
Proceedings of the Royal Society of Edinburgh, 150, 569–606, 2020

DOI:10.1017/prm.2018.154

Long-time asymptotic expansions for
Navier-Stokes equations with
power-decaying forces

Dat Cao and Luan Hoang
Department of Mathematics and Statistics, Texas Tech University,
Box 41042, Lubbock, TX 79409-1042, USA (dat.cao@ttu.edu,
luan.hoang@ttu.edu)

(MS received 27 March 2018; accepted 4 September 2018)

The Navier-Stokes equations for viscous, incompressible fluids are studied in the
three-dimensional periodic domains, with the body force having an asymptotic
expansion, when time goes to infinity, in terms of power-decaying functions in a
Sobolev-Gevrey space. Any Leray-Hopf weak solution is proved to have an
asymptotic expansion of the same type in the same space, which is uniquely
determined by the force, and independent of the individual solutions. In case the
expansion is convergent, we show that the next asymptotic approximation for the
solution must be an exponential decay. Furthermore, the convergence of the
expansion and the range of its coefficients, as the force varies are investigated.
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1. Introduction

The Navier-Stokes equations (NSE) are nonlinear partial differential equations that
describe the dynamics of viscous, incompressible fluids. The mathematics of NSE
has proven to be quite important, intriguing and challenging. In particular, under-
standing the long-term behaviours of the solutions of NSE would be insightful to
many hydrodynamical phenomena. Unfortunately, such a level of mathematical
understanding is still not available in general. However, under some circumstances,
the mathematics is more accessible and much has been understood. One such case
is when the body force is potential, which has many papers devoted to [3–7,9,11–
14,16]. (We caution that these works provide a deep understanding of the solutions
despite the fact that they go to zero as time becomes large. They are different from
those studying the case of large forces, which are more oriented toward the theory
of turbulence.) The case when the force is nonpotential and decays exponentially in
time has only been studied recently in [19]. The current paper follows this direction
of research. We aim to understand the long-term behaviour of the solutions in case
the force is larger than those considered in [19]. More importantly, we hope to find
new phenomena due to the different structure of the force, and describe precisely
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how the asymptotic properties of the force determine the asymptotic behaviour of
the solutions.

First, we recall the mathematical formulation of the NSE, and specify the con-
text in which we study them. Let u(x, t) ∈ R

3 denote the velocity vector field and
p(x, t) ∈ R denote the pressure of a viscous, incompressible fluid, where x ∈ R

3

is the vector of spatial variables, and t ∈ R is the time variable. The (kine-
matic) viscosity of the fluid is a constant ν > 0. The body force acting on the
fluid is f(x, t) ∈ R

3. The NSE are the following system of partial differential
equations

∂u
∂t

+ (u · ∇)u − νΔu = −∇p+ f on R
3 × (0,∞),

div u = 0 on R
3 × (0,∞).

(1.1)

Above, the first equation is the balance of momentum, while the second one is the
incompressibility condition.

The initial condition specified for the velocity is

u(x, 0) = u0(x), (1.2)

where u0(x) is a given divergence-free vector field.
In our current study, the force f(x, t) and solutions (u(x, t), p(x, t)) are considered

to belong to the class of L-periodic functions for some L > 0, that is, the class of
functions g(x) that satisfy

g(x + Lej) = g(x) for all x ∈ R
3, j = 1, 2, 3,

where {e1, e2, e3} is the standard basis of R
3. Such a consideration will simplify

our mathematical analysis since it avoids the case of unbounded domains, and the
no-slip boundary condition usually imposed on bounded domains.

By a Galilean transformation, see for example, [19], we can assume that f(x, t)
and u(x, t), for all t � 0, have zero averages over the domain Ω = (−L/2, L/2)3,
that is, their spatial integrals over Ω are zero.

Thanks to the Leray-Helmholtz decomposition, and for the sake of convenience,
we assume further that f(x, t) is divergence-free for all t � 0.

By rescaling the variables x and t, we assume throughout, without loss of gen-
erality, that L = 2π and ν = 1. With this assumption, the equations in (1.1) are
adimensional now.

In studying the dynamics of NSE, the function u(x, t) of several variables can
be viewed as a function of t valued in some functional space. For time-dependent
functions of such type, their asymptotic properties, as time goes to infinity, can be
understood most precisely if some form of asymptotic expansions is established. We
discuss, in this paper, the following two types of expansions. Briefly speaking, one
expansion is in terms of exponential decaying functions with polynomial coefficients,
and the other of power-decaying ones.
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Definition 1.1. Let (X, ‖ · ‖) be a real normed space, g be a function from (0,∞)
to X, and (γn)∞n=1 be a strictly increasing, divergent sequence of positive numbers.

(a) The function g is said to have the asymptotic expansion

g(t)
exp.∼

∞∑
n=1

gn(t)e−γnt in X, (1.3)

where gn(t)’s are X-valued polynomials in t, if for any N � 1, there exists βN > γN

such that ∥∥∥∥∥g(t) −
N∑

n=1

gn(t)e−γnt

∥∥∥∥∥ = O(e−βN t) as t→ ∞.

(b) The function g is said to have the asymptotic expansion

g(t) ∼
∞∑

n=1

ξnt
−γn in X, (1.4)

where ξn’s are elements in X, if for any N � 1, there exists βN > γN such that∥∥∥∥∥g(t) −
N∑

n=1

ξnt
−γn

∥∥∥∥∥ = O(t−βN ) as t→ ∞.

Throughout the paper, we will make use of the following notation

u(t) = u(·, t), f(t) = f(·, t), u0 = u0(·).

Note that u0, and each value of u(t), f(t) belong to some functional spaces.
In case the force f in NSE is a potential function, that is, f(x, t) = −∇φ(x, t)

for some scalar function φ, it is well-known that any Leray-Hopf weak solution
becomes regular eventually and decays in H1(Ω)-norm exponentially. The first
precise asymptotic behaviour is proved by Foias and Saut [5]. Namely, for any
nontrivial, regular solution u(t) in bounded or periodic domains, there exist an
eigenvalue λ of the Stokes operator and a corresponding eigenfunction ξ such that

lim
t→∞ eλtu(t) = ξ, where the limit holds in all Sobolev norms.

Moreover, they showed in [7] that any such solution admits an asymptotic
expansion

u(t)
exp.∼

∞∑
n=1

qn(t)e−μnt (1.5)

in Sobolev spaces Hm(Ω)3 for all m � 0. Here, {μn : n ∈ N} is the additive semi-
group generated by the spectrum of the Stokes operator. It was then improved
in [18], for the case of periodic domains, that the expansion holds in any Gevrey
spaces Gα,σ, see § 2 for details.

Studying the asymptotic expansion (1.5) leads to theories of associated normal-
ization map and invariant nonlinear manifolds [4–7,9], Poincaré-Dulac normal form
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for NSE [11,14,16]; they were applied to the analysis of helicity, statistical solu-
tions of the NSE, and decaying turbulence [12,13]. It provides fine details for the
long-time behaviour of the solutions, and sheds some insights into the nonlinear
structure of NSE. See also [20] for a result in R

3, [22] for expansions for dissipative
wave equations, and the survey paper [17] for more information on the subject.

Regarding the problem of establishing the expansion (1.5), the simplified
approach in [18], for NSE in the periodic domains, turns out to be easily adapted
to the case of nonpotential forces [19]. We recall here a result in this direction –
theorem 2.2 of [19].

Assume there exists σ � 0, such that

f(t)
exp.∼

∞∑
n=1

fn(t)e−nt in Gα,σ for all α � 0. (1.6)

Then any Leray-Hopf weak solution u(t) of (1.1) and (1.2) admits an asymptotic
expansion

u(t)
exp.∼

∞∑
n=1

qn(t)e−nt in Gα,σ for all α � 0. (1.7)

We note that the expansion (1.6) of f is of type (1.3), and so are the expansions
(1.5) and (1.7). A natural question arising is whether one can establish the same
results for other types of decaying forces. This paper studies a particular case when
f has an asymptotic expansion of type (1.4) instead. More specifically, assume there
exist α � 1/2 and σ � 0 such that

f(t) ∼
∞∑

n=1

ψnt
−γn in Gα,σ. (1.8)

We will derive a corresponding expansion for solutions of NSE. First, rewrite
(1.8) as

f(t) ∼
∞∑

n=1

φnt
−μn in Gα,σ,

where (μn)∞n=1 is an appropriate sequence of powers generated by γn’s.
We prove that there exist ξn ∈ Gα+1,σ, for all n ∈ N, which are explicitly deter-

mined by φn’s, such that any Leray-Hopf weak solution u(t) will admit the following
expansion

u(t) ∼
∞∑

n=1

ξnt
−μn in Gα+1−ρ,σ, for all ρ ∈ (0, 1). (1.9)

The expansion (1.9) has the following new features.

(a) All Leray-Hopf weak solutions have the same expansion, depending only on
the force, regardless even their uniqueness and global regularity.
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(b) The expansion of solution u is established with the force f belonging to
a Sobolev-Gevrey space Gα,σ for fixed α and σ. This contrasts with the
requirement in (1.6) that f ∈ Gα,σ for all α � 0.

We also note that the force in (1.8), though decays to zero, is much larger than
the one in (1.6), as t→ ∞.

Although our proof follows the scheme installed in [7] and [18,19], we take
advantage of the new structure of the force f to make significant improvements in
estimates, and succeed in quantifying the effects of such structure on that of the
solution u.

Since the expansion (1.9) is convergent in many cases, we investigate what may
be the next approximation of the solution after this expansion. Specifically, if
f(t) =

∑∞
n=1 φnt

−n and ū(t) def=
∑∞

n=1 ξnt
−n are uniformly convergent in appro-

priate spaces for large t, then u(t) − ū(t) is proved to decay at least at the rate
tβe−t, as t→ ∞, for some number β � 0. This result rules out any intermediate
approximation of u after ū that is between the power and exponential decays.

The paper is organized as follows. Section 2 reviews the functional setting for
NSE, some basic inequalities for Sobolev and Gevrey norms, and estimates for the
bi-linear form B(u, v) in NSE. Lemma 2.2 describes the asymptotic behaviour of
certain integrals which will be utilized repeatedly in asymptotic estimates for large
time. Particularly, it is used in lemma 2.3 to establish the limit, as t→ ∞, and the
remainder estimates for solutions of certain linearized NSE. This will be a building
block of proving the asymptotic expansion (1.9). In § 3, we establish the power-decay
for any Leray-Hopf weak solutions, cf. theorem 3.2. It combines standard energy
estimates, when time is large, with theorem 3.1, which proves strong asymptotic
bounds for solutions in Gevrey spaces when the initial data and the force are small.
In § 4, the asymptotic expansion (1.9) is obtained, either as a finite sum in theorem
4.1, or an infinite sum in theorem 4.3. As mentioned in remarks (a) and (b) above,
the same expansion holds for all Leray-Hopf weak solutions, and only requires the
force f to belong to a fixed Sobolev-Gevrey space, namely, Gα,σ. Moreover, the
expansion of the solution u holds in even more regular space, Gα+1−ρ,σ, than that
of f . This feature is possible because of the higher regularity for the elements ξn’s in
lemma 4.2, and the remainder estimate in lemma 2.3. It is also worth mentioning
that the ξn’s are explicitly determined by the recursive formulas (4.6) and (4.7)
without solving any ordinary differential equations (in functional spaces) which was
the case for the expansions (1.5) and (1.7). Section 5 deals with the convergence
of the expansions, and the range of ξn’s as the force varies. In case γn = μn =
n for all n, it turns out that the expansion (1.9) can be any finite sum, or an
infinite sum with the norms ‖ξn‖Gα+1,σ

decaying in a certain, but still very general,
way, see theorem 5.1, example 5.2 and corollary 5.3. Since the sequence (ξn)∞n=1

completely determines the asymptotic expansion (1.9), it plays a similar role to the
normalization map W in [7,9]. Therefore, a number of comparisons between them
are made in remark 5.5. Another topic in this section is to find out what will be
the next approximation of the solution u after the expansion (1.9). It is proved in
theorem 5.6 that, in case the expansion converges, say, to ū, the remainder u− ū
must decay exponentially.
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2. Preliminaries

2.1. Background for NSE

Let L2(Ω) = H0(Ω) and Hm(Ω) = Wm,2(Ω), for integers m � 0, denote the stan-
dard Lebesgue and Sobolev spaces on Ω. The standard inner product and norm in
L2(Ω)3 are denoted by 〈·, ·〉 and | · |, respectively. (We warn that this notation | · |
also denotes the Euclidean norm in R

n and C
n, for any n ∈ N, but its meaning will

be clear based on the context.)
Let V be the set of all 2π-periodic trigonometric polynomial vector fields which

are divergence-free and have zero average over Ω. Define

H, resp. V = closure of V in L2(Ω)3, resp. H1(Ω)3.

Notice that each element of H is divergence-free and has zero average over Ω, and
each element of V is 2π-periodic.

We use the following embeddings and identification

V ⊂ H = H ′ ⊂ V ′,

where each space is dense in the next one, and the embeddings are compact.
Let P denote the orthogonal (Leray) projection in L2(Ω)3 onto H.
The Stokes operator A is a bounded linear mapping from V to its dual space V ′

defined by

〈Au,v〉V ′,V = 〈〈u,v〉〉 def=
3∑

j=1

〈
∂u
∂xj

,
∂v
∂xj

〉
for all u,v ∈ V.

As an unbounded operator on H, the operator A has the domain D(A) = V ∩
H2(Ω)3, and, under the current consideration of periodicity conditions,

Au = −PΔu = −Δu ∈ H for all u ∈ D(A).

The spectrum of A is known to be

σ(A) = {|k|2 : k ∈ Z
3,k �= 0},

and each λ ∈ σ(A) is an eigenvalue. Note that σ(A) ⊂ N and 1 ∈ σ(A), hence, the
additive semigroup generated by σ(A) is N.

For n ∈ σ(A), we denote by Rn the orthogonal projection in H on the eigenspace
of A corresponding to n, and set

Pn =
∑

j∈σ(A),j�n

Rj .

Note that each vector space PnH is finite dimensional.

https://doi.org/10.1017/prm.2018.154 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.154


Asymptotic Expansions for Navier-Stokes Equations 575

For α, σ ∈ R and u =
∑

k�=0 û(k)eik·x, define

Aαu =
∑
k�=0

|k|2αû(k)eik·x, eσA1/2
u =

∑
k�=0

eσ|k|û(k)eik·x,

and, hence,

AαeσA1/2
u = eσA1/2

Aαu =
∑
k�=0

|k|2αeσ|k|û(k)eik·x.

For α ∈ R, σ > 0 or α � 0, σ = 0, the Gevrey spaces are defined by

Gα,σ = D(AαeσA1/2
) def= {u ∈ H : |u|α,σ

def= |AαeσA1/2
u| <∞}.

In particular, when σ = 0, the domain of the fractional operator Aα is

D(Aα) = Gα,0 = {u ∈ H : |Aαu| = |u|α,0 <∞} for α � 0.

Clearly, each space Gα,σ with the norm | · |α,σ is a Banach space.
Thanks to the zero-average condition, the norm |Am/2u| is equivalent to

‖u‖Hm(Ω)3 on the space D(Am/2) for m = 0, 1, 2, . . .

Note that D(A0) = H, D(A1/2) = V , and ‖u‖ def= |∇u| is equal to |A1/2u| for
u ∈ V . Also, the norms | · |α,σ are increasing in α, σ, hence, the spaces Gα,σ are
decreasing in α, σ.

Regarding the nonlinear term in the NSE, a bounded linear map B : V × V → V ′

is defined by

〈B(u,v),w〉V ′,V = b(u,v,w) def=
∫

Ω

((u · ∇)v) · w dx, for all u,v,w ∈ V.

In particular,

B(u,v) = P((u · ∇)v), for all u,v ∈ D(A).

The problems (1.1) and (1.2) can now be rewritten in the functional form as

du(t)
dt

+Au(t) +B(u(t), u(t)) = f(t) in V ′ on (0,∞), (2.1)

u(0) = u0 ∈ H. (2.2)

(We refer the reader to the books [1,21,23,25] for more details.)
The next definition makes precise the meaning of weak solutions of (2.1).
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Definition 2.1. Let f ∈ L2
loc([0,∞),H). A Leray-Hopf weak solution u(t) of (2.1)

is a mapping from [0,∞) to H such that

u ∈ C([0,∞),Hw) ∩ L2
loc([0,∞), V ), u′ ∈ L

4/3
loc ([0,∞), V ′),

and satisfies

d
dt

〈u(t), v〉 + 〈〈u(t), v〉〉 + b(u(t), u(t), v) = 〈f(t), v〉 (2.3)

in the distribution sense in (0,∞), for all v ∈ V , and the energy inequality

1
2
|u(t)|2 +

∫ t

t0

‖u(τ)‖2 dτ � 1
2
|u(t0)|2 +

∫ t

t0

〈f(τ), u(τ)〉dτ (2.4)

holds for t0 = 0 and almost all t0 ∈ (0,∞), and all t � t0. Here, Hw denotes the
topological vector space H with the weak topology.

If a Leray-Hopf weak solution belongs to C([0,∞), V ), it is called a regular
solution.

If T � 0 and t → u(T + t) is a regular solution, then we say u is a regular solution
on [T,∞).

We denote by T the set of t0 � 0 such that (2.4) holds for all t � t0. Then R \ T
has zero measure.

We assume throughout the paper that

(A) The function f belongs to L∞
loc([0,∞),H).

Under assumption (A), for any u0 ∈ H, there exists a Leray-Hopf weak solution
u(t) of (2.1) and (2.2), see for example, [10]. The large-time behaviour of u(t) is
the focus of our study. More specific conditions on f will be imposed later.

We note that, thanks to remark 1(e) of [15], the Leray-Hopf weak solutions in
definition 2.1 are the same as the weak solutions used in [10, Chapter II, § 7], even
though they have slightly different formulations. Hence, according to inequality
(A.39) in [10, Chapter II], we have for any Leray-Hopf weak solution u(t) (in
definition 2.1) that

|u(t)|2 � e−t|u(0)|2 +
∫ t

0

e−(t−τ)|f(τ)|2 dτ ∀t > 0. (2.5)

2.2. Basic inequalities

Below are some inequalities that will be needed in later estimates. First, for any
σ, α > 0, one has

max
x�0

(xαe−σx) = d0(α, σ) def=
( α
eσ

)α

, (2.6)

and, hence,

e−σx = e−σ(x+1)eσ � d0(α, σ)eσ(1 + x)−α ∀x � 0. (2.7)
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Thanks to (2.6), one can verify, for all α, σ > 0, that

|Aαe−σAv| � d0(α, σ)|v| ∀v ∈ H, (2.8)

|Aαe−σA1/2
v| � d0(2α, σ)|v| ∀v ∈ H,

and, consequently,

|Aαv| = |(Aαe−σA1/2
)eσA1/2

v| � d0(2α, σ)|eσA1/2
v| ∀v ∈ G0,σ. (2.9)

For the bi-linear mapping B(u, v), it follows from its boundedness that there
exists a constant K∗ > 0 such that

‖B(u, v)‖V ′ � K∗‖u‖‖v‖ ∀u, v ∈ V. (2.10)

For stronger norms of B(u, v), we recall from [18, lemma 2.1] a convenient
inequality. (See Foias-Temam paper [8] for the original version.)

There exists a constant K > 1 such that if σ � 0 and α � 1/2, then

|B(u, v)|α,σ � Kα|u|α+1/2,σ|v|α+1/2,σ ∀u, v ∈ Gα+1/2,σ. (2.11)

Lemma 2.2. Let σ, λ > 0. One has, for all t � 0, that∫ t

0

e−σ(t−τ)

(1 + τ)λ
dτ � d1(λ, σ)

(1 + t)λ
, (2.12)

where

d1(λ, σ) def= 2λ(d0(λ+ 1, σ)eσ + σ−1) = 2λ

[(
λ+ 1
eσ

)λ+1

eσ +
1
σ

]
.

Proof. First, we have

I
def=
∫ t

0

e−σ(t−τ)

(1 + τ)λ
dτ =

∫ t/2

0

e−σ(t−τ)

(1 + τ)λ
dτ +

∫ t

t/2

e−σ(t−τ)

(1 + τ)λ
dτ

�
∫ t/2

0

e−σt/2 dτ +
1

(1 + t/2)λ

∫ t

t/2

e−σ(t−τ) dτ � t

2
e−σt/2 +

1
(1 + t/2)λ

· 1
σ
.

Note, by (2.7), that

e−σt/2 � d0(λ+ 1, σ)eσ

(1 + t/2)λ+1
,

which implies

t

2
e−σt/2 � C

(1 + t/2)λ
, where C = d0(λ+ 1, σ)eσ.

Thus, we obtain

I � 1
(1 + t/2)λ

(
C +

1
σ

)
� 2λ

(1 + t)λ

(
C +

1
σ

)
=
d1(σ, λ)
(1 + t)λ

,

which proves inequality (2.12). �
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2.3. Large-time behaviour of solutions of the linearized NSE

We discuss the asymptotic behaviour, in Sobolev-Gevrey spaces, of weak solutions
of the linearized NSE.

Lemma 2.3. Let α, σ � 0, ξ ∈ Gα,σ, and f be a function from (0,∞) to Gα,σ that
satisfies

|f(t)|α,σ � M(1 + t)−λ a.e. in (0,∞) for some M > 0. (2.13)

Suppose

w ∈ C([0,∞),Hw) ∩ L1
loc([0,∞), V ), with w′ ∈ L1

loc([0,∞), V ′), (2.14)

is a weak solution of

w′ = −Aw + ξ + f in V ′ on (0,∞), (2.15)

that is, it holds, for all v ∈ V , that

d
dt

〈w, v〉 = −〈〈w, v〉〉 + 〈ξ + f, v〉 in the distribution sense on (0,∞). (2.16)

Assume w(0) = w0 ∈ Gα,σ. Then, for any ε ∈ (0, 1), there exists C > 0 depending
on ε, λ, M , |ξ|α,σ and |w0|α,σ such that

|w(t) −A−1ξ|α+1−ε,σ � C(1 + t)−λ ∀t � 1. (2.17)

Proof. Let N ∈ σ(A), and set AN = A|PN H which is an invertible linear map from
PNH onto itself. By taking v ∈ PNH in equation (2.16), we deduce that PNw solves,
in the PNH-valued distribution sense on (0,∞), the equation

d
dt

(PNw) = −AN (PNw) + PNξ + PNf in PNH on (0,∞). (2.18)

Since PNH is a finite-dimensional Euclidean space, one has PNw ∈
C([0,∞), PNH) and (PNw)′ ∈ L1

loc([0,∞), PNH). Then the variation of constants
formula still holds true for the solution PNw of (2.18). (See, e.g., the arguments in
[19, lemma 4.2].) We have, for any t > 0,

PNw(t) = e−tANPNw0 +
∫ t

0

e−(t−τ)AN (PNξ + PNf(τ)) dτ

= e−tANPNw0 +A−1
N (PNξ − e−tANPNξ) +

∫ t

0

e−(t−τ)ANPNf(τ) dτ

= e−tAPNw0 +A−1(PNξ − e−tAPNξ) +
∫ t

0

e−(t−τ)APNf(τ) dτ,

which yields

PN

(
w(t) −A−1ξ

)
= e−tAPNw0 −A−1e−tAPNξ +

∫ t

0

e−(t−τ)APNf(τ) dτ. (2.19)
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Let ε ∈ (0, 1). Applying A1−ε to both sides of (2.19), and estimating the | · |α,σ

norm of the resulting quantities, we obtain, for all t > 0,

|PN (w(t) −A−1ξ)|α+1−ε,σ � |A1−εe−tAw0|α,σ + |A−εe−tAξ|α,σ

+
∫ t

0

|e−(t−τ)AA1−εf(τ)|α,σ dτ. (2.20)

We find bounds for each term on the right-hand side of the preceding inequality.

• Firstly, for t � 1, rewriting the first term on the right-hand side of (2.20) and
applying (2.8) yield

|A1−εe−tAw0|α,σ = |A1−εe−tA/2e−tA/2w0|α,σ �
[
(1 − ε)
et/2

]1−ε

|e−tA/2w0|α,σ

�
[
2(1 − ε)

e

]1−ε

e−t/2|w0|α,σ.

To compare e−t/2 and (1 + t)−λ, we apply (2.7) to obtain

|A1−εe−tAw0|α,σ �
[
2(1 − ε)

e

]1−ε
d0(λ, 1/2)e1/2

(1 + t)λ
|w0|α,σ. (2.21)

• Secondly, the second term on the right-hand side of (2.20) can be easily
estimated by

|A−εe−tAξ|α,σ � |e−tAξ|α,σ � e−t|ξ|α,σ � d0(λ, 1)e
(1 + t)λ

|ξ|α,σ. (2.22)

• Thirdly, dealing with the last integral in (2.20), we split it into two integrals∫ t

0

|e−(t−τ)AA1−εf(τ)|α,σ dτ = I1 + I2, (2.23)

where

I1 =
∫ t/2

0

|e−(t−τ)AA1−εf(τ)|α,σ dτ, I2 =
∫ t

t/2

|e−(t−τ)AA1−εf(τ)|α,σ dτ.

For I1, we have for t � 1 that

I1 =
∫ t/2

0

∣∣∣e−(t−τ)A/2
(
e−(t−τ)A/2A1−εf(τ)

)∣∣∣
α,σ

dτ

�
∫ t/2

0

∣∣∣e−(t/4)AA1−εe−(t−τ)A/2f(τ)
∣∣∣
α,σ

dτ.
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Utilizing (2.8) and then using hypothesis (2.13), we obtain

I1 �
∫ t/2

0

[
1 − ε

et/4

]1−ε

|e−(t−τ)A/2f(τ)|α,σ dτ

�
[
1 − ε

et/4

]1−ε ∫ t/2

0

e−(t−τ)/2M(1 + τ)−λ dτ

= M

[
1 − ε

et/4

]1−ε

e−t/4

∫ t/2

0

e−(t/2−τ)/2(1 + τ)−λ dτ.

Then by lemma 2.2

I1 � M

[
4(1 − ε)

et

]1−ε

e−t/4 d1(λ, 1/2)
(1 + t/2)λ

� M

[
4(1 − ε)

e

]1−ε
e−t/4

t1−ε

2λd1(λ, 1/2)
(1 + t)λ

.

Thus, for t � 1

I1 � M

[
4(1 − ε)

e

]1−ε

e−1/42λd1(λ, 1/2)
1

(1 + t)λ
. (2.24)

For I2, we apply (2.8) and use (2.13) to estimates its integrand, for t/2 < τ < t,
by

|e−(t−τ)AA1−εf(τ)|α,σ � e−(t−τ)/2|e−(t−τ)A/2A1−εf(τ)|α,σ

� e−(t−τ)/2

[
1 − ε

e(t− τ)/2

]1−ε

|f(τ)|α,σ �
[
2(1 − ε)

e

]1−ε
e−(t−τ)/2

(t− τ)1−ε
· M

(1 + τ)λ

�
[
2(1 − ε)

e

]1−ε
M

(1 + t/2)λ
· e

−(t−τ)/2

(t− τ)1−ε
.

Hence,

I2 �
[
2(1 − ε)

e

]1−ε
M

(1 + t/2)λ

∫ t

t/2

e−(t−τ)/2

(t− τ)1−ε
dτ

�
[
2(1 − ε)

e

]1−ε 2λM

(1 + t)λ

∫ t/2

0

e−z/2

z1−ε
dz.

We estimate the last integral by∫ t/2

0

e−z/2

z1−ε
dz =

∫ 1/2

0

e−z/2

z1−ε
dz +

∫ t/2

1/2

e−z/2

z1−ε
dz

�
∫ 1/2

0

1
z1−ε

dz + 21−ε

∫ t/2

1/2

e−z/2 dz

� 2−εε−1 + 22−εe−1/4 = 2−ε(ε−1 + 4e−1/4).

https://doi.org/10.1017/prm.2018.154 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.154


Asymptotic Expansions for Navier-Stokes Equations 581

Therefore,

I2 � M

[
1 − ε

e

]1−ε

21−2ε+λ(ε−1 + 4e−1/4) · 1
(1 + t)λ

. (2.25)

Combining (2.20)–(2.25), we obtain

|PN

(
w(t) −A−1ξ

)
|α+1−ε,σ � C(1 + t)−λ ∀t � 1, (2.26)

with constant C independent of N . Since A−1ξ belongs to Gα+1−ε,σ, this bound
shows that w(t) also belongs to Gα+1−ε,σ. By passing N → ∞ in (2.26), we obtain
(2.17). The proof is complete. �

The particular case ξ = 0 has a special meaning, and we state the result separately
here.

Lemma 2.4. Let α, σ � 0, and suppose f is a function in L∞
loc([0,∞), Gα,σ). Let w

satisfy (2.14) and be a weak solution of

w′ = −Aw + f in V ′ on (0,∞).

(i) Then w(t) ∈ Gα+1−ε,σ for all ε ∈ (0, 1) and t > 0.

(ii) If, in addition, f satisfies (2.13), then, for any ε ∈ (0, 1), there exists C > 0
depending on ε, λ, M and |w(0)|α,σ such that

|w(t)|α+1−ε,σ � C(1 + t)−λ ∀t � 1. (2.27)

Proof. We set ξ = 0 in (2.15) and follow the proof of lemma 2.3. In this case, (2.20)
reads, for all t > 0, as

|PNw(t)|α+1−ε,σ � |A1−εe−tAw0|α,σ +
∫ t

0

|e−(t−τ)AA1−εf(τ)|α,σ dτ. (2.28)

(i) Let T > 0. There is M0 > 0 such that |f(t)|α,σ � M0 a.e. in (0, T ). For t ∈
(0, T ), we use (2.8) to estimate

|A1−εe−tAw0|α,σ �
[
1 − ε

et

]1−ε

|w0|α,σ,

∫ t

0

|e−(t−τ)AA1−εf(τ)|α,σ dτ �
[
1 − ε

e

]1−ε ∫ t

0

|f(τ)|α,σ

(t− τ)1−ε
dτ

�
[
1 − ε

e

]1−ε ∫ t

0

M0

(t− τ)1−ε
dτ =

[
1 − ε

e

]1−ε

M0ε
−1tε.
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Utilizing these estimates, we can pass N → ∞ in (2.28), and obtain

|w(t)|α+1−ε,σ �
[1 − ε

e

]1−ε(
tε−1|w0|α,σ +M0ε

−1tε
)
,

thus, w(t) ∈ Gα+1−ε,σ.

(ii) This part is the same as lemma 2.3, and (2.27) follows (2.17). �

3. Asymptotic estimates for the Leray-Hopf weak solutions

The goal of this section is to establish the power-decay for any Leray-Hopf weak
solutions whenever the force is power-decaying. The first theorem concerns the
Gevrey estimates for the solutions for positive time when the initial data is small
in a Sobolev norm, and the force is small in a Gevrey norm.

Theorem 3.1. Let λ > 0, σ � 0, and α � 1/2 be given numbers. Suppose

|Aαu0| � c0, (3.1)

|f(t)|α−1/2,σ � c1(1 + t)−λ a.e. in (0,∞), (3.2)

where

c0 = c0(α, λ) def=
c∗

max{1,
√
M1}

and c1 = c1(α, λ) def=
c∗√
3M2

, (3.3)

with

c∗ = c∗,α
def=

1
12Kα

, M1 = M1,λ
def= d0(2λ, 1)e, M2 = M2,λ

def= d1(2λ, 1).

Then there exists a unique regular solution u(t) of (2.1) and (2.2), which,
furthermore, satisfies u ∈ C([0,∞),D(Aα)) and

|u(t)|α,σ �
√

2c∗(1 + t)−λ ∀t � t∗, (3.4)∫ t+1

t

|u(τ)|2α+1/2,σ dτ � 2c2∗

(
1 +

1
2M2

)
(1 + t)−2λ ∀t � t∗, (3.5)

where t∗ = 12σ.

Proof. We will perform formal calculations below. They can be made rigorous by
applying to solutions of the Galerkin approximations and then pass to the limit.

(a) Case σ > 0. We denote by ϕ a C∞-function on R that satisfies ϕ(t) = 0 on
(−∞, 0], ϕ(t) = σ on [t∗,∞), and 0 < ϕ′(t) < 2σ/t∗ = 1/6 on (0, t∗).
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We derive from (2.1) that

d
dt

(Aαeϕ(t)A1/2
u) = ϕ′(t)A1/2Aαeϕ(t)A1/2

u+Aαeϕ(t)A1/2 du
dt

= ϕ′(t)Aα+1/2eϕ(t)A1/2
u+Aαeϕ(t)A1/2

(−Au−B(u, u) + f).
(3.6)

By taking the inner product in H of (3.6) with Aαeϕ(t)A1/2
u(t), we obtain

1
2

d
dt

|u|2α,ϕ(t) + |A1/2u|2α,ϕ(t) = ϕ′(t)〈Aα+1/2eϕ(t)A1/2
u,Aαeϕ(t)A1/2

u〉

− 〈Aαeϕ(t)A1/2
B(u, u), Aαeϕ(t)A1/2

u〉

+ 〈Aα−1/2eϕ(t)A1/2
f,Aα+1/2eϕ(t)A1/2

u〉.

Using the Cauchy-Schwarz inequality, and estimating the second term on the
right-hand side by (2.11), we get

1
2

d
dt

|u|2α,ϕ(t) + |A1/2u|2α,ϕ(t) � ϕ′(t)|A1/2u|2α,ϕ(t)

+Kα|A1/2u|2α,ϕ(t)|u|α,ϕ(t)

+ |f(t)|α−1/2,ϕ(t)|A1/2u|α,ϕ(t). (3.7)

Using the bound of ϕ′(t) and applying Cauchy’s inequality to the last term gives

1
2

d
dt

|u|2α,ϕ(t) + |A1/2u|2α,ϕ(t) � 1
6
|A1/2u|2α,ϕ(t)

+Kα|u|α,ϕ(t)|A1/2u|2α,ϕ(t)

+
1
6
|A1/2u|2α,ϕ(t) +

3
2
|f(t)|2α−1/2,ϕ(t),

which, together with the fact ϕ(t) � σ, implies

1
2

d
dt

|u|2α,ϕ(t) +
(

1 − 1
3
−Kα|u|α,ϕ(t)

)
|A1/2u|2α,ϕ(t) � 3

2
|f(t)|2α−1/2,σ. (3.8)

(b) Case σ = 0. Let ϕ(t) = 0 for all t ∈ R. Then the first term on the right-hand
side of (3.7) vanishes. Applying Cauchy’s inequality to the last term of (3.7), we
obtain

1
2

d
dt

|Aαu|2 +
(

1 − 1
3
−Kα|Aαu|

)
|Aα+1/2u|2 � 3

4
|Aα−1/2f |2 � 3

2
|Aα−1/2f |2.

(3.9)
Hence, we have the same inequality as (3.8).
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(c) For both cases σ > 0 and σ = 0, let T ∈ (0,∞). Note that

|u(0)|α,ϕ(0) = |Aαu0| < 2c0 � 2c∗.

Assume that

|u(t)|α,ϕ(t) � 2c∗ ∀t ∈ [0, T ). (3.10)

This and the definition of c∗ give

Kα|u(t)|α,ϕ(t) � 2c∗Kα = 1/6 ∀t ∈ [0, T ). (3.11)

For t ∈ (0, T ), we have from (3.8), (3.9), and (3.11) that

d
dt

|u|2α,ϕ(t) + |A1/2u|2α,ϕ(t) � 3|f(t)|2α−1/2,σ. (3.12)

Applying Gronwall’s inequality in (3.12) yields for all t ∈ (0, T ) that

|u(t)|2α,ϕ(t) � e−t|u0|2α,0 + 3
∫ t

0

e−(t−τ)|f(τ)|2α−1/2,σ dτ

(by (3.1) and (3.2)) � e−tc20 + 3c21

∫ t

0

e−(t−τ)

(1 + τ)2λ
dτ.

Using (2.7) to compare e−t with (1 + t)−2λ, and estimating the last integral by
(2.12) yield

|u(t)|2α,ϕ(t) � M1c
2
0

(1 + t)2λ
+

3c21M2

(1 + t)2λ
� 2c2∗

(1 + t)2λ
.

This implies

|u(t)|α,ϕ(t) �
√

2c∗(1 + t)−λ ∀t ∈ [0, T ). (3.13)

Letting t→ T− in (3.13) gives

lim
t→T−

|u(t)|α,ϕ(t) �
√

2c∗(1 + T )−λ < 2c∗. (3.14)

Comparing (3.14) with (3.10), and by the standard contradiction argument, we
deduce that the inequalities (3.10) and (3.13) hold for T = ∞. Then, thanks to
ϕ(t) = σ for all t � t∗, inequality (3.13) implies (3.4).

(d) For t � t∗, by integrating (3.12) from t to t+ 1, and using estimates (3.4),
(3.2), we obtain∫ t+1

t

|A1/2u(τ)|2α,σ dτ � |u(t)|2α,σ + 3c21

∫ t+1

t

(1 + τ)−2λ dτ

� 2c2∗(1 + t)−2λ + 3c21(1 + t)−2λ

=
(

2c2∗ +
c2∗
M2

)
(1 + t)−2λ.

Then inequality (3.5) follows. The proof is complete. �
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In the next theorem, we establish the power decay, as t→ ∞, for any Leray-
Hopf weak solutions. Its proof combines the energy inequalities (2.4) and (2.5) with
successive use of theorem 3.1.

Theorem 3.2. Assume that there are σ � 0, α � 1/2 and μ1 > 0 such that

|f(t)|α,σ = O(t−μ1) as t→ ∞. (3.15)

Let u(t) be a Leray-Hopf weak solution of (2.1). Then there exists T∗ > 0 such
that u(t) is a regular solution of (2.1) on [T∗,∞), and for any ε ∈ (0, 1), there exists
C > 0 such that

|u(T∗ + t)|α+1−ε,σ � C(1 + t)−μ1 , (3.16)

|B(u(T∗ + t), u(T∗ + t))|α+1/2−ε,σ � C(1 + t)−2μ1 , (3.17)

for all t � 0.

Proof. The proof is divided into two parts.

Part A. We prove the following weaker version of the statements.
For any λ ∈ (0, μ1), there exists T∗ > 0 such that u(t) is a regular solution of

(2.1) on [T∗,∞), and one has for all t � 0 that

|u(T∗ + t)|α+1/2,σ � K−α−1/2(1 + t)−λ, (3.18)

|B(u(T∗ + t), u(T∗ + t))|α,σ � K−α−1(1 + t)−2λ, (3.19)

where K is the constant in inequality (2.11).
The proof of this part consists several steps.
Step 1. By assumption (A) and (3.15), there exists M > 0 such that

|f(t)| � M(1 + t)−μ1 a.e. in (0,∞). (3.20)

It follows (2.5) and (3.20) that, for all t > 0,

|u(t)|2 � e−t|u0|2 +M2

∫ t

0

e−(t−τ)

(1 + τ)2μ1
dτ

(by (2.7) and (2.12)) � C1(1 + t)−2μ1 |u0|2 +M2C2(1 + t)−2μ1 ,

where C1 = d0(2μ1, 1)e and C2 = d1(2μ1, 1). Thus,

|u(t)|2 � (|u0|2C1 +M2C2)(1 + t)−2μ1 ∀t � 0. (3.21)

In (2.4), we estimate

|〈f(τ), u(τ)〉| � 1
2
|u(τ)|2 +

1
2
|f(τ)|2 � 1

2
‖u(τ)‖2 +

1
2
|f(τ)|2.

Hence, we obtain

|u(t)|2 +
∫ t

t0

‖u(τ)‖2 dτ � |u(t0)|2 +
∫ t

t0

|f(τ)|2 dτ, (3.22)

for all t0 ∈ T and all t � t0.
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Letting t = t0 + 1 in (3.22), using (3.21) to estimate |u(t0)|2, and (3.20) to
estimate |f(τ)|, we derive∫ t0+1

t0

‖u(τ)‖2 dτ � (|u0|2C1 +M2C2)(1 + t0)−2μ1 +M2(1 + t0)−2μ1

= (|u0|2C1 +M2C2 +M2)(1 + t0)−2μ1 . (3.23)

To establish (3.23) for any t0, we use the following approximation. Let t � 0 be
arbitrary. There exists a sequence {tn}∞n=1 ⊂ T ∩ (0,∞) such that limn→∞ tn = t.
By (3.23) with t0 := tn, we have∫ tn+1

tn

‖u(τ)‖2 dτ �
(
|u0|2C1 +M2C2 +M2

)
(1 + tn)−2μ1 .

Then letting n→ ∞ gives∫ t+1

t

‖u(τ)‖2 dτ �
(
|u0|2C1 +M2C2 +M2

)
(1 + t)−2μ1 ∀t � 0. (3.24)

Step 2. We prove that there exists T ∈ T ∩ (0,∞) so that

|Aα+1/2u(T )| � c0(α+ 1/2, λ), (3.25)

|f(T + t)|α,σ � c1(α+ 1/2, λ)(1 + t)−λ ∀t � 0. (3.26)

(a) Case σ > 0.

Set λ′ = (λ+ μ1)/2, which is a number in the interval (λ, μ1). Thanks to the decay
in (3.24) and (3.15), there exists t0 ∈ T ∩ (0,∞) such that

|A1/2u(t0)| < c0(1/2, λ′),

|f(t0 + t)|0,σ � c1(1/2, λ′)(1 + t)−λ′ ∀t � 0,

where c0(·, ·) and c1(·, ·) are defined in (3.3).
Applying theorem 3.1 to the solution t → u(t0 + t), force t → f(t0 + t) with

parameters α = 1/2 and λ = λ′, we obtain from (3.4) that

|u(t0 + t)|1/2,σ �
√

2c∗,1/2(1 + t)−λ′ � K−1/2(1 + t)−λ′ ∀t � t∗
def= 12σ. (3.27)

Then by (2.9), we have for all t � t∗ that

|Aα+1/2u(t0 + t)| � d0(2α+ 1, σ)|eσA1/2
u(t0 + t)| � d0(2α+ 1, σ)|u(t0 + t)|1/2,σ,

and, thanks to (3.27),

|Aα+1/2u(t0 + t)| � d0(2α+ 1, σ)K−1/2(1 + t)−λ′
. (3.28)
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Since λ′ > λ it follows (3.28) and (3.15) that there is a sufficiently large T ∈ T
and T > t0 + t∗ so that (3.25) and (3.26) hold.

(b) Case σ = 0. First, we claim that
Claim: If j ∈ N such that j � 2α+ 1 and

lim
t→∞

∫ t+1

t

|Aj/2u(τ)|2 dτ = 0, (3.29)

then

lim
t→∞

∫ t+1

t

|A(j+1)/2u(τ)|2 dτ = 0. (3.30)

Proof of Claim. Note that (j − 1)/2 � α, and thanks to (3.15), we have

|A(j−1)/2f(t)| = O(t−μ1) as t→ ∞. (3.31)

By (3.29) and (3.31), there is T ∈ T ∩ (0,∞) so that

|Aj/2u(T )| � c0(j/2, λ),

|Aj/2−1/2f(T + t)| � c1(j/2, λ)(1 + t)−λ ∀t � 0.

Applying theorem 3.1 to u(T + ·), f(T + ·), α := j/2, σ := 0, we obtain∫ t+1

t

|A(j+1)/2u(τ)|2 dτ = O(t−2λ) as t→ ∞,

which proves (3.30).
Now, let m be a nonnegative integer such that 2α � m < 2α+ 1.
Note that m � 1, and, because of (3.24), condition (3.29) holds true for j = 1.

Hence we obtain (3.30) with j = 1, which is (3.29) for j = 2. This way, we are able
to apply the Claim recursively for j = 1, 2, . . . ,m, and obtain, when j = m, from
(3.30) that

lim
t→∞

∫ t+1

t

|A(m+1)/2u(τ)|2 dτ = 0.

Since α � m/2, it follows that

lim
t→∞

∫ t+1

t

|Aα+1/2u(τ)|2 dτ = 0. (3.32)

By (3.32) and (3.15), we assert that there is T ∈ T ∩ (0,∞) so that (3.25) and
(3.26) hold.

Step 3. With T > 0 in Step 2, we apply theorem 3.1 to u(T + ·), f(T + ·), α :=
α+ 1/2, and obtain that there is T∗ > T + t∗ such that

|u(T∗ + t)|α+1/2,σ �
√

2c∗,α+1/2(1 + t)−λ � 1
Kα+1/2

(1 + t)−λ ∀t � 0.
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This proves (3.18). Then applying inequality (2.11) with the use of estimate (3.18)
yields (3.19).
Part B. We now prove (3.16) and (3.17). We write equation (2.1) as

ut +Au = F (t) def= −B(u(t), u(t)) + f(t). (3.33)

By Part A, we set λ = μ1/2 in (3.19) to obtain

|B(u(t), u(t))|α,σ = O(t−μ1) as t→ ∞. (3.34)

From this and (3.15), we have

|F (t)|α,σ = O(t−μ1) as t→ ∞.

Applying part (ii) of lemma 2.4 to (3.33) on (T,∞) for some sufficiently large T
and any ε ∈ (0, 1), we obtain the first inequality (3.16). Then the second inequality
(3.17) follows (2.11) and (3.16). (In these arguments, the values of T∗ and C were
adjusted appropriately.) The proof is complete. �

Remark 3.3. The estimates (3.18) and (3.19) are similar to those in [19, proposi-
tion 3.4]. The improved estimates (3.16) and (3.17) with the stronger norms come
from the better regularity result in lemma 2.4.

4. Asymptotic expansions

This section consists of the first main results of this paper. Briefly speaking, when
the force has a finite or infinite expansion in terms of power-decaying functions,
then any Leray-Hopf weak solution will have an asymptotic expansion of the same
type.

4.1. Finite expansions

We start with the following consideration for the force f(t).
(B1) Suppose there exist numbers σ � 0, α � 1/2, an integer N0 � 1, strictly

increasing, positive numbers γn and functions ψn ∈ Gα,σ for 1 � n � N0, and a
number δ > 0 such that∣∣∣∣∣f(t) −

N0∑
n=1

ψnt
−γn

∣∣∣∣∣
α,σ

= O(t−γN0−δ) as t→ ∞. (4.1)

Note from (4.1) that f(t) belongs to Gα,σ for all t sufficiently large.
Although the force f(t) has an expansion in terms of t−γn ’s, the solution u(t)

of the NSE may not. In fact, due to the system’s nonlinearity and time derivative,
u(t) may be expanded in terms of functions of different powers, which we describe
now.
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We define the following set of powers generated by γn’s and 1:

S∗ =

{⎛⎝ p∑
j=1

γnj

⎞⎠+ k : for some p � 1, 1 � n1, n2, . . . , np � N0,

and some integer k � 0

}
.

Note that S∗ contains γn for all 1 � n � N0, is an infinite subset of (0,∞), and
possesses the property

∀x, y ∈ S∗ : x+ 1, x+ y ∈ S∗. (4.2)

By ordering this set, one has

S∗ = {μn : n ∈ N}, where μn’s are strictly increasing. (4.3)

The set of powers that will be used for the expansion of u(t) is

S = S∗ ∩ [γ1, γN0 ].

This set S is finite, and

S = {μn : 1 � n � N∗} for some N∗ � N0. (4.4)

Note that μ1 = γ1 and μN∗ = γN0 . Then we rewrite (4.1) as∣∣∣∣∣f(t) −
N∗∑
n=1

φnt
−μn

∣∣∣∣∣
α,σ

= O(t−μN∗−δ) as t→ ∞, (4.5)

where φn ∈ Gα,σ for 1 � n � N∗, which can be defined explicitly as follows. If there
exists k ∈ [1, N0] such that μn = γk, then, with such k, φn = ψk; otherwise, φn = 0.

Our first result on the expansion of Leray-Hopf weak solutions is the following.

Theorem 4.1. Assume (B1). Let μn’s be as in (4.3), and let the corresponding
equation (4.5) hold true. Define ξ1, ξ2, . . ., ξN∗ recursively by

ξ1 = A−1φ1, (4.6)

ξn = A−1

⎛⎜⎝φn + χn −
∑

1�k,m�n−1,
μk+μm=μn

B(ξk, ξm)

⎞⎟⎠ for 2 � n � N∗, (4.7)

where

χn =

{
μpξp, if there exists an integer p ∈ [1, n− 1] such that μp + 1 = μn,

0, otherwise.
(4.8)
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Let u(t) be a Leray-Hopf weak solution of (2.1) and (2.2). Then it holds for all
ρ ∈ (0, 1) that∣∣∣∣∣u(t) −

N∗∑
n=1

ξnt
−μn

∣∣∣∣∣
α+1−ρ,σ

= O(t−μN∗−ε∗) as t→ ∞, (4.9)

where

ε∗ =

{
min{δ, μ1, 1} if N∗ = 1,
min{δ, μN∗ − μN∗−1, μN∗+1 − μN∗} if N∗ � 2.

(4.10)

We make a couple of notes on the formulas of ξn’s.

(a) In case n = 1, we set χ1 = 0, and use the convention that the last term on
the right-hand side of (4.7) vanishes, then formula (4.7) agrees with (4.6),
and hence holds also for n = 1.

(b) The relation between φn’s and ξn’s is one-to-one. Indeed, the φn’s can be
solved recursively from (4.6) and (4.7) by⎧⎪⎪⎨⎪⎪⎩

φ1 = Aξ1,

φn = Aξn − χn +
∑

k,m�1,
μk+μm=μn

B(ξk, ξm), n � 2. (4.11)

where the χn’s are still defined by (4.8).

The fact that we can have α fixed instead of requiring (4.5) to hold for all α > 0
comes from the following regularity property of ξn’s.

Lemma 4.2. Let φn and ξn, for 1 � n � N∗, be as in theorem 4.1. Then

ξn ∈ Gα+1,σ ∀n = 1, 2, . . . N∗. (4.12)

Proof. We prove (4.12) by induction.
When n = 1, since φ1 ∈ Gα,σ, we have ξ1 ∈ A−1φ1 ∈ Gα+1,σ.
Let 1 � n < N∗, and assume that all ξ1, . . . , ξn ∈ Gα+1,σ. It implies that

χn+1 ∈ Gα+1,σ ⊂ Gα,σ.

This and the fact φn+1 ∈ Gα,σ yield A−1(φn+1 + χn+1) ∈ Gα+1,σ.
For 1 � k,m � n, we have from the induction hypothesis that ξk, ξm ∈ Gα+1,σ.

Then, by (2.11),

B(ξk, ξm) ∈ Gα+1−1/2,σ = Gα+1/2,σ,

which yields

A−1B(ξk, ξj) ∈ Gα+3/2,σ ⊂ Gα+1,σ.
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Therefore,

ξn+1 = A−1(φn+1 + χn+1) −
∑

1�k,m�n,
μk+μm=μn+1

A−1B(ξk, ξm) ∈ Gα+1,σ.

By the induction principle, ξn ∈ Gα+1,σ for all 1 � n � N∗. �

Before proceeding with the proof of theorem 4.1, we observe from (4.5) that if
1 � N < N∗ then∣∣∣∣∣f(t) −

N∑
n=1

φnt
−μn

∣∣∣∣∣
α,σ

�
∣∣∣∣∣f(t) −

N∗∑
n=1

φnt
−μn

∣∣∣∣∣
α,σ

+

∣∣∣∣∣
N∗∑

n=N+1

φnt
−μn

∣∣∣∣∣
= O(t−μN∗−δ) + O(t−μN+1) as t→ ∞,

hence, ∣∣∣∣∣f(t) −
N∑

n=1

φnt
−μn

∣∣∣∣∣
α,σ

= O(t−μN+1). (4.13)

Thus, one has, for 1 � N � N∗, that∣∣∣∣∣f(t) −
N∑

n=1

φnt
−μn

∣∣∣∣∣
α,σ

= O(t−μN−δN ), (4.14)

where

δN =

{
μN+1 − μN for 1 � N < N∗,
δ for N = N∗.

(4.15)

Proof of theorem 4.1. (i) We first prove that if N is any integer in [1, N∗], then
there exists a number εN > 0 such that for all ρ ∈ (0, 1)

∣∣∣∣∣u(t) −
N∑

n=1

ξnt
−μn

∣∣∣∣∣
α+1−ρ,σ

= O(t−μN−εN ) as t→ ∞. (4.16)

Proof of (4.16). We use the following notation. For an integer n ∈ [1, N∗], define

Fn(t) = φnt
−μn , F̄n(t) =

n∑
j=1

Fj(t), and F̃n(t) = f(t) − F̄n(t),

un(t) = ξnt
−μn , ūn(t) =

n∑
j=1

uj(t), and vn = u(t) − ūn(t).

In calculations below, all differential equations hold in V ′-valued distribution
sense on (T,∞) for any T > 0, which is similar to (2.3). One can easily verify
them by using (2.10), and the facts u ∈ L2

loc([0,∞), V ) and u′ ∈ L1
loc([0,∞), V ′) in

definition 2.1.
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We prove (4.16) by induction in N .
First step: N = 1. Let w1(t) = tμ1u(t). We have, for t > 0, that

w′
1(t) +Aw1(t) = φ1 +H1(t), (4.17)

where

H1(t) = tμ1 [F̃1(t) −B(u(t), u(t))] + μ1t
μ1−1u(t).

(a) We estimate |H1(t)|α,σ. Equation (4.14), for N = 1, particularly reads

|f(t) − φ1t
−μ1 |α,σ = O(t−μ1−δ1). (4.18)

It follows that

|f(t)|α,σ = O(t−μ1). (4.19)

Thanks to (4.19), we can apply theorem 3.2 with ε = 1/2 and obtain from
inequalities (3.16) and (3.17) that, as t→ ∞,

|u(t)|α+1/2,σ = O(t−μ1), (4.20)

|B(u(t), u(t))|α,σ = O(t−2μ1). (4.21)

Combining estimates (4.18), (4.20) and (4.21), we deduce that there exist T0 > 0
and D0 > 0 such that, for t � 0,

(T0 + t)μ1 |F̃1(T0 + t)|α,σ � D0(1 + t)−δ1 ,

(T0 + t)μ1−1|u(T0 + t)|α+1/2,σ � D0(1 + t)−1,

(T0 + t)μ1 |B(u(T0 + t), u(T0 + t))|α,σ � D0(1 + t)−μ1 .

Thus, we have

|H1(T0 + t)|α,σ � 3D0(1 + t)−ε1 ∀t � 0,

where

ε1 = min{δ1, μ1, 1}. (4.22)

(b) Applying lemma 2.3 to equation (4.17) in Gα,σ with solution w1(T0 + t), for
t ∈ [0,∞), yields

|w1(T0 + t) −A−1φ1|α+1−ρ,σ = O(t−ε1)

for any ρ ∈ (0, 1), and consequently,

|w1(t) −A−1φ1|α+1−ρ,σ = O(t−ε1).

Multiplying this equation by t−μ1 yields

|u(t) − ξ1t
−μ1 |α+1−ρ,σ = O(t−μ1−ε1) ∀ρ ∈ (0, 1).
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This proves that

the statement (4.16) holds true for N = 1 with ε1 defined by (4.22). (4.23)

Induction step. Let N be an integer with 1 � N < N∗, and assume there exists
εN > 0 such that

|vN (t)|α+1−ρ,σ = O(t−μN−εN ) ∀ρ ∈ (0, 1). (4.24)

(a) Equation for vN . Since v′N = u′ − ū′N , we calculate u′ and ū′N in terms of the
quantities that are more appropriate for the analysis of vN .
• Calculating u′. By NSE,

u′ = −Au−B(u, u) + f(t)

= −AvN −AūN −B(ūN + vN , ūN + vN ) + F̄N + FN+1 + F̃N+1,

hence,

u′ = −AvN −AūN + F̄N −B(ūN , ūN ) + φN+1t
−μN+1 + hN+1,1, (4.25)

where

hN+1,1 = −B(ūN , vN ) −B(vN , ūN ) −B(vN , vN ) + F̃N+1.

Firstly, note that

−AūN + F̄N = −
N∑

n=1

1
tμn

(
Aξn − φn

)
.

Secondly, we write

B(ūN , ūN ) =
N∑

m,j=1

t−μm−μjB(ξm, ξj)

=
N∑

n=1

1
tμn

⎛⎜⎜⎝ ∑
1�m,j�N,

μm+μj=μn

B(ξm, ξj)

⎞⎟⎟⎠
+

1
tμN+1

∑
1�m,j�N,

μm+μj=μN+1

B(ξm, ξj) + hN+1,2,

where

hN+1,2 =
∑

1�m,j�N,

μm+μj�μN+2

t−μm−μjB(ξm, ξj).
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• Calculating ū′N . Note that μN + 1 � μN+1 and

{μp + 1 : 1 � p � N} ∩ [μ1, μN+1] ⊂ {μk : 1 � k � N + 1}.

Thus,

− ū′N =
N∑

p=1

μpξp
tμp+1

=
N∑

n=1

χn

tμn
+
χN+1

tμN+1
+ hN+1,3, (4.26)

where

hN+1,3 =
∑

1�p�N,

μp+1�μN+2

μpξp
tμp+1

.

• Combining the above equations (4.25)–(4.26) yields

v′N = −AvN +
1

tμN+1

⎛⎜⎜⎝−
∑

1�m,j�N,
μm+μj=μN+1

B(ξm, ξj) + φN+1 + χN+1

⎞⎟⎟⎠

−
N∑

n=1

1
tμn

⎛⎜⎜⎝Aξn +
∑

1�m,j�N,
μm+μj=μn

B(ξm, ξj) − φn − χn

⎞⎟⎟⎠+ hN+1,4,

where

hN+1,4 = hN+1,1 − hN+1,2 + hN+1,3. (4.27)

Note, for 1 � n � N + 1, that∑
1�m,j�N,

μm+μj=μn

B(ξm, ξj) =
∑

1�m,j�n−1,
μm+μj=μn

B(ξm, ξj).

Therefore, one has, for 1 � n � N ,

Aξn +
∑

1�m,j�N,
μm+μj=μn

B(ξm, ξj) − φn − χn = 0,

and

−
∑

1�m,j�N,
μm+μj=μN+1

B(ξm, ξj) + φN+1 + χN+1 = AξN+1.

These yield

v′N = −AvN + t−μN+1AξN+1 + hN+1,4(t). (4.28)

(b) Define wN+1(t) = tμN+1vN (t) for t > 0. We have

w′
N+1 = tμN+1v′N + μN+1t

μN+1−1vN ,
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which, thanks to (4.28), yields

w′
N+1 = −AwN+1 +AξN+1 +HN+1(t), (4.29)

where

HN+1(t) = tμN+1hN+1,4(t) + μN+1t
μN+1−1vN (t). (4.30)

Let ρ be any number in the interval (0, 1).
(c) We estimate HN+1(t) now. From (4.24) and the fact μN + 1 � μN+1, it
follows

tμN+1−1|vN (t)|α+1−ρ,σ = O(tμN+1−1t−μN−εN ) = O(t−εN ). (4.31)

By (4.14), we have

tμN+1 |F̃N+1(t)|α,σ = O(t−δN+1).

Clearly,

|ūN (t)|α+1,σ = O(t−μ1). (4.32)

By inequality (2.11), estimate (4.24) for ρ = 1/2, and (4.32), it follows that

tμN+1 |B(vN (t), ūN (t))|α,σ,

tμN+1 |B(ūN (t), vN (t))|α,σ = O(tμN+1t−μN−εN t−μ1) = O(t−εN ),

tμN+1 |B(vN (t), vN (t))|α,σ = O(tμN+1t−μN−εN t−μN−εN ) = O(t−εN ).

Above, we used the fact 2μN � μN + μ1 � μN+1. Hence,

tμN+1 |hN+1,1(t)|α,σ = O(t−δN+1) + O(t−εN ).

It is obvious that

tμN+1
∑

1�m,j�N,

μm+μj�μN+2

t−μmt−μj |B(ξm, ξj)|α,σ = O(t−(μN+2−μN+1)),

and thus,

tμN+1 |hN+1,2(t)|α,σ = O(t−(μN+2−μN+1)).

It is also clear that

tμN+1 |hN+1,3(t)|α,σ = O(t−(μN+2−μN+1)).

Combining these estimates of tμN+1hN+1,j(t) for j = 1, 2, 3, with (4.30), (4.27)
and (4.31) gives

|HN+1(t)|α,σ = O(t−δN+1) + O(t−εN ) + O(t−(μN+2−μN+1)) = O(t−εN+1),
(4.33)

where

εN+1 = min{δN+1, εN , μN+2 − μN+1}. (4.34)

(d) Note that from lemma 4.2 that AξN+1 ∈ Gα,σ. By applying lemma 2.3 to
equation (4.29) and solution wN+1(T1 + t) for some sufficiently large T1 > 0
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with the use of (4.33), we obtain

|wN+1(T1 + t) −A−1(AξN+1)|α+1−ρ,σ � C(1 + t)−εN+1 ∀t � 1.

Thus,

|wN+1(t) − ξN+1|α+1−ρ,σ = O(t−εN+1).

Multiplying this equation by t−μN+1 yields

|vN (t) − ξN+1t
−μN+1 |α+1−ρ,σ = O(t−μN+1−εN+1),

that is,

|vN+1(t)|α+1−ρ,σ = O(t−μN+1−εN+1).

This proves

the statement (4.16) holds for N := N + 1 with εN+1 defined by (4.34).
(4.35)

By the induction principle, we have (4.16) holds true for all N = 1, 2, . . . , N∗.
This completes the proof of (4.16).

(ii) We now prove (4.9).

Case N∗ = 1. We have in this case, thanks to (4.15), δ1 = δ and ε1 in (4.22)
equals ε∗ in (4.10). Thus, the statement (4.9) just follows (4.23).

Case N∗ � 2. Similar to (4.13), one has from (4.16), for N = N∗, that

|vN∗−1(t)|α+1−ρ,σ = O(t−μN∗ ). (4.36)

We repeat the induction step in part (i) for N = N∗ − 1, but now with

δN+1 = δN∗ = δ and, thanks to (4.36), εN = εN∗−1 = μN∗ − μN∗−1.

Then one obtains from (4.35) that

|vN∗(t)|α+1−ρ,σ = O(t−μN∗−εN∗ ),

where, according to formula (4.34), εN∗ = εN+1 = min{δ, μN∗ − μN∗−1, μN∗+1 −
μN∗} which exactly is ε∗. This completes our proof. �

4.2. Infinite expansions

We focus, in this subsection, the case when the force has an infinite expansion,
and obtain an infinite expansion for any Leray-Hopf weak solution of the NSE. The
force’s expansion considered will be of the following type.

(B2) Suppose there exist real numbers σ � 0, α � 1/2, a strictly increasing,
divergent sequence of positive numbers (γn)∞n=1 and a sequence of functions (ψn)∞n=1

in Gα,σ such that, in the sense of definition 1.1,

f(t) ∼
∞∑

n=1

ψnt
−γn in Gα,σ. (4.37)
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Similar to the previous subsection, the appropriate set of powers generated by
γn’s and 1 is

S∞ =

⎧⎨⎩
⎛⎝ p∑

j=1

γnj

⎞⎠+ k : for some p � 1, n1, n2, . . . , np � 1,

and some integer k � 0

⎫⎬⎭ .

Then S∞ ⊂ (0,∞), and property (4.2) still holds with S∞ replacing S∗. Since
γn → ∞ as n→ ∞, we can order S∞, and denote

S∞ = {μn : n ∈ N} with μn’s being strictly increasing. (4.38)

(This is possible by ordering finitely many elements in each set S∞ ∩ (n− 1, n], for
all n ∈ N.) Note that μn → ∞ as n→ ∞.

Then rewrite (4.37) as

f(t) ∼
∞∑

n=1

φnt
−μn in Gα,σ as t→ ∞, (4.39)

where the sequence (φn)∞n=1 in Gα,σ is defined by φn = ψk if there exists k � 1 such
that μn = γk, and φn = 0 otherwise.

By the same arguments as in § 4.1, the estimate (4.13) now holds for all N � 1.

Theorem 4.3. Assume (B2) and the corresponding expansion (4.39). Then any
Leray-Hopf weak solution u(t) of (2.1) and (2.2) has the asymptotic expansion

u(t) ∼
∞∑

n=1

ξnt
−μn in Gα+1−ρ,σ, ∀ρ ∈ (0, 1), (4.40)

where ξn is defined by (4.6) for n = 1, and by (4.7) for n � 2. More precisely, one
has for any N � 1 that∣∣∣∣∣u(t) −

N∑
n=1

ξnt
−μn

∣∣∣∣∣
α+1−ρ,σ

= O(t−μN+1) as t→ ∞, ∀ρ ∈ (0, 1). (4.41)

Proof. Clearly, f satisfies condition (B1) for any N0 � 1, and (4.5) for any N∗ �
1. Hence, applying theorem 4.1 for each N∗ � 1, we obtain the expansion (4.40)
for u(t). Then similar to (4.13), we obtain from (4.40) that (4.41) holds for all
N � 1. �

5. Properties of the expansions

According to theorem 4.3, for each force f satisfying the required conditions, there
exists a unique sequence (ξn)∞n=1 such that the expansion (4.40) holds for all Leray-
Hopf weak solution u(t). The first part of this section investigates the range of
(ξn)∞n=1 when the force f varies.
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Below, we focus on the infinite expansions in § 4.2, with γn = n for all n ∈ N in
Assumption (B2), which implies that μn = n for all n ∈ N. In this case, (4.39) and
(4.40) read as

f(t) ∼
∞∑

n=1

φnt
−n in Gα,σ, (5.1)

u(t) ∼
∞∑

n=1

ξnt
−n in Gα+1−ρ,σ, ∀ρ ∈ (0, 1), (5.2)

where φn’s and ξn’s, referring to (4.6) and (4.7), are related by⎧⎪⎪⎨⎪⎪⎩
ξ1 = A−1φ1,

ξn = A−1

[
φn + (n− 1)ξn−1 −

n−1∑
k=1

B(ξk, ξn−k)

]
, n � 2.

(5.3)

Above, we used the fact that χn given by (4.8) now is (n− 1)ξn−1 for all n � 2.
We recall note (b) after theorem 4.1 that the relation between (φn)∞n=1 and

(ξn)∞n=1 in (5.3) is one-to-one, and (4.11) now reads as⎧⎪⎪⎨⎪⎪⎩
φ1 = Aξ1,

φn = Aξn − (n− 1)ξn−1 +
n−1∑
k=1

B(ξk, ξn−k), n � 2.
(5.4)

The following proposition gives a sufficient condition for (ξn)∞n=1 so that∑∞
n=1 ξnt

−n is an expansion of a Leray-Hopf weak solution with some force f as in
(5.1).

Theorem 5.1. Let (cn)∞n=1 be a sequence of nonnegative numbers such that

∞∑
n=2

ndn <∞, where dn = max{ckcn−k : 1 � k � n− 1}. (5.5)

Given α � 1/2 and σ � 0. Suppose (ζn)∞n=1 is a sequence in Gα+1,σ such that

|ζn|α+1,σ � cn ∀n ∈ N. (5.6)

Then there exists a forcing function f(t) such that any Leray-Hopf weak solution
u(t) of (2.1) and (2.2) satisfies

u(t) ∼
∞∑

n=1

ζnt
−n in Gα+1−ρ,σ, ∀ρ ∈ (0, 1). (5.7)

Moreover, the series of the expansion,
∑∞

n=1 ζnt
−n, converges in Gα+1,σ absolutely

and uniformly on [1,∞).
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Proof. In case cn = 0 for all n, then ζn = 0 for all n. We simply take f = 0, which
gives φn = 0 for all n. Then we have expansion (5.2), where the ξn’s are given by
(5.3), which obviously yields ξn = 0 = ζn for all n. Hence (5.7) follows (5.2).

We now consider the case that there exists n0 ∈ N such that cn0 > 0. Clearly,
from the definition of dn one has cn0cn � dn+n0 for n � 1. Using this and (5.5)
yield

∞∑
n=1

cn �
∞∑

n=1

ncn �
∞∑

n=1

n
dn+n0

cn0

� 1
cn0

∞∑
n=1

(n+ n0)dn+n0 <∞. (5.8)

Define ⎧⎪⎪⎨⎪⎪⎩
φ1 = Aζ1,

φn = Aζn − (n− 1)ζn−1 +
n−1∑
k=1

B(ζk, ζn−k), n � 2.
(5.9)

(This, in fact, is the construction of φn’s in (5.4) with ξn’s being replaced with
ζn’s.)

We estimate, for n = 1,

|φ1|α,σ = |Aζ1|α,σ = |ζ1|α+1,σ � c1.

For n � 2, we have from (5.9) and (2.11) that

|φn|α,σ � |Aζn|α,σ + (n− 1)|ζn−1|α,σ +
n−1∑
k=1

|B(ζk, ζn−k)|α,σ

� |ζn|α+1,σ + (n− 1)|ζn−1|α+1,σ +Kα
n−1∑
k=1

|ζk|α+1/2,σ|ζn−k|α+1/2,σ.

Then, by (5.6),

|φn|α,σ � cn + (n− 1)cn−1 +Kα
n−1∑
k=1

ckcn−k

� cn + (n− 1)cn−1 +Kα(n− 1)dn <∞.

Therefore, by (5.8) and (5.5),
∞∑

n=1

|φn|α,σ �
∞∑

n=1

cn +
∞∑

n=1

ncn +Kα
∞∑

n=2

(n− 1)dn <∞.

It follows that
∑∞

n=1 φnt
−n converges in Gα,σ absolutely and uniformly on [1,∞).

Thus, we can define f(t) for t � 0 as following:

f(t) =

{∑∞
n=1 φn if 0 � t < 1,∑∞
n=1 φnt

−n if t � 1.
(5.10)

Clearly, f satisfies (A), and f(t) ∼
∑∞

n=1 φnt
−n in Gα,σ, hence f satisfies (B2)

too.
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Let u be a Leray-Hopf weak solution of (2.1) and (2.2). Applying theorem 4.3
gives the expansion (5.2) for u(t), where the ξn’s are given by (5.3).

Solving for ζn’s from (5.9) gives⎧⎪⎪⎨⎪⎪⎩
ζ1 = A−1φ1,

ζn = A−1

[
φn + (n− 1)ζn−1 −

n−1∑
k=1

B(ζk, ζn−k)

]
, n � 2.

(5.11)

Comparing (5.3) and (5.11) shows ξn = ζn for all n ∈ N. Therefore, (5.7) follows
(5.2).

By (5.6), we have, for all t � 1 and n � 1, that

|ζnt−n|α+1,σ � |ζn|α+1,σ � cn. (5.12)

This estimate and (5.8) imply that
∑∞

n=1 ζnt
−n converges in Gα+1,σ absolutely and

uniformly on [1,∞). The proof is complete. �

Example 5.2. In theorem 5.1, assume there exist M > 0, λ > 2 and N0 � 1 such
that cn � Mn−λ for all n � N0. Then the sequence (cn)∞n=1 is bounded by, say, a
number c∗ > 0. Let n � 2N0. If 1 � k � n/2, then n− k � n/2 � N0 and

ckcn−k � c∗cn−k � c∗M(n− k)−λ � c∗M(n/2)−λ.

If n/2 < k < n, then k > N0 and

ckcn−k � ckc∗ � c∗Mk−λ � c∗M(n/2)−λ.

Hence, dn � 2λMn−λ for all n � 2N0. Therefore, condition (5.5) is satisfied.

As a special case of theorem 5.1, the next corollary shows that the expansion of
u(t), essentially, can be any finite sum in Gα+1,σ (of course, of the same type.)

Corollary 5.3. Let α � 1/2, σ � 0 be given numbers, and ζ1, . . . , ζN be given
elements in Gα+1,σ, for some N � 1. Then there exists a forcing function f(t)
such that any Leray-Hopf weak solution u(t) of (2.1) and (2.2) has the expansion
u(t) ∼

∑∞
n=1 ξnt

−n in Gα+1−ρ,σ for all ρ ∈ (0, 1), where ξn = ζn for 1 � n � N and
ξn = 0 for all n > N .

Proof. For n > N , set ζn = 0. Define cn = |ζn|α+1,σ for 1 � n � N , and cn = 0 for
n > N . Let dn be defined as in (5.5). One can verify that dn = 0 for all n > 2N .
Hence, the condition (5.5) is satisfied. Then the conclusion of this corollary follows
theorem 5.1. (In fact, following the construction of f(t), we have φn = 0 for n > 2N ,
and f(t), for t � 1, is simply the finite sum

∑2N
n=1 φnt

−n.) �

Example 5.4 (Divergent expansions). For a given and fixed force f , the expansion
(4.40) may not converge. We give here a simple example. Let φ1 �= 0 be a function
in R1H such that B(φ1, φ1) = 0, and let φn = 0 for all n � 2. (For e.g., φ1(x) =
εe2[eie1·x + e−ie1·x] for any ε > 0.) From (5.3), one can easily verify that ξn =
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(n− 1)!φ1 for all n ∈ N. Hence, the expansion
∑∞

n=1 ξnt
−n is divergent in H for all

t > 0.

Remark 5.5. We recall the normalization map for NSE, in case the force is poten-
tial, defined by Foias and Saut [7,9]. First, rewrite σ(A) = {λn : n ∈ N}, where λn

is strictly increasing. For any u0 ∈ V such that the solution u(t) of (2.1) and (2.2)
is regular on [0,∞), there exists ξ = (ξn)∞n=1, with ξn ∈ Rλn

H for all n ∈ N, such
that the expansion (1.5) of u(t) can be reconstructed explicitly based on ξ only,
that is, qn(t) = qn(t, ξ) – a polynomial in both t and ξ. The normalization map is
defined as W (u0) = ξ = (ξn)∞n=1. Thus, regarding the reconstructions of the asymp-
totic expansions for solutions, the sequence (ξn)∞n=1 in (5.2) and W (u0) have similar
roles, because they totally determine the expansions (5.2) and (1.5), respectively.
We now briefly compare (a) their ranges, and (b) the convergence of their generated
expansions.

Regarding (a), it is known that given small elements ζn ∈ Rλn
H, for n =

1, 2, . . . , N , there exists u0 such that W (u0) = (ξn)∞n=1 with ξn = ζn for 1 � n � N .
However, it is not known what ξn’s might be for n > N . For the expansion (5.2),
theorem 5.1, example 5.2 and corollary 5.3 give specific and simple characteristics
of the possible values of (ξn)∞n=1.

Regarding (b), it is not known what might be a general, nontrivial W (u0) such
that the expansion (1.5), when generated by W (u0), is convergent. (See [11,14]
for more information about this topic.) In contrast, the expansion (5.2) is just
a power series having ξn’s as its coefficients. Hence, a simple condition such as
lim supn→∞ |ξn|1/n

α,σ <∞ is enough to conclude that the expansion (5.2) converges
in Gα,σ for sufficiently large t.

The second part of this section investigates the possible type of decay for the
Leray-Hopf weak solutions after all the power-decaying terms. More specifically, in
theorem 5.1, u(t) ∼

∑∞
n=1 ξnt

−n in Gα,σ with
∑∞

n=1 ξnt
−n converging to ū(t) in

Gα+1,σ for all t � 1. Hence, by this expansion and the theory of power series,

|u(t) − ū(t)|α,σ = O(t−μ) ∀μ > 0. (5.13)

The next theorem states that, the remainder in (5.13), decays faster and, in fact,
it decays exponentially.

Theorem 5.6. Given α � 1/2 and σ � 0. Suppose that

f(t) =
∞∑

n=1

φnt
−n in Gα,σ, ∀t � T0, for some T0 > 0, (5.14)

where (φn)∞n=1 is a sequence in Gα,σ.
Let (ξn)∞n=1 be defined by (5.3), and assume

lim sup
n→∞

(
|ξn|1/n

α+1,σ

)
<∞. (5.15)
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Then

(i) The series
∑∞

n=1 ξnt
−n converges in Gα+1,σ to a function ū(t) for sufficiently

large t.

(ii) If u(t) is a Leray-Hopf weak solution of (2.1) and (2.2), then one has for all
ρ ∈ (0, 1/2] that, as t→ ∞,

|u(t) − ū(t)|α+ 1
2−ρ,σ =

{
O(e−t), if ξ1 = 0,

O(tβe−t) for some β > 0, if ξ1 �= 0.
(5.16)

Proof.

(i) This part is a straight consequence of power series theory in Banach spaces,
see for example, [2, Chapter IX]. Indeed, (5.15) implies that there is R > 0
such that

∑∞
n=1 ξnz

n converges in Gα+1,σ absolutely and uniformly for z ∈
[−R,R]. Hence, denoting T1 = 1/R, we have

ū(t) =
∞∑

n=1

ξnt
−n converges in Gα+1,σ absolutely and uniformly for all t � T1.

(5.17)

(ii) One can verify from (5.14) that f satisfies (A) and (B2). Let T2 =
max{T0, T1}.

(a) First, we claim that, for all t > T2,

ū′(t) +Aū(t) +B(ū(t), ū(t)) = f(t) in Gα,σ. (5.18)

Indeed, if t > T2 then

ū′(t) =
∞∑

n=1

u′n(t) =
∞∑

n=2

−(n− 1)ξn−1

tn
in Gα+1,σ,

Aū(t) =
∞∑

n=1

Aξn
tn

in Gα,σ.

By (2.11), (5.17), and Cauchy’s product, we infer that

B(ū(t), ū(t)) =
∞∑

n=2

1
tn

[
n−1∑
k=1

B(ξk, ξn−k)

]
in Gα+1/2,σ for t > T2. (5.19)

Thus, we have for t > T2 that the following identities hold in Gα,σ

ū′(t) +Aū(t) +B(ū(t), ū(t))

=
Aξ1
t

+
∞∑

n=2

1
tn

{
−(n− 1)ξn−1 +Aξn +

n−1∑
k=1

B(ξk, ξn−k)

}

=
∞∑

n=1

φnt
−n = f(t).

This proves (5.18).
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(b) Let ρ ∈ (0, 1/2]. Let w = u− ū. Suppose there exists T∗ � T2 such that

Kα+(1/2)−ρ(|u(t)|α+1−ρ,σ + |ū(t)|α+1−ρ,σ) < 1 ∀t > T∗. (5.20)

We claim that, for t � T∗,

|w(t)|α+1/2−ρ,σ � |w(T∗)|α+1/2−ρ,σe
−t+T∗

× eKα+(1/2)−ρ
∫ t

T∗ (|u(τ)|α+1−ρ,σ+|ū(τ)|α+1−ρ,σ) dτ . (5.21)

Proof of this claim. Subtracting (5.18) from the NSE (2.1) yields

w′ +Aw +B(w, u) +B(ū, w) = 0 in V ′ on (T2,∞). (5.22)

Let N ∈ σ(A), taking PN of (5.22) gives

(PNw)′ +A(PNw) + PN (B(w, u) +B(ū, w)) = 0 on (T2,∞), (5.23)

in the PNH-valued distribution sense. Denote

AN = APN and w̃N = Aα+(1/2)−ρeσA1/2
PNw = A

α+(1/2)−ρ
N eσA

1/2
N PNw.

Then it follows (5.23) that

w̃′
N = −Aw̃N −Aα+(1/2)−ρeσA1/2

PN (B(w, u) +B(ū, w)). (5.24)

In the finite dimensional space PNH, we have for t > T∗,

|Aw̃N | �
√
N |A1/2w̃N | �

√
N(|u(t)|α+1−ρ,σ + |ū(t)|α+1−ρ,σ) <

√
NK−(α+1/2−ρ),

(5.25)
and, by using inequality (2.11),

|Aα+(1/2)−ρeσA1/2
PN (B(w, u) +B(ū, w))|

� |B(w, u)|α+(1/2)−ρ,σ + |B(ū, w)|α+(1/2)−ρ,σ

� Kα+1/2−ρ|w|α+1−ρ,σ(|u|α+1−ρ,σ + |ū|α+1−ρ,σ)

� |w|α+1−ρ,σ � |u|α+1−ρ,σ + |ū|α+1−ρ,σ � K−(α+1/2−ρ).

Hence, both w̃N and w̃′
N belong to L∞(T∗,∞;PNH). Thus, see for example, [24,

Chapter II, lemma 3.2], equation (5.24) implies that, in the distribution sense on
(T∗,∞),

d
dt

|w̃N |2 = 2〈w̃′
N , w̃N 〉 = −2〈Aw̃N , w̃N 〉 − 2〈Aα+1/2−ρeσA1/2

PN (B(w, u)

+B(ū, w)), w̃N 〉.

For t > T∗, applying Cauchy-Schwarz inequality and (2.11) yields

d

dt
|w̃N |2 � −2|A1/2w̃N |2 + 2(|B(w, u)|α+1/2−ρ,σ + |B(ū, w)|α+1/2−ρ,σ)|w̃N |

� −2|A1/2w̃N |2 + 2Kα+1/2−ρ|w|α+1−ρ,σ(|u|α+1−ρ,σ + |ū|α+1−ρ,σ)|A1/2w̃N |.
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In the last term,

|w|α+1−ρ,σ � |PNw|α+1−ρ,σ + |(Id − PN )w|α+1−ρ,σ

= |A1/2w̃N | + |(Id − PN )w|α+1−ρ,σ.

Thus,

d
dt

|w̃N |2 � −2
[
1 −Kα+(1/2)−ρ(|u|α+1−ρ,σ + |ū|α+1−ρ,σ)

]
|A1/2w̃N |2

+ 2Kα+(1/2)−ρ(|u|α+1−ρ,σ + |ū|α+1−ρ,σ)|(Id − PN )w|α+1−ρ,σ|A1/2w̃N |.

Then using condition (5.20) and the relation |A1/2w̃N | � |w̃N | for the first term
on the right-hand side, we derive for t > T∗,

d
dt

|w̃N |2 � −2
[
1 −Kα+(1/2)−ρ(|u|α+1−ρ,σ + |ū|α+1−ρ,σ)

]
|w̃N |2

+ 2|(Id − PN )w|α+1−ρ,σ|A1/2w̃N |.
(5.26)

By using the integrating factor, even for weak derivatives, one still obtains from
(5.26) the following elementary inequality

|PNw(t)|2α+1/2−ρ,σ

� |PNw(T∗)|2α+1/2−ρ,σe
−2(t−T∗)e2Kα+(1/2)−ρ

∫ t
T∗ (|u(τ)|α+1−ρ,σ+|ū(τ)|α+1−ρ,σ) dτ

+ 2
∫ t

T∗
e−2

∫ t
s

[
1−Kα+(1/2)−ρ(|u(τ)|α+1−ρ,σ+|ū(τ)|α+1−ρ,σ)

]
dτ

× |(Id − PN )w(s)|α+1−ρ,σ|A1/2w̃N (s)|ds.

Utilizing (5.20) in the second summand on the right-hand side of the preceding
inequality yields

|PNw(t)|2α+1/2−ρ,σ � |PNw(T∗)|2α,σe
−2(t−T∗)

× e2Kα+(1/2)−ρ
∫ t

T∗ (|u(τ)|α+1−ρ,σ+|ū(τ)|α+1−ρ,σ) dτ

+ 2
∫ t

T∗
|(Id − PN )w(s)|α+1−ρ,σ|A1/2w̃N (s)|ds.

(5.27)

Observe, for all s > T∗, that

|(Id − PN )w(s)|α+1−ρ,σ|A1/2w̃N (s)|

� |w(s)|2α+1−ρ,σ

� (|u(s)|α+1−ρ,σ + |ū(s)|α+1−ρ,σ)2 < 4K−2(α+(1/2)−ρ).

We pass N → ∞ in (5.27), noticing, by Lebesgue’s dominated convergence
theorem, that the last integral goes to zero, and obtain

|w(t)|2α+1/2−ρ,σ

� |w(T∗)|2α+1/2−ρ,σe
−2(t−T∗)e2Kα+(1/2)−ρ

∫ t
T∗ (|u(τ)|α+1−ρ,σ+|ū(τ)|α+1−ρ,σ) dτ .
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Inequality (5.21) then follows.
(c) We consider the two specified cases in (5.16). First, we note, thanks to the

expansion (4.40) and (5.17), that

|u(t) − ξ1t
−1 − ξ2t

−2|α+1−ρ,σ, |ū(t) − ξ1t
−1 − ξ2t

−2|α+1−ρ,σ = O(t−3). (5.28)

Case ξ1 = 0. Thanks to (5.28), there are T∗ > 0 and D0 = |ξ2|α+1−ρ,σ + 1 such
that

|u(t)|α+1−ρ,σ, |ū(t)|α+1−ρ,σ � D0/t
2 <

K−(α+(1/2)−ρ)

2
∀t � T∗. (5.29)

Hence, condition (5.20) is met. By (5.21) and (5.29), one has for t � T∗ that

|w(t)|α+1/2−ρ,σ � |w(T∗)|α+1/2−ρ,σe
−t+T∗eKα+(1/2)−ρ

∫ t
T∗ 2D0/τ2 dτ � M1e

−t,

where M1 = |w(T∗)|α+1/2−ρ,σe
T∗+2Kα+(1/2)−ρD0/T∗ . This proves the first relation in

(5.16).
Case ξ1 �= 0. Again, thanks to (5.28), there are T∗ � 1 and D0 = 2|ξ1|α+1−ρ,σ

such that

|u(t)|α+1−ρ,σ, |ū(t)|α+1−ρ,σ � D0/t <
K−(α+(1/2)−ρ)

2
∀t � T∗. (5.30)

Again, condition (5.20) is satisfied, and (5.21), together with (5.30), implies, for
t � T∗, that

|w(t)|α+1/2−ρ,σ � |w(T∗)|α+1/2−ρ,σe
−t+T∗eKα+(1/2)−ρ

∫ t
T∗ 2D0/τ dτ

� |w(T∗)|α+1/2−ρ,σe
−t+T∗e2Kα+(1/2)−ρD0 ln t = M2t

βe−t,

where M2 = |w(T∗)|α+1/2−ρ,σe
T∗ and β = 2Kα+(1/2)−ρD0. This proves the second

relation in (5.16). �

Remark 5.7.

(a) An equivalent condition to (5.15) is that the series
∑∞

n=1 ξnt
−n of expansion

(5.2) converges in Gα+1,σ at least at one point t = t0 ∈ (0,∞).

(b) According to part (ii) of theorem 5.6, the remainder u(t) − ū(t) cannot have
any intermediate decay between the power and exponential ones. For example,
it cannot be approximated by any e−μ

√
t for μ ∈ (0,∞).
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