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Transition to turbulence in toroidal pipes
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Incompressible flow in toroidal pipes of circular cross-section was investigated by
three-dimensional, time-dependent numerical simulations using a finite volume method.
The computational domain included a whole torus and was discretized by up to
∼11.4 × 106 nodes. Two curvatures δ (radius of the cross-section/radius of the torus),
namely 0.3 and 0.1, were examined; a streamwise forcing term was imposed, and its
magnitude was made to vary so that the bulk Reynolds number ranged between ∼3500
and ∼14 700. The results were processed by different techniques in order to confirm
the spatio-temporal structure of the flow. Consecutive transitions between different flow
regimes were found, from stationary to periodic, quasi-periodic and chaotic flow. At
low Reynolds number, stationary flow was predicted, exhibiting a symmetric couple of
Dean vortex rings and a strong shift of the streamwise velocity maximum towards the
outer wall. For δ = 0.3, between Re = 4556 and Re = 4605 a first transition occurred
from stationary to periodic flow, associated with a supercritical Hopf bifurcation
and giving rise to a travelling wave which took the form of a varicose streamwise
modulation of the Dean vortex ring intensity. A further transition, associated with
a secondary Hopf bifurcation, occurred between Re = 5042 and Re = 5270 and led
to a quasi-periodic flow characterized by two independent fundamental frequencies
associated with distinct travelling waves, the first affecting mainly the Dean vortex
rings and similar to that observed in purely periodic flow, the second localized mainly
in the secondary flow boundary layers and manifesting itself as an array of oblique
vortices produced at the edge of the Dean vortex regions. Both the periodic and
the quasi-periodic regimes were characterized by an instantaneous anti-symmetry of
the oscillatory components with respect to the equatorial midplane of the torus. For
δ = 0.1, between Re = 5139 and Re = 5208 a direct (‘hard’) transition from steady
to quasi-periodic flow occurred. Hysteresis was also observed: starting from a quasi-
periodic solution and letting the Reynolds number decrease, both quasi-periodic and
periodic stable solutions were obtained at Reynolds numbers below the critical value.
A further decrease in Re led to steady-state solutions. This behaviour suggests the
existence of a subcritical Hopf bifurcation followed by a secondary Hopf bifurcation.
The resulting periodic and quasi-periodic flows were similar to those observed for the
higher curvature, but the travelling modes were now instantaneously symmetric with
respect to the equatorial midplane of the torus. Also, the further transition from quasi-
periodic to chaotic flow occurred with different modalities for the two curvatures. For
δ = 0.3, a centrifugal instability of the main flow in the outer region occurred abruptly
between Re = 7850 and Re = 8160, while a further increase of Re up to 13 180 did
not cause any relevant change in the distribution and intensity of the fluctuations. For
δ = 0.1 the transition to chaotic flow was gradual in the range Re = 6280 to 8160
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and affected mainly the inner region; only a further increase of Re to 14 700 caused
fluctuations to appear also in the outer region.

Key words: pipe flow boundary layer, transition to turbulence, turbulence simulation

1. Introduction
1.1. Relevance and realizability of the flow in a closed torus

In this paper computational fluid dynamics is used to study the flow regimes that
establish themselves when an incompressible fluid flows in toroidal pipes for different
values of the curvature and of the Reynolds number.

The interest of the toroidal pipe flow configuration stems from the fact that it is the
common asymptotic limit of two distinct classes of important flow problems.

(a) Flow in curved pipes and bends. While entry effects may be important in
this problem, several studies, including all the earliest work starting with Boussinesq
(1868) and Dean (1927), have been conducted under the assumption of fully developed
flow, which reduces this geometry to that of a toroidal pipe. A necessary condition for
the assumption of fully developed flow to hold is that the curvature is small, so that
the flow development length can be neglected in comparison to the length of the bend.

(b) Flow in helical pipes. This latter geometry is encountered in engineering
applications such as heat exchangers and steam generators (Vashisth, Kumar & Nigam
2008). Theoretical and experimental studies on helical coils (Germano 1982; Kao
1987; Xie 1990; Chen & Jan 1992; Yamamoto et al. 1995; Jinsuo & Benzhao 1999)
have shown that coil torsion, which differentiates a helical pipe from a toroidal one,
has only a higher-order effect on flow features, so that a moderate torsion does not
significantly affect global quantities.

Thus, any curved pipe can be studied as a toroidal pipe for sufficiently small and
constant curvature, and any helically coiled pipe can be studied as a toroidal pipe
for sufficiently small torsion. Of course, studying the (closed) toroidal configuration
relieves one from the need to choose specific inlet–outlet boundary conditions but
forces the solution to be 2π-periodic, which will affect some of the predicted flow
features, notably involving streamwise patterns. Therefore, the results presented in this
paper strictly apply only to a closed torus, and may not be representative of those that
would be observed in open systems.

A problem with toroidal pipe flow is its realizability: unlike open configurations
such as finite-length bends and coils, which allow a fluid to be mechanically pumped
through the system, a closed torus requires the flow to be maintained by different
causes. This explains why experimental studies on closed tori are rare in the literature.
However, there are means by which a fully developed flow can be maintained in a
closed torus.

A first possibility is magnetohydrodynamic pumping. In a toroidal pipe having a
major radius c and a minor radius a filled with a fluid of electrical conductivity σ ,
an electrical potential difference 1V applied between the inner and outer sides of the
torus in a vertical magnetic induction field B will give rise to a streamwise force per
unit volume ps = σB1V/(2a). For example, for c = 0.5 m, a = 0.05 m, B = 10−3 T,
1V = 40 V and σ = 5 S m−1 (sea water) one has ps = 2 Pa m−1, which is sufficient to
keep water flowing at an average speed of ∼0.1 m s−1 (Re≈ 104).
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74 I. Di Piazza and M. Ciofalo

A second possibility is provided by inertial forces; maintaining a torus of major
radius c at an angular acceleration ω̇ is equivalent (in the non-inertial reference
frame of the rotating torus) to applying a streamwise force per unit volume ∼ρω̇c.
For the same configuration of the previous example, a Reynolds number of 104 can be
obtained by an angular acceleration of just 4×10−3 rad s−2. Of course, such conditions
can be maintained only for a limited time, which, however, may be sufficient for fully
developed flow to be attained.

Finally, if the requirement of steady-state flow is relaxed, a decelerating flow in a
toroidal pipe can be studied by starting from initial conditions of rigid-body rotation
and then stopping (more or less rapidly) the motion of the pipe; this technique was
used, for example, by Del Pino et al. (2008).

In the following, the literature on flow in curved pipes will be reviewed, putting
emphasis on instability and transition in order to place the present computational
results in the appropriate context.

1.2. Secondary flow in curved pipes
Flow in curved pipes is characterized by the existence, even at low Reynolds numbers,
of a secondary circulation in the cross-section, caused by the imbalance between
inertial and centrifugal forces. Literature reviews for flow in curved pipes have been
presented by Berger, Talbot & Yao (1983) and by Naphon & Wongwises (2006).
The earliest qualitative observations on the complexity involved can be found in
Boussinesq (1868); the author shows clear insight into the correct leading mechanisms
of the secondary flow, and predicts the presence of two symmetric secondary vortices
in a curved closed duct. Thomson (1876) interpreted the erosion effects on the outer
side of river bends as an effect of the secondary circulation. Williams, Hubbell &
Fenkell (1902) observed that the location of the maximum streamwise velocity is
shifted towards the outer wall of a curved pipe, and Grindley & Gibson (1908)
observed the effect of curvature on the fluid flow during experiments on the viscosity
of air. Later, Eustice (1911) showed the existence of a secondary flow by injecting
ink into water. Einstein (1926), in a well-known brief paper, discussed the physical
mechanisms driving secondary flows in river bends and the formation of meanders.

A more quantitative approach to the problem was proposed by Dean (1927), who
wrote the Navier–Stokes equations in the local toroidal frame of reference (r, θ , s) in
which r and θ are polar coordinates in the generic cross-section and s is the abscissa
along the axis of the pipe (streamwise direction). Under the hypothesis of small
curvature and laminar stationary flow, he derived a solution for the stream function of
the secondary motion and for the main streamwise velocity, both expanded in power
series whose first term corresponded to Hagen–Poiseuille flow. Dean’s solution exhibits
a shift of the streamwise velocity maximum towards the outer wall and two symmetric
secondary cells with characteristic velocity scale

ûsec ≈ ûav

√
δ, (1.1)

in which ûav is the average streamwise velocity, δ is the non-dimensional curvature
a/c, a is the radius of the section and c is the radius of curvature. Here and in the
following, dimensional quantities will be indicated by a caret (ˆ), while no caret will
be used for dimensionless quantities.

The bulk Reynolds number Re is defined as

Re= ûav2a/ν. (1.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

32
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.321


Transition to turbulence in toroidal pipes 75

The Dean number is defined as

De= Re
√
δ (1.3)

and takes account of inertial, centrifugal and viscous effects. For small values of the
curvature, De becomes the single governing parameter. The Dean number plays a role
similar to that of the Taylor number Ta = Ω2R1(R2 − R1)

3/ν2 used in the context
of Taylor–Couette flow between concentric cylinders of radii R1 and R2 with relative
angular velocity Ω; identifying R1 with c, (R2 − R1) with 2a, and Ω with ûav/c, one
has De=√Ta/2.

From Dean’s solution, an analytical expression can be derived for the ratio of flow
rates in slightly curved pipes and straight pipes under the same forcing. This ratio can
be expressed as a series of powers of the Dean number (Van Dyke 1978), and is less
than 1 in the series’ radius of convergence.

McConalogue & Srivastava (1968) obtained two-dimensional stationary semi-
analytical solutions by expanding the flow variables in Taylor series of the azimuthal
angle and then integrating numerically the resulting ordinary differential equations in
the radial coordinate. They showed that the secondary flow field is not self-similar, but
its shape changes with the Dean number: in low-Dean-number flows its streamlines are
almost elliptic in shape and are roughly symmetric with respect to the vertical midline
of the cross-section, while, as De increases, the maximum streamwise velocity shifts
towards the outer side of the pipe, and the centres of the secondary circulation towards
the inner side.

Other analytical asymptotic studies based on power series expansions have been
presented in recent decades. Larrain & Bonilla (1970) studied the asymptotic case of
fully developed creeping flow in curved pipes at low curvatures (coiled capillaries).
They showed that, when the Reynolds number is negligibly small, the mass flow rate
in slightly curved pipes under a given forcing term actually increases with respect to
a straight pipe because, contrary to intuition, the streamwise velocity maximum shifts
towards the inner side of the pipe, thus shortening the mean fluid path.

1.3. Transition to turbulence in curved pipes
Most of the first attempts to determine the conditions for transition to turbulence in
curved (and, in particular, helical) pipes focused on the behaviour of global quantities
such as the friction coefficient. The earlier departure from the linear pressure drop/flow
rate behaviour observed in curved pipes with respect to straight pipes was interpreted
in these studies as an indication of an earlier transition to turbulence. However, after
the work of Dean (1927) and the experiments of Taylor (1929), it became clear
that the departure from linearity in the pressure drop/flow rate relationship is simply
an indication that the flow in curved pipes is not self-similar, as observed in the
previously cited study by McConalogue & Srivastava (1968), rather than an indication
of departure from laminar flow conditions. Most of the increased resistance in curved
pipes is due to the secondary circulation, and a stationary laminar flow is actually
maintained in curved pipes up to Re well above the critical value for straight pipes.
Narasimha & Sreenivasan (1979) showed that, in a helically coiled pipe preceded and
followed by straight segments, under appropriate conditions turbulent flow may be
maintained in these latter while the flow remains laminar in the coils.

White (1929) observed that, at least for sufficiently low curvatures, all the
experimental data on the friction factor ratio (curved/straight) taken below a critical
Reynolds number (different for each curvature) collapse on a single ‘universal’ curve
if they are reported as functions of the Dean number; when this critical Re is
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exceeded, the data depart from the ‘universal’ curve. This observation leads to a
possible operative definition of the transitional Reynolds number for each curvature.

In more recent studies too, transition to turbulence in curved and helical pipes has
been investigated mainly on the basis of pressure drop data.

Experimental results for a wide range of curvatures and Reynolds numbers
were presented by Ito (1959), who derived the following correlations for the
Darcy–Weisbach friction factor f (four times the Fanning coefficient) in the laminar
and turbulent ranges:

f = 64
Re

21.5De
(1.56+ log10De)5.73

(laminar flow), (1.4)

f = 0.304Re−0.25 + 0.029
√
δ (turbulent flow) (1.5)

valid for 5× 10−4 6 δ 6 0.2.
Despite being dated, (1.4) and (1.5) have recently been confirmed to an impressive

degree by the extensive experimental work of Cioncolini & Santini (2006) in a wide
range of curvatures (0.027 6 δ 6 0.143) and Reynolds numbers (Re≈ 103–7×104). For
relatively high values of the curvature (0.0416 6 δ 6 0.143), the friction coefficient
decreased monotonically with Re and transition to turbulence was indicated by a
change in slope of the f –Re curve. Therefore, for sufficiently high curvatures, an
indicative value of the critical Reynolds number for transition to turbulence can be
provided by the intersection of fully laminar and fully turbulent asymptotic laws.
An approximate correlation which expresses this criterion for the critical Reynolds
number is

Recr = 2100(1+ 15δ0.57). (1.6)

For lower curvatures (δ < 0.0416), Cioncolini & Santini (2006) observed that in the
proximity of transition the f –Re curves exhibited a local minimum followed by an
inflection point and by a local maximum; different transition criteria may be specified
on the basis of different features of the f curves, but may not coincide with the actual
onset of turbulence.

Further, the alternative transition correlations proposed by Ito (1959), Srinivasan,
Nadapurkar & Holland (1970) and other authors are based on different interpretations
of the f (Re) behaviour for different δ, but do not really capture the specific dynamics
of the transition process. All the proposed criteria, however, agree that the effect of
curvature is to increase Recr with respect to straight pipes. For example, (1.6) predicts
Recr = 10 580 for δ = 0.1; the case δ = 0.3 is outside its range of validity.

Few studies have investigated transition in curved pipes by direct measurements of
local flow quantities. Sreenivasan & Strykowski (1983) obtained experimental results
in helically coiled pipes using TygonTM tubes wrapped around a cylinder, with a
curvature ratio δ = 0.058 and a negligible torsion. Two hot wires were positioned
within a cross-section of the tube, one near the inner side and one near the outer side.
Measurements were taken after five helix turns where the flow was fully developed,
and the Reynolds number range investigated varied from 4200 to 6730. For Re= 4200
the hot wires registered flat signals corresponding to a laminar stationary flow. For
Re = 5000, a periodically oscillating behaviour was observed in the inner region
and a small-amplitude, high-frequency intermittent oscillation in the outer region. For
Re = 5870, a not perfectly periodic behaviour was observed in the inner region, and
a substantial intermittent turbulent oscillation in the outer region. For Re = 6730, the
behaviour was fully turbulent both in the inner and in the outer region. The outer
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side appeared to be the critical region for transition to a chaotic behaviour, since both
intermittency and high frequencies first appeared there. The authors suggested that the
instability was due to the vorticity and the angular velocity of the main flow being
opposite in this region.

A similar conclusion can be derived by applying to the main (streamwise) flow the
stability criterion initially proposed by Rayleigh (1920) and discussed, for example,
by Chandrasekar (1970) in the context of Taylor–Couette flow between concentric
cylinders. For a general flow with curved streamlines, the criterion can be formulated
by introducing the discriminant

φ(r)= 1
r3

∂

∂r
(ruϕ)

2 (1.7)

(in which r is the radial direction and uϕ is the azimuthal velocity component), and
stating that this must be positive for stability. Rayleigh based this criterion on the
argument that, in regions where φ(r) > 0, the radial displacement of a fluid element
yields an imbalance between pressure and centrifugal forces which pushes it back
towards its original position, whereas in regions with φ(r) < 0 the imbalance pushes it
further away.

Webster & Humphrey (1993) investigated flow in helical coils by LDV techniques
for Re ≈ 3800–10 500 and δ ≈ 5.5 × 10−2. For Reynolds numbers between 5060 and
6330 (De = 1190–1480) the authors observed what they described as a periodic flow,
characterized by a dimensionless frequency f ≈ 0.14 (normalized by the reference
frequency ûav/a). They attributed the origin of the periodic flow to an instability of the
outward-directed midplane jet. Transition to turbulence proper was observed only for
Re > 6330. In later work (Webster & Humphrey 1997), the same authors performed
flow visualization by dye streaks for the same curvature and Reynolds number range.
On the basis of these new results, they identified the cause of flow periodicity in
a travelling-wave instability of Dean vortices of the varicose type, i.e. one in which
the axis of each vortex ring remains approximately a circumference, while the vortex
intensity varies periodically streamwise (as opposed to a sinuous instability which
would involve a periodic lateral oscillation of the vortex ring axes). For Re = 5060,
they estimated the wavelength to be (2πc)/20 and the wave phase speed (celerity)
to be ∼0.825ûav; these values changed little with the Reynolds number. The authors
re-interpreted the origin of the travelling wave as due to a centrifugal instability of
the secondary flow, occurring in the cross-stream wall layers and in the periphery
of the Dean vortices, as suggested by the application of the Rayleigh criterion. It
is worth noting that the experimental results of Sreenivasan & Strykowski (1983)
for similar values of the curvature (δ = 5.8 × 10−2) and of the Reynolds number
(Re ≈ 5000) are also compatible with a travelling-wave solution located mainly in
the inner (Dean vortex) region, although the authors did not explicitly suggest this
interpretation. Previous reports of travelling-wave phenomena deserve special attention
since the present paper is largely devoted to the analysis of such structures.

1.4. Computational studies
Following the early studies mentioned in § 1.2, Van Dyke (1978) developed the
extended Stokes series (ESS) method on the basis of Dean’s solution. His results
indicated that the friction factor ratio between curved and straight pipes should behave
as De1/4, while boundary layer techniques (Mori & Nakayama 1965) and numerical
techniques (Collins & Dennis 1975) suggested a dependence upon De1/2 for high
Dean numbers in the laminar range. The discrepancy was addressed by Jayanti &
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Hewitt (1991) and was explained by the slow convergence of the ESS expansion,
which requires a very large number of terms to achieve accurate results. Siggers &
Waters (2008) extended the Dean solution to the case of finite curvature and also
studied conditions of oscillatory forcing.

A number of two-dimensional studies on transition and stability have been presented
for curved ducts of circular (Dennis & Ng 1982) and square (Daskopoulos & Lenhoff
1989; Wang & Yang 2004) cross-section. These works used perturbation methods
to study the amplification of disturbances in laminar stationary solutions under the
assumption that there is no variation of any quantity along the duct axis. They show
that four-vortex modes can develop as a second family of solutions at sufficiently high
Dean numbers; this four-vortex flow is stable to symmetric disturbances but unstable
to asymmetric ones (Yanase, Yamamoto & Yoshida 1994). In this latter work it is
shown that, for the circular cross-section, the four-cell solution can be obtained only in
an open region of the Re–δ plane and does not exist for Re < 252. For example, the
critical Reynolds number for the appearance of a second-family, four-vortex solution
is ∼380 for δ = 0.1 and ∼240 for δ = 0.3. Zabielski & Mestel (1998) suggested that
there are no stable, steady four-vortex solutions in helical pipes.

These studies have a purely theoretical interest because the perturbation modes
found are not the actual three-dimensional modes which develop in a three-
dimensional configuration, e.g. the travelling-wave instability modes reported by
Webster & Humphrey (1997) and those discussed later in the present study. As a
terminology issue, it is worth noting that, in most works on square cross-section
channels (Daskopoulos & Lenhoff 1989; Wang & Yang 2004), it is common to use
the term ‘Ekman vortices’ for the first vortices which develop from the imbalance
of centrifugal and inertial terms, whose equivalents in circular pipes are the original
‘Dean vortices’ found by Dean (1927), and earlier by Boussinesq (1868). The same
works use ‘Dean vortices’ for the secondary vortices located in the outer region which
develop at higher Dean numbers in four-cell solutions.

Three-dimensional numerical simulations of incompressible turbulent flow in helical
and curved pipes were presented by Friedrich and co-workers (Hüttl & Friedrich 2001;
Friedrich et al. 2001; Hüttl et al. 2004). They solved numerically the Navier–Stokes
equations, written in the local orthogonal helical coordinate system proposed by
Germano (1982), and compared toroidal and helical pipe results for Re ≈ 5600
(Reτ ≈ 230) and δ = 0.1. Although the authors performed a statistical processing
of the computational results (e.g. by computing Reynolds stress distributions in the
cross-section), the case they studied was not actually turbulent, but rather a time-
dependent laminar flow, as indicated by the experimental results obtained by Webster
& Humphrey (1997) and Sreenivasan & Strykowski (1983) under similar conditions
and by the results of the present study (see below). It must also be observed that in
the simulations by Hüttl & Friedrich (2001) and Friedrich et al. (2001) only a small
portion of pipe, 7.5 diameters long, was modelled, using periodic boundary conditions
at the ends; such simulations would be inadequate to predict travelling waves.

Webster & Humphrey (1997) also complemented their experimental investigation by
numerical simulations, performed by discretizing the Navier–Stokes equations written
in the local toroidal reference frame, i.e. neglecting coil torsion. The length of the
computational domain was chosen equal to the experimentally measured wavelength,
thus forcing the travelling wave to possess a priori prescribed features. Under
conditions in which experiments provided evidence for a travelling-wave instability,
the numerical results showed oscillating velocities with maximum r.m.s. values in the
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O

Flow
direction

I
c

a

FIGURE 1. Schematic representation of a toroidal pipe with its main geometrical parameters:
a, tube radius; c, coil radius. The inner (I) and outer (O) sides of the curved duct are
also indicated; θ is the angular co-ordinate in the cross-section, measured clockwise with
θ(I) = −π/2, θ(O) = π/2, while Θ is the angular displacement of the cross-section from the
x-axis.

proximity of the Dean vortices. Quantitative comparison with experiments was not
possible due to the purely qualitative (flow-visualization) nature of these latter.

Travelling waves in a curved square duct were found both experimentally and
numerically by Mees, Nandakumar & Masliyah (1996). The travelling-wave mode
developed from the stationary four-cell flow typical of curved square ducts, and was
characterized by the oscillation of the outer vortices.

2. Models and methods
2.1. Computational domain, governing equations, boundary and initial conditions

The possible presence of travelling waves, indicated by previous studies as discussed
in the Introduction, motivated our decision to choose as computational domain a full
torus, where boundary conditions are not necessary in the streamwise direction since
the domain is circularly closed, and travelling-wave instabilities can properly develop
with physically consistent wavelengths.

Figure 1 shows a schematic representation of the torus; the major radius will be
indicated with c, the minor radius with a. The inner side will be indicated with I and
the outer side with O; here and in all the subsequent figures showing cross-sections of
the pipe, the O side will be on the right and the I side on the left, and the view will be
along the flow direction, i.e. looking from upstream. The cross-section azimuthal angle
will be measured in the clockwise direction, with θ(I)=−π/2, θ(O)= π/2.

The continuity and Navier–Stokes equations for a constant-property fluid were
solved in the Cartesian orthogonal reference frame x̂j = (x̂, ŷ, ẑ) of figure 1. In
dimensional form:

∂ ûj

∂ x̂j
= 0, (2.1)

∂ ûi

∂ t̂
+ ∂ ûiûj

∂ x̂j
=− 1

ρ

∂ p̂

∂ x̂i
+ ∂

∂ x̂j
ν
∂ ûi

∂ x̂j
+ ps,i

ρ
. (2.2)
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A constant source term ps (force per unit volume) directed along the axis of the pipe
was adopted as the driving force balancing frictional losses, so that ps,1 = −ps sinΘ ,
ps,2 = ps cosΘ , ps,3 = 0, in which Θ is the azimuth around the torus axis z: see
figure 1. This is equivalent to imposing the equilibrium mean shear stress τ̂0 = (a/2)ps

and the corresponding friction velocity ûτ =
√
τ̂0/ρ. A friction Reynolds number

Reτ = ûτa/ν can be defined on the basis of this latter.
Although the simulations were conducted in a Cartesian orthogonal reference frame,

for post-processing and discussion purposes a cylindrical reference frame (r̂p,Θ, ẑ)
was used for the whole torus, r̂p being the normal distance from the torus axis z; the
direction Θ of the main flow is also indicated by s (for ‘streamwise’) in the figures. A
local two-dimensional polar reference frame (r̂, θ) was used in the plane of the generic
cross-section; the secondary flow in this plane may be alternatively represented by its
components ur, uθ along (r̂, θ) or by its components urp, uz along (r̂p, ẑ).

No-slip conditions were imposed at the wall. Zero-velocity initial conditions were
set for most of the numerical simulations; a few cases were restarted from a solution
obtained for a higher Reynolds number, as discussed in § 5. Instabilities, if any, were
triggered by small numerical fluctuations due to truncation and round-off errors.

2.2. Scales
Although the friction velocity ûτ = √(a/2)ps/ρ is the a priori known quantity, the
average velocity ûav was chosen as the velocity scale. The corresponding frequency
scale is

f̂0 = ûav

a
= Re

2
ν

a2
(2.3)

proportional, by the factor Re/2, to the molecular momentum diffusion frequency ν/a2.
The time scale follows as t̂0 = 1/f̂0. The scale for angular velocity is naturally
ω̂0 = 2πf̂0; the wall shear stress was scaled by ρû2

av.
All coordinates were scaled by the cross-section radius a; thus, the non-dimensional

local radial coordinate, measured from the centre of the cross-section, is r = r̂/a, while
the non-dimensional distance of the generic point from the torus axis z is rp = r̂p/a.

2.3. Numerical method and computational mesh
The computational method was based on a finite volume coupled algebraic multigrid
solver, and adopted the central interpolation scheme for the advection terms and
a second-order backward Euler time-stepping algorithm. The code simultaneously
solves all the transport equations in a coupled fashion; the linearized system of
equations is preconditioned in order to reduce all the eigenvalues to the same order of
magnitude. The multigrid approach reduces the low frequency error, converting it to
a high frequency error at the finest grid level; this results in a great acceleration of
convergence. The computational domain was partitioned into equal-sized blocks which
were assigned to different processes, generally running in parallel on 16 cores.

The mesh is multi-block-structured, and is characterized by the parameters NRAD and
Nθ as shown in figure 2. In the present work the values used are NRAD = 46, Nθ = 24
and grid refinement is used at the wall, with a maximum/minimum cell size ratio of
∼5 in the radial direction. With these choices, the cross-section is resolved by 11 136
cells. In the streamwise direction the domain is discretized by NAX = 1024 cells for
δ = 0.1 and NAX = 300 cells for δ = 0.3; this leads to an overall number of cells of
11.4 × 106 for δ = 0.1 and 3.34 × 106 for δ = 0.3. The surface mesh for δ = 0.3 is
actually shown in figure 1.
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N

Nθ

θ

θN

N
RAD

FIGURE 2. One quarter of the cross-section of the multi-block-structured computational
mesh. The total number of cells in the whole cross-section is NSEC = 4Nθ (Nθ + 2NRAD).

Among the test cases simulated in this paper, those that put the highest demand
on spatial resolution are the turbulent flow cases since a direct numerical simulation
requires that all relevant scales, down to the Kolmogorov dissipative scale, are resolved
by the computational grid. The Kolmogorov scale ΛK = (ν3/ε)1/4 can be estimated by
identifying the turbulence energy dissipation ε with the total energy dissipation; for the
present configuration, this assumption leads to

ΛK = a/(
√

ReτRe
1/4). (2.4)

In flows with recirculation, this assumption is highly conservative since a considerable
fraction of the total dissipation is associated with the secondary flow and not with
turbulence. At Re ≈ 8000, for both curvatures the present mesh provides a resolution
of ∼6ΛK in the streamwise direction and 3–6ΛK in the azimuthal direction. In the
radial direction, the resolution is ∼1.3ΛK on average, and ranges from ∼0.6ΛK to
∼3ΛK , taking account of near-wall grid refinement. The first near-wall grid point is at
y+ ≈ 0.8 and 4–5 grid points lie within the viscous sublayer (y+ 6 11). These values
are adequate for a direct numerical simulation of turbulence and, of course, are more
than adequate in the non-turbulent, lower-Reynolds-number cases; it should be stressed
that in the present work emphasis is placed on time-dependent laminar or early chaotic
flow rather than on fully turbulent flow.

The time step was set equal to 0.8(ν/u2
τ ) for all cases; this time discretization

is sufficient to capture both the turbulent fluctuations (Choi & Moin 1994) and the
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dynamic features of time-dependent laminar flows. For the present streamwise grid,
this choice leads to a Courant number less than 1.

2.4. Proper orthogonal decomposition
Proper orthogonal decomposition (POD) was used, among other techniques, to process
simulation results in the generic cross-section. This technique was introduced in fluid
dynamics by Lumley (1967); a complete description is given by Berkooz, Holmes &
Lumley (1993). It is based on a two-point correlation and is able to capture the highest
possible variance of a given quantity for a given number of orthogonal eigenfunctions.

For a space- and time-dependent quantity Φ with time mean 〈Φ〉, represented
in discrete form by Φi,k (in which the index i = 1, . . . ,N denotes spatial points
and the index k = 1, . . . ,M denotes time instants), the time covariance matrix
Rij = (1/M)

∑M
k=1(Φi,k − 〈Φ〉i)(Φj,k − 〈Φ〉j) is computed and the N eigenvalues αl

and eigenvectors Ψl of the associated operator are evaluated; Φ is then decomposed as

Φ = 〈Φ〉 +
N∑

l=1

al(t)Ψl, (2.5)

in which the generic term al(t)Ψl is the product of the lth time-dependent coefficient
by the lth spatial eigenvector. If Φ is defined in a two-dimensional domain (cross-
section of the duct), Ψl is the discrete representation of the two-dimensional
eigenfunction Ψl(r, θ); note that the dependence upon the streamwise coordinate s
does not need to be explicitly considered since the present problem is homogeneous
along s. The time-dependent coefficients al(t) are computed by projecting the original
data set into the new eigenfunctions basis. This decomposition does not postulate a
particular shape for Ψl(r, θ), but finds the ‘natural’ spatial eigenfunctions of Φ. The
fraction of variance contained in the lth eigenfunction is βl = αl/

∑
αl.

In the present work, POD was applied to two-dimensional distributions over the
generic cross-section of the pipe, having area A; the spatial eigenfunctions Ψl(r, θ)
were normalized so that

1
A

∫
A
|Ψl(r, θ) |2 dA= 1, (2.6)

while the amplitude of the associated orthogonal mode was expressed by the
time-dependent coefficient al(t), which retained the physical dimensions (or the
dimensionless nature) of the primitive variable Φ.

3. Range of parameters investigated and flow regime transitions
In the present study, a systematic investigation was carried out for each curvature

by letting the friction Reynolds number Reτ vary from 232 to 519 (δ = 0.3) or from
164 to 476 (δ = 0.1). The corresponding bulk Reynolds number varied between 4515
and 13 180 for δ = 0.3 and between 3490 and 14 700 for δ = 0.1. For both curvatures,
steady-state flow was predicted for Re 6 Rec and time-dependent flow for Re > Rec,
Rec being a critical Reynolds number which was estimated to be ∼4575 for δ = 0.3
and ∼5175 for δ = 0.1. However, the transition scenario was different for the two
curvatures as discussed below.

For the higher curvature δ = 0.3, a full sequence of flow regimes from stationary
(S) to periodic (P), quasi-periodic (QP) and chaotic (C) flow was observed, similar
to that reported for Taylor–Couette flow between concentric cylinders (Fenstermacher,
Swinney & Gollub 1979) and consistent with the classic Ruelle–Takens transition
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FIGURE 3. Bifurcation diagrams for δ = 0.3 (a) and δ = 0.1 (b). The abscissa is the
difference between the Reynolds number Re and the Reynolds number Rec of the Hopf
bifurcation; the ordinate is the root mean square value of the oscillatory component of
the streamwise velocity in a generic cross-section for r = 0.8, θ = −π/4. H = Hopf
bifurcation; H2 = secondary Hopf bifurcation; solid lines, stable branches; dashed lines,
unstable branches.

route. This is illustrated in figure 3(a) by reporting the root mean square value urms
s

of the oscillatory component of the streamwise velocity in a point of a generic
cross-section located at r = 0.8, θ = −π/4 as a function of the difference between
the Reynolds number Re and the critical Reynolds number Rec. The results indicate
the existence of a supercritical Hopf bifurcation from stationary to periodic flow at
Re = Rec (point H in the figure), followed by a secondary Hopf bifurcation from
periodic to quasi-periodic flow at Re ≈ Rec + 500 (Re ≈ 5075, point H2 in the figure).
Symbols denote computational predictions; different symbols are used for S, P and QP
solutions. Both the H and the H2 transitions were of the ‘soft’ type, i.e. a generic flow
quantity like urms

s varied continuously as Re crossed the relevant bifurcation value. As
discussed in detail in §§ 5.1 and 5.2, the transition from S to P flow was accompanied
by a breaking of the instantaneous symmetry with respect to the torus midplane;
the ensuing anti-symmetry was preserved also in the QP flow regime. Transition to
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turbulence (not illustrated in figure 3a for scale reasons) occurred only at Re ≈ 8000
(∼Rec + 3500).

For the lower curvature δ = 0.1, a more complex sequence of flow regimes was
observed. This is illustrated in figure 3(b), which reports the same quantity urms

s as in
figure 3(a). In simulations starting either from zero velocity or from the immediately
lowest-Re solution, an abrupt (‘hard’) transition from S to QP flow occurred when
the Reynolds number exceeded Rec ≈ 5175. The QP regime was maintained up to
a Reynolds number of ∼8000 as for δ = 0.3. However, simulations conducted by
starting from a QP case and reducing the Reynolds number below Rec led to a QP
solution for Re = 4920 (Re − Rec ≈ −255) and to P solutions for Re = 4600, 4108
and 3800 (Re−Rec ≈−575,−1067 and −1375, respectively). Only a further reduction
to Re = 3490 (Re − Rec ≈ −1685) led to steady-state flow. Thus, the results exhibited
hysteresis: some solutions could be obtained only by approaching them backward from
higher Reynolds numbers, and in a range of Re multiple solutions (S-P or even S-QP)
were obtained for the same Re depending on the path followed. Interestingly, unlike
case δ = 0.3, all the P and QP solutions exhibited instantaneous symmetry with respect
to the torus midplane. The limited number of test cases studied does not allow a full
reconstruction of the relevant bifurcation diagram; however, that sketched in figure 3(b)
is compatible with the existing results. It includes a subcritical Hopf bifurcation (H)
at Re = Rec (∼5175), an unstable periodic branch, a turning point between Re ≈ 3500
and Re ≈ 4000, a stable periodic branch and a secondary Hopf bifurcation (H2) at
Re≈ 4900. To the best of the authors’ knowledge, a comparable transition scenario has
not been reported previously in the literature for other flows. Transition to turbulence
is not illustrated in figure 3(b) for scale reasons.

Table 1 summarizes the eight selected test cases presented in detail in this paper.
They cover the two values of the curvature δ = 0.3 and δ = 0.1, denoted by D3 and
D1, and all four different regimes S, P, QP and C. Both Reynolds numbers Re and
Reτ are provided in table 1 along with the Dean number De. The friction factor can
be computed simply by f = 32(Reτ/Re)2, and its values predicted by Ito’s resistance
correlations (1.4)–(1.5) are also reported for comparison purposes; however, it should
be observed that neither of (1.4) or (1.5) is strictly applicable to the cases with
δ = 0.3.

4. Stationary flow

Stationary flow was obtained for Re = 4515 and 4556 (δ = 0.3) and for Re = 3490,
4108, 4600 and 5139 (δ = 0.1). The two test cases D3-S (δ = 0.3, Re = 4556) and
D1-S (δ = 0.1,Re= 5139) were chosen as representative. The corresponding values of
Reτ , De and other global quantities are reported in table 1. The higher values of the
friction coefficient f obtained for D3-S with respect to D1-S are justified by the higher
Dean number, and thus by the more intense secondary circulation associated with
higher curvatures. Of course, since stationary solutions are strictly two-dimensional,
a fully three-dimensional simulation would not have been necessary, but this can be
stated only with hindsight.

Selected results for these two cases are reported in figure 4 in order to illustrate the
main features of the flow, largely retained also in the unsteady cases, and to establish
a basis of comparison for the subsequent time-dependent solutions presented in §§ 5
and 6. Figures 4(a) and 4(c) report contours of the streamwise velocity us in the upper
half of the cross-section, and contours of the quantity −Q in the lower half. Q is the
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FIGURE 4. Dimensionless solutions for the stationary cases D3-S (a, b) and D1-S (c, d). (a,c)
Streamwise velocity in the upper half and contours of the quantity −Q (see text) in the lower
half of the section. (b,d) Secondary flow vector plot (reference vector drawn besides) in the
upper half and streamlines in the lower half of the section.

Okubo–Weiss parameter, defined as

Q= SijSij −ΩijΩij, (4.1)

where Sij and Ωij are the projections of the strain rate and vorticity tensors,
respectively, on the cross-section plane; the negative regions of Q define vorticity-
dominated regions. Here, the usefulness of Q is related to the fact that, unlike vorticity,
this quantity vanishes at the walls, making the identification of recirculation regions
clear (Hunt, Wray & Moin 1988). Figures 4(b) and 4(d) report vector plots of the
secondary motion in their top half, with the reference vector corresponding to ûav

drawn, and corresponding streamlines in the bottom half. The solution is always
symmetric with respect to the equatorial midplane of the torus.

Figures 4(a) and 4(c) show that the streamwise velocity maximum is shifted towards
the outer (O) wall and that a roughly linear stratification of the streamwise velocity
along the I–O direction exists in the core region. The shape and extent of the inner-
wall vortices is typical of high-Dean-number flow and is consistent with numerical
results obtained by other authors, e.g. Yanase, Goto & Yamamoto (1989) and Zabielski
& Mestel (1998). In each of the twin vortices the streamlines are winding and strongly
asymmetric with respect to the vertical midline of the section and exhibit two separate
maxima, i.e. two closed-circulation regions; by contrast, in low-Dean-number flows the
streamlines are almost elliptic in shape and are roughly symmetric with respect to the
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vertical midline of the cross-section (Collins & Dennis 1975). Only minor differences
are observed between the two curvatures.

Following a referee’s suggestion, we tested the stability of the steady-state flow
obtained for δ = 0.1 and Re = 4600 = Rec − 578 by superimposing a streamwise
and azimuthally uniform axial velocity perturbation up cos[3πr/(2a)] on the stationary
solution and restarting the simulation. For up = 2 % of the mean axial velocity,
following a transient of a few times a/uτ the flow reverted to the stationary solution,
thus confirming that this is stable at least to some finite-amplitude disturbances (of
course, we know that the steady-state flow at this Re is unstable to travelling-wave
disturbances of the appropriate structure and amplitude, as confirmed by the existence
of a periodic solution sharing the same Reynolds number as shown by figure 3b).

5. Unsteady laminar flow
5.1. Case D3-P (δ = 0.3,Re= 4899)

For δ = 0.3 periodic flow was obtained for Reynolds numbers of 4605, 4660, 4768,
4899 and 5042. In particular, detailed results will be illustrated for case D3-P
(δ = 0.3,Re= 4899).

A general overview of the flow unsteadiness can be obtained by considering
consecutive maps of the quantity −Q on a generic cross-section (figure 5). Maps
are taken at equal dimensionless time intervals of 0.84 starting from an arbitrary
instant; during the time interval which separates the last from the first frame the fluid
covers, on average, roughly 1/5th of the toroidal length. Periodic unsteadiness can
be observed, mainly concentrated in the Dean vortex regions, whereas flow in the
secondary boundary layers is almost stationary. The flow field is not symmetric with
respect to the equatorial midplane.

Figure 6(a) reports short time samples of the streamwise velocity fluctuations
us–〈us〉 at two arbitrary points of the cross-section, one located in the upper secondary
flow boundary layer and one in the upper Dean vortex region, over a dimensionless
time interval of 30 starting from an arbitrary instant. The periodicity is clearly visible
at both locations; oscillations are small (∼0.6 %) in the Dean vortex region and even
smaller (∼0.03 %) in the secondary flow boundary layer region. Frequency spectra
of the same two quantities, taken over a dimensionless time interval 1t ≈ 140, are
reported in figure 6(b). The signals relative to both monitoring locations exhibit a
sharp peak at a dimensionless frequency of ∼0.238 (f I); harmonics at f = 2f I and 3f I

are present in the Dean vortex region but negligible in the secondary flow boundary
layer.

POD was directly applied to the results in order to confirm the spatial distribution
of the oscillatory component of the flow. Figure 7(a) shows the first two spatial
eigenfunctions Ψ I

1 , Ψ I
2 associated with the dimensionless streamwise velocity us; the

corresponding time-dependent coefficients aI
1, aI

2 are reported in figure 7(b). These
first two eigenfunctions capture ∼97 % of the overall variance associated with the
flow oscillations; as figure 7(a) shows, they are concentrated almost exclusively
in the Dean vortex regions. The oscillation consists of a varicose wave travelling
around the torus and involving mainly the three-dimensional Dean vortex rings; each
spatial eigenfunction Ψ (and therefore the whole oscillatory component of the flow)
is anti-symmetric with respect to the equatorial midplane. Thus, the varicose patterns
associated with the two Dean vortex rings are arranged at any instant in a staggered
fashion. The amplitude of the time-dependent coefficients in figure 7(b), expressing the
intensity of the streamwise velocity fluctuations, is less than 1 %.
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FIGURE 5. Maps of the quantity −Q at dimensionless time intervals of 0.84 starting from an
arbitrary instant on a generic cross-section for test case D3-P (Re= 4899, δ = 0.3).

The spatial structure of the flow oscillations is more clearly visible in figure 8,
which reports the instantaneous distribution of the vertical velocity component uz

on the equatorial midplane. This distribution exhibits kI = 8 cells and rotates rigidly
along the torus with a dimensionless rotational celerity FI = f I/kI ≈ 0.0298 (number
of rotations in the reference time a/ûav = 1/f̂0). The dimensionless linear celerity of
the travelling wave, evaluated at the mean radius c, is 2πFI/δ ≈ 0.623. Therefore, the
wave celerity is less than the mean fluid velocity so that the wave lags behind the fluid
over most of the toroidal volume.

All the periodic cases simulated for δ = 0.3 (ranging from Re= 4605 to Re= 5042)
exhibited the same wavelength number kI = 8. Also, the dimensionless modal
frequency remained about constant (∼0.238) in this range.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

32
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.321


Transition to turbulence in toroidal pipes 89

t

B layer
Dean vortex

B layer
Dean vortex

3f I
2f I

f I

f

(a)

(b)

0.010

0.008

0.006

0.004

0.002

0

–0.002

–0.004

–0.006

–0.008

–0.010
0 5 10 15 20 25 30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

u
u

-

FIGURE 6. Test case D3-P (Re = 4899, δ = 0.3). (a) Behaviour of the streamwise velocity
fluctuations at two points of the cross-section, located in the Dean vortex region and in the
secondary flow boundary, respectively. (b) Corresponding velocity power spectra (arbitrary
units).

5.2. Case D3-QP (δ = 0.3,Re= 6128)

For δ = 0.3 quasi-periodic flow was obtained for Reynolds numbers of 5270, 5562,
5819, 6128, 6594, 7142 and 7850. In particular, detailed results will be illustrated for
case D3-QP (δ = 0.3,Re= 6128).

A general overview of the flow unsteadiness can be obtained by considering
consecutive maps of the quantity −Q on a generic cross-section (figure 9). Maps
are taken at equal dimensionless time intervals of 0.5 starting from an arbitrary instant;
during the time interval which separates the last from the first frame the fluid covers,
on average, roughly 1/8th of the toroidal length. Non-periodic unsteadiness interests
both the Dean vortex regions and the secondary flow boundary layers.

Figure 10(a) reports short time samples of the streamwise velocity fluctuations
us–〈us〉 at two arbitrary points of the cross-section, located in the upper secondary
flow boundary layer and in the upper Dean vortex region, over a dimensionless
time interval of 30 starting from an arbitrary instant. The oscillatory non-periodic
unsteadiness is clearly visible. Frequency spectra of the same two quantities, taken
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FIGURE 7. Test case D3-P (Re = 4899, δ = 0.3). (a) First pair of normalized spatial
eigenfunctions for the streamwise velocity us, obtained by applying POD to the DNS data.
(b) Corresponding time-dependent coefficients.
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FIGURE 8. Test case D3-P (Re = 4899, δ = 0.3). Instantaneous distribution of the vertical
velocity uz on the equatorial midplane. Directions and angular celerities of the travelling wave
are indicated.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

32
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.321


Transition to turbulence in toroidal pipes 91

–Q
0.50

1.0

2.0 2.5

1.5
0.2
0.6
1.0
1.4
1.8
2.2
2.6
3.0
3.4
3.8
4.2
4.6
5.0
5.4
5.8
6.2

(a)

(c)

(e)

(b)

(d )

(f )

FIGURE 9. Maps of the quantity −Q at dimensionless time intervals of 0.5 starting from an
arbitrary instant on a generic cross-section for test case D3-QP (Re= 6128, δ = 0.3).

over a dimensionless time interval 1t ≈ 220, are reported in figure 10(b). The signals
relative to both monitoring locations exhibit sharp peaks at dimensionless frequencies
of ∼0.400 (f I) and ∼0.165 (f II), while secondary harmonics are very small. Within
the present frequency resolution limits 1f = 1/1t ≈ 0.005, the two values 0.165
and 0.400 are totally unrelated and thus must be regarded as two incommensurate
frequencies characterizing a quasi-periodic flow. Spectra computed for different points
of the flow field and different flow quantities exhibited, in all cases, only the two
independent frequencies f I, f II and their first few harmonics.

Modal filtering was applied to the ‘raw’ time-dependent data in order to separate the
two independent modes I and II. The filters GI and GII used are shown in figure 11
and consist of windows of half-width 21f ≈ 0.01 centred around the corresponding
fundamental frequency f α(α = I or II) and its first two harmonics 2f α, 3f α. Further
harmonics were practically absent from the data.
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FIGURE 10. Test case D3-QP (Re= 6128, δ = 0.3). (a) Behaviour of the streamwise velocity
fluctuations at two points of the cross-section, located in the Dean vortex region and in the
secondary flow boundary, respectively. (b) Corresponding velocity power spectra (arbitrary
units).

Instead of representing directly the modal components of the flow, which are still
time-dependent (periodic), a more synthetic representation can be obtained by using
POD decomposition of the two-dimensional cross-section field. It is worth noting
that this procedure does not imply a loss of generality because, for a periodic
time-dependent field, all the information is contained in the cross-section and the
three-dimensional field can be easily reconstructed. The time-averaged flow field is
basically identical to that obtained for the same curvature and slightly lower Reynolds
numbers in the case of stationary flow (see § 3), and is not reported here for the sake
of brevity.

Figure 12(a) shows the first two spatial eigenfunctions Ψ I
1 , Ψ I

2 associated with
mode I of the dimensionless streamwise velocity us, which have been normalized as
described in § 2.4. The first two eigenfunctions capture ∼83 % of the overall variance
associated with mode I and, as figure 12(a) shows, they are mainly concentrated in the
Dean vortex regions. As the single mode characterizing case D3-P, mode I consists of
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FIGURE 11. Test case D3-QP (Re= 6128, δ = 0.3). Filter functions GI and GII used to
separate modes I and II.

a varicose travelling wave involving mainly the three-dimensional Dean vortex rings;
each spatial eigenfunction Ψ (and therefore the whole mode I) is anti-symmetric
with respect to the equatorial midplane, and the varicose patterns associated with the
two Dean vortex rings are arranged at any instant in a staggered fashion. The time-
dependent coefficients aI

1, aI
2 are reported in figure 12(b); their amplitude, expressing

the intensity of the streamwise velocity fluctuations of frequency f I, is of the order of
2 %.

The spatial structure of mode I is more clearly visible in figure 13(a), which reports
the instantaneous distribution of the vertical velocity component uz on the equatorial
midplane, where the contribution of mode II is small. This distribution exhibits
kI = 7 cells and rotates rigidly (or, more exactly, its pure mode I component rotates
rigidly) along the torus with a dimensionless rotational celerity FI = f I/kI ≈ 0.057. The
dimensionless linear celerity of the travelling wave, evaluated at the mean radius c, is
2πFI/δ ≈ 1.19. Therefore, the wave celerity is close to the mean fluid velocity so that
the wave leads the fluid in the inner (slow-moving) region while it lags behind it in
the outer (fast-moving) region. It should be observed that the fundamental frequency f I

(0.400) is much larger than the periodic frequency f I of case D3-P (0.238); therefore,
the transition from periodic to quasi-periodic flow, with the appearance of the second
fundamental frequency f II, is accompanied by a strong increase in the fundamental
frequency associated with the varicose modulation of the Dean vortex ring. Since the
number of periodic cells along the torus changes only from 8 to 7, this increase in f I

is mainly due to a strong increase of the linear wave celerity, from 0.623 to 1.19.
Figure 14(a) shows the first two spatial eigenfunctions Ψ II

1 , Ψ II
2 associated with

mode II of the streamwise velocity us, while the corresponding time-dependent
coefficients aII

1 , aII
2 are reported in figure 14(b). These first two eigenfunctions contain

more than 98 % of the overall variance associated with mode II and thus they capture
almost completely the spatial shape of the fluctuations possessing the fundamental
frequency f II. Fluctuations are localized almost exclusively in the secondary flow
boundary layers, while minor amplitudes can be observed in the Dean vortex regions.
In the generic cross-section this second mode manifests itself in the form of a pair
of vortex sheets which occupy the secondary flow boundary layers and move against

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

32
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.321


94 I. Di Piazza and M. Ciofalo

t

(a)

(b)

5
4
3
2
1
0

–1
–2
–3
–4
–5

0.05

0.04

0.03

0.02

0.01

0

–0.01

–0.02

–0.03

–0.04

–0.05
0 2 4 6 8 10 1412

ai
I

I

I

I

I

FIGURE 12. Test case D3-QP (Re = 6128, δ = 0.3). (a) First two pairs of normalized spatial
eigenfunctions for mode I of the streamwise velocity us, obtained by applying modal filter GI

followed by POD to the raw DNS data. (b) Corresponding time-dependent coefficients.

the mean secondary flow, from the I side towards the O side. For this curvature, not
only mode I but also mode II (and therefore the whole time-dependent part of the
flow field) is anti-symmetric with respect to the equatorial midplane of the torus. The
amplitude of the time-dependent coefficients in figure 14(b) is of the order of 1.5 %
and expresses the intensity of streamwise velocity fluctuations of frequency f II.

The spatial structure of mode-II fluctuations is better shown in figure 13(b), which
reports the instantaneous distribution of the wall shear stress module on the surface
of the toroidal pipe, where the contribution of mode-I oscillations is small. For the
present curvature, the distribution exhibits kII = 18 cells and rotates rigidly (or rather,
its pure mode-II component does) along the torus with a dimensionless rotational
celerity FII = f II/kII = 0.0092. The corresponding dimensionless linear celerity at the
mean radius c is 2πFII/δ ≈ 0.19. Therefore, the linear celerity of a mode-II wave is
much less than the mean fluid velocity and the linear celerity of a mode-I wave.

An instantaneous, three-dimensional view of Q iso-surfaces for case D3-QP is
reported in figure 15. Here, the mode-II travelling wave manifests itself as 18 pairs
of oblique, elongated vortical structures while the mode-I wave corresponds to a
moderate, 7-cell, streamwise modulation of the twin Dean vortex rings. Although
this is not evident from the figure, both the twin arrays of oblique vortices and the
streamwise modulations of the Dean vortices are arranged in a staggered fashion with
respect to the equatorial midplane. Since modes I and II are actually superimposed,
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FIGURE 13. Test case D3-QP (Re = 6128, δ = 0.3). (a) Instantaneous distribution of the
vertical velocity uz on the equatorial midplane. (b) Instantaneous distribution of the wall shear
stress on the torus surface. Directions and angular celerities of travelling waves I and II are
indicated.

the instantaneous flow structure in figure 15 changes in time as each of its two modal
components travels with its own celerity along the torus axis.

Summarizing, the unsteady flow exhibited by test case D3-QP can be described
as the superposition of two independent systems of travelling waves. Each system
consists of a spatially periodic k-cell pattern (mode) which rotates rigidly around the
torus in the same direction as the mean flow with a characteristic rotational celerity
F. Conventionally, we denoted by ‘mode I’ that mainly concentrated in the Dean
vortex region. This mode is the less energetic of the two; in space, it appears as a
varicose modulation of the Dean vortex rings, while in the cross-section it manifests
itself as a pulsatile motion of the Dean vortices. The second mode, conventionally
denoted as ‘mode II’, is mainly concentrated in the secondary flow boundary layers
and is the more energetic of the two. In space, this mode consists of two arrays
of oblique vortices co-rotating with the Dean ones; in the cross-section, it manifests
itself as a pair of vortex trails generated at the edge of the Dean vortices and moving
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FIGURE 14. Test case D3-QP (Re = 6128, δ = 0.3). (a) First pair of normalized spatial
eigenfunctions for mode II of the streamwise velocity us, obtained by applying modal filter
GII followed by POD to the raw DNS data. (b) Corresponding time-dependent coefficients.

FIGURE 15. Test case D3-QP (Re = 6128, δ = 0.3). Instantaneous isosurface of the
quantity Q for Q = −2.88. The three-dimensional structure of the oblique travelling wave
characterizing mode II is clearly visible.
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FIGURE 16. Test case D3-QP (Re = 6128, δ = 0.3). Streamwise velocity in a Dean vortex
region against streamwise velocity in a secondary flow boundary layer. Time averages have
been subtracted from both velocities.

upstream with respect to the mean secondary flow, from the I to the O side. The whole
fluctuating flow field is instantaneously anti-symmetric with respect to the equatorial
midplane of the torus.

In the quasi-periodic range examined (Re = 5270–7850) the mode-I wavelength
number kI decreased from 8 (Re = 5270) to 7 (Re = 5562 and larger), while the
dimensionless mode-I frequency f I increased from 0.275 to 0.400. The mode-II
wavelength number kII increased from 10 (Re = 5270) to 18 (Re = 6128 and larger);
the dimensionless mode-II frequency f II increased from 0.035 (Re = 5270) to 0.165
(Re= 6128) and then decreased slightly for larger Reynolds numbers.

Finally, for the same test case D3-QP (Re = 6128, δ = 0.3), figure 16 reports the
streamwise velocity in a Dean vortex region against the streamwise velocity in a
secondary flow boundary layer over a dimensionless time interval of ∼220. Time
averages were subtracted from both velocities. The figure can be regarded as a
two-dimensional projection of the system’s trajectory in phase space and allows the
structure of the quasi-periodic (2-torus) attractor to be appreciated.

5.3. Case D1-QP (δ = 0.1,Re= 5658)
As anticipated in § 3, for δ = 0.1 an abrupt transition from steady-state to quasi-
periodic flow was observed, in simulations starting from zero-velocity conditions or
from a lower-Re solution, as soon as the friction Reynolds number exceeded a value
of ∼218, corresponding to a bulk Reynolds number of ∼5175. QP solutions were
thus computed for Re = 5208, 5236, 5400, 5658 and 6280. Detailed results will be
presented here for the test case D1-QP characterized by δ = 0.1,Re= 5658.

Figure 17 shows maps of the quantity Q on a generic cross-section of the toroidal
pipe. Maps are taken at equal dimensionless time intervals of 0.73 starting from an
arbitrary instant; during the time interval which separates the last from the first frame
the fluid covers, on average, roughly 1/20th of the toroidal length. Unsteadiness can
be observed both in the Dean vortex regions and in the secondary flow boundary
layers; at any instant, the flow field is strictly symmetric with respect to the equatorial
midplane. As the Q maps suggest, the flow is not periodic in time.

Figure 18(a) reports short time samples of the streamwise velocity fluctuations
us–〈us〉 at two arbitrary points of the cross-section, located in a secondary flow
boundary layer and in a Dean vortex region, over a dimensionless time interval
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FIGURE 17. Maps of the quantity −Q at dimensionless time intervals of 0.73 starting from
an arbitrary instant on a generic cross-section for test case D1-QP (Re= 5658, δ = 0.1).

of 30 starting from an arbitrary instant. An oscillatory non-periodic unsteadiness is
clearly visible. Frequency spectra of the same two quantities, taken over a much longer
dimensionless time interval 1t ≈ 130, are reported in figure 18(b). The signal relative
to the boundary layer region exhibits a sharp peak at a dimensionless fundamental
frequency of ∼0.20 (f II) and less marked peaks at the harmonic frequencies 2f II ≈ 0.40
and 3f II ≈ 0.60 (the reasons for the choice of the I–II nomenclature are the same
as for the previous case D3-QP). Shallow peaks are also present at the frequency
f I ≈ 0.27 and its harmonics 2f I ≈ 0.54 and 3f I ≈ 0.81. The signal relative to the
Dean vortex region exhibits its highest peak at the frequency f I ≈ 0.27, with very
shallow secondary peaks at the harmonic frequencies 2f I ≈ 0.54, 3f I ≈ 0.81; significant
peaks are also present at the frequency f II and its first harmonic frequency 2f II. Since,
within the present frequency resolution limits 1f = 1/1t ≈ 0.007, the two values
0.20 and 0.27 are totally unrelated, they must be regarded as two incommensurate
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FIGURE 18. Test case D1-QP (Re= 5658, δ = 0.1). (a) Behaviour of the streamwise velocity
fluctuations at two points of the cross-section, located in the Dean vortex region and in the
secondary flow boundary, respectively. (b) Corresponding velocity power spectra (arbitrary
units).

frequencies characterizing a quasi-periodic flow. Spectra for different points of the flow
field and different flow quantities exhibited, in all cases, only the two independent
frequencies f I, f II and their first few harmonics.

As in case D3-QP, modal filtering was applied to the ‘raw’ time-dependent
quantities computed over the generic cross-section in order to separate the two
independent modes I and II from each other and from the time-averaged fields. The
filters GI and GII used are similar to those discussed for case D3-QP and shown
in figure 11; they consist of windows of half-width 21f ≈ 0.014 centred around the
corresponding fundamental frequency f α(α = I or II) and its first two harmonics 2f α,
3f α (further harmonics were practically absent from the data). The time-averaged flow
field is basically identical to that obtained for a slightly lower Reynolds number in the
case of stationary flow (see § 7), and is not reported here for the sake of brevity.

Figure 19(a) shows the first two spatial eigenfunctions Ψ I
1 , Ψ I

2 associated with
mode I of the dimensionless streamwise velocity us, normalized as described in
§ 2.4. Time averages have already been removed by the modal filters. These first
two eigenfunctions capture more than 83 % of the overall variance associated with
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FIGURE 19. Test case D1-QP (Re = 5658, δ = 0.1). (a) First pair of normalized spatial
eigenfunctions for mode I of the streamwise velocity us, obtained by applying modal filter GI

followed by POD to the raw DNS data. (b) Corresponding time-dependent coefficients.

mode I and thus their distribution can be regarded as a qualitative representation of
the spatial shape of the fluctuations of fundamental frequency f I. Figure 19(a) shows
that they are mainly concentrated in the Dean vortex region. A careful examination
of both the primitive flow variables and the associated POD components, also using
animations, shows that this mode mainly consists of a couple of travelling waves
involving the upper and lower three-dimensional Dean vortices, which preserves at any
instant top–bottom symmetry.

The time-dependent coefficients aI
1, aI

2 are shown in figure 19(b); they can also be
interpreted as expressing the spatial modulation of the shape functions Ψ along the
torus axis. Their amplitude, i.e. the intensity of the streamwise velocity fluctuations of
frequency f I, is of the order of 1 %.

The spatial structure of mode I is more clearly visible in figure 20(a), which reports
the instantaneous distribution in the equatorial midplane of the secondary flow velocity
component urp along the toroidal radius r̂p defined in § 2.1. Here, the influence of
mode II is minor and manifests itself only as a slight departure from exact streamwise
periodicity of the pattern shown. This distribution exhibits kI = 16 identical cells; the
whole structure (or, more exactly, its pure mode-I component) rotates rigidly along the
torus with a dimensionless rotational celerity FI = f I/kI ≈ 0.017 (number of rotations
in the reference time a/uav = 1/f̂0). The dimensionless linear celerity of the travelling
wave, evaluated at the mean radius c, is 2πFI/δ ≈ 1.05. Therefore, the wave celerity
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FIGURE 20. Test case D1-QP (Re = 5658, δ = 0.1). (a) Instantaneous distribution of the
velocity component along the torus radius, urp, on the equatorial midplane. (b) Instantaneous
distribution of the wall shear stress module τw on the torus surface. Directions and angular
celerities of travelling waves I and II are indicated.

is close to the mean fluid velocity and the wave leads the fluid in the inner region
while it lags behind it in the outer region. The above values of kI and of the linear
celerity are compatible with those reported by Webster & Humphrey (1997) for the
lower curvature δ = 5.5× 10−2: see § 1.3.

Figure 21(a) reports the first two spatial eigenfunctions Ψ II
1 , Ψ II

2 associated with
mode II of the streamwise velocity us. These first two eigenfunctions capture more
than 95 % of the overall variance associated with mode II and thus, even more than for
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FIGURE 21. Test case D1-QP (Re = 5658, δ = 0.1). (a) First pair of normalized spatial
eigenfunctions for mode II of the streamwise velocity us, obtained by applying modal filter
GII followed by POD to the raw DNS data. (b) Corresponding time-dependent coefficients.

mode I, they capture the spatial shape of the fluctuations of fundamental frequency f II.
Figure 21(a) shows that they are mainly concentrated in the secondary flow boundary
layers, and particularly near the left (inner) end of these latter. However, significant
amplitudes are also present in the Dean vortex regions, which, therefore, exhibit both
frequencies f I and f II. A careful examination of the temporal behaviour of the flow
shows that, in the generic cross-section, this second mode manifests itself mainly as a
pair of vortex sheets which fill the secondary flow boundary layers and move against
the mean secondary flow, i.e. from the I side towards the O side. This is clearly
reflected in the sequence of Q contours of figure 17. The time-dependent coefficients
aII

1 , aII
2 are reported in figure 21(b); their amplitude, which expresses the intensity of

the streamwise velocity fluctuations of frequency f II, is of the order of 3–4 %.
The spatial structure of mode II is better shown in figure 20(b), which reports the

instantaneous distribution of the wall shear stress module on the surface of the toroidal
pipe, where the influence of mode I is marginal. This distribution exhibits kII = 36
cells; the whole structure (or, more exactly, its pure mode-II component) rotates rigidly
along the torus with a dimensionless rotational celerity FII = f II/kII = 0.0056. The
dimensionless linear celerity of this travelling wave, referred to the mean radius c, is
2πFII/δ ≈ 0.35. Therefore, the linear celerity of a mode-II wave is much less than the
mean fluid velocity and the linear celerity of a mode-I wave.

Summarizing, the unsteady flow exhibited by test case D1-QP can be described, like
in case D3-QP, as the superposition of two independent systems of travelling waves;
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unlike in case D3-QP, the fluctuating flow field is instantaneously symmetric with
respect to the equatorial midplane of the torus.

All the quasi-periodic cases simulated for the same curvature δ = 0.1, ranging from
Re = 5208 to 6280, exhibited the same modes and the same number of wavelengths
for each mode (kI = 16, kII = 36). The modal frequencies f I and f II varied only
negligibly with Re with respect to the values obtained for the reference case D1-QP
(0.27 and 0.20, respectively).

As anticipated in § 3, a further QP case was obtained by starting from the solution
for case D1-QP (Re = 5658) and letting the Reynolds number decrease to ∼4920,
well below the critical Reynolds number of ∼5175 for transition to unsteady flow.
This case, unattainable ‘from below’ (i.e. by letting Re increase starting from still
fluid or from any lower-Re solution), exhibited the same general features of other
quasi-periodic cases, but a reduced number of wavelengths (kI = 12) and a larger
dimensionless frequency (f I ≈ 0.36) for mode I, while for mode II kII and f II were still
36 and 0.20 as in the other QP cases for δ = 0.1.

5.4. Case D1-P (δ = 0.1,Re= 4108)
As anticipated in § 3, using the D1-QP solution (Reτ = 232,Re = 5658) as initial
condition and imposing lower friction Reynolds numbers Reτ yielded periodic
flow (D1-P) at Re = 4600, 4108 and 3800 (Re − Rec ≈ −575,−1067 and −1375,
respectively), well below the critical Reynolds number of ∼5175 for transition to
unsteady flow.

In particular, results will be illustrated for the case Reτ = 184, yielding Re= 4108≈
Rec − 1067. Figure 22 reports a sequence of contour plots of the quantity −Q on
a generic cross-section. The frames are taken at dimensionless time intervals of
0.875, and the sequence covers roughly one period (1/f I ≈ 4.405, the dimensionless
frequency f I being ∼0.227). The flow symmetry with respect to the equatorial
midplane can be appreciated. Near-wall vortices in the upper and lower secondary flow
boundary layers are still present, but, unlike in quasi-periodic cases, they now move at
the same frequency as the pulsation of the Dean vortices. Note that, in the reference
quasi-periodic case D1-QP, the dimensionless modal frequencies f I and f II were ∼0.27
and ∼0.20, respectively slightly above and slightly below the present single frequency.
The number of wavelengths in the whole torus is kI = 13, less than that observed
for mode I in quasi-periodic flow for Re above the critical value of ∼5175 (5.2), but
larger than that observed in quasi-periodic flow for Re below the critical value (2.5).
This wavelength number remained unchanged also for the other periodic flow cases
simulated as mentioned above (Re = 4600 and 3800). It should be mentioned that for
the lowest periodic Reynolds number investigated (Re = 3800 ≈ Rec − 1375, close to
a hypothetical turning point) the flow stabilized itself to kI = 13 only after a long
transient in which the wavelength number changed erratically between 12 and 13.

5.5. Instability mechanisms
Only a few authors so far have described transitional unsteady regimes occurring
between stationary and turbulent flow in curved pipes; among them Sreenivasan &
Strykowski (1983) for δ ≈ 0.058 and Webster & Humphrey (1997) for δ ≈ 0.055.
However, the former authors gave only a qualitative description of the ensuing
unsteady flow, while the latter described it as time-periodic and identified a single
travelling wave. Hüttl & Friedrich (2001), for δ = 0.1, predicted unsteady flow in the
same range of Reynolds number but gave only a statistical description of the results
without specifying the nature of the unsteadiness. All the above studies agree on the
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FIGURE 22. Maps of the quantity −Q at dimensionless time intervals of 0.875 starting from
an arbitrary instant on a generic cross-section for test case D1-P (Re= 4108, δ = 0.1).

fact that the loss of stability of the Dean flow occurs for Re ≈ 5000, much lower than
the values predicted by all correlations in § 1.3 as the critical ones for transition to
turbulence proper.

The present results show that what happens at Re ≈ 5000 is a loss of stability of
the base steady-state flow in favour of an oscillatory, P or QP, flow. The details of
this transition depend on the curvature δ. Transition to chaotic flow proper (turbulence)
occurs only at far larger Re(∼8000).

The experimental identification of oscillatory (periodic and quasi-periodic) flows has
played a central role in the understanding of transition to turbulence (Fenstermacher
et al. 1979; Gollub & Benson 1980). In fully three-dimensional flows permanent
oscillating solutions (either periodic or quasi-periodic) have been documented only in
configurations involving non-uniform body forces, such as those caused by buoyancy
(Fusegi, Hyun & Kuwahara 1992) or rotation (Knightly & Sather 1993). Recently,
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FIGURE 23. Test case D3-QP (Re = 6128, δ = 0.3). Cross-sectional maps of (a) Rayleigh
discriminant φ′′, (5.1), computed from the time-averaged secondary flow field, (b) Rayleigh
discriminant φ′, (5.2), computed from the time-averaged streamwise flow field. Stable regions
(φ > 0) are shown in white with solid contour lines, unstable regions (φ < 0) in grey with
dashed contour lines.

travelling waves in channel flow have received considerable attention for their potential
role in transition to turbulence (Kerswell 2005); in straight channels, they are unstable
and thus cannot persist indefinitely, while in the present, curved pipe, configuration
they appear to be stabilized by the centrifugal forces.

As regards the mechanism of the unsteadiness in curved pipes, Webster &
Humphrey (1997) suggested that it is a centrifugal instability of the secondary (cross-)
flow rather than an instability of the main (streamwise) flow. When applied to the
secondary flow in the cross-section of the toroidal pipe, the Rayleigh discriminant
in (1.7) must be written as

φ′′ = 1
r3

∂

∂r
(ruθ)

2, (5.1)

in which uθ is the azimuthal (circumferential) velocity of the secondary flow and r is
the distance from the centre of the cross-section. A map of φ′′ on the generic cross-
section for case D3-QP, based on the time-averaged secondary flow field, is reported in
figure 23(a). Note that, since the flow is not centro-symmetric, (5.1) makes φ′′ diverge
at the origin and clearly is not applicable there. The secondary flow boundary layers
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appear as stable areas surrounded on either side by unstable regions, which seems to
support the interpretation proposed by Webster & Humphrey.

However, a strong argument against this interpretation is that, if it were true, the
onset of instability should be associated with a certain critical value of the Dean
number De = Re

√
δ, which controls the intensity of the secondary flow, and not of

the Reynolds number. Webster & Humphrey (1997) considered a single value of the
curvature and thus could not analyse the independent effects of these two quantities. In
our simulations, however, the onset of unsteadiness is predicted to occur at a Reynolds
number between 4556 and 4605 (De = 2495–2552) for δ = 0.3, and at a Reynolds
number between 5139 and 5208 (De = 1625–1642) for δ = 0.1, which shows that it
is mainly controlled by Re rather than by De. In other words, geometry D3 sustains
a stationary Dean flow in the presence of a secondary circulation much more intense
than that supposedly causing unsteadiness in the lower curvature geometry D1.

On the other hand, following the suggestion of Sreenivasan & Strykowski (1983),
the Rayleigh criterion should be applied to the main flow in the toroidal pipe. In this
case, the appropriate form of the Rayleigh discriminant in (1.7) is

φ′ = 1
r3

p

∂

∂rp
(rpus)

2, (5.2)

in which us is the streamwise velocity and rp is the normal distance from the axis
of the torus. A map of φ′ on the generic cross-section for case D3-QP, based
on the time-averaged flow field, is reported in figure 23(b). It shows two main
regions of centrifugal (Rayleigh) instability, one located near the outer wall and one
corresponding to the Dean vortices, where φ′ is much more negative than φ′′. While a
near-wall negative Rayleigh discriminant does not necessarily imply flow unsteadiness,
due to the stabilizing effect of viscous forces, the Dean vortex regions are likely
candidates for the locus of origin of the first instability that leads to the transition
from stationary to unsteady flow. This fact, together with the independence of the
critical Reynolds number from the curvature δ, supports the view that the transition
from stationary to unsteady regimes is driven by a centrifugal instability of the main
(streamwise) flow, and not of the secondary flow.

However, it must be observed that the strongly negative φ′ region in figure 23(b)
in the proximity of the Dean vortex is associated with the ‘kink’ in the distribution
of the streamwise velocity us clearly visible, for example, in figure 4(a) and caused
by the convective transport of us by the secondary flow. Thus, although indirectly, the
secondary circulation does play a crucial role in determining the centrifugal instability
of the main flow, which supports the view that main and secondary flow should
not be probed separately for stability. Note that the same ‘kink’ is associated with
a relative minimum (implying two inflection points) in the radial profiles of the
streamwise velocity, which may also be a potential instability source. Thus, different
criteria basically converge in pointing to the ‘kink’ region as the locus for the onset of
oscillatory instability in the basic steady flow.

The present problem exhibits obvious analogies, but also some relevant differences,
with respect to the much more studied Taylor–Couette flow. In both cases a stationary
vortex flow pattern (Dean vortices versus Taylor vortices) is destroyed by centrifugal
instabilities in favour of an unsteady flow as a critical value of a control parameter
is exceeded. However, in the Taylor–Couette problem the full supercritical bifurcation
sequence from stationary to periodic and then to quasi-periodic flow is observed
(Fenstermacher et al. 1979), whereas in the present toroidal pipe problem this is true
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FIGURE 24. Test case D3-C (Re = 8160, δ = 0.3). (a) Behaviour of the streamwise velocity
fluctuations at two points of the cross-section, located in the Dean vortex region and in the
secondary flow boundary, respectively. (b) Corresponding velocity power spectra (arbitrary
units).

for high curvatures (δ = 0.3) but not for low curvatures (δ = 0.1), where a subcritical
bifurcation scenario seems to prevail.

6. Chaotic flow
The highest Reynolds numbers for which clearly quasi-periodic solutions were

obtained were 7859 (δ = 0.3) and 6280 (δ = 0.1). For the higher curvature (δ = 0.3),
a moderate increase of Re to 8160 was sufficient to yield a clearly chaotic solution.
For δ = 0.1, Reynolds numbers in the range ∼6500–8000 gave rise to long and erratic
transients while clearly chaotic solutions were obtained only for Re>∼8000. For both
curvatures, results will be presented for a Reynolds number of 8160 (cases D3-C and
D1-C).

6.1. Case D3-C (δ = 0.3,Re= 8160)
Figure 24(a) reports short time samples of the streamwise velocity fluctuations us–〈us〉
at two arbitrary points of the cross-section, located in the secondary flow boundary
layer and in the Dean vortex region. Both the location of the monitoring points and
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the dimensionless duration of the sample (30 units) are the same as in figure 10(a),
relative to case D3-QP. Frequency spectra of the two velocities, taken over a time
interval 1t ≈ 200, are reported in figure 24(b). For both locations, spectra exhibit an
almost continuous distribution of frequencies, characteristic of highly chaotic flow.
Although some peaks stand out on the broadband background, there is no clear
residual of the modal frequencies (f I ≈ 0.4, f II ≈ 0.165) observed in the corresponding
quasi-periodic case D3-QP: see figure 10(b). Similar broadband spectra are obtained
for different points of the flow field and different flow quantities.

For this case, the numerical simulation conducted starting from zero-velocity
conditions initially yielded a quasi-periodic flow, similar to that predicted for lower
Reynolds numbers. However, at a certain instant an instability of the outer region
manifested itself in the form of irregular vortices which were rapidly swept by the
cross-flow into the secondary boundary layers, where they destroyed the regular vortex
pattern characteristic of QP flows. Subsequently, the irregularities propagated to the
Dean vortex regions until a chaotic flow condition was attained in the whole cross-
section. Figure 25 illustrates the initial stages of this sequence by reporting maps of
the quantity −Q on an arbitrary cross-section at dimensionless time intervals of 1.32,
starting from the first appearance of the outer layer instability. Note that the vortex
trails in the secondary boundary layers, associated with mode II in QP flows, continue
to exist also in the present chaotic flow conditions, although they lose any periodicity
and regularity; also, the Dean vortices continue to exist as permanent flow structures,
but their pulsatile motion becomes aperiodic and the phase shift between the upper and
lower half-channels is not clearly identifiable any more.

These results show that, for this high curvature (δ = 0.3), the centrifugal instability
of the main flow in the outer region appears to be the mechanism causing the loss of
stability of the quasi-periodic solution prevailing at lower Reynolds numbers.

The time-averaged secondary flow in the cross-section is not illustrated here
since, once made dimensionless by the average streamwise velocity, it is almost
indistinguishable from that obtained for stationary flow, e.g. case D3-S in figure 4(d).
This shows that flow unsteadiness, either of regular or chaotic nature, does not
significantly affect the time-mean flow: for a given curvature, as the Reynolds number
increases, the Dean circulation attains rather early (well within the stationary range) an
asymptotic shape and a dimensionless intensity which are little affected (on average)
by the subsequent transitions to unsteady and chaotic behaviour.

A map of the root mean square values of the velocity fluctuations along the
streamwise direction for case D3-C is reported in figure 26(a). The outer region
has a high level of fluctuations and is the most unsteady. Fluctuations in this region
were almost completely absent in the quasi-periodic case D3-QP, and thus appear to be
purely chaotic.

A further increase of Re does not change the overall flow structure: figure 26(b)
reports the r.m.s. streamwise fluctuation for Re = 13 180, and exhibits no relevant
difference with respect to case D3-C in the distribution and dimensionless intensity of
turbulence.

6.2. Case D1-C (δ = 0.1,Re= 8160)
Figure 27(a) reports short time samples of the streamwise velocity fluctuations us–〈us〉
at two arbitrary points of the cross-section, located in the secondary flow boundary
layer and in the Dean vortex region. Both the location of the monitoring points and the
dimensionless duration of the sample (30 units) are the same as in figure 18(a), which
is for case D1-QP. The time series in figures 17(a) and 25(a) do not show any obvious
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FIGURE 25. Test case D3-C (Re = 8160, δ = 0.3). Maps of the quantity −Q on a generic
cross-section at dimensionless time intervals of 1.32, starting from the onset of instability in
the outer layer.
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FIGURE 26. Streamwise root mean square velocity fluctuations for chaotic flow and δ = 0.3.
(a) Re= 8160, (b) Re= 13 180.
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FIGURE 27. Test case D1-C (Re = 8160, δ = 0.1). (a) Behaviour of the streamwise velocity
fluctuations at two points of the cross-section, located in the Dean vortex region and in the
secondary flow boundary, respectively. (b) Corresponding velocity power spectra (arbitrary
units).

differences; however, the corresponding power spectra are completely different; see
parts (b) of these figures. For case D1-C, figure 27(b), the spectra for both monitoring
points, taken over a time interval 1t ≈ 200, exhibit a large number of peaks occurring
at incommensurate frequencies, which is a clear indication of chaotic flow. In the
spectrum relative to the Dean vortex, but not in that relative to the boundary layer
region, the spectral peak corresponding to the frequency f I ≈ 0.27 of the mode-I
travelling wave (varicose instability of the Dean vortex ring) is still recognizable. The
cluster of frequencies observed in the spectra relative to both monitoring points in the
interval ∼0.1–0.2 replaces the single frequency f II ≈ 0.2 of mode II (oblique vortex
trail in the boundary layer region) and corresponds to a low-frequency, non-sinusoidal
amplitude modulation of the mode-II vortices.

Spectra obtained for different points of the flow field and different flow quantities
exhibit the same overall chaotic behaviour.

Figure 28 reports the instantaneous map of the quantity −Q on a cross-section at an
arbitrary time. When compared to the similar maps reported for the quasi-periodic case
D1-QP in figure 17, the present distribution exhibits a loss of instantaneous symmetry
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FIGURE 28. Instantaneous map of the quantity −Q on a generic cross-section for test case
D1-C (Re= 8160, δ = 0.1).
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FIGURE 29. Streamwise root mean square velocity fluctuations for chaotic flow and δ = 0.1.
(a) Re= 8160, (b) Re= 14 700.

with respect to the equatorial midplane of the torus and a larger irregularity of the
secondary flow in the Dean vortex region. The outer flow region remains basically
stationary as in case D1-QP.

The time-averaged secondary flow in the cross-section is very similar (once made
dimensionless by the average streamwise velocity) to the secondary flow predicted for
the stationary case D1-S and shown in figure 4(b). Therefore, it is not illustrated here.

A map of the root mean square velocity fluctuation along the streamwise direction
for case D1-C is reported in figure 29(a). Of course, fluctuations include all the
spectral components in figure 27(b), i.e. both chaotic fluctuations proper and what
is left of the low-frequency, quasi-periodic oscillations. Figure 29(a) shows that high
values of the streamwise fluctuation are attained both in the Dean vortex regions
and in the secondary flow boundary layers for θ ≈ 0 or π, while the outer region is
basically stationary despite the overall chaotic nature of the solution. This suggests
that the centrifugal instability of the main flow in this region has not yet manifested
itself at the present Reynolds number of 8160.

Quite a different picture is obtained if the Reynolds number is further increased:
figure 29(b) reports the r.m.s. streamwise fluctuation for a higher Re(14 700), well into
the turbulent range. In this case, fluctuations attain high values not only in the regions
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mentioned for the lower-Re case, but also near the outer wall, which shows that the
centrifugal instability of the main flow in this region has occurred at some Reynolds
number intermediate between 8160 and 14 700. Since the spatial resolution criteria for
DNS discussed in § 2.2 are not fully satisfied by the computational mesh for this latter
value of Re, the corresponding case will not be analysed in detail here and is reported
only for the purpose of comparison with the early-chaotic case D1-C.

7. Summary and conclusions
Albeit limited to two values of the curvature, the present study has revealed a rich

variety of phenomena in the transition to turbulence in toroidal pipes.
A supercritical transition from stationary to periodic flow was observed only for the

higher curvature δ = 0.3 and occurred for a Reynolds number intermediate between
4556 and 4605. The resulting flow was characterized by a travelling wave affecting
mainly the Dean vortex region and taking the form of a varicose modulation of the
twin Dean vortex rings, which, in the whole periodic range of Reynolds numbers,
included kI = 8 cells (wavelengths) along the axis of the torus and was instantaneously
anti-symmetric with respect to its equatorial midplane. Still for δ = 0.3, the further
transition to quasi-periodic flow, characterized by two independent fundamental
frequencies f I and f II and by their first few harmonics, occurred for Re between 5042
and 5270. The two frequencies were associated with distinct travelling waves, the first
affecting mainly the Dean vortex rings and taking the form of a varicose modulation,
the second affecting mainly the secondary flow boundary layers and manifesting itself
as an array of oblique vortices produced at the edge of the Dean cells, co-rotating
with these latter and travelling from the inner towards the outer side, i.e. against
the secondary circulation. In the Reynolds number range for which a quasi-periodic
regime existed, the number kI of mode-I wavelengths in the whole torus decreased
from 8 to 7 while the number kII of mode-II wavelengths increased from 10 to 18.

For the lower curvature δ = 0.1, the present computational results indicate the
existence of a subcritical Hopf bifurcation at a Reynolds number Rec close to 5175
and of a secondary Hopf bifurcation to quasi-periodic flow at a lower Reynolds
number close to 4900. Starting from zero-velocity initial conditions, steady-state flow
remained stable up to a Reynolds number of 5139, while a further increase in Re to
5208 led to a quasi-periodic flow which remained stable up to Re = 6280 or larger,
and was characterized in this whole range by kI = 16, kII = 36 with dimensionless
modal frequencies f I, f II of ∼0.27 and ∼0.20, respectively. When a quasi-periodic
solution (namely, that obtained for case D1-QP at Re = 5658) was used as the initial
condition, it was possible to obtain a further, stable, quasi-periodic solution for a
Reynolds number well below the critical (Hopf) value of ∼5175. In particular, the QP
solution at Re = 4920 was characterized by kI = 12, kII = 36 and by dimensionless
modal frequencies f I, f II of ∼0.36 and ∼0.21, respectively. A further decrease of
the imposed driving force starting from the same (QP) initial conditions led to the
disappearance of mode II and to a stable periodic solution at Re= 4108, characterized
by kI = 13, f I = 0.227. With this ‘backward’ procedure, steady-state flow was obtained
only when the Reynolds number was reduced to values well below 4000 (in particular,
a test case was computed for Re= 3490). All the periodic and quasi-periodic solutions
obtained for δ = 0.1 exhibited instantaneous symmetry about the equatorial midplane.

An analysis based on the application of Rayleigh’s centrifugal stability criterion
suggested that for both curvatures the occurrence of unsteady modes was triggered
by a centrifugal instability of the main flow located in the Dean vortex region, rather
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than by a centrifugal instability of the cross- (secondary) flow as suggested by other
authors.

Also, the further transition from quasi-periodic to chaotic flow occurs with different
mechanisms for the two curvatures.

For the high-curvature case (δ = 0.3), convergence to quasi-periodic flow is obtained
in the whole Reynolds number range 5270–7850. As Re increases slightly beyond this
value (Re = 8160), strong fluctuations, associated with random streamwise vortices,
arise in the outer region. The statistically stationary flow regime that ensues is
characterized by a broadband, almost continuous, spectrum of frequencies in which the
quasi-periodic modal frequencies f I and f II are not recognizable any longer. A further
increase of the Reynolds number to 13 180 does not modify to any appreciable extent
the flow regime and the distribution of the velocity fluctuations. This phenomenology
suggests that, at high curvatures, the abrupt breakdown of the quasi-periodic flow is
associated with the occurrence of a centrifugal instability of the main flow, located in
the outer region of the pipe.

In the case δ = 0.1, the convergence of the results to quasi-periodic flow obtained
for Reynolds numbers between 5208 and 6280 becomes impossible to achieve as
the Reynolds number increases beyond the latter value, and is replaced by long and
erratic transients. For Re = 8160, the solution, albeit stationary in a statistical sense,
exhibits a large number of frequencies. The characteristic frequency f I, associated with
the varicose, symmetric modulation of the Dean vortex rings is still recognizable in
power spectra, whereas the frequency f II is replaced by a cluster of nearby frequencies,
associated with an amplitude modulation of the mode-II structures (travelling vortices
in the secondary flow boundary layers). At this Reynolds number, the outer region is
basically stationary. Only when the Reynolds number increases further does the outer
region become unsteady and characterized by an irregular production of streamwise
vortices, which are then transported by the cross-flow and destroy all remains of
regular oscillations. This behaviour suggests that, at sufficiently low curvature, the
gradual breakdown of the regular, quasi-periodic flow may result from nonlinear
interactions between modes I and II. Only at higher Re does the centrifugal instability
of the main flow in the outer region of the pipe manifest itself and turn the flow
pattern into one characterized by strong fluctuations, not only in the Dean vortex and
cross-flow boundary layer regions but also in the outer region.

On the basis of the present simulations, of results from the literature, and of
asymptotic arguments, a tentative flow regime map in the Re–δ plane can be sketched
as in figure 30. This takes into account the present results for δ = 0.3 and 0.1, the
(qualitative) experimental findings of Sreenivasan & Strykowski (1983) for δ = 0.058,
and the experimental results of Webster & Humphrey (1997) for δ = 0.055. Here we
assumed that the oscillatory flow regimes described by the above authors as periodic
are actually instances of quasi-periodic flow. Moreover, the map takes account of
the fact that, for δ = 0 (straight pipe), a direct transition from stationary laminar to
turbulent (chaotic) flow occurs.

The solid lines in figure 30 denote transitions for increasing Re, while the dashed
lines correspond to transitions for decreasing Re. The regions indicated as P-BW
and QP-BW are attainable only by letting the Reynolds number decrease from initial
conditions corresponding to a higher-Re solution.

Schematic bifurcation diagrams corresponding to different intervals of δ are drawn
in the lower part of the figure; in the regions close to δ = 0.3 and δ = 0.1 they
are qualitatively identical to those reported in figures 3(a) and 3(b), respectively.
H denotes a Hopf bifurcation from stationary to periodic flow while H2 denotes a
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FIGURE 30. Tentative flow regime map in the Re–δ plane. Symbols: computational or
experimental results classified as S (stationary), P (periodic), QP (quasi-periodic) or C
(chaotic). S-BW, P-BW and QP-BW denote S, P or QP solutions obtained by letting Re
decrease. Solid lines, transitions for increasing Re; dashed lines, transitions for decreasing Re.
Bifurcation diagrams corresponding to different intervals of δ are drawn in the lower part of
the figure. The grey region is hypothetical.

secondary Hopf bifurcation from periodic to quasi-periodic flow. The details of the
flow regime map in the region of curvatures intermediate between 0.1 and 0.3 are
purely hypothetical as suggested by the shaded area. Moreover, a complete regime
map would exhibit a finely serrated shape of the transition curves in correspondence
with the discrete jump in the number of wavelengths of either mode I or mode II
as δ and Re vary, much as in the spiral Poiseuille flow study by Avila, Meseguer &
Marques (2006): see e.g. figure 3 therein.

The transition criteria proposed in the literature and reviewed in § 2.1, mainly based
on the behaviour of the friction coefficient, can now be revisited in light of the
present results. Of course, a necessary assumption is that results actually obtained
for helically coiled pipes of moderate torsion can be applied to toroidal pipes as
well. The criterion expressed by (1.6) is reported in figure 30. For any curvature, it
predicts a transitional Reynolds number far larger than that associated with transition
to chaotic flow on the basis of the present work and of the existing literature. This
suggests that (1.6) identifies not the onset of turbulence, but rather the attainment of
turbulence levels sufficiently high for pressure drop to be dominated by turbulence
effects. In fact, in configurations characterized by the presence of secondary flow,
pressure drop is largely caused by recirculation and may be significantly higher than in
parallel flow also under stationary laminar conditions; the appearance of unsteadiness,
and even of turbulence, results in an added frictional term which increases gradually
with the Reynolds number and, in low-turbulence flows, may represent just a minor
contribution to the overall pressure drop.

This assumption is supported by figure 31, which reports the friction coefficient f
as a function of Re for all the test cases studied at δ = 0.3 and 0.1. For δ = 0.1, Ito’s
laminar and turbulent correlations, (1.4) and (1.5), are also reported, while they are
not applicable for δ = 0.3. Equation (1.4) reproduces the present results for δ = 0.1
with high accuracy. However, the most striking feature of figure 31 is that, for both
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103 104 105

10–1

Re

f

FIGURE 31. Darcy friction coefficient for two values of the curvature (δ = 0.1 and 0.3).
Solid lines, Ito correlation for laminar flow, equation (1.4); dashed lines, Ito correlation for
turbulent flow, equation (1.5); symbols, present computational results.

curvatures and independent of the comparison with existing correlations, the present
results do not exhibit any change in their trends in correspondence with the transition
from stationary to unsteady laminar flow and to chaotic flow, thus confirming that the
corresponding unsteady phenomena, up to low turbulence, are not sufficiently intense
to affect the overall dissipation significantly. This also explains why criterion (1.6)
predicts an increase in the transitional Re with the curvature δ, while the present
results indicate transition values that vary non-monotonically with the curvature.

Finally, the issue of the adequacy of toroidal pipe flow as a model for more
general curved pipe flows, mentioned in the Introduction, can now be re-examined
in light of the present computational results and the literature. No previous study
presents a comparable level of detail, so specific quantitative comparisons are not
possible. However, all the present findings are compatible with published experimental
and computational results. In particular, the features and the approximate wavelength
of travelling modes for certain Reynolds numbers and curvatures are in agreement
with the visualization studies by Webster & Humphrey (1997), conducted on helical
coils (see § 1.2), and with the numerical simulations by the same authors, conducted
for a finite tract of a curved pipe (see § 1.4). They are also compatible with the
flow visualizations by Del Pino et al. (2008), conducted in a closed torus but under
non-equilibrium conditions (decelerating flow), which show similar spatial travelling
structures. Therefore, from a qualitative point of view neither a finite torsion nor a
finite pipe length or even a departure from equilibrium conditions seems to modify too
radically the basic phenomenology with respect to the present predictive study.

Of course, the choice of identifying the computational domain with a full torus,
i.e. assuming 2π periodicity, imposes a precise wavelength selection on the travelling
structures; in any finite-length simulation, differences in wave length and wave speed
are to be expected. Ideally, only an infinite-length bend would not impose constraints
on the streamwise travelling-wave structures; but this is not realizable in the absence
of torsion. In their turn, pipes with torsion (helical coils) will exhibit a breakdown
of the top–bottom symmetry, so that travelling-wave structures identical to those
predicted here for zero torsion are not possible, and a more complex behaviour is
to be expected.
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