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Electrokinetic streaming-potential phenomena are driven by imposed relative motion
between liquid electrolytes and charged solids. Owing to non-uniform convective
‘surface’ current within the Debye layer Ohmic currents from the electro-neutral
bulk are required to ensure charge conservation thereby inducing a bulk electric
field. This, in turn, results in electro-viscous drag enhancement. The appropriate
modelling of these phenomena in the limit of thin Debye layers δ→ 0 (δ denoting the
dimensionless Debye thickness) has been a matter of ongoing controversy apparently
settled by Cox’s seminal analysis (J. Fluid Mech., vol. 338, 1997, p. 1). This analysis
predicts electro-viscous forces that scale as δ4 resulting from the perturbation of the
original Stokes flow with the Maxwell-stress contribution only appearing at higher
orders. Using scaling analysis we clarify the distinction between the normalizations
pertinent to field- and motion-driven electrokinetic phenomena, respectively. In the
latter class we demonstrate that the product of the Hartmann & Péclet numbers is
O(δ−2) contrary to Cox (1997) where both parameters are assumed O(1). We focus
on the case where motion-induced fields are comparable to the thermal scale and
accordingly present a singular-perturbation analysis for the limit where the Hartmann
number is O(1) and the Péclet number is O(δ−2). Electric-current matching between
the Debye layer and the electro-neutral bulk provides an inhomogeneous Neumann
condition governing the electric field in the latter. This field, in turn, results in a
velocity perturbation generated by a Smoluchowski-type slip condition. Owing to the
dominant convection, the present analysis yields an asymptotic structure considerably
simpler than that of Cox (1997): the electro-viscous effect now already appears at
O(δ2) and is contributed by both Maxwell and viscous stresses. The present paradigm
is illustrated for the prototypic problem of a sphere sedimenting in an unbounded
fluid domain with the resulting drag correction differing from that calculated by Cox
(1997). Independently of current matching, salt-flux matching between the Debye layer
and the bulk domain needs also to be satisfied. This subtle point has apparently
gone unnoticed in the literature, perhaps because it is trivially satisfied in field-driven
problems. In the present limit this requirement seems incompatible with the uniform
salt distribution in the convection-dominated bulk domain. This paradox is resolved
by identifying the dual singularity associated with the limit δ→ 0 in motion-driven
problems resulting in a diffusive layer of O(δ2/3) thickness beyond the familiar O(δ)-
wide Debye layer.
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Streaming-potential phenomena in the thin-Debye-layer limit 307

1. Introduction
When brought in contact with an aqueous (polar) medium most solids spontaneously

acquire surface electric charge. Electrostatic attraction then creates an excess of
counter-ions within the solution next to the solid thereby forming the Debye double
layer which screens the charged solid from the electro-neutral bulk solution. An
external agency upsetting the mechanical equilibrium of the Debye layer gives rise
to electrokinetic phenomena. These are second order in the thermodynamic sense (i.e.
forces of a certain kind generating fluxes or flows of another type) with conjugate
forces and fluxes obeying Onsager-type relations (Doi & Makino 2008). Thus, an
externally applied electric field exerts a Coulomb body force on the charged fluid
inducing a tangential motion relative to the solid. Alternatively, streaming-potential
phenomena originate from a mechanical external agency (e.g. pressure drop, relative
motion of bounding surfaces, gravitational or centrifugal settling) imposing a relative
motion of the diffuse portion of the Debye layer and adjacent charged solid thus
generating an electric field.

Streaming-potential phenomena are relevant to suspension rheology (Booth 1950;
Russel 1978; Sherwood 1980; Hinch & Sherwood 1983), geophysical two-phase flows
through fine porous media (as in oil recovery and water seepage through porous rock
formations: Boléve et al. 2007; Sherwood 2007, 2008, 2009; Lac & Sherwood 2009)
and in the accurate measurement of zeta potentials (Lyklema 1995). Furthermore,
streaming-potential phenomena constitute the key to the resolution of a variety of
puzzles associated with the motion of colloidal particles as in the anomalous repulsion
of polystyrene microspheres from an adjacent wall in the presence of an imposed shear
flow. Owing to the symmetry properties of the linear Stokes equations (Leal 2007)
hydrodynamic repulsion is inadmissible in the absence of inertial effects. These, in
turn, have been ruled out in the experiments of Prieve and co-workers (Alexander &
Prieve 1987; Bike, Lazarro & Prieve 1995).

Similarly to electrokinetic problems in general, streaming-potential problems are
rather formidable owing to nonlinear coupling of their electrochemical and dynamic
aspects (see § 2). Analyses of these problems have therefore relied upon various
approximations. Thus, Booth (1954) analysed the electric field caused by the
sedimentation of a spherical particle assuming a small zeta potential, while Ohshima
et al. (1984) obtained the excess drag on a sedimenting sphere via linearization about
a spherically symmetric ionic cloud (which is valid for small settling speeds).

A different approach is based upon the smallness of 1/κ∗, the Debye scale, where

κ∗
2
=

2Z 2e∗2c∗

ε∗k∗T∗
, (1.1)

with ε∗ the dielectric permittivity of the solution, k∗T∗ the Boltzmann temperature,
c∗ the bulk ionic concentration, ±Z the (presumed equal) ionic valences, and e∗ the
elementary charge (dimensional quantities being herein decorated by an asterisk). For
aqueous solutions at room temperature and millimolar concentration (1.1) typically
yields 1/κ∗ ≈ 10 nm. With a∗ denoting a characteristic dimension of the problem
geometry the thin-Debye-layer limit is predicated upon the assumption

δ =
1
κ∗a∗
� 1. (1.2)

This singular limit has been applied extensively in field-driven electrokinetic
phenomena (Anderson 1989). The usefulness of this approximation derives from
its providing a macro-scale bulk description wherein the Debye layer is represented
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308 E. Yariv, O. Schnitzer and I. Frankel

through effective boundary conditions (Prieve et al. 1984; Yariv 2010). As such, the
resulting scheme is not limited to highly symmetric configurations.

The study of streaming-potential phenomena within the framework of the thin-
Debye-layer limit δ� 1 dates back to the pioneering work of Smoluchowski (1921).
Interest in these problems has renewed with the investigations of Prieve and co-
workers. The forced motion of a particle parallel to a neighbouring wall was studied
by Bike & Prieve (1990) by means of a lubrication approximation. The lift force
predicted was, however, orders of magnitude smaller than the Debye-layer repulsion.
Seeking to relax the lubrication approximation (which was hypothesized to fail owing
to particle repulsion from the wall) Bike & Prieve (1992) presented a general analysis
of streaming-potential phenomena which was subsequently applied (Bike & Prieve
1995) to the calculation of the lift force on a particle in a configuration appropriate
to modelling the experiments of Alexander & Prieve (1987). The paradigm underlying
these calculations assumes that the original Stokes flow remains essentially unchanged,
the correction to the hydrodynamic force being therefore exclusively associated with
the Maxwell stress. This, in turn, is obtained through calculation of the electric field
generated by ‘surface’ charge convection within the Debye layer resulting from the
prescribed flow. A similar methodology was employed by other investigators (van de
Ven, Warszynski & Dukhin 1993a,b).

The persistent discrepancy between the force predictions and the (much larger)
experimental measurements of particle–wall interactions motivated Cox (1997) to re-
examine the generic streaming-potential problem within the framework of a consistent
asymptotic scheme in the limit δ→ 0. In appropriately normalized notation, where
the Stokes drag associated with the background flow is O(1), the resultant of the
Maxwell-stress distribution is an O(δ6) force. Cox’s analysis, however, revealed that
the perturbation to the flow neglected in the preceding analyses is responsible for a
larger O(δ4) correction thus disproving the basic tenet of the above paradigm. (In
retrospect the attempt to exclusively attribute drag correction to Maxwell stresses is
evidently questionable. Thus, e.g. in the prototypic problem of particle sedimentation
in an unbounded fluid the analysis of Bike & Prieve (1992) fails to predict any drag
correction.) Subsequent analyses of particle–wall interaction (Tabatabaei, van de Ven &
Rey 2006; Tabatabaei & van de Ven 2010) have employed the general theory of Cox
(1997).

1.1. Field-driven versus motion-driven phenomena
The high asymptotic orders inherent in Cox’s scheme which result in intractable
equations practically excluding the possibility of making theoretical predictions which
could be compared to experimental observations. Even the calculation of the excess
drag on a spherical particle necessitates the use of the further simplifying assumption
of small Péclet numbers (Cox 1997). Obviously, such assumptions are inevitable in
more complex calculations (Tabatabaei et al. 2006; Tabatabaei & van de Ven 2010).
This technical complexity seems somewhat surprising, particularly in view of the
relative simplicity of the physically motivated scheme of Bike & Prieve (1992).

We therefore turn to re-examine the distinct scalings appropriate to field-driven
and motion-driven phenomena, respectively. This will also help resolve an apparent
paradox associated with the thin-Debye-layer limit of streaming-potential phenomena:
it is well known that standard models of field-driven electrokinetics for thin Debye
layers prescribe a homogeneous Neumann condition for the bulk-scale electric
potential (Anderson 1989; Yariv 2010); with such a condition, however, no electric
field can be generated by the imposed motion (Doi & Makino 2008).
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Streaming-potential phenomena in the thin-Debye-layer limit 309

A natural scale for the electric potential in electrokinetic processes is the thermal
voltage

ϕ∗ =
k∗T∗

Z e∗
, (1.3)

which is ≈25 mV in a uni-valent solution. Field-driven phenomena are characterized
by yet another scale, say E∗, of the external electric field. Thus, the important
parameter (Saville 1977)

β =
a∗E∗

ϕ∗
, (1.4)

representing the ratio between the applied- and thermal-field scales, is externally
controlled.

In motion-driven phenomena, on the other hand, the driver of the electrokinetic
processes is the imposed relative velocity, of order v∗, between the charged boundary
and the ionic solution. Thus, the scale E∗ characterizing the electric field in the bulk
is determined by a Debye-layer charging mechanism: the imposed flow generates a
convective ‘surface’ current through the Debye layer. This current is generally non-
uniform and therefore necessitates the generation of bulk currents to ‘feed’ the Debye
layer. In the Ohmic bulk domain such currents imply electric fields. The characteristic
value E∗ quantifying these fields clearly depends upon the magnitude of v∗. In the
thin-Debye-layer limit δ→ 0 a scaling relation is readily obtainable. From the velocity
gradients being O(v∗/a∗) in conjunction with the no-slip condition we conclude that
the fluid velocity within the Debye layer is O(δv∗). The convective ‘surface’ current
through the layer scales as the product of this velocity with the Debye width 1/κ∗
and the characteristic charge density e∗c∗. The non-zero divergence of the surface
current is hence of order δ2v∗e∗c∗. To ensure charge conservation, this divergence
needs to be balanced by bulk Ohmic currents which scale as the product of E∗ and
the O(e∗2c∗D∗/k∗T∗) ionic conductivity, D∗ being a typical ionic diffusivity. Use of the
definition (1.3) then reveals that the scale E∗ is provided by δ2v∗ϕ∗/D∗. Substitution
into (1.4) furnishes the scaling relation

β = δ2Pe, (1.5)

in which

Pe=
a∗v∗

D∗
(1.6)

is the Péclet number characterizing ionic transport.
As opposed to the above, in field-driven flows the Smoluchowski slip condition

readily implies

Pe= O(β). (1.7)

The difference between the scaling relations (1.5) and (1.7) resolves the above
apparent contradiction between the classic thin-Debye-layer models and the induction
of electric fields by the motion of charged surfaces. Indeed, the homogeneous
Neumann condition in these models, obtained for both β and Pe of order unity, is
clearly inapplicable to streaming-potential phenomena where (1.5) holds.

1.2. An oversight in Cox (1997)
The relation (1.5) implies that β and Pe cannot both be O(1) at the same time.
This has apparently been overlooked by Cox (1997) who postulates Pe = O(1) and
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(implicitly) β = O(1) (see § 2.3). The relegation of the electro-viscous effect to O(δ4)

thus seems an artifact reflecting this oversight. The aim of the present contribution
is therefore to reconsider the generic streaming-potential problem in a consistent
asymptotic limit. Relation (1.5) is obviously compatible with a variety of limit
processes (see § 12). Since the Péclet numbers in experiments concerned with electro-
viscous effects on colloidal particles often exceed unity (Warszynski & van de Ven
2000) there is evident interest in the limit of strong convection Pe = O(δ−2) (whose
desirability is already implied in Saville 1977). With β = O(1), this specific limit
possesses the further ‘technical’ advantage of a single field scale. The dominance
of convection imposes a new asymptotic ordering. Thus, the leading-order force
corrections turn out to be of order δ2; moreover, these corrections are contributed
by both the flow correction and the Maxwell stresses associated with the induced field.

The rest of our contribution is organized as follows. In the next section we
formulate the generic electrokinetic problem. For clarity we initially focus upon
steady situations where all solid boundaries are assumed stationary. The thin-Debye-
layer limit is considered in § 3 where the need for matched inner–outer asymptotic
expansions is demonstrated. The scaling and geometry of the inner Debye-layer
domain are discussed in § 4. In doing this we follow Cox (1997) and employ a
local inner reference system about a general point on the solid surface which facilitates
the study of a generic geometry. In § 5 the Debye-layer fields are analysed which
is followed by asymptotic matching in § 6 yielding effective bulk-scale boundary
conditions. Leading-order flow corrections are subsequently calculated in § 7. In
§ 8 the present scheme is recapitulated and is then illustrated in § 9 for a sphere
sedimenting in an unbounded fluid. The drag correction thus obtained differs in both
form and scale from that calculated by Cox (1997) in the same problem. In § 10
and § 11 we respectively extend our scheme to allow for the analysis of weakly
unsteady problems and non-uniform surface-charge distributions. Concluding remarks
are made in § 12. Finally, while the need for the generation of bulk Ohmic currents
originating from non-uniform ‘surface’ charge convection within the Debye layer has
been recognized before (Bike & Prieve 1992), the concomitant non-uniform ‘surface’
salt convection has gone unnoticed. This, in turn, requires comparable influx of salt
which seems incompatible with the uniform outer salt distribution mandated by the
dominant convection. This apparent paradox regarding salt-flux matching is resolved in
the Appendix.

2. Problem formulation
We consider a generic streaming-potential problem, where one or more solid

surfaces are in contact with a symmetric binary electrolyte solution (valencies
±Z , permittivity ε∗). With increasing distance from the solid surfaces both ionic
concentrations approach a uniform value c∗. The electrokinetic transport is driven by
an imposed relative solid–liquid motion, characterized by velocity variations of order
v∗ over distances of order a∗. For simplicity, we assume identical diffusivity D∗ of
both ionic species. While this assumption can be relaxed, it is retained for brevity.
Furthermore, we initially consider stationary solid boundaries possessing uniform
surface-charge densities (allowing for different densities on separate boundaries).
These assumptions are reassessed later on (see §§ 10 and 11).

The governing equations and boundary conditions are rendered dimensionless
through scaling the position vector x by a∗, the ionic concentrations c± by c∗, and
the electric potential ϕ by ϕ∗(see (1.3)). The fluid velocity v is normalized by v∗ and
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Streaming-potential phenomena in the thin-Debye-layer limit 311

the pressure p by µ∗v∗/a∗ (µ∗ denoting the solution viscosity). Lastly, the ionic fluxes
are normalized by D∗c∗/a∗, the volume charge density by 2Z e∗c∗ and the current
density by Z e∗D∗c∗/a∗.

2.1. Differential equations
The ionic concentrations are governed by the Nernst–Planck equations, describing
transport by the combined action of electro-migration, diffusion, and convection:

∇ · j± + Pev ·∇c± = 0. (2.1)

Here

j± =∓c±∇ϕ −∇c± (2.2)

are the ionic fluxes. The electric potential ϕ satisfies Poisson’s equation

δ2
∇

2ϕ =−q, (2.3)

in which

q= 1
2(c
+
− c−) (2.4)

is the volumetric charge density and δ = (κ∗a∗)−1 is the dimensionless Debye
thickness. Finally, the motion of fluid subject to Coulomb body force is governed
by the continuity equation

∇ ·v= 0 (2.5)

together with the inhomogeneous Stokes equations

∇
2v−∇p= λq∇ϕ, (2.6)

where

λ=
2k∗T∗a∗c∗

µ∗v∗
(2.7)

is the Hartmann number representing the relative magnitude of the Coulomb body
forces and viscous stresses (cf. Cox 1997).

A useful alternative to the balance equations (2.1) is obtained via replacing c± with
the charge density q and the mean (‘salt’) concentration

c= 1
2(c
+
+ c−). (2.8)

Addition of the two equations (2.1) yields the ‘salt balance’ equation,

∇ · j + Pev ·∇c= 0 (2.9)

in which

j =−q∇ϕ −∇c (2.10)

is the mean (‘salt’) flux; subtraction of the two equations (2.1) yields the charge
balance equation,

∇ · i+ Pev ·∇q= 0, (2.11)

wherein

i=−c∇ϕ −∇q (2.12)
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is the current density. Note that

j = 1
2(j
+
+ j−), i= 1

2(j
+
− j−). (2.13)

2.2. Boundary conditions
The above equations are supplemented by appropriate boundary conditions imposed
on the pertinent fields. On a generic solid surface S the fluid velocity satisfies both
impermeability and no-slip conditions

v= 0 on S. (2.14)

We only consider inert surfaces (i.e. in the absence of Faradaic reactions) whence the
normal components of the fluxes j± need to vanish,

n̂ · j± = 0 on S, (2.15)

with n̂ being a unit vector normal to S (pointing into the fluid). By (2.13) these
conditions can be expressed alternatively as

n̂ · j = 0, n̂ · i= 0 on S. (2.16)

The electric field normal to S is related through Gauss’s law to the (presumably
prescribed) surface charge density on S and the electric field within the solid wall.

At large distances away from the wall the ionic concentrations approach their
equilibrium value,

c±→ 1 as |x| →∞, (2.17)

and the electric field vanishes,

∇ϕ→ 0 as |x| →∞; (2.18)

the flow field satisfies appropriate conditions representing the approach to a prescribed
far-field flow.

2.3. Péclet-number scaling
In field-driven phenomena, a natural velocity scale results from a balance between
the Coulomb body forces and viscous stresses in (2.6) and is therefore given by
ε∗ϕ∗2/µ∗a∗. With that choice, the corresponding intrinsic Péclet number is provided by
the dimensionless group (Saville 1977)

α =
ε∗ϕ∗2

µ∗D∗
, (2.19)

which is independent of both the particle dimension a∗ and the electrolyte
concentration c∗. Thus, for typical ionic diffusivities (D∗ ≈ 10−9 m2 s−1) in aqueous
solutions (ε∗ ≈ 6× 10−10 kg m s−2 V−2, µ∗ ≈ 10−3 kg m−1 s−1),

α ≈ 0.5. (2.20)

By the Stokes–Einstein relation, (2.19) is independent of µ∗ whence α is of order
unity also for highly viscous polar solutions.

In contrast with this, in the present context the velocity scale v∗ is externally
imposed (e.g. by a prescribed shear flow, or by the sedimentation of a particle relative
to a suspending electrolyte). From (1.2), (2.7) and (2.19) we obtain the corresponding
Péclet number

Pe=
α

λ
δ−2. (2.21)
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Thus, when assuming λ= O(1), we find that the Péclet number is O(δ−2). This scaling
implies a major modification of the electrokinetic transport process.

The analysis of Cox (1997) is based upon the limit δ→ 0 with both λ and Pe of
order unity (Cox 1997 actually allows for unequal diffusivities of the ionic species,
leading to two Péclet numbers). The relation (2.21) indicates that this choice is
inconsistent. Of course, the magnitude of Pe is set externally and one could also
envision situations where Pe is of order unity (e.g. in sedimentation problems) but then
it follows that λ = O(δ−2), in contrast to the explicit assumption and scaling in Cox
(1997).

The magnitude of λ clearly determines the scaling of the electric field induced by
the imposed flow. Indeed, substitution of (2.21) into (1.5) yields

β =
α

λ
. (2.22)

Thus, when assuming λ = O(1), then β = O(1) as well, i.e. the thermal and induced
electric-field scales are comparable. In this paper we focus upon this natural limit,
where Pe= O(δ−2) (which has already been implied by Saville 1977).

Of the three parameters related to the magnitude of the imposed motion – β, λ
and Pe – only one is independent. In terms of the parameter λ, the Nernst–Planck
equations (2.1) therefore read

∇ · j± +
α

λ
δ−2 v ·∇c± = 0, (2.23)

while the salt and charge balances, (2.9) and (2.11), become

∇ · j +
α

λ
δ−2 v ·∇c= 0 (2.24)

and

∇ · i+
α

λ
δ−2 v ·∇q= 0, (2.25)

respectively.

3. Thin-Debye-layer limit
We focus upon the thin-Debye-layer limit, δ � 1. The above governing equations

(2.3) and (2.23)–(2.25) suggest the generic expansion

f (x; δ)∼ f0(x)+ δ2f1(x)+ · · · . (3.1)

Three features then readily follow.

(i) Poisson’s equation (2.3) yields leading-order electro-neutrality:

q0 ≡ 0, (3.2)

implying that the two ionic densities are equal,

c+0 (x)= c−0 (x)= c0(x). (3.3)

(ii) In the absence of Coulomb forcing, the equations (2.5)–(2.6) governing fluid
motion reduce in leading order to the homogeneous Stokes equations

∇ · v0 = 0, ∇p0 =∇
2v0. (3.4)
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(iii) The O(δ−2) leading-order salt balance (2.24) yields a convection-dominated ionic
concentration:

v0 · ∇c0 = 0. (3.5)

Within the framework of the present steady problem, (3.5) can be written
alternatively in the Lagrangian form

Dc0

Dt
= 0 (3.6)

in which D/Dt is the leading-order material derivative.

We here focus upon flow fields characterized by open streamlines originating at
infinity (which applies to most streaming-potential problems) where c = 1 (see (2.17)).
Whence,

c0 ≡ 1 (3.7)

and by (2.10) and (2.12)

j0 = 0, i0 =−∇ϕ0. (3.8)

The dominance of convection in conjunction with (3.2) implies that the O(δ−2)

leading-order balance of the charge-transport equation (2.25) is automatically satisfied
and thus, in contrast with typical field-driven electrokinetic problems, does not provide
an equation for ϕ0 (see Yariv 2010). We therefore need to analyse the next, O(1),
order of (2.25), namely

∇ · i0 +
α

λ
(v0 ·∇q1 + v1 ·∇q0)= 0. (3.9)

The O(δ2) Poisson’s equation (2.3) reads

q1 =−∇
2ϕ0 (3.10)

which, when substituted together with (3.2) and (3.8) into (3.9), yields in Lagrangian
form

q1 +
α

λ

Dq1

Dt
= 0. (3.11)

Thus, following a fluid particle, q1 decreases exponentially with time,

q1 = Ae−λt/α, (3.12)

with the constant A being a particle property. Since, as mentioned above, we assume
that all particle trajectories originate from infinity, where q1 vanishes (see (2.17)),
A= 0 for all fluid particles whence electro-neutrality also holds at O(δ2),

q1 ≡ 0. (3.13)

By (3.10), then

∇
2ϕ0 = 0. (3.14)

This is supplemented by the attenuation condition

∇ϕ0→ 0 as |x| →∞, (3.15)

together with appropriate boundary conditions on S.
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The no-flux condition (2.16), in conjunction with (3.8), requires that ∂ϕ0/∂n = 0
on S. This however is incompatible with the boundary condition
associated with Gauss’s law which in general prescribes non-zero values
of ∂ϕ0/∂n. Similarly to field-driven phenomena, the limit δ → 0 is
singular, being non-uniform near S. This singularity is associated with
the small parameter multiplying the highest-order derivative in (2.3).
A Debye boundary layer of thickness O(δ) thus develops.

We therefore refer to the above results as an outer solution, for which the boundary
conditions on S do not formally apply. (Note that none of these conditions have
been used in the preceding thin-Debye-layer analysis.) The outer solution will only
be uniquely determined via matching with the yet-to-be-found Debye-layer solution.
This matching will then provide bulk-scale boundary conditions for the outer fields.
We denote by s the surface over which these conditions apply; on the bulk-scale s
coincides with the solid surface. To obtain the boundary-layer structure, we need to
analyse the problem within an O(δ)-thick layer adjacent to the actual boundary S.

Incidentally, the above zeroth-order outer results constitute an exact solution of
the governing differential equations. However, asymptotic matching may introduce
non-zero corrections. Thus, we cannot a priori assume that (3.1) terminates after one
term.

4. Debye-scale formulation
4.1. Geometry and parametrization

Following Cox (1997) each arbitrary point x on S is associated with two curvilinear
surface coordinates, say (ξ, η). With no loss of generality, these coordinates are chosen
to be locally orthogonal

∂x
∂ξ
·
∂x
∂η
= 0 (4.1)

and to constitute a natural parametrization on S

∂x
∂ξ
·
∂x
∂ξ
=
∂x
∂η
·
∂x
∂η
= 1. (4.2)

Consider an arbitrary point P on S. A local Cartesian system (x, y, z) is constructed
by choosing the x and y coordinates axes tangent to the ξ and η coordinate lines,
respectively, with the origin at P . The z-axis points into the fluid in a direction
normal to S. Locally, then, S is described by the approximate quadratic surface

z= a11x2
+ 2a12xy+ a22y2

+ terms cubic and higher-order in x and y. (4.3)

The position-dependent coefficients aij depend upon the (arbitrary) choice of the (ξ, η)
coordinate curves on S. Note however that the sum a11 + a22, which constitutes the
dimensionless mean curvature of S at P , is invariant to that choice.

Near P the Debye layer is described by the rescaled inner coordinates

X = x/δ1/2, Y = y/δ1/2, Z = z/δ. (4.4)

Since the boundary conditions apply on the curved surface S, the plane Z = 0 is only
a leading-order local approximation to S. Thus, in deriving a systematic asymptotic
approximation, direct use of the inner Cartesian coordinates is inconvenient. This
subtle point was resolved by Cox (1997) via an elegant procedure: the pertinent
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316 E. Yariv, O. Schnitzer and I. Frankel

variables are sought only on the Z-axis. Given the arbitrariness of P (which is
implicit in its dependence upon ξ and η), this approach provides a description over the
entire inner space. Thus, the generic description F(X,Y,Z) is replaced by

F(ξ, η,Z). (4.5)

The boundary conditions on the wall thus apply at Z = 0.
From (4.3) the following expressions for generic derivatives at X = Y = 0 are

obtained (cf. Cox 1997):

∂F

∂X

∣∣∣∣
X=Y=0

= δ1/2 ∂F

∂ξ
{1+ O(δ)},

∂F

∂Y

∣∣∣∣
X=Y=0

= δ1/2 ∂F

∂η
{1+ O(δ)}, (4.6a)

∂2F

∂X2

∣∣∣∣
X=Y=0

=−2a11
∂F

∂Z
{1+ O(δ)},

∂2F

∂Y2

∣∣∣∣
X=Y=0

=−2a22
∂F

∂Z
{1+ O(δ)}, (4.6b)

where the derivatives on the right-hand side refer to the representation (4.5). Thus,(
∂2

∂X2
+

∂2

∂Y2

)
F

∣∣∣∣
X=Y=0

= (∇ · n̂)
∂F

∂Z
{1+ O(δ)}, (4.7)

with ∇ · n̂=−2(a11 + a22).

4.2. Inner scaling
Denoting inner fields by capital letters, we have in the inner domain

c± = C±, c= C, q= Q (4.8)

as well as

ϕ =Φ. (4.9)

The coordinate re-scaling suggests the following definition of re-scaled flux in the
z-direction:

n̂ · j± = δ−1J±⊥, (4.10)

where (cf. (2.2))

J±⊥ =−
∂C±

∂Z
∓ C±

∂Φ

∂Z
. (4.11)

Following (2.13), we also define

J⊥ = 1
2(J
+⊥
+ J−⊥), I⊥ = 1

2(J
+⊥
− J−⊥), (4.12)

whereby

J⊥ =−
∂C

∂Z
− Q

∂Φ

∂Z
, I⊥ =−

∂Q

∂Z
− C

∂Φ

∂Z
. (4.13)

We also define the inner flow variables,

v= V , p= P. (4.14)

The continuity equation and the no-slip condition suggest the Cartesian representation

V = êxδU + êyδV + êzδ
2W (4.15)

within the inner domain (cf. (6.2)).
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4.3. Governing equations and boundary conditions
Rewriting the balance equations in terms of the inner variables we obtain within the
Debye layer the Nernst–Planck equations (2.23)

∂J±⊥

∂Z
− δ

[
∂

∂X

(
∂C±

∂X
± C±

∂Φ

∂X

)
+

∂

∂Y

(
∂C±

∂Y
± C±

∂Φ

∂Y

)]
+
α

λ

(
δ1/2U

∂C±

∂X
+ δ1/2V

∂C±

∂Y
+ δW

∂C±

∂Z

)
= 0; (4.16)

the Poisson equation (2.3)[
∂2

∂Z2
+ δ

(
∂2

∂X2
+

∂2

∂Y2

)]
Φ =−Q; (4.17)

and the continuity equation (2.5)

∂W

∂Z
+ δ−1/2

(
∂U

∂X
+
∂V

∂Y

)
= 0. (4.18)

The momentum equation (2.6) yields

δ

[
∂2

∂Z2
+ δ

(
∂2

∂X2
+

∂2

∂Y2

)]
W −

∂P

∂Z
= λQ

∂Φ

∂Z
(4.19)

in the normal direction and[
∂2

∂Z2
+ δ

(
∂2

∂X2
+

∂2

∂Y2

)]
U − δ1/2 ∂P

∂X
= δ1/2λQ

∂Φ

∂X
, (4.20a)[

∂2

∂Z2
+ δ

(
∂2

∂X2
+

∂2

∂Y2

)]
V − δ1/2 ∂P

∂Y
= δ1/2λQ

∂Φ

∂Y
(4.20b)

in the tangential directions.
The boundary conditions on S consist of the vanishing of the normal flux

J±⊥ = 0 at Z = 0, (4.21)

and the no-slip and impermeability condition

U = V =W = 0 at Z = 0. (4.22)

At large distances the inner fields need to satisfy appropriate asymptotic matching with
the corresponding outer fields.

4.4. Asymptotic expansions
To apply the boundary conditions (4.21)–(4.22) it is useful to shift to the
representation (4.5) whereby these conditions apply at Z = 0. The differential
equations (4.16)–(4.20) are therefore transformed using (4.6)–(4.7). Subsequently, all
fields are expanded using the generic asymptotic series

F(Z, ξ, η; δ)∼ F0(Z, ξ, η)+ δF1(Z, ξ, η)+ · · · . (4.23)

Substituting the corresponding expansions of C± and Φ in (4.11) we obtain for J±⊥

J±⊥0 =−
∂C±0
∂Z
∓ C±0

∂Φ0

∂Z
, J±⊥1 =−

∂C±1
∂Z
∓ C±0

∂Φ1

∂Z
∓ C±1

∂Φ0

∂Z
, · · · (4.24)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

31
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.316


318 E. Yariv, O. Schnitzer and I. Frankel

The boundary conditions on S apply to the expanded fields. The homogeneous
conditions (4.22) apply at all orders. Conditions for large Z represent asymptotic
matching with the outer solution. Specifically, leading-order matching specifies the
behaviour of the outer field as z→ 0 (i.e. on s). Thus,

C±0 → 1, Φ0→ ϕ
(s)
0 P0→ p(s)0 as Z→∞, (4.25)

where the superscript ‘(s)’ indicates the inner limits of the outer fields, i.e. their
evaluation on s (where z→ 0). Furthermore, because of re-scaling, derivatives with
respect to Z of O(1) inner fields must vanish at that limit. Specifically

J±⊥0 ,
∂Φ0

∂Z
→ 0 as Z→∞. (4.26)

5. Debye-scale analysis
5.1. Leading-order electrokinetics: Gouy–Chapman distribution

Employing expansion (4.23) in (4.16) and (4.17) readily yields the leading-order ionic-
balance equation

∂J±⊥0

∂Z
= 0 (5.1)

and electrostatics equation

∂2Φ0

∂Z2
=−Q0, (5.2)

both decoupled from the flow field. Equation (5.1) in conjunction with (4.21) implies
that J±⊥0 ≡ 0. Use of the matching condition (4.25) then provides the equilibrium
Boltzmann distribution

C±0 = e∓Ψ (5.3)

in which

Ψ =Φ0(Z; ξ, η)− ϕ
(s)
0 (ξ, η) (5.4)

is the ‘excess potential’ in the layer. Back substitution into (5.2) reveals that Ψ is
governed by the Poisson–Boltzmann equation

∂2Ψ

∂Z2
= sinhΨ ; (5.5)

in view of (4.25), it also satisfies the condition

Ψ → 0 for Z→∞. (5.6)

Furthermore, it satisfies a Neumann-type boundary condition on Z = 0 relating ∂Ψ/∂Z
to the prescribed surface charge on S. Following the usual practice in electrokinetics,
we replace this Gauss-law condition with

Ψ (Z = 0)= ζ (5.7)

in which we treat the dimensionless zeta potential ζ (rather than the surface-charge
density) as a prescribed quantity. We assume that the magnitude of the dimensional
zeta potential is comparable to that of ϕ∗, the thermal voltage (i.e. ζ = O(1)).
The Dukhin number is therefore vanishingly small for δ→ 0 implying that surface
conduction is negligible.
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The solution of (5.5) subject to boundary conditions (5.6)–(5.7) is well known
(Prieve et al. 1984; Rubinstein & Zaltzman 2001). Thus, multiplication by ∂Ψ/∂Z and
integration in conjunction with (5.6) yield

∂Ψ

∂Z
=−2 sinh

Ψ

2
; (5.8)

a subsequent integration in conjunction with (5.7) then furnishes the familiar
Gouy–Chapman distribution

tanh
Ψ

4
= e−Z tanh

ζ

4
, (5.9)

i.e.

Ψ = 2 ln
1+ e−Z tanh

ζ

4

1− e−Z tanh
ζ

4

. (5.10)

Note that under the assumed uniform charge distribution on S, ζ is uniform for each
separate solid boundary. Then, Ψ is a function of Z alone, independent of the surface
coordinates ξ and η. By (5.3), the same applies to the ionic concentrations C±0 .

5.2. Leading-order flow
The appearance of the equilibrium Boltzmann distribution at leading order is familiar
from field-driven electrokinetic phenomena. In these phenomena, the tangential field
acting on this equilibrium distribution is responsible for a steep velocity profile which
approaches the Helmholtz–Smoluchowski slip value at large Z. The different scaling
in the streaming-potential problems, however, gives rise to a different behaviour. Thus,
the leading-order balances in (4.20) yield

∂2U0

∂Z2
= 0,

∂2V0

∂Z2
= 0, (5.11)

in which the electric field does not appear.
The solution of (5.11) satisfying the no-slip condition at Z = 0 is

U0(Z, ξ, η)= A0(ξ, η)Z, V0(Z, ξ, η)= B0(ξ, η)Z. (5.12)

Employing (4.6a) in (4.18) the leading-order continuity equation is

∂U0

∂ξ
+
∂V0

∂η
+
∂W0

∂Z
= 0 (5.13)

which, together with the impermeability condition at Z = 0, yields the normal-velocity
component:

W0 =−
Z2

2
D0(ξ, η), (5.14)

wherein

D0(ξ, η)=
∂A0

∂ξ
+
∂B0

∂η
. (5.15)
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5.3. Convection-driven flux perturbations
For future asymptotic matching, it is also necessary to calculate the leading-order
corrections to the ionic fluxes. To evaluate the flux correction J±⊥1 we consider the
O(δ) balance of the inner ionic conservation equations (4.16). Making use of (4.24)
together with (4.6)–(4.7) we obtain

∂J±⊥1

∂Z
+ (∇ · n̂)J±⊥0 +

α

λ

(
U0
∂C±0
∂ξ
+ V0

∂C±0
∂η
+W0

∂C±0
∂Z

)
= 0. (5.16)

It is worthwhile to note the emergence of a convective surface flux. The boundary
conditions (4.21) in conjunction with the vanishing of J±⊥0 and the fact that (for a
uniform surface-charge distribution) C±0 is independent of ξ and η yields the flux

J±⊥1 =−
α

λ

∫ Z

0
W0
∂C±0
∂Z′

dZ′. (5.17)

This convective ‘surface’ flux represents the streaming-potential scaling unique to
large Péclet numbers. This is in marked contrast with field-driven phenomena where
convection effects are relegated to higher orders and J±⊥1 vanishes (Yariv 2010).

Substitution of (5.14) and integration by parts yields

J±⊥1 =−
α

λ
D0(ξ, η)

{∫ Z

0
Z′C±0 dZ′ −

Z2

2
C±0

}
. (5.18)

For future asymptotic matching it is required to evaluate J±⊥1 at Z→∞. This needs to
be done with care since, while J±⊥1 must of course approach a finite limit, each term
on the right-hand side of (5.18) is separately diverging. From the above solution of
the Poisson–Boltzmann equation we know that C±0 − 1 decays exponentially rapidly at
large Z (see (5.3) and (5.10)). Thus, introducing the decomposition

C±0 = 1+ (C±0 − 1) (5.19)

readily yields

J±⊥1 (Z→∞)=−
α

λ
D0(ξ, η)

∫
∞

0
Z(C±0 − 1) dZ. (5.20)

6. Bulk-scale boundary conditions
Asymptotic matching between the inner and outer fields provides bulk-scale

boundary conditions for the latter.

6.1. Velocity matching
Consider first the velocity field. Because of the scaling (4.15) all leading-order velocity
components vanish as z→ 0 and we obtain the effective boundary condition

v0 = 0 on s, (6.1)

which represents the 1–1 matching principle of Van Dyke (1964). Together with the
homogeneous Stokes equations (3.4) and the prescribed far-field behaviour, it specifies
a well-posed problem governing the leading-order outer hydrodynamics.

In the wall-fixed Cartesian coordinate system, the outer velocity field adopts the
form v= êxu+ êyv + êzw. The vanishing of u0 and v0 on s implies that their respective
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x- and y-derivatives vanish at x = y = 0 (since at that point their gradients must point
in the z-direction). Thus, the continuity equation yields

∂w0

∂z
= 0 on s. (6.2)

In view of (3.1), a 2–1 van Dyke matching readily yields

A0 =

(
∂u0

∂z

)(s)
, B0 =

(
∂v0

∂z

)(s)
. (6.3)

Substitution of (6.3) into (5.12) yields the leading-order inner flow

U0 =

(
∂u0

∂z

)(s)
Z, V0 =

(
∂v0

∂z

)(s)
Z, (6.4)

which, owing to the outer asymptotic structure (3.1), is simply equivalent to a Taylor-
series expansion of the corresponding outer flow.

Consider next the expression (5.15) of D0(ξ, η) appearing in both (5.14) and (5.20).
Substitution of (6.3), noting that differentiations with respect to ξ and η commute with
evaluation at s, and making use of the leading-order outer continuity equation

∂u0

∂ξ
+
∂v0

∂η
+
∂w0

∂z
= 0, (6.5)

reveals that D0 = −(∂
2w0/∂z2)(s). Moreover, the transformation (4.7) in conjunction

with (6.2) readily yields

∂2w0

∂x2
+
∂2w0

∂y2
= 0 on s. (6.6)

When making use of this in the leading-order outer momentum equation in the
z-direction we obtain

D0(ξ, η)=−

(
∂p0

∂z

)(s)
. (6.7)

6.2. Current matching
The formulation of a well-posed problem for the outer field ϕ0 requires the
specification of a boundary condition on s. To this end we carry out asymptotic
matching of the electric-current density. Owing to the scaling (4.10) in conjunction
with the vanishing of J±⊥0 the requisite condition must be obtained via matching of the
leading-outer outer current to the leading-order correction of the inner current:

lim
z→0

n̂ · i0 = lim
Z→∞

I⊥1 . (6.8)

In field-driven phenomena, where I⊥1 vanishes as well, this requirement leads to the
familiar no-flux condition (Yariv 2010). Here, the large-Péclet-number scaling results
in a net-flux condition, which reflects the streaming-potential mechanism (cf. the above
calculation of J±⊥1 ).

To derive limZ→∞ I⊥1 we substitute (6.7) into (5.20) to obtain

J±⊥1 (Z→∞)=
α

λ

(
∂p0

∂z

)(s) ∫ ∞
0

Z(C±0 − 1) dZ. (6.9)
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Subtraction of the two equations (6.9) in conjunction with (5.2) yields

I⊥1 (Z→∞)=−
α

λ

(
∂p0

∂z

)(s) ∫ ∞
0

Z
∂2Ψ

∂Z2
dZ. (6.10)

Integration by parts in conjunction with the definitions of Ψ and the zeta potential
results in

I⊥1 (Z→∞)=−
αζ

λ

(
∂p0

∂z

)(s)
, (6.11)

which when substituted together with (3.8) into (6.8) yield the requisite boundary
condition

∂ϕ0

∂n
=
αζ

λ

∂p0

∂n
on s. (6.12)

The potential ϕ0 is thus governed by Laplace’s equation (3.14) together with the
far-field decay condition (3.15) and the Neumann-type boundary condition (6.12). The
result (6.12) has already been obtained via charge conservation by Bike & Prieve
(1992). They have, however, overlooked the need to satisfy salt-flux matching which,
in turn, introduces an apparent paradox in the asymptotic scheme. This is addressed
next.

6.3. Salt-flux matching
Similarly to (6.8), matching of salt flux requires

lim
z→0

n̂ · j0 = lim
Z→∞

J⊥1 . (6.13)

The inner flux obtained by addition of (6.9) in conjunction with (5.3) is

J⊥1 (Z→∞)=
α

λ

(
∂p0

∂z

)(s)
H (ζ ); (6.14)

here,

H (ζ )=

∫
∞

0
Z(coshΨ − 1) dZ (6.15)

is nil only for ζ = 0, being positive otherwise. Thus (6.13) is incompatible with the
above vanishing of j0. Such a contradiction does not appear in field-driven phenomena,
where n̂ · j0 indeed vanishes on s (Yariv 2010) and salt matching is trivially satisfied.

To resolve the puzzle we observe that in the present large-Pe analysis the limit
δ → 0 introduces a two-fold singularity. The multiplication of the highest-order
derivative in Poisson’s equation (2.3) by δ2 gives rise to the above-analysed familiar
O(δ)-wide Debye layer. A similar multiplication of the highest derivatives by an O(δ2)

parameter now takes place in the Nernst–Planck equations (2.1) as well. This, in
turn, results in a diffusive boundary layer whose width depends upon the nature of
the velocity field near S. Since this field satisfies the no-slip condition and, unlike
field-driven phenomena, is associated with O(1) gradients near S, generic scaling
arguments (Leal 2007) show that this width scales as Pe−1/3, or, equivalently, as δ2/3,
asymptotically thick compared with the Debye layer. The Debye-layer solution thus
need not match the bulk solution (as expressed in (6.13)); rather, the diffusive layer
smoothly joins the two.
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In view of the rapid relaxation of the leading-order electric potential and ionic
concentrations on the Debye scale, the analysis preceding (6.13) remains valid. Thus,
within the present order of asymptotic approximation, resolution of the intermediate
diffusion layer is not explicitly required for the calculation of the leading electro-
viscous effect, but rather to verify consistency of the scheme. To avoid digression
in the derivation of the effective outer description, the analysis of the diffusion-layer
structure is relegated to the Appendix.

7. Flow corrections
We now turn to the leading-order flow correction in the Debye layer. A prerequisite

for its calculation is the determination of the leading-order pressure P0, obtained from
the leading-order balance of the inner Navier–Stokes equation in the Z-direction (4.19)

∂P0

∂Z
= λ

∂2Φ0

∂Z2

∂Φ0

∂Z
(7.1)

and the matching condition (4.25). These yield

P0 =
λ

2

(
∂Ψ

∂Z

)2

+ p(s)0 (ξ, η). (7.2)

Consider the leading-order flow correction in the Debye layer. In the x-direction, the
O(δ) balance in (4.20a) is

∂2U1

∂Z2
+ (∇ · n̂)

∂U0

∂Z
−
∂P0

∂ξ
= λQ0

∂Φ0

∂ξ
. (7.3)

Substitution of (5.2), (5.4), (6.4), and (7.2), in conjunction with Ψ being independent
of ξ , yields

∂2U1

∂Z2
=−λ

∂2Ψ

∂Z2

∂ϕ
(s)
0

∂ξ
+
∂p(s)0

∂ξ
− (∇ · n̂)

(
∂u0

∂z

)(s)
. (7.4)

Integrating twice in conjunction with the no-slip condition and (5.7) we obtain

U1 = λ(ζ − Ψ )
∂ϕ

(s)
0

∂ξ
+

Z2

2

[
∂p(s)0

∂ξ
− (∇ · n̂)

(
∂u0

∂z

)(s)]
+ A1(ξ, η)Z. (7.5)

Performing a 3–2 van Dyke matching then yields A1 = 0, as well as the requirement

∂p(s)0

∂ξ
− (∇ · n̂)

(
∂u0

∂z

)(s)
=

(
∂2u0

∂z2

)(s)
. (7.6)

The latter, in view of the leading-order outer momentum balance (3.4) in the
x-direction, is equivalent to(

∂2u0

∂x2
+
∂2u0

∂y2

)(s)
= (∇ · n̂)

(
∂u0

∂z

)(s)
; (7.7)

this, in fact, is simply (4.7) written in terms of the outer local coordinates (x, y, z), see
(4.4). A similar calculation starting from the y-component of the momentum equation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

31
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.316


324 E. Yariv, O. Schnitzer and I. Frankel

(4.20b) yields

V1 = λ(ζ − Ψ )
∂ϕ

(s)
0

∂η
+

Z2

2

[
∂p(s)0

∂η
− (∇ · n̂)

(
∂v0

∂z

)(s)]
. (7.8)

We can now solve for the leading-order O(δ2) correction (v1, p1) to the outer flow,
see (3.1). In view of (3.2) and (3.13), this flow field (just like (v0, p0)) satisfies the
homogeneous Stokes equations

∇ ·v1 = 0, ∇p1 =∇
2v1. (7.9)

A 3–3 van Dyke matching between the tangential velocity components yields

u(s)1 = λζ
∂ϕ

(s)
0

∂ξ
, v

(s)
1 = λζ

∂ϕ
(s)
0

∂η
. (7.10)

The corresponding matching of the normal velocity component, in conjunction with
(5.14), yields

w(s)
1 = 0. (7.11)

Furthermore, the latter matching reproduces (6.2) and provides the requirement(
∂p0

∂z

)(s)
=

(
∂2w0

∂z2

)(s)
, (7.12)

which, upon use of the leading-order outer momentum balance (3.4) in the z-direction,
becomes (6.6).

Combining (7.10) and (7.11) we find that v1 is driven by the Smoluchowski-type
slip condition

v1 = λζ∇sϕ0 on s, (7.13)

wherein

∇s = (I − n̂n̂) ·∇, (7.14)

(with I being the unit dyadic) is the surface-gradient operator.
Unlike conventional field-driven electrokinetic phenomena (Yariv 2010), here one

may not replace the surface gradient ∇s by ∇, since ϕ0 satisfies on s an
inhomogeneous Neumann condition, see (6.12).

8. Recapitulation of solution procedure
Consider a generic drag problem wherein a stationary particle is placed under an

imposed velocity field. The resultant force (normalized by µ∗a∗v∗) on the particle is

F=
∮

S
dA n̂ · (SN + SM). (8.1)

In (8.1) SN is the Cauchy stress, which for a Newtonian fluid is

SN =−pI + (∇v)+ (∇v)† (8.2)

(with † denoting dyadic transposition), and SM is the Maxwell stress,

SM = λδ
2(∇ϕ∇ϕ − 1

2∇ϕ ·∇ϕ I) (8.3)
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Streaming-potential phenomena in the thin-Debye-layer limit 325

(both fields normalized by µ∗v∗/a∗). Similarly, the torque (normalized by µ∗a∗2v∗)
experienced by the particle about the point xO is

T =
∮

S
dA (x− xO)× [n̂ · (SN + SM)]. (8.4)

Since the momentum balance (2.6) represents a statement of divergence-free stress,

∇ · (SN + SM)= 0, (8.5)

use of Gauss’s theorem allows evaluation of the integrals in (8.1)–(8.4) on any surface
enclosing S which lies entirely within the fluid (and does not enclose another solid).
It is convenient to employ the outer edge s of the Debye layer where the outer
expansions (3.1) apply. This leads to the expansion

F∼ F0 + δ
2F1 + · · · (8.6)

with a similar one for T . Here,

F0 =

∮
s
dA n̂ ·SN,0 (8.7)

is the zeroth-order force with

SN,0 =−p0I + (∇v0)+ (∇v0)
†. (8.8)

Clearly, this force represents the hydrodynamic load in the absence of any
electrokinetic effects. The latter are represented by the correction

F1 =

∮
s
dA n̂ ·

(
SN,1 + SM,0

)
(8.9)

with

SN,1 =−p1I + (∇v1)+ (∇v1)
†, (8.10)

and

SM,0 = λ(∇ϕ0∇ϕ0 −
1
2∇ϕ0 ·∇ϕ0 I). (8.11)

Thus, calculation of the electro-viscous drag correction entails the evaluation of two
asymptotic orders of the flow variables as well as the leading-order calculation of the
electric field.

The following scheme then summarizes the evaluation of the drag correction.

(1) First, the leading-order outer flow (v0, p0) needs to be calculated. It is governed
by the continuity and homogenous Stokes equations (3.4), the effective boundary
condition (6.1), and appropriate conditions at infinity (e.g. prescribed velocity).
This flow represents the Stokes flow associated with imposed motion in the
absence of any electrokinetic effects.

(2) The leading-order electric potential is then calculated. It is governed by Laplace’s
equation (3.14), the attenuation condition (3.15) and the inhomogeneous Neumann
condition (6.12).

For an important class of problems there is actually no need to solve the
Neumann problem (Bike & Prieve 1992). In view of the Stokes equations
governing the leading-order flow, p0 is harmonic, and, in the absence of imposed
pressure gradients, it attenuates at infinity. These properties are shared by ϕ0 as
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well, see (3.14)–(3.15). If all solid surfaces possess the same zeta potential then
(6.12) implies that

ϕ0 =
αζ

λ
p0. (8.12)

(3) The flow correction is evaluated. It is governed by the homogeneous Stokes
equations (7.9), the decay requirement at infinity and the Smoluchoswki-type slip
condition (7.13). Following Brenner (1964) the hydrodynamic part of the force
(8.9) may be evaluated directly from (7.13) by use of the reciprocal theorem for
Stokes flows (Happel & Brenner 1965) without actually calculating the details of
the secondary flow v1.

The above scheme is illustrated in the next section for the prototypic problem of the
drag on a translating particle.

9. Modified drag on a translating particle
As a typical example consider a uniformly charged axisymmetric particle which

translates along its axis of symmetry in an otherwise quiescent unbounded fluid
domain. The particle dimensional velocity is v∗ and the direction of motion is
identified by the unit vector ı̂ pointing along the symmetry axis. In a reference
frame attached to the particle, the matching condition (6.1) reads

v0 = 0 on s (9.1)

while the far-field velocity is

v0→−ı̂ as |x| →∞. (9.2)

Because of symmetry the resultant force (8.1) on the particle is aligned with the
symmetry axis,

F=−ı̂D, (9.3)

while the torque (8.4) vanishes. The drag D possesses the asymptotic expansion (cf.
(8.6))

D ∼D0 + δ
2D1 + · · · , (9.4)

wherein the leading-order O(1) term is simply the drag associated with v0, the Stokes
flow set up by the imposed motion of the particle.

The drag correction D1 is provided by a quadrature of both Newtonian stresses
associated with the Stokes flow (v1, p1) and Maxwell stresses associated with the
leading-order potential ϕ0 (see (8.9)). It is easily shown, however, that the latter
contribution vanishes (see Bike & Prieve 1992). Indeed, since ϕ0 is harmonic, it
decays with increasing distance r from the particle at least as rapidly as 1/r implying
that Maxwell stresses decay as 1/r4. Use of (3.14) allows one to evaluate the integral
of SM,0 on a sphere of large radius, rather than on s. As the area of such a sphere
scales as r2, we readily conclude that the Maxwell contribution vanishes. Thus, the
leading-order force correction is simply the excess drag associated with (v1, p1).

This excess drag,

D1 =−

∮
s
dA n̂ ·SN,1 · ı̂, (9.5)
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is calculated following Brenner (1964) as a quadrature of the velocity on s

D1 =−

∮
s
dA n̂ ·ST ·v1, (9.6)

wherein ST is the hydrodynamic stress field associated with translation of the particle
with velocity ı̂. Substitution of (7.13) and (8.12) yields

D1 =−αζ
2

∮
s
dA n̂ ·ST ·∇sp0. (9.7)

The force can be evaluated explicitly only for a specific geometry. Consider a
spherical particle of (dimensional) radius a. In the dimensionless formulation, it is
described using spherical polar coordinates (r, θ,$) where r is measured from the
particle centre and the latitude angle θ from the symmetry axis such that θ = 0
corresponds to the ı̂-direction; $ is the azimuthal angle. The local orthogonal
coordinates ξ , η, and z are then identified with θ , $ sin θ , and r − 1, respectively.
Use of axial symmetry then yields

D1 =−2παζ 2

∫ π
0

dθ sin θ n̂ ·ST ·∇sp0. (9.8)

For the Stokes flow resulting from particle translation with a unit velocity ı̂ the
dimensionless traction and pressure at the particle surface are n̂ · ST = −(3/2)ı̂ and
p0 = (3/2) cos θ (Happel & Brenner 1965); we then readily find

D1 = 6παζ 2. (9.9)

Notwithstanding its simple form, validity of this result is not restricted to small ζ (see
(5.7) et seq.). Since D0 = 6π for a spherical particle, the ratio of the drag to that
applying in the absence of electrokinetic effects is

1+ αζ 2δ2
+ · · · , (9.10)

in agreement with Smoluchowski (1921). As must be the case, electrokinetic effects
indeed augment the drag.

It is instructive to compare the drag correction (9.9) with that calculated by Cox
(1997), who assumed a small Péclet number. In the present notation equation (14.10)
in Cox (1997) provides the following O(δ4) correction to the Stokes drag:

48πδ4λPe

(
ln2 1+ eζ/2

2
+ ln2 1+ e−ζ/2

2

)
. (9.11)

Formally substituting (2.21) we find that the presumed O(δ4) drag correction becomes
O(δ2), however with the complicated functional dependence upon ζ still markedly
different from (9.9).

The drag correction obtained by Cox (1997) coincides with the thin-Debye-layer
limit of the corresponding result of Ohshima et al. (1984) obtained for an arbitrary
Debye thickness while assuming a weak gravity effect which only slightly distorts
the Debye cloud. The linearization of Ohshima et al. (1984) about a spherically
symmetric Debye layer is indeed tantamount to the assumption of a small Péclet
number. At zero Péclet number the ionic distribution is not affected by convection,
and remains spherical. Moreover, the conservative body forces associated with the
symmetric charge distribution in that layer are balanced by pressure gradients, so the
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flow is unaffected by the presence of the Debye layer. This is exactly the reference
state which is perturbed in the analysis of Ohshima et al. (1984).

10. Non-stationary walls
The analysis thus far assumes that all solid walls in contact with the electrolyte

are stationary. While this assumption is applicable to a wide variety of problems
(including flows through channels and orifices, flows in porous media, the
sedimentation of axisymmetric particles through unbounded quiescent fluid, etc.) it
is inapplicable to a variety of other problems (for instance, the lift on a particle under
shear).

To begin with, extension of our analysis to non-stationary walls requires the
modification of the no-slip condition (2.14) which now becomes

v= vS on S, (10.1)

where vS is the surface velocity distribution corresponding to a rigid-body motion
of the solid. Furthermore, it may not be possible to select a frame of reference in
which the problem geometry appears steady. Normalizing the time t by a∗/v∗ the
hydrodynamic problem is quasi-steady (provided that a∗v∗/ν∗ � 1), the unsteadiness
being implicit in the time-dependent geometric configuration. This may affect the
electrochemical aspects of the problem: the Nernst–Planck equations (2.23) now read

∇ · j± +
α

λ
δ−2

(
∂c±

∂t
+ v ·∇c±

)
= 0, (10.2)

whereby the salt and charge balances, (2.24) and (2.25), become

∇ · j +
α

λ
δ−2

(
∂c

∂t
+ v ·∇c

)
= 0, (10.3)

and

∇ · i+
α

λ
δ−2

(
∂q

∂t
+ v ·∇q

)
= 0, (10.4)

respectively.
In the outer analysis, the leading-order salt balance (3.5) now reads

∂c0

∂t
+ v0 ·∇c0 = 0. (10.5)

It then follows that (3.6)–(3.8) remain valid. The O(1) charge balance (3.9) now reads

∇ · i0 +
α

λ

(
∂q1

∂t
+ v0 ·∇q1 + v1 ·∇q0

)
= 0. (10.6)

Consequently, (3.11)–(3.14) remain valid.
Consider now the inner analysis about an arbitrary point P on S. We still use the

Cartesian coordinate system (x, y, z), defined with the x- and y-axes lying within the
tangent plane at P . Since this system rotates with the solid-wall angular velocity Ω it
is convenient to replace (4.14) with the representation

v= vS +Ω × r+ V , p= P, (10.7)
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where r= êxx+ êyy+ êzz is a position vector relative to point P , and V now represents
the relative fluid-velocity vector as observed in a reference frame attached to the
rotating wall. Since (4.22) is again satisfied, it is natural to employ the scaling (4.15).

We define ∂/∂T as the time derivative in the rotating reference system (i.e. with x, y,
and z fixed),

∂

∂T
=
∂

∂t
+ (vS +Ω × r) ·∇. (10.8)

Substitution of (10.7)–(10.8) into the Nernst–Planck equations yields in the inner
domain (cf. (4.16))

∂J±⊥

∂Z
− δ

[
∂

∂X

(
∂C±

∂X
± C±

∂Φ

∂X

)
+

∂

∂Y

(
∂C±

∂Y
± C±

∂Φ

∂Y

)]
+
α

λ

(
∂C±

∂T
+ δ1/2U

∂C±

∂X
+ δ1/2V

∂C±

∂Y
+ δW

∂C±

∂Z

)
= 0. (10.9)

Apart from the modification of (5.1) to incorporate the time derivative of C±0 ,
the leading-order inner electrochemical problem consists of the same equations and
boundary conditions (4.21), (4.26), (5.2) and (5.7) as before, hence it is decoupled
from the hydrodynamic problem. As such, unsteadiness can only be introduced
through the initial conditions imposed upon C±0 . The problem thus admits the same
time-independent Boltzmann (5.3) and excess-potential (5.10) distributions as before.
Unlike this, the equation governing C±1 involves the leading-order inner velocity field.
Since this field represents an extrapolation of the respective outer field, it is in general
time dependent.

To proceed, we focus upon the class of problems that can appear steady in the
absence of electrokinetic effects (which includes the prototypic problem of a sphere in
a shear flow near a wall). In these problems, unsteadiness results from the slow motion
of the boundaries that is driven by the o(1) electrokinetic forces (O(δ2) in view of
(8.6)). The term ∂C±1 /∂T is then also absent from the O(δ) balance of (10.9) whereby
the flux expression (5.20) still holds.

In performing the velocity matching, the 1–1 level now yields v0 = vS on s, cf.
(10.1). The 2–1 level replaces (6.3) with

A0 =

(
∂u0

∂z

)(s)
−Ωy, B0 =

(
∂v0

∂z

)(s)
+Ωx. (10.10)

We therefore obtain, instead of (6.7)

D0(ξ, η)=−

(
∂p0

∂z

)(s)
−
∂Ωy

∂ξ
+
∂Ωx

∂η
. (10.11)

The last two terms in (10.11) constitute the z-component of −∇ ×Ω , which vanishes
since Ω is a constant vector. We conclude that (6.7) is retained. From this point it is
straightforward to verify that both the Neumann condition (6.12) and the slip condition
(7.13) are retained as well. Thus, the scheme of § 8 remains valid for the extended
class of unsteady problems considered here.

11. Non-uniform surface-charge distribution
The analysis in §§ 5.3, 6.2 and 7 makes use of the assumption of uniform surface-

charge distribution on the solid boundary, whereby ζ (hence also Ψ and C±0 ) is
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independent of the surface coordinates ξ and η. We here extend the analysis to the
general case of non-uniform distributions.

Consider first the derivation (§§ 5.3 and 6.2) of the macro-scale boundary condition
governing ϕ0. The flux expression (5.17) is replaced by

J±⊥1 =−
α

λ

∫ Z

0

(
U0
∂C±0
∂ξ
+ V0

∂C±0
∂η
+W0

∂C±0
∂Z′

)
dZ′. (11.1)

Use of the inner continuity equation (5.13) and boundary condition (4.22) yields

J±⊥1 =−
α

λ

∫ Z

0

[
∂(U0C±0 )

∂ξ
+
∂(V0C±0 )

∂η
+
∂(W0C±0 )

∂Z′

]
dZ′

=−
α

λ

[
∂

∂ξ

∫ Z

0
U0C±0 dZ′ +

∂

∂η

∫ Z

0
V0C±0 dZ′ +W0C±0

]
, (11.2)

or, upon substitution of (5.12) and (5.14),

J±⊥1 =−
α

λ

[
∂

∂ξ

{
A0(ξ, η)

∫ Z

0
Z′C±0 dZ′

}
+
∂

∂η

{
B0(ξ, η)

∫ Z

0
Z′C±0 dZ′

}
−

Z2

2

(
∂A0

∂ξ
+
∂B0

∂η

)
C±0

]
. (11.3)

Introducing the decomposition (5.19) and taking the limit Z→∞ we find that (5.20)
is replaced by

J±⊥1 (Z→∞)=−
α

λ

[
∂

∂ξ

{
A0(ξ, η)

∫
∞

0
Z(C±0 − 1) dZ

}
+
∂

∂η

{
B0(ξ, η)

∫
∞

0
Z(C±0 − 1) dZ

}]
. (11.4)

Subtracting the above two fluxes yields, using the Poisson equation (5.2),

I⊥1 (Z→∞)=
α

λ

[
∂

∂ξ

{
A0(ξ, η)

∫
∞

0
Z
∂2Ψ

∂Z2
dZ

}
+
∂

∂η

{
B0(ξ, η)

∫
∞

0
Z
∂2Ψ

∂Z2
dZ

}]
. (11.5)

Integration by parts in conjunction with (5.6)–(5.7) then provides the current

I⊥1 (Z→∞)=
α

λ

[
∂

∂ξ
(ζA0)+

∂

∂η
(ζB0)

]
. (11.6)

The requisite generalization of (6.11) is obtained by substituting (6.3) into the above
equation and making use of (5.15) and (6.7):

I⊥1 (Z→∞)=
α

λ

[
−ζ

(
∂p0

∂z

)(s)
+
∂ζ

∂ξ

(
∂u0

∂z

)(s)
+
∂ζ

∂η

(
∂v0

∂z

)(s)]
. (11.7)

Asymptotic matching (6.8) provides the macro-scale condition

∂ϕ0

∂n
=
α

λ

(
ζ
∂p0

∂n
−
∂v0

∂n
·∇sζ

)
on s, (11.8)

which reduces to (6.12) for uniform ζ .
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Consider next the derivation (§ 7) of the boundary condition governing v1. For
non-uniform surface charge, substitution of (5.2), (5.4), (6.4) and (7.2) into (7.3) yields

∂2U1

∂Z2
= λ

[
∂2Ψ

∂Z ∂ξ

∂Ψ

∂Z
−
∂2Ψ

∂Z2

∂Ψ

∂ξ
−
∂2Ψ

∂Z2

∂ϕ
(s)
0

∂ξ

]
+
∂p(s)0

∂ξ
− (∇ · n̂)

(
∂u0

∂z

)(s)
. (11.9)

Use of (5.8) reveals that the first two terms on the right-hand side mutually cancel,
whereby (7.4) is recovered. The macro-scale slip condition (7.13) remains valid.

12. Concluding remarks
The present contribution is motivated by the questionably small O(δ4) electro-

viscous effect predicted in Cox’s seminal analysis of the thin-Debye-layer limit δ→ 0.
Our analysis demonstrates a fundamental difference between the scaling appropriate to
field- and motion-driven phenomena, respectively. In the latter when δ→ 0 the product
of the Hartmann (λ) and Péclet (Pe) numbers is O(δ−2) which is in contrast with
Cox’s assumption of both λ and Pe being O(1). (When illustrating his scheme he goes
even further by assuming an asymptotically small Pe.)

From the variety of options, we focus upon λ= O(1), i.e. assuming that the motion-
induced electric field is comparable to the thermal scale (see (2.22)). In view of the
above-mentioned scaling this requires that we address the limit process δ→ 0 and
Pe = O(δ−2) (which has already been mentioned in the review paper by Saville 1977).
This limit representing dominance of convection effects is reflected in major changes
in the structure of the present asymptotic scheme relative to that of Cox (1997). Thus,
owing to significant non-uniform convective ‘surface’ currents, charge conservation
necessitates Ohmic currents between the electro-neutral bulk and the Debye layer.
These are represented by an inhomogeneous Neumann condition imposed upon the
bulk electric potential.

The ansatz of strong convection considerably simplifies the actual calculation. The
electro-viscous effect now already appearing at O(δ2) (as opposed to O(δ4) in Cox
1997) consists of contributions of both the Maxwell stress associated with the leading-
order bulk electric field and the Newtonian stress associated with the leading-order
perturbation to the original Stokes flow. This perturbation is driven, in turn, by a
Smoluchowski-type slip condition. In view of the above, it is not surprising that the
drag correction calculated for a sedimenting sphere differs from that obtained by Cox
(1997) in both magnitude and functional form.

Our analysis is initially presented for steady configurations where all solid surfaces
are stationary. It is subsequently established that the resulting scheme applies to
weakly unsteady scenarios as well. These include problems which (in an appropriately
chosen frame of reference) appear steady in the absence of electrokinetic effects. In
these problems, the importance of the O(δ2) electro-viscous effect is not necessarily
in the correction to an existing force but rather in the introduction of qualitatively
new phenomena (e.g. electrokinetic lift) which would not exist in the absence of
electrokinetic transport.

Another interesting feature associated with the strong convection in the present
problem is the need (apparently overlooked in the literature) to account for the
salt flux between the Debye layer and the bulk. This flux seems incompatible with
the uniform bulk salt distribution within the convection-dominated Ohmic bulk. This
paradox is resolved through recognizing the dual singularity associated with the δ→ 0
limit. Thus, diffusion balances electrostatic interactions within the O(δ)-wide Debye
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layer, while it becomes comparable to convection in an O(δ2/3)-wide intermediate layer
existing in the overlap domain joining the Debye layer and the bulk.

The scaling relation (2.21) allows for a variety of limit processes other than the one
studied here. Thus, for instance, one could conceive of Pe = O(1) and λ large. The
Péclet number is in principle externally controllable by the magnitude of the imposed
relative motion. These other limits may thus be physically realizable and therefore
warrant investigation.

Finally, with the availability of the present generic scheme, it is desirable to re-
examine the classic problem of particle lift in Stokes shear flows. This work is
currently in progress.

This work was supported by a seed grant from the Russel Berrie Nanotechnology
Institute. E.Y. was also supported by the Israel Science Foundation (grant no. 114/09).

Appendix. Diffusive boundary layer
To analyse the diffusive layer we define the local coordinates (cf. (4.4))

X̃ = x/δ1/3, Ỹ = y/δ1/3, Z̃ = z/δ2/3. (A 1)

Matching with the bulk ionic densities (3.7) implies that c±→ 1 as Z̃→∞; ionic-flux
matching then necessitates O(δ2/3) density perturbations. This suggests the definition
of the diffusive-scale concentrations

c± = 1+ δ2/3C̃±. (A 2)

Accordingly, we also define

c= 1+ δ2/3C̃; (A 3)

the charge density q then being O(δ2/3) at most.
Velocity matching with the Debye-scale flow suggest an O(δ2/3) tangential velocity.

The continuity equation then implies an O(δ4/3) normal velocity. Thus, we define (cf.
(4.15))

v= êxδ
2/3Ũ + êyδ

2/3Ṽ + êzδ
4/3W̃. (A 4)

Also, matching with the bulk indicates that both the pressure and electric potential are
O(1), whence we also define:

ϕ = Φ̃, p= P̃. (A 5)

Each of the above diffusive-scale fields is expanded in the generic form (cf. (4.23))

F̃ ∼ F̃0 + δ
2/3F̃1 + · · · . (A 6)

The leading-order velocity field is obtained in a similar way as in the Debye layer.
Thus, tangential momentum balances and matching with the bulk yield

Ũ0 =

(
∂u0

∂z

)(s)
Z̃, Ṽ0 =

(
∂v0

∂z

)(s)
Z̃. (A 7)

Following (6.4)–(6.7) we find

W̃0 =
Z̃2

2

(
∂p0

∂z

)(s)
. (A 8)
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The charge balance (2.25) yields at O(δ−4/3)

∂2Φ̃0

∂Z̃2
= 0; (A 9)

also, electric-current matching with the Debye scale yields

∂Φ̃0

∂Z̃
→ 0 as Z̃→ 0. (A 10)

It then follows that Φ̃0 is independent of Z̃. Thus, the O(δ−2/3) salt balance (2.24)
yields the convective–diffusive equation:

∂2C̃0

∂Z̃2
=
α

λ

(
Ũ0
∂C̃0

∂ξ
+ Ṽ0

∂C̃0

∂η
+ W̃0

∂C̃0

∂Z̃

)
. (A 11)

Upon substitution of (A 7)–(A 8), this equation becomes

∂2C̃0

∂Z̃2
=
α

λ

[
Z̃

(
∂u0

∂z

)(s)
∂C̃0

∂ξ
+ Z̃

(
∂v0

∂z

)(s)
∂C̃0

∂η
+

Z̃2

2

(
∂p0

∂z

)(s)
∂C̃0

∂Z̃

]
. (A 12)

The field C̃0 also satisfies at small Z̃ a boundary condition which follows from
salt-flux matching with the Debye-scale solution (see (6.14)), namely

∂C̃0

∂Z̃
→−

α

λ

(
∂p0

∂z

)(s)
H (ζ ) as Z̃→ 0, (A 13)

while matching with the bulk implies that C̃0 decays at large Z̃

C̃0→ 0 as Z̃→∞. (A 14)

Equations (A 12)–(A 14) specify a parabolic boundary-value problem governing C̃0.
Note that (A 9) in conjunction with Poisson’s equation (2.3) implies the vanishing

of charge density at O(δ2/3). The density perturbations C̃± thus vary on the diffusive
scale, and are equal at leading order.

R E F E R E N C E S

ALEXANDER, B. M. & PRIEVE, D. C. 1987 A hydrodynamic technique for measurement of colloidal
forces. Langmuir 3 (5), 788–795.

ANDERSON, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 30, 139–165.
BIKE, S. G., LAZARRO, L. & PRIEVE, D. C. 1995 Electrokinetic lift of a sphere moving in slow

shear flow parallel to a wall I. Experiment. J. Colloid Interface Sci. 175 (2), 411–421.
BIKE, S. G. & PRIEVE, D. C. 1990 Electrohydrodynamic lubrication with thin double layers.

J. Colloid Interface Sci. 136 (1), 95–112.
BIKE, S. G. & PRIEVE, D. C. 1992 Electrohydrodynamics of thin double layers: a model for the

streaming potential profile. J. Colloid Interface Sci. 154, 87–96.
BIKE, S. G. & PRIEVE, D. C. 1995 Electrokinetic lift of a sphere moving in slow shear flow parallel

to a wall II. Theory. J. Colloid Interface Sci. 175 (2), 422–434.
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