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SUMMARY
A novel ostraciiform swimming, vision-based autonomous
robotic fish is developed in this paper. Its feasibility and
capability are shown by implementing a dynamic target
following task in a swimming pool. Inspired by boxfish that
is highly stable and fairly maneuverable, the robotic fish is
designed and constructed by locating multiple propulsors
peripherally around a rigid body. Swimming locomotion of
the robotic fish is achieved through harmonic oscillations
of the tail and pectoral fins. The forces and moments
acting on the fins and body are analyzed and the governing
motion equations are derived. Through coordinating the
movements of the propulsors, several typical swimming
patters are empirical designed and realized. A digital camera
is integrated in the robotic fish, and the visual information
is processed with the embedded microcontroller. To treat the
degradation of underwater image, a continuously adaptive
mean shift (Camshift) algorithm is modified to keep visual
lock on the moving target. A fuzzy logic controller is
designed for motion regulation of a hybrid swimming
pattern, which employs synchronized pectoral fins for thrust
generation and tail fin for steering. A simple target following
task is designed via an autonomous robotic fish swimming
after a manually controlled robotic fish with fixed distance.
The swimming performance of the robotic fish is tested and
the effectiveness of the proposed target following method is
verified experimentally.

KEYWORDS: Autonomous underwater vehicles; Biomi-
metic robotic fish; Swimming pattern; Visual tracking; Target
following.

1. Introduction
Biorobotic autonomous underwater vehicles (AUVs) have
become one of the hot research topics in the last decade.1 The
driving motivation for this research is to unveil the underlying
biological principles of marine propulsion and maneuvering
and to incorporate this knowledge into nautical engineering
practice. Contemporary AUV technology will benefit from
this study for enhanced swimming performance such as high
efficiency, great agility, station-keeping ability, and reduced
detection.

* Corresponding author. E-mail: huyhui@gmail.com

Majority of research work in this area have focused on
fish-like swimming and their engineered counterpart, robotic
fish. As one of the oldest creatures on this planet, fish
have evolved an astonishing level of swimming abilities
throughout the ages of natural selection. By means of
active and passive manipulation of flow around the body
and fins, fish generate propulsive and maneuvering forces
efficiently, while reducing the resistance effectively.2 Based
upon the propulsive structures employed for locomotion,
the swimming of fish can be classified into two categories:
body and/or caudal fin (BCF) swimming and median and/or
paired fin (MPF) swimming.3 BCF swimmers generate
thrust by bending their bodies into a backward moving
propulsive wave that extends from the nose to caudal fin.
The variation in wavelength and the amplitude envelope
of the propulsive wave further split the BCF swimming
into several subcategories, from anguilliform swimming that
involves the undulation of the whole body, the carangiform
swimming in which the undulation is confined to the last
third of the body length, to the ostraciiform swimming
characterized by the pendulum-like oscillation of the caudal
fin. The MPF swimming is also categorized into different
types according to the propulsors that contribute to thrust
generation and the extent to which propulsion is based
on undulatory versus oscillatory motion. Recent reviews4−6

provide thorough investigations on advances in morphology,
kinematics, and hydrodynamics of swimming fish.

With the increasing understanding of how fish swim and
the progress in supporting technologies, various swimming
machines that mimic the morphology and locomotion of fish
have been built around the world. The first robotic fish is
the well-known RoboTuna developed by Triantafyllou and
co-workers7,8 in 1994. Extensive experiments conducted on
RoboTuna demonstrated that drag was significantly reduced
while the robot being towed at constant velocity through
water, which provided a solid experimental and theoretical
foundation for subsequent research in this field. Anderson
and Kerrebrock9 built the mission-scale, autonomous
underwater vehicle VCUUV that utilizes vorticity control
mechanisms for propulsion and maneuvering. Mason and
Burdick10 constructed a three-link carangiform swimmer for
prediction of thrust generation with flapping tail. Hirata11

realized a series of robotic fish with different design
objectives, from PF200 for up-down motion, PF300 for
turning performance, to PF700 for high-speed swimming.
Liu et al.12 developed autonomously swimming robotic fish
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based on biologically inspired behavior-based approach.
Kato13 developed a pectoral fin-driven robotic fish called
“BlackBass” for precise maneuvering control. To mimic
the actual flexible fin of real fish, Low14 designed a fin-
like mechanism that functions like a flexible membrane.
Previously, the authors15 developed a module-based robotic
fish that propels either with the posterior flexible body and
oscillating tail foil or by the combined pitching and heaving
motion of the two-degree-of-freedom (2-DOF) pectoral fins.
In addition, conceptual design of a biorobotic AUV that
employs pectoral fins for low-speed swimming, precise
maneuvering, and station holding was suggested by a team of
biologists and engineers in a workshop organized by Office
of Naval Research (ONR) of America.16 Excellent reviews
regarding the state of art biorobotic AUVs are provided in
refs. [1, 17].

Control of robotic fish requires modeling of the fluid
dynamics of momentum transferring for thrust generation.
Since the mechanisms of flow body interaction are typically
quite complex, no analytical methods are available for
controller design. Most designers of robotic fish employ
greatly simplified, low fidelity hydrodynamic models or
kinematic models of fish body during swimming. Kelly
et al.18 developed a planar model for carangiform swimming
based on a set of reduced Euler–Lagrange equations that
describe the interaction of the body and the surrounding fluid
with forcing from a single point vortex, and used geometric
nonlinear control methods for motion generation. McIsaac
and Ostrowski19 designed various open-loop locomotive
gaits for eel-like robot based on planar dynamic model
using perturbation analysis. Morgansen et al.20 developed
a dynamic model that takes into account the added mass
effect and quasi-static lift and drag, and used geometric
nonlinear control theory for trajectory tracking of a fin-
actuated underwater vehicle. Barrett et al.8 determined
experimentally the power-optimal motion of RoboTuna
based on the kinematic model of swimming fish using genetic
algorithm. Yu et al.21 optimized numerically the relative link
lengths of multi-linked robotic fish to find the discretized
traveling wave that best matches the shape of fish body. To
deal with the complexity of swimming hydrodynamics, fuzzy
rule-based control method is used by Kato13 in performing
rendezvous and docking with an underwater post in water
currents and by Zhang et al.22 in coordinated transport by
multiple robotic fish in aquatic environment.

Most studies of robotic fish have focused on carangiform
swimming for its high speed and efficiency, and ostracii-
form swimming fish have classically been considered to be
slow swimmers. However, recent studies reveal that ostra-
ciiform swimmers like boxfish (see Fig. 1) can maintain a
high level of dynamic stability to swim smoothly through
turbulent waters and exhibit excellent maneuverability,
which are desirable characteristics for AUVs.23,24 Growing
interests in building robotic fish mimicing ostraciiform
swimming have been spurred.25,26 This paper presents a
novel free-swimming robotic fish that utilizes ostraciiform
swimming mode for cruise and maneuver. A pair of pectoral
fins and a tail fin are implemented around a rigid box-like
fish body. The use of multiple peripherally located control
surfaces allows realization of various swimming patterns

Fig. 1. Photograph of a spotted boxfish.

and high maneuverability, while the boxy rigid body ensures
the stability of the underwater robot. Swimming machines
with such locomotive characteristics can be used in practical
applications that require operations in cluttered environment
and unsteady flow such as coral reef monitoring, ship wreck
exploration, and in-pipe inspections. To realize autonomous
operation, the robotic fish is equipped with a CMOS camera.
The huge volume of underwater visual information can
be processed with the onboard processor and vision-based
underwater tasks can be performed. To the best of our
knowledge, no vision-based autonomous robotic fish have
been realized before and only robotic fish with simpler sensor
like pressure sensor, infrared sensor have been designed.12

The contribution of this paper lies in two aspects: (1) the
design of an ostraciiform swimming robotic fish that exhibits
high stability, high maneuverability, and various swimming
patterns and (2) the implementation of underwater vision-
based target following, where color-based adaptive mean
shift algorithm is used for object identification and fuzzy
logic controller for motion regulation.

In the rest of the paper, we proceed as follows: Section 2
describes the mechanical, electrical, and software design of
the robotic fish. Section 3 presents basic motion control,
dynamic analysis, and typical swimming patterns of the
robotic fish. The algorithms for underwater target following
are addressed in Section 4. In Section 5, experiments with
the robotic fish are conducted. Finally, we conclude the paper
with an outline of future work in Section 6.

2. Design of Robotic Fish Prototype
The robotic fish is a highly sophisticated mechatronic system
that incorporate mechanics, electronics, software, and control
techniques. Design details of the prototype will be phrased
in the following three aspects.

2.1. Mechanical design
Modeled after boxfish that is characterized by inflexible body
and utilizes MPF mode for propulsion and caudal oscillations
as auxiliary locomotion means, the robotic fish consists of a
rigid main body, a pair of pectoral fins, and a caudal fin. The
main body, which is roughly a rectangular, waterproofed
hull, provides housings for the power, electronics, and
actuators. Each propulsor can perform 1-DOF movements
and is actuated by a servomotor (Hitec HS-5955TG) that is
fixed on the bottom chassis. The reciprocatory rotation of the
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Fig. 2. Mechanical configurations of the robotic fish.

servomotors is transmitted to the outside through dynamic
sealing structure filled with grease. The pectoral fins with
the approximate shape of NACA-0012 profile are attached to
the joints on the side, and the lunate tail fin is linked to the
vertical joints with connecting pieces. The rotatory range of
the tail fin is limited to ±90◦, while that of the pectoral fins
is expanded to ±180◦ through transmission of gear sets of
2:1 ratio. A pinhole CMOS camera, as the only exteroceptive
sensor is installed at the mouth position with a transparent
window glued to the hull for waterproof purpose. For most
fishes, the center of mass is located above the center of
buoyancy and as a result they are hydrostatically unstable.27

However, it is hard for robotic fish to generate the necessary
trimming forces and powered correction forces to stabilize
and hold posture, therefore the robotic fish is designed to be
hydrostatically stable through lower placement of the mass
center. The density of the robotic fish has been designed
to be close to that of water through careful calculations,
so that little trimming weight or foam can be added to
accomplish neutral buoyancy. Figure 2 shows the mechanical
configurations of the robotic fish.

2.2. Electronics and sensor
The robotic fish is designed for autonomous operation such
that it is equipped with onboard power, embedded processor,
image sensor (OV7620 from OmniVision), and a duplex
wireless communication module (GW100B from Unitel Pty
Ltd.) as the user interface for human–robot interaction. Four
rechargeable Ni–Cd cells of 2700 mAh capacity provide
the robotic fish about 1 h power autonomy. The control
unit is a microcontroller S3C2440 that incorporates a high-
performance 32-bit RISC, ARM920T CPU core running at
400 MHz and a wide range of peripherals from Samsung
Electronics. The onboard memory includes 64MB SDRAM
used during program execution and 64MB Nand Flash
for permanent data and code storage. The microcontroller
captures image data in YCrCb 4:2:2 format at 320 ×
240 resolution and does real-time image processing for
perception of the environment. Three PWM (Pulse Width
Modulation) signals are generated by the microcontroller to
control the motion of the joints. Figure 3 illustrates hardware
architecture of the control system.

2.3. Software
The software running on the robotic fish is comprised of two
parts: a boot program named U-boot (universal bootloader)
and the application code. U-boot runs immediately when
the robotic fish powers up, and then waits a few seconds
for the user to update application code through the wireless
communication module. By default, U-boot will transfer
the control to the application code that is already stored
in Nand Flash memory if the user did not interrupt. The
use of U-boot greatly simplifies and accelerates the Flash
burning process, which conventionally involves taking apart
the bottom chassis, pulling out cables, and resealing of the
fish body.

3. Dynamic Analysis and Swimming Locomotion
Control

3.1. Basic motion control
The robotic fish swims by oscillatory movements of the
tail and pectoral fins. Since sinusoidal signals can generate
smooth oscillations and allow flexible and easy adjustment
of joint angles, we model the swimming locomotion as
sinusoidal variation of the robot’s joint angles. Each joint
of the robotic fish oscillates in a harmonic manner according
to the following equation:

θ(t) = φ + A sin(2πf t + ϕ), (1)

where θ(t) is the target angular position at time t , φ denotes
the angular offset, A represents the oscillatory amplitude of
the joint angle, f indicates the frequency, and ϕ is the phase
difference between the left pectoral fin, the right pectoral
fin, and the tail fin. The magnitude of thrust generated by
the propulsor can be adjusted by modulating the value of
the frequency f and the amplitude A, while its direction is
determined by the angular offset φ. The phase difference ϕ

couples the joints for swimming behavior design. The motion
behavior of the robotic fish is governed by a total of 12
parameters. For convenience of description, suffix “t” will be
used to represent the parameters of tail fin, suffixes “lp” and
“rp” the parameters of left and right pectoral fin, respectively.
When the left and right pectoral fins move synchronously,
suffix “p” will be used to represent the common parameters
of both pectoral fins.

3.2. Dynamic analysis
The dynamic analysis of the robotic fish consists of writing
and solving the equations that govern the translational and
rotational motions of the robot in 3D space. To facilitate
the description, two coordinate frames are defined, namely
the body-fixed coordinate frame xyz and the earth-fixed
inertial coordinate frame XYZ. The body reference frame
xyz has its origin at the center of mass of the robot, its x-axis
pointing forward, its y-axis pointing through the right-hand
side, and its z-axis pointing downward. The robotic fish can
both translate along and rotate about each axis of the body
frame, obtaining the following 6-DOF: surge, sway, heave,
roll, pitch, and yaw. Figure 4 illustrates the coordinate frames
and the 6-DOF of the robotic fish. The body-fixed coordinate
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Fig. 3. Hardware architecture of the control system.

Fig. 4. Coordinate frames and robot motions.

components of robot translational velocity are denoted as
[u v w]T and the components of angular velocity with
respect to body frame are denoted as [p q r]T . The
motion equations of the robotic fish will be derived in the
body frame in the sequel, and the dynamics in inertial frame
can be obtained through a series of transformations.28

To characterize every detail of the hydrodynamics of the
robotic fish is a daunting task, therefore a set of assumptions
has to be made in order to develop a simplified hydrodynamic
model. We suppose that the robotic fish swims in an
infinite volume of incompressible and irrotational fluid, thus
allowing the neglection of the effect of the vortices shed
by the body and fins, and the effect of nearby walls and
surfaces. Moreover, the robotic fish is assumed to be neurally
buoyant and the center of mass coincides with the volumetric
center of the robot, so that the hydrostatic (gravitational and
buoyancy) forces and moments are zero. After the above
simplifications, the forces and moments acting on the robotic
fish are the hydrodynamic forces generated by its constituent
components, i.e. the rigid body and the three propulsors.

Fig. 5. Forces on an oscillating foil.

The tail and pectoral fins, which provide the propulsive
force with 1-DOF oscillation, can be modeled as oscillating
foils. Consider, as shown in Fig. 5, an oscillating foil moving
at velocity U relative to the inflow fluid in reference frame
x1x2. The angle between the direction of flow impinging
on the foil and x2 axis is denoted as β, while the direction
of flow relative of the foil is called the angle of attack and
denoted as α. The forces generated by the foil are lift and
drag, perpendicular and parallel to the fluid flow, respectively.
The magnitudes of lift L and drag D can be calculated as
follows29:

L = 1

2
ρACLU 2, (2)

D = 1

2
ρACDU 2, (3)

where ρ is the density of water, A is the planform area of the
foil, CL and CD are lift and drag coefficients that depend on
the angle of attack α and can be determined with experimental
techniques. Decomposing the lift and drag forces along x1

and x2 directions, the following expressions for the x1 and x2

components of the force can be obtained:

Fx1 = L cos β − D sin β, (4)
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Fx2 = L sin β + D cos β. (5)

Based on the above analysis, the forces on the tail fin
oscillating in xy plane of body reference frame can be
calculated as

�Ft =

⎡
⎢⎣

Lt cos βt − Dt sin βt

Lt sin βt + Dt cos βt

0

⎤
⎥⎦ . (6)

The forces on the tail fin create moments on the center of
mass of the robotic fish. The moment produced by tail fin
can be obtained as follows:

�Mt =

⎡
⎢⎣

xt

yt

zt

⎤
⎥⎦ ×

⎡
⎢⎣

Lt cos βt − Dt sin βt

Lt sin βt + Dt cos βt

0

⎤
⎥⎦ (7)

=

⎡
⎢⎣

−zt(Lt sin βt + Dt cos βt)

zt(Lt cos βt − Dt sin βt)

xt(Lt sin βt + Dt cos βt) − yt(Lt cos βt − Dt sin βt)

⎤
⎥⎦ ,

(8)

where xt, yt, and zt are coordinate components of the distance
from the center of propulsive force on tail fin to the center
of mass of the robotic fish in body-fixed reference frame.
Similarly, the forces and moments produced by left and right
pectoral fins that oscillate in xz plane are given by

�Flp =

⎡
⎢⎣

Llp cos βlp − Dlp sin βlp

0

Llp sin βlp + Dlp cos βlp

⎤
⎥⎦ , (9)

�Frp =

⎡
⎢⎣

Lrp cos βrp − Drp sin βrp

0

Lrp sin βrp + Drp cos βrp

⎤
⎥⎦ , (10)

�Mlp =⎡
⎢⎣

ylp(Llp sin βlp + Dlp cos βlp)

−xlp(Llp sin βlp + Dlp cos βlp) + zlp(Llp cos βlp − Dlp sin βlp)

−ylp(Llp cos βlp − Dlp sin βlp)

⎤
⎥⎦ ,

(11)

�Mrp =⎡
⎢⎣

yrp(Lrp sin βrp + Drp cos βrp)

−xrp(Lrp sin βrp + Drp cos βrp) + zrp(Lrp cos βrp − Drp sin βrp)

−yrp(Lrp cos βrp − Drp sin βrp)

⎤
⎥⎦ .

(12)

The hydrodynamic effects on the rigid body that we
consider in the dynamic analysis were forces and moments
induced by drag. The drag forces are mainly determined
by body shape, skin roughness, and flow conditions. To
calculate the drag forces, the rigid body is approximated

as a rectangular prism, having flow stream normal to three of
its faces. The hydrodynamic forces on the body can thus be
obtained as follows:

�Fb =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

2
ρWHCDxu

2

1

2
ρLHCDyv

2

1

2
ρLWCDzw

2

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

where L, W , and H are the length, the width, and the
height of the rigid body, while CDx , CDy , and CDz are drag
coefficients of the front, the right, and the bottom faces of the
fish body. The hydrodynamic forces on the body also induce
hydrodynamic moments that represent the robot’s resistance
to rotation due to the effective moment arm between the
application points and the center of mass. The hydrodynamic
moments can be calculated by integrating the infinitesimal
moment components due to the drag force around the body.
Given the yaw speed r of the robot around z axis, the drag
moment resulting from the drag forces in x and y directions
are calculated as

Mbz = 2
∫ W

2

0
dMbz,x + 2

∫ L
2

0
dMbz,y (14)

= 2
∫ W

2

0
dFbxy + 2

∫ L
2

0
dFbyx (15)

= 2
∫ W

2

0

1

2
ρ(Hdy)CDx(ry)2y

+ 2
∫ L

2

0

1

2
ρ(Hdx)CDy(rx)2x (16)

= ρHr2(CDxW
4 + CDyL

4)

64
. (17)

In the same way, the hydrodynamic moments about the x and
y axes can be computed. The whole hydrodynamic moments
from drag on the rigid body can be represented as

�Mb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρLp2(CDyH
4 + CDzW

4)

64
ρWq2(CDxH

4 + CDzL
4)

64
ρHr2(CDxW

4 + CDyL
4)

64

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

The net external forces and moments acting on the robot
can be obtained by summing up the forces and moments on
the body and the propulsors, neglecting the hydrodynamic
interactions between them. The translational motions of the
robotic fish follow Newton’s law and the rotational motions
are governed by the Euler’s equation. The dynamic model
derived from the Newton–Euler motion equation is given by

�F = M �̇v + C(�v)�v, (19)
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where �F is the external force and moment vector, M is
the mass and inertial matrix, C(�v) is the Coriolis and
centripetal terms matrix, and �v = [u v w p q r]
is the translational and rotational velocity vector. When a
submerged body is accelerated in water, its surrounding
fluid will also be accelerated. These additional forces and
moments are described as added mass effect. To compensate
the added mass effect, the mass and inertial matrix M consists
not only the mass and inertial matrix Mb of the robotic fish
but also an added mass and inertial matrix Ma. Likewise, an
added Coriolis and centripetal terms matrix Ca(�v) is included
in C(�v). Given the forces and moments acting on the robotic
fish, Eq. (19) can be expanded to obtain the equations of the
6-DOF motion as28

Fx = m(u̇ − vr + wq) − Xu̇u̇ − Zẇwq + Yv̇vr, (20)

Fy = m(v̇ − wq + ur) − Yv̇v̇ + Zẇwp − Xu̇ur, (21)

Fz = m(ẇ − uq + vp) − Zẇẇ − Yv̇vp + Xu̇uq, (22)

Mx = Ixxṗ + (Izz − Iyy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz

+ (pr − q̇)Ixy − Lṗṗ + (Yv̇ − Zẇ)vw

+ (Mq̇ − Nṙ )qr, (23)

My = Iyyq̇ + (Ixx − Izz)rp − (ṗ + qr)Ixy + (p2 − r2)Izx

+ (qp − ṙ)Iyz − Mq̇q̇ + (Zẇ − Xu̇)uw

+ (Nṙ − Lṗ)pr, (24)

Mz = Izzṙ + (Iyy − Ixx)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy

+ (rq − ṗ)Izx − Nṙ ṙ + (Xu̇ − Yv̇)uv

+ (Lṗ − Mq̇)pq, (25)

where Fx , Fy , Fz, Mx , My , and Mz are force or moment
components along x, y, z axes, m is the mass of the robotic
fish, Xu̇, Yv̇ , Zẇ, Lṗ, Mq̇ , and Nṙ are partial derivatives of
forces or moments with respect to accelerations, Ixx , Iyy ,
Izz are the moments of inertia of the robotic fish about
x, y, z axes, and Ixy , Ixz, Iyz are the products of inertia.
The motion equations are coupled, nonlinear differential
equations and the robot states can be obtained through
numerical simulations.

3.3. Swimming patterns
Fish in nature exhibits various swimming movements that can
be classified into periodic swimming that is characterized
by a cyclic repetition of the propulsive movements for a
long distance and transient swimming that includes fast
start, escape maneuvers, and turns.3 Both the tail fin and
the pectoral fins of the robotic fish can generate propulsion
and maneuvering forces and through coordinated control of
the propulsors, a great diversity of swimming patterns can
be realized. Based upon the propulsors used, the swimming
can be classified into two basic modes: BCF mode and MPF
mode, although the combined use of tail and pectoral fins
can produce more complex movements. Having analyzed the
governing dynamics of the robot’s motion, several typical
swimming patterns can be empirically designed. Figure 6

illustrates the swimming patterns and the realization of each
pattern is described as follows:

(1) BCF forward swimming: The robotic fish swims in a
straight line by oscillating only the tail fin. The angular
offset of the tail fin is set to be zero (φt = 0) to ensure that
the average thrust is directed anteriorly. The oscillations
of the pectoral fins are stopped (Ap = 0) and both
pectoral fins are held parallel to the horizontal plane
functioning to enhance stability (φp = 0).

(2) BCF turning: A nonzero offset φt is superimposed on the
oscillation of the tail joint while other parameters remain
the same as the BCF forward swimming. The tail fin
not only provides the thrust but also produces a nonzero
time-averaged torque that will cause a change in heading
direction.

(3) MPF forward and backward swimming: This swimming
pattern can be achieved by the synchronized oscillations
of the paired pectoral fins around the horizontal plane,
with caudal fin being held straight (At = 0, φt = 0). The
angular offsets of pectoral fin determine the swimming
direction, i.e. φp = 0 for forward swimming and φp =
180◦ for backward swimming.

(4) MPF turning: The differentiation of hydrodynamic
forces between the pectoral fins will cause a yawing
moment that is necessary to execute turning maneuvers
on the fish body. An effective method to produce the
yawing moment is to produce anteriorly directed force
on one side and posteriorly directed force on the other
side (φlp = 180◦, φrp = 0◦ or φlp = 0◦, φrp = 180◦). The
oscillation of the tail fin is stopped (At = 0, φt = 0).

(5) Submerging and ascending: The robotic fish achieves
3D motion by adjusting the attack angle of the pectoral
fins like sharks that do not have swim bladders. As a
precondition, the robotic fish should attain a swimming
speed with BCF or MPF forward swimming pattern. For
angular offset φp between 0◦ and 90◦ the force on the
pectoral fin can be analyzed into a drag component and
a downward lift component, and when φp is in the range
of (−90◦, 0◦) an upward lift can be generated.

(6) Braking: To accomplish braking, fish generate an
anteroventrally directed jet by synchronously moving
the pectoral fins rapidly out from the body.4 The robotic
fish brakes through rapid and synchronous rotation of
the pectoral fins to a position perpendicular to the body
(φp = 90◦, Ap = 0). The drag caused by the pectoral fin
decelerates and eventually stops the motion of the robotic
fish.

4. Underwater Vision-based Target Following

4.1. Problem statement
Vision sensors can provide high-resolution information
at short range and thus have been extensively used in
underwater applications such as marine biology, inspection
of power and telecommunication cables, archaeology, and
seabed survey.30 However, the underwater image is plagued
by several factors including poor visibility, ambient light, and
frequency-dependent scattering and absorption, which make
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Fig. 6. Illustrations of swimming patterns.

it difficult to directly employ most computer vision methods
developed in terrestrial environment. In this research, since
the working environment of the robotic fish is indoor shallow
water swimming pool, we improve the performance of
image processing by providing good lighting conditions
as well as employing adaptive and robust computer vision
techniques. Besides the low quality of underwater imaging,
the complexity of the aquatic environment and peculiarities
of the propulsion mode of robotic fish pose several additional
difficulties to the successful fulfillment of underwater tasks,
which are listed as follows:

� Unlike ground wheeled vehicles instrumented with optical
encoders for speed feedback of wheel rotation, the
swimming velocity and orientation of robotic fish cannot
be precisely controlled and there is no explicit relationship
between the motor driving force and the swimming
kinematics of the robotic fish.

� The robotic fish cannot stop immediately due to the effect
of inertial drift, and even with the swimming pattern of
braking and backward swimming to counteract the forward
drift the robotic fish will still overshoot slightly.

� Waves occur when the robotic fish flaps to swim, which
will affect precise motion planning of the robotic fish. The
motion of the robotic fish and the target will be mutually
affected through the coupling of waves, which further
complicates the problem.

In this research, the robotic fish is required to follow
and keep a constant distance to a moving target based
on visual feedback from the monocular camera. To avoid
possible collision between the target and the robotic fish, the
distance is required to be greater than half the body length
of the robotic fish, which is approximately the drift distance
when the robotic fish stops with braking swimming pattern.
Two distinct algorithms have been employed to perform this
task. The visual tracking algorithm keeps visual lock on the
moving target. The location of the target in image space and
the distance between the robot fish and target are obtained
in this process. Based on the output of the visual tracking
algorithm, the target following algorithm generates motor

control commands to keep the target stationary in the center
of image and to maintain the distance to the target constant.

4.2. Visual tracking
Visual tracking has been extensively studied in the context
of computer vision to find the targets between consecutive
frames in image sequences. Numerous algorithms have
been proposed and implemented to track moving targets
against complex and cluttered background, among which
mean shift algorithm has gained considerable attention due
to its computational efficiency and robustness to nonrigid
deformation.31 Mean shift algorithm is a nonparametric
technique that climbs the gradient of a probability
distribution to find the nearest dominant mode. As an
adaptation of standard mean shift algorithm, Camshift
(Continuously Adaptive Mean Shift) algorithm have been
extensively used in practice for head and face tracking.32

The major challenge to target recognition in underwater
visual tracking is the spatially varying degradation
effect of visibility, which will cause changes in color
probability distributions of the target at different distances.
Since the Camshift algorithm can deal with dynamically
changing color probability distributions, i.e. distributions are
recomputed for each frame, it fits fairly well this underwater
target tracking task. In Camshift algorithm, a search window
that surrounds the target is employed to specify the location
and the size (or scale) of the target. When the target moves in
the image plane, the location of the search window will move
accordingly, and when the target moves toward the camera,
the scale of the target on the image will get bigger, and vice
versa. Since the location and distance change of the target
can be reflected by the search window, we can actively steer
the mobile imaging platform to center the search window in
the image and keep its scale constant, so that the target can
be followed by the robot.

The Camshift algorithm operates on a probability
distribution image that is derived from the histogram of
the object to be tracked. The H channel in HSV (Hue
Saturation Value) color space is mostly used for calculation
of stochastic color model due to its robustness to varying
lighting conditions. However, the H components of the image
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data are not directly available since the incoming frames are
in YCrCb 4:2:2 format, in which a pair of consecutive pixels
is represented by one Y (luminance) sample each but share
a Cr (red chrominance) sample and a Cb (blue chrominance)
sample. To save the computational resources spent on the
conversion between color spaces, we modify the standard
Camshift algorithm to let it employ Cr and Cb components
of the incoming frames to calculate 2D color histogram.
The Y component is discarded due to its wild fluctuation
in the underwater environment. The principle steps of the
Camshift algorithm implemented in this research are stated as
follows:

(1) Choose the initial location of the mean shift search
window.

(2) Calculate the 2D color histogram within the search
window.

(3) Perform back-projection of the histogram to a region of
interest (ROI) centered at the search window but slightly
larger than the mean shift window size.

(4) Iterate mean shift algorithm to find the centroid of the
probability image and store the zeroth moment and
centroid location. The mean location within the search
window of the discrete probability image is found using
moments. Given that I (x, y) is the intensity of the
discrete probability image at (x, y) within the search
window, the zeroth moment is computed as

M00 =
∑

x

∑
y

I (x, y). (26)

The first moment for x and y is

M10 =
∑

x

∑
y

xI (x, y); M01 =
∑

x

∑
y

yI (x, y).

(27)
Then the mean search window location can be found as

xc = M10

M00
; yc = M01

M00
. (28)

(5) For the next video frame, center the search window at
the mean location stored in Step 4 and set the window’s
size to a function of the zeroth moment. Go to Step 2.
The scale of the target is determined by finding an
equivalent rectangle that has the same moments as those
measured from the probability distribution image. Define
the second moments as

M20 =
∑

x

∑
y

x2I (x, y); M02 =
∑

x

∑
y

y2I (x, y);

M11 =
∑

x

∑
y

xyI (x, y). (29)

Use the following intermediate variables:

a = M20

M00
− x2

c ; b = 2

(
M11

M00
− xcyc

)
;

c = M02

M00
− y2

c . (30)

Then the dimension of the search window can be
computed as

h =
√

(a + c) −
√

b2 + (a − c)2

2
;

w =
√

(a + c) +
√

b2 + (a − c)2

2
. (31)

The mean location and size of the search window is used
as output of the visual tracking algorithm. The Camshift
algorithm is computationally efficient and can produce real
time response to the appearance change of the target. In this
research, the motion of the target is restricted in the horizontal
plane, so that only xc of the search window varies as the
target moves. For the target that has elongated shape, the
scale cannot be reflected exactly by the width of the search
window when the target turns, therefore we use height of the
search window as the distance clue.

4.3. Target following
Because flapping movements at the tail will produce lateral
forces that cause oscillations at the anterior part of the robotic
fish where the camera locates, we employ a hybrid swimming
pattern for target following. This swimming pattern which
has been experimentally validated to produce minimum
oscillations at the head, uses synchronized pectoral fins for
thrust generation and tail fin as a rudder. The deflection
direction of the tail fin produces different rotational effects
during forward and backward swimming. For example,
the robotic fish turns left with left deflection of the tail
fin in forward swimming, while right turning will be
effected in backward swimming. As a result, control of the
orientation should take into consideration the direction of the
translational speed. The intractable nature of the underwater
environment makes it difficult to employ classical model-
based control method for this task, therefore we regulate the
motion of the robotic fish with fuzzy logic control method,
which allows management of heuristic rule base knowledge,
imprecise information from sensors, and the uncertainties
in the knowledge about the environment. The robotic fish
regulates its translational and rotational speeds to follow the
target, therefore two fuzzy logic controllers are designed,
with one for speed control and the other for orientation
control. The architecture of the closed-loop control system
is illustrated in Fig. 7.

The inputs of the fuzzy logic speed controller are height
error eh of the search window and its change rate 	eh,
which are both measured in terms of pixels and defined
as

eh(k) = hr − h(k); 	eh(k) = eh(k) − eh(k − 1) (32)

where hr is the height of the search window at system
startup, and k is the discrete time instant. The value of
the input variable eh is fuzzified and expressed by linguist
fuzzy sets {VC, C, M, F, VF}, abbreviated from very close,
close, medium, far, and very far, respectively. The initial
height of the target window is 60, so that the range of eh
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Fig. 7. Closed-loop control system of target following.

is between −180 and 60. The height change rate 	eh is
represented by {NB, NS, ZE, PS, PB}, abbreviated from
negative big, negative small, zero, positive small, and positive
big, respectively. The outputs of the speed controller are the
oscillatory frequency fp and angular offset φp of the pectoral
fins. To simplify the problem, the amplitudes of the pectoral
fins are held constant and only the oscillatory frequency fp

is used for translational speed control, whereas the angular
offset φp is used for forward and backward direction control.
Backward swimming is necessary because the target may
suddenly stop or reverse direction and the robotic fish have
to swim backwardly to keep distance. The output variable
fp is expressed by the fuzzy sets {Q, S, ST}, denoting
quick, slow, and stop, respectively. The driving capacity of
the motors determines the range of fp between 0 and 4 Hz. In
practical implementation, the angular offset φp of the pectoral
fins is 0◦ for forward swimming and 180◦ for backward
swimming. We represent φp with two singleton fuzzy sets

F and B, denoting forward and backward, respectively. The
membership functions of the input and output variables are
illustrated in Fig. 8, and the mapping from input variables
to output variables is based on the fuzzy rulebase which
comprises 25 if-then rules listed in Table I.

Since orientation control of the robotic fish is dependent
not only on the deflection direction of tail fin but also on
the direction of translational speed, the orientation controller
should take the angular offset φp of the pectoral fins as an
input, which has been illustrated in Fig. 7. The other two
inputs of orientation controller are the horizontal location
error ex of the search window and its change rate 	ex , which
are defined as

ex(k) = xcr − xc(k); 	ex(k) = ex(k) − ex(k − 1),
(33)

where xcr is the horizontal coordinate of the image center.
The value of the input variable ex is fuzzified and expressed

Fig. 8. Membership functions for speed controller.
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Fig. 9. Membership functions for orientation controller.

Table I. Rulebase for speed controller.

	eh

fp, φp NB NS ZE PS PB

VC Q, B Q, B Q, B S, B S, B
C Q, B Q, B S, B S, B S, B

eh M ST, F ST, F ST, F ST, F ST, F
F S, F S, F S, F Q, F Q, F

VF S, F S, F Q, F Q, F Q, F

by the linguist fuzzy sets {VL, L, A, R, VR}, referring
to very left, left, ahead, right, and very right, respectively.
The range of the membership function for ex is between
−160 and 160. The change rate 	eh of horizontal location
error is represented by {NB, NS, ZE, PS, PB}, abbreviated
from negative big, negative small, zero, positive small,
and positive big, respectively. Like in speed controller, the
angular offset φp is also represented by two singleton fuzzy
sets F and B, denoting forward and backward, respectively.
The output of the orientation controller is the angular offset
φt of the tail fin, which is expressed by {LB, LS, MD,
RS, RB}, denoting left big, left small, middle, right small,
and right big, respectively. The range of the deflection is
between −60◦ and 60◦. Figure 9 shows the membership
functions for the orientation controller. The fuzzy rulebase
of orientation controller comprises a total of 50 if-then
rules. In case of forward swimming, the rules are listed in
Table II, while the rules for backward swimming can be easily
deduced.

We adopt Mamdani fuzzy inference method, and the crisp
value of the output variables are determined using the center-
of-gravity (COG) defuzzification method as

fp =
∑25

k=1 μkf
k
p∑25

k=1 μk

; φp =
∑25

k=1 μkφ
k
p∑25

k=1 μk

; φt =
∑25

k=1 μkφ
k
t∑25

k=1 μk

,

(34)

Table II. Rulebase for orientation controller.

	ex

φt NB NS ZE PS PB

VL LB LB LB LS LS
L LB LB LS LS LS

ex A MD MD MD MD MD
R RS RS RS RB RB

VR RS RS RB RB RB

where μk is the degree of the “if” part of the kth rule, f k
p ,

φk
p , and φk

t are the estimated outputs derived from the kth
rule, related to the center of the membership functions of the
output variables.

5. Experiment

5.1. Experimental setup
Experiments with the robotic fish were carried out in an
indoor swimming tank with the size of 2250 mm × 1250
mm and with still water of 350 mm in depth. The robotic fish
is marked with specified colors and the information within the
swimming tank is captured by an overhead CCD camera. The
image is transmitted to a personal computer and processed
with a visual tracking software platform developed to obtain
the position and orientation of the robotic fish in real time.
The 2D trajectory of the robotic fish can also be extracted and
recorded for off-line analysis. Figure 10 shows a photograph
of the experiment environment.

5.2. Tests of swimming performance
The parameters that characterize the swimming locomotion
of the robotic fish constitute a vast variable space
which precludes the possibility of a thorough exploration.
Hence, experiments were conducted by testing several of
the swimming patterns described above. The swimming

https://doi.org/10.1017/S0263574709005499 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005499


Development and target following of vision-based autonomous robotic fish 1085

Fig. 10. Photograph of the experimental environment.

Fig. 11. Average linear speed in BCF forward swimming with
different frequencies and amplitudes.

Table III. Swimming performance of BCF turning. Parameters:
At = 15◦, ft = 2.1Hz.

φt (deg) 10 20 30 40

R (cm) 91 63 39 27
ω (rad/s) 0.27 0.41 0.64 0.87

Table IV. Swimming performance of MPF turning. Parameters:
Ap = 20◦.

fp (Hz) 0.9 1.7 2.5 3.3

R (cm) 8 13 24 41
ω (rad/s) 0.20 0.22 0.21 0.23

performance was tested by tuning the concerned parameters
manually while holding the others constant.

For BCF forward swimming pattern, the average linear
speed is tested by varying the tail beat frequency and
amplitudes. Three groups of amplitudes At are employed
while the frequency ft is varied in each case. The swimming

Fig. 12. Average linear speed of MPF forward and backward
swimming versus frequency. Parameters: Ap = 20◦.

Fig. 13. Translational and rotational speeds with different
frequencies fp of both pectoral fins and angular offsets φt added to
the tail joint.
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Fig. 14. Tracking results of the swimming sequence with Camshift algorithm.

speed, as illustrated in Fig. 11, increases almost linearly
with the frequency, and large amplitude can also provide
more thrust. Due to the open-loop property of motor control
system, the desired amplitudes cannot be reached at higher
frequency, which results in the speed saturation at the
performance limits of the servomotors. The maximum speed
of BCF forward swimming can reach 26 cm/s, which is
approximately 0.74 body length per second. The swimming
performance of BCF turning can be evaluated in terms of
turning radius R and rotational speed ω. Test results with
four different angular offsets φt added to the tail joint are
listed in Table III. According to the experimental data, the
turning radius decreases and the turning rate increases with
increasing of the angular offset. So that this behavior can be
used not only for small course adjustment but also for rapid
turn in narrow space.

Tests of MPF-based swimming patterns are carried out
by varying the frequency fp of both pectoral fins, while the
amplitudes Ap are kept at constant values. Figure 12 shows
the forward and backward swimming speed at different
frequencies. As BCF forward swimming, the speeds increase
in proportion with the frequency in both cases. However,
for the same frequency, the speed of backward swimming
is significantly less than that of forward swimming. The

performance of MPF turning is tested under different
frequencies, with angular offset on one side being 0◦ and
another side being 180◦. The experimental results are shown
in Table IV.

Particularly, the performance of the hybrid swimming
pattern used in target following task is tested for construction
of the fuzzy rulebase. The translational and rotational speeds
in forward swimming under different frequencies fp of
pectoral fins and angular offset φt added to the tail joint
are shown in Fig. 13.

5.3. Tests of target following
The moving target in the target following experiment
is chosen to be another robotic fish which is remotely
controlled. The performance of the Camshift algorithm is
evaluated on a S3C2440 evaluation board which has LCD
interface for image display. The camera is waterproofed and
placed in the water, and the robotic fish is commanded to
swim in a circle in the swimming pool. The tracking results
with stationary camera are shown in Fig. 14. As illustrated
in the figure, the algorithm can reliably and accurately tracks
the location of the robotic fish, and the distance change can
also be reflected by the size variation of the search window.
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Fig. 15. Scenarios of target following experiment.

The image sequence is processed at a framerate of 30 Hz,
occupying approximately 40% of the CPU time.

To facilitate the description, we denote the robotic fish
being followed as the leader and the tracking robotic fish as
the follower. Both the leader and follower are marked with
specified colors, so that the target following results can be
captured with the overhead camera and analyzed with the
host PC. The initial search window of the follower is located
in the center of the image and its initial size is 100 × 60.
At the startup of the following process, the leader is placed
in front of the follower and the distance is tuned so that
the leader will fit the search window. Control period of the
closed-loop control system cannot be so fast as the visual
processing rate due to slow response of the robot dynamics.
Motor control command is generated every 200 ms based on
the measurements of the last five consecutive frames. The
data fed into the fuzzy controller M is computed with a
weighted mean filter

M = 0.3Mn + 0.25Mn−1 + 0.2Mn−2

+ 0.15Mn−3 + 0.1Mn−4, (35)

where Mi, i = n, n − 1, . . . , n − 4 are the measurements of
five consecutive frames within a control interval. Figure 15
shows the scenarios of target following experiment. The
trajectories in the figures illustrate that the follower can
detect the position and distance changes of the leader and
follow the leader as it swims with varying speed and in
different directions. However, due to the complexity of the
underwater environment and the peculiarities of the robot’s
locomotion mode, the distance between the leader and the
follower fluctuates to some extent rather than remains at a
constant value. The maximum distance error occurs when the
leader executes turning maneuvers and the follower has to
brake in order to keep distance. Figure 16 shows the distance
between the leader and the follower over time.

6. Conclusions and Future Work
This paper was concerned with the development and
target following of an ostraciiform swimming, vision-
based autonomous robotic fish. Design details including the
mechanical configurations, electronics, sensor, and software
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Fig. 16. The distance between the leader and the follower over time.

were described. The algorithm for swimming locomotion
control, dynamic analysis of its motion, and the design
of various swimming patterns were presented. The target
following task was addressed with modified Camshift
algorithm for visual tracking and fuzzy logic controller for
motion regulation. Experiments were conducted to test the
swimming performance of the robotic fish and to verify the
effectiveness of the proposed method.

In this paper, the target following task was performed in
the horizontal plane. In the case of 3D following, the vertical
center of the search window can be used as another input of
the motion controller, and the angular offsets of the pectoral
fins can be adjusted to regulate the depth of the robotic
fish. Future work with the robotic fish will be carried out
in three aspects. First, the dynamic model of the robotic
fish will be verified through simulation and comparison of
the simulated and experimental results. Second, the pectoral
fin which plays an important role in ostraciiform swimming
should be improved to incorporate more degrees of freedom,
allowing more dexterous swimming of the robotic fish. Third,
since the capability of a single robotic fish is often limited,
coordinated control of multiple robotic fish is an appealing
approach to address more complex underwater missions such
as large object manipulation, cooperative military detection,
and seabed exploration. For use of the robotic fish in real-
world applications, more technical hurdles such as reliable
underwater communication, high transit speed, long range
and duration should be addressed in the long term.
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