions acting on the surface of the
swimmer, we found that this speed increase is primarily associated with a decrease in the
extensional wake behind the swimmer. After systematically varying the swimmer’s gait,
the fluid rheology, and the constitutive equation used to describe the fluid elasticity, we
find that the speed enhancement seen at large values of ζ persists. Furthermore, while
the majority of the simulations presented here are conducted at Re = 0 and αm = 0.2
(indicating a substantial amount of shear thinning), results conducted at finite Re and
for smaller values of αm actually predict an even greater increase in the swimming
speed; hence, our work effectively presents a lower limit on the magnitude of this effect.
We concluded our analysis by assessing how the hydrodynamic power and efficiency
vary with swirl. For all gaits, increasing fluid elasticity leads to a decrease in power
expenditure and an increase in swimming efficiency, with the rate of decrease/increase
proportional to the amount of swirl present. Interestingly enough, when comparing across
gaits, hydrodynamic power increases strongly in proportion to the amount of swirl present;
hence, the gaits with swirl present are less efficient than those without despite the speed
enhancement discussed above. By approximating ζ for a true microorganism, we found
that a value of ζ ≈ 4.2 is typical, indicating that the effect of swirl is likely significant
in an elastic fluid. Finally, we believe the phenomenon reported in this manuscript should
apply to a wide range of biological organisms since fundamentally it merely requires the
coupling of rotational flow to translational velocity via the elasticity of the fluid.
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