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Abstract

We investigate the behaviour of families of meromorphic functions in the neighbourhood
of points of non-normality and prove certain covering properties that complement Montel’s
Theorem. In particular, we also obtain characterisations of non-normality in terms of such
properties.
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1. Introduction

For an open set Q2 C C we denote by M(£2) the set of meromorphic functions on €2, by
which we mean all functions whose restriction to a connected component of €2 is either
meromorphic or constant infinity. Endowed with the topology of spherically uniform con-
vergence (i.e. uniform convergence with respect to the chordal metric x) on compact subsets
of Q, the space M(£2) becomes a complete metric space (e.g. [12, Chapter VII]). As usual,
we say that a family F C M(R2) is normal in €2, if every sequence (f;;) C JF contains a sub-
sequence (fy, ) that converges spherically uniformly on compact subsets of €2 to a function
f € M(L2). The family J is called normal at a point zg € €2, if there exists an open neighbour-
hood U of zp, such that F is normal in U. By J(F) we denote the set of points in €2, at which
the family J is non-normal. If zg € J(J), the family J can still have infinite subfamilies
F C 7 that are normal at 20, in other words, zo € J(F) does in general not 1mp1y z0€J (3)
We say that J is strongly non-normal at a point zg € €2, if we have zg € J (5‘) for every infi-
nite subfamily F C F. We further say that J is strongly non-normal on a relatively closed set
B C Q, if J is strongly non-normal at every zg € B, that is if B C J (F) for every infinite sub-
family F c F. Moreover, we call F hereditarily non-normal on B, if some infinite subfamily
FcFis strongly non-normal on B. Note that on a single point set, hereditary non-normality
is equivalent to non-normality, while this is in general not true for sets containing at least
two points.

For a family & C M(2) and an open set U C €2, we write lim sup F(U) for the intersec-
tion of all _J e f(U), where F ranges over the cofinite subsets of F. Moreover, for zg €
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we denote by limsup, F the intersection of lim sup F(U) taken over all open neighbour-
hoods U C  of zo. Similarly, we write lim inf F(U) for the union of all ) e f(U), where

F ranges over the cofinite subsets of J and lim inf,, I for the intersection of lim inf F(U)
taken over all open neighbourhoods U C © of z9. Obviously, we have that liminf,, 5 C
lim sup_ | &, furthermore liminfz; &= (15 5 infinie 1M SUP;, F. Forinstance, if F = {f, :n €
N} with f,(z) =nz for even integers n and f,(z) =z for odd n, then lim supy & =C and
lim infg I = {0}.

The classical Montel Theorem suggests that the behaviour of families & C M(2) in neigh-
bourhoods of points zg € J(F) consists in some sense of spreading points, since it asserts that
for every z9 € J(F), the set £ (F) := Coo \ limsup, | F contains at most two points, where
Coo := CU{o0}. Hence, for every neighbourhood U of zg, every point a € C, is covered
by f(U) for infinitely many f € &, with at most two exceptions. In case that E,,(F) con-
tains two points and J is strongly non-normal at zg, a further consequence of Montel’s
Theorem is that liminfy, ¥ =lim sup,  J, so that for every neighbourhood U of zo, every
point a € C, \ E(J) is covered by f(U) for cofinitely many f € J. Note, however, that
Montel’s Theorem does not contain any information about the ‘size’ of the individual sets
f(U), for instance, if U is any neighbourhood of a point zg € J(), it is in general not clear
if for a given set A C lim sup,; & we have A C f(U) for infinitely many f € J.

In this paper, we will further investigate the behaviour of (strongly) non-normal families
near points of non-normality and show certain covering and ‘expanding’ properties that
complement the statement of Montel’s Theorem. In particular, we will also derive different
characterisations of (strong) non-normality in terms of these properties.

2. Non-normality and topological transitivity

In the sequel, for A >0 and zg € C we set D;(z9):= {€C: |z—z0| <A} and denote
by D;(z0) the closure of Dj(zo) in C. For wge Coo, we further set Df\( (wg):= {we
Coo : x(w, wp) < A}. We say that a family F C M(2) is (topologically) transitive with respect
to a point zg € €2, if for every pair of non-empty open sets U C 2 and V C C, with zg € U,
there exists f € J such that f(U) NV # (. Note that in this case we have f(U) NV # @ for
infinitely many f € F. If f(U) N V # # holds for cofinitely many f € &, we say that F is (topo-
logically) mixing with respect to zo. Furthermore, if for every non-empty open set U C 2
with zg € U and every pair of non-empty open sets Vi, V> C Cy, there exists f € J such that
fU)YNV;#Pfori=1,2, we say that F is weakly mixing with respect to zg. Finally, we say
that J is transitive (or (weakly) mixing) with respect to a relatively closed set B C €2, if F is
transitive (or (weakly) mixing) with respect to every zp € B.

With these notations, we obtain the following characterisation of (strong) non-normality.

THEOREM 1. Let Q C C be open, F C M(R2) a family of meromorphic functions and
z0 € Q2. Then we have:
(a) F is strongly non-normal at zg if and only if F is mixing with respect to zp;

(b) the following are equivalent:

(i) F is non-normal at zo;
(ii) there exists an infinite subfamily F C JF that is mixing with respect to 7o,
(iii) F is weakly mixing with respect to 7.
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Proof. (a) Let J be strongly non-normal at zo and suppose that J is not mixing with
respect to zg. Then there exist non-empty open sets U C Q2 and V € C, with zg € U, and an
infinite subfamily F C ¥ such that SNV =4¢forevery f € 7. By Montel’s Theorem, we
obtain that F is normal on U, hence also at zo, in contradiction to the strong non-normality
of F at zg.

On the other hand, suppose that J is mixing with respect to zg € €2, but not strongly non-
normal at zg. Then there exists an open neighbourhood U of zg and a sequence (f;;) C &, such
that (f,,) converges spherically uniformly on compact subsets of U to a function f € M(U).
Hence, for & > 0 sufficiently small, we have that D(z0) C U and there exists § > 0 and
wo € Coo such that f(D,(z0)) N Df;( (wo) = 0. Since (f;,) is mixing with respect to zg, we obtain
that f,,(D¢(z0)) N D)af (wo) # ¥ for all n sufficiently large, in contradiction to the spherically

2

uniform convergence of (f;,) to f on D¢(zo).

(b) (i) = (ii): Since J is non-normal at zp, there exists an infinite subfamily F C F that is
strongly non-normal at zo. This subfamily is mixing with respect to zp according to the first
statement of the theorem.

(ii) = (iii): This is clear, since a mixing family is also weakly mixing.

(iii) = (i): Suppose that F is weakly mixing with respect to zg. Further consider two non-
empty open sets Vi, Vo C Co such that inf ey, ey, x(z, w) > € for some ¢ > 0. For k e N,
weset Uy := D 1 (zo) N 2. By assumption, for every k € N there is a function f; € J such that

fU) NV %8 and fi(Ur) N Va # @, and hence points 2\, 2 € Uy such that fi(2\") € V
and fk(zf)) € V5. Note that z,(cl), z,(f) € Uy implies that z(kl) — 70 and z,(f) — 70 for k — o0,
furthermore we have that X(fk(zlil)), fk(zf))) > ¢ for every k € N, and hence

(Myy o & @y o &
X fiz0) fiz ) > 5 or - X (fazo) fiz ) > 5 -

Hence, we can find a sequence (zx) with zx — zo for k — oo and x (fi(z0). fi(zx)) > 5 for
every k € N, implying that the family J is not spherically equicontinuous at zg, and thus also
not normal.

By Montel’s Theorem, it is clear that zg € J(&) implies that JF is transitive with respect to
z0. On the other hand, it is easily seen that transitivity of a family with respect to some point
z0 € Q is in general not sufficient for non-normality at zy. For instance, if (z,) is a sequence
that is dense in C, the family (f;,) of constant functions f,, = z, is transitive with respect to
any zo € 2, while at the same time we have J(f,,) = {J. However, the following proposition
shows that this example is in some sense typical:

PROPOSITION 1. Let Q C C be open, F C M(R2) a family of meromorphic functions and
20 € Q2. Suppose that F is transitive with respect to zo and that 7o ¢ J(F). Then {f(z0) : f € F}
is dense in Cqo.

Proof. Suppose that {f(z0) : f € J} is not dense in C,. Then there is w € C, and € > 0,
such that {f(z):f € F} N DX (w) = . Consider now for k € N the sets Uy := D%(zo) N Q.

Since JF is transitive with respect to zg, for every k€N there is fy € F such that
f(U) N D% (w) # @. In particular, there is a sequence (zx) with zx € Uy, and hence zx — 2o
2

for k — oo, such that fi(zx) € D (w) for k € N. On the other hand, we have fi(z0) ¢ DX (w)
2
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for k € N. Finally, we obtain that

&€
X Fi(z0)s f(zx)) > 3 for every k € N,

so that & is not spherically equicontinuous at zg, and thus also not normal, that is zg € J(F).

Example 1.

(i) Let f be an entire function that is neither constant nor a polynomial of degree 1, and
let F:= {f°":n e N} be the family of iterates of f. Then J is strongly non-normal
on the Julia set J =J(J), as follows e.g. from the facts that the repelling periodic
points are dense in J and that J is the boundary of the escaping set (e.g. [6,14,26,30]).
Here we have lim inf,, D C \ E for each zg € J, where E is the (empty or one-point)
set of Fatou exceptional values of f, that is the set of points w € C whose backward
orbit O~ (W) := |U,,~ {z: f°"(z) = w} is finite. Indeed, consider zp € J and an infinite
subfamily F= {f°"* : k € N} with ng > 2. It follows from Picard’s Theorem that if
a € C is not Fatou exceptional, there are points a;, ay € C with a; # ap and f 2(q)) =

a=f°%(ap). Since J is strongly non-normal at zo, Montel’s Theorem implies that
the set C\ limsup, F~ contains at most one point, where ¥~ := {f°"%~2 : k e N}.

Hence, {a1, a2} Nlimsup, F- # @, which implies a € lim sup, F.

(i) Let M denote the Mandelbrot set and let, with pg := idc, the family (p,) of poly-
nomials of degree 2" be recursively defined by p, := przl_l +idc. Since p, — oo
pointwise on C\ M for n— oo and |p,| <2 on M (e.g. [6]), we have oM C J(F),
where J := {p, : n € Ny}, and no infinite subfamily of J can be normal at any point
of dM. Hence, J is strongly non-normal and thus mixing on dM.

(iii) A function f € M(C) is called Yosida function, if it has bounded spherical derivative
f* (e.g. [24,32]). Hence, if f is not a Yosida function, there exists a sequence (z;,)
in C with z, — oo and f*(z,) — oo for n — co. Marty’s Theorem (e.g. [29, p.75])
implies that the family (f;,) with f,,(z) := f(z + z,) is strongly non-normal at 0, hence
by Theorem 1, we obtain that (f;,) is mixing with respect to 0. Note that it is easily
seen that if f € M(C) is a Yosida function, then its order of growth is at most 2, while
entire Yosida functions are necessarily of exponential type (e.g. [11,24]).

For a family of meromorphic functions F C M(£2) and N € N, we consider the family
FN = (f*N:f e T}, where XN : QN — CN with N(zy,....72v) = F@1), - . .. f@N)).
We say that 7>V is transitive with respect to z € QV, if for every pair of non-empty open
sets U C QN and V c CY, with z € U, there exists f* € 7N such that f*N(U)NV £ 0.
Furthermore, for a relatively closed set B C , we say that <V is transitive with respect
to BN, if 3N is transitive with respect to every z € BY. We then have the following
characterisation of hereditary non-normality.

PROPOSITION 2. Let Q2 C C be open, F C M(2) a family of meromorphic functions and
B C Q closed in Q2. Then the following are equivalent:

(1) T is hereditarily non-normal on B;
(ii) there exists an infinite subfamily F C F that is mixing with respect to B;
(iii) for all N € N the family T*N is transitive with respect to BY.
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Proof. The equivalence of (i) and (ii) follows from Theorem 1.

(i1) = (iii): Without loss of generality consider F to be countable, F= {fn : n € N} say.
Let N € N and consider non-empty open sets U C Q~ and V C (Cg’o with BN N U # ¢). Then
there exist non-empty open sets Uy, ..., Uy withU; x --- x Uy CUand BN U; # @ fori =
1,...,N, and non-empty open sets Vi,..., Vy C Cx with V| x --- x Vi C V. According
to the assumption, {f,;:n > m} is transitive with respect to B, for all m € N. Inductively, we
can find a strictly increasing sequence (ng) in N with £, (U1) NV #0 for all k€ N. By
assumption, the family {f,, :k € N} is transitive with respect to B. Thus, the same argument
as above yields the existence of a subsequence (ng{z)) of (n,(cl)) := (ng) with fn(2>(U2) NVy#£0
for all k € N. Proceeding in the same way, for any j with 2 <j <N we ﬁnkd subsequences
(n,(g)) of (n,(cl_l)) with fnl((,-)(Uj) NV;# ¢ for all k€ N. In particular, for n:= n(lN), we obtain
that

(Fa(Up) X -+ X fu(UN) N (Vi X -+ X Vi) # 6,

hence also £*¥(U) NV # @, implying that >V is transitive with respect to BY.
(iii) = (ii) The proof follows along the same lines as the proof of the corresponding part
of the Bes—Peris Theorem (e.g. [21, pp.76]).

Remark 1.

(i) Let KX(A) denote the hyperspace of A C C, that is the space of all non-empty com-
pact subsets of A endowed with the Hausdorff metric, and suppose that B as in
Proposition 2 has non-empty interior. Then [2, corollay 1-2] shows that, under the
conditions of Proposition 2, for each C-closed set A C B which coincides with the
closure of its interior, the family F|g is dense in C(E, C,) for generically many sets
E e X(A).

(i1)) We mention that Proposition 2 is an extension of Theorem 3-7 from the recent
paper [4].

Example 2.

(i) Consider a functionf(z) =Y - ayz’ that is holomorphic on the unit disk ID. Suppose
that f has at least one singularity on 0D and denote by D C 9D the set of all singular-
ities. Then, denoting by 5,(2) := (s,/)(2) := Zﬁ:o a,z’ the nth partial sum of f, the
family (s;,) is non-normal on 9D and strongly non-normal on D. Moreover, in case
D # 0D, Vitali’s Theorem implies that a subsequence of (s,) forms a normal family
at a point zo € D \ D if and only if it converges to an analytic continuation of f in
some neighbourhood of zg. From refined versions of Ostrowski’s results on overcon-
vergence ([16, Theorems 3 and 4]), it follows that a subsequence (s;,) is strongly
non-normal at zo € 0D \ D if and only if (s,) has no Hadamard—Ostrowski gaps rela-
tive to (ng), that is, if and only if there is a sequence (§x) of positive numbers tending
to 0 with

1/v

sup lay|" — 1

(1=K <v=<ny

as k — oo. In this case, the sequence (s, ) is already strongly non-normal at all z €
dD. Since the non-normality of (s,) on 0D implies that, given zg € 0D \ D, some
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subsequence of (s,) is strongly non-normal at zg, we finally obtain that the family
(s,) is always hereditarily non-normal on dID. According to a result of Gardiner ([15,
corollary 3]), for each f that is holomorphic on ID and analytically continuable to
some domain U such that C\ U is thin at some zg € 9D but not continuable to the
point zp, the sequence (s,) has no Hadamard—Ostrowski gaps with respect to any (),
hence (s;,) is strongly non-normal on dD. In particular, this holds for each f that has
an isolated singularity at some point zg € 9DD.

(i) We write Hy for the space of functions holomorphic on C \ {1} that vanish at co. For
f(@ =1/(1 — 2), the sequence (s,f) is the geometric series which tends to co spheri-
cally uniformly on compact subsets of C \ ID. From [3, theorem 1-1] it can be deduced
that generically many functions f € Hy enjoy the property that some subsequence of
the sequence ((f — s,f)(2)/7") converges to 1/(1 — z) spherically uniformly on com-
pact subsets of C, \ {1}. This implies that the corresponding subsequence of (s,f)
converges to oo spherically uniformly on compact subsets of C \ D and thus forms a
normal family on C \ . In particular, (s,f) is not strongly non-normal at any point
70 € C\ D. On the other hand, if A is a countable and dense subset of C \ D, from [23,
theorem 2] it follows that for generically many functions f € Hy, a subsequence (s, f)
of (s,f) converges to O pointwise on A. Since a result from [22] implies that for f € H,
normality of a subsequence of (s,f) at a point zg € C \ D forces the subsequence to
tend to oo spherically uniformly on compact subsets of some neighbourhood of zy, it
follows that no subsequence of (s,,f) can form a normal family at any point of C \D.
By the previous example, (s,f) is strongly non-normal on 0D for f € Hp, thus we
obtain that for generically many f € Hyp, the family (s,f) is hereditarily non-normal
on C\ D. By Remark 1, for generically many f € Hy, the sequence (s,f|r) is dense in
C(E, Cy) for generically many E € X(C \ D) (see also [1, theorem 2]).

3. Non-normality and expanding families

We define the following ‘expanding’ property of families I C M(£2).

Definition 1. Let Q C C be open, F C M(£2) a family of meromorphic functions and zg €
Q. Consider further a set A C C,. We say that ¥ is expanding at zo with respect to A, if for
every open neighbourhood U C €2 of zp and every compact set K C A we have K C f(U) for
infinitely many f € F. If K C f(U) holds for cofinitely many f € &, we say that J is strongly
expanding at zp with respect to A. Finally, we say that F is (strongly) expanding on a set
B C Q with respect to A, if F is (strongly) expanding with respect to A at every zg € B.

Note that if J is expanding at zp with respect to A, there exists an infinite subfamily
J C T that is strongly expanding at zo with respect to A. Moreover, in this case we have that
A is contained in lim sup, F. Also note that J is strongly expanding at zo with respect to

A if and only if every infinite subfamily FCTis expanding at zo with respect to A, and in
this case, A is contained in liminf,; F. On the other hand, we remark that A C liminf,, &
does in general not imply that J is (strongly) expanding at zo with respect to A. This can
for instance be seen by considering the family J := {¢"* 4 (1 — 1/n) : n € N}, for which we
have lim infy & = C (note that for each neighbourhood U of 0 and each w € C, there is some
N such that w — 1 4+ 1/n € exp (nU) for all n > N), but JF is not expanding at O with respect
to any set A C C with 1 € A°.
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Our next result establishes a relationship between strong non-normality and the expanding
property. Here and in the following, we denote by |E| € Ny U {oco} the number of elements
of aset E C Cw.

THEOREM 2. Let Q C C be open, F C M(2) a family of meromorphic functions and
z0 € 2. Then we have:

(1) if F is strongly non-normal at zo, then for each infinite subfamily FCF there
exists E C Cop with |E| <2, such that F is expanding at zo with respect to Cog \
E. Moreover, F is strongly expanding at zo with respect to Coo \ €, where € :=
Ugrc,f infinite E5 with E5 C Co being some set such that Fis expanding at 7o with
respect to Coo \ E5;

(i1) if | liminf,, F| > 2, then F is strongly non-normal at zg. In particular, this holds if
is strongly expanding at zo with respect to some A C Coo with |A| > 2.

Proof. (i) Suppose that J is strongly non-normal at zo and consider an infinite subfam-
ily FCF. Then F is strongly non-normal at zp and assuming that F is not expanding at
70 with respect to C \ E for any E C Co, with |E| <2, we obtain that for every E C C
with |E| <2, there is an open neighbourhood U of zo and a compact set K C C \ E, such
that K \ f(U) # @ for cofinitely many f € F.In particular, if F is not expanding at zo with
respect to Coo, we can find an open neighbourhood U; of zg, a sequence (f;,) in ff and a
sequence (ay) in Co, with @, — a € Cy for n — o0, such that a, ¢ f,(U;) for every n € N.
By assumption, F is not expanding at zo with respect to C \ {a}, hence, there is an open
neighbourhood U, of zp and a compact set Ky C C \ {a}, such that K \ f(Uy) # @ for
cofinitely many f € F.In particular, there is a subsequence (f,) of (f;), and a sequence
(br) in Kp with by — b € K, for k— oo, such that by ¢ f,, (U>) for every k € N. Since F
is not expanding at zp with respect to C \ {a, b}, a similar argumentation leads to an
open neighbourhood Uz of zg, a compact set K3 C C \ {a, b}, a subsequence (f"kl) of (fy,)
and a sequence (c;) in K3 with ¢; — ¢ € K3 for I — oo, such that ¢; ¢fnkl(U3) for every
leN.

Finally, setting U = U1 N U N Uz we obtain that

{ankl, by, 1} ﬂfnkl(U) =@ foreveryleN.
Furthermore, since a,b,c are pairwise distinct, there exists ¢ > 0 such that

X (any,» big) x (brys €1) x (any» 1) > &,

for / € N sufficiently large, so that Carathéodory’s extension of Montel’s Theorem (e.g. [29,
p-104]) implies that (fnk,) C Fis normal in U, hence also at zg, in contradiction to the strong

non-normality of F at z0.

To prove the second statement, suppose that J is not strongly expanding at zo with respect
to Coo \ €. Then there is an infinite subfamily F C F that is not expanding at zo with respect
to Coo \ &, contradicting the fact that Fis expanding at zo with respect to Coo \ E 5 for some
set E5 C Coo with E5 C €.

(ii) Suppose that for some infinite subfamily F= {fn:n € N} of J the sequence (f;) is
spherically uniformly convergent on compact subsets of a neighbourhood of zg. Then
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lim sup,, Fisa one-point set, and hence |liminf,, J| < 1. The second statement follows
from the fact that in this case we have A C liminf,, J.

Remark 2. Note that if F is strongly non-normal at zo, I does not need to be strongly
expanding at zgp with respect to any open set A C C,. Indeed, let (g,) be an enumeration
of the Gaussian rational numbers with q,% /n— 0 as n — oo and consider the family (f;,)
with f,,(z) := €™ + g, for z € C. From Marty’s Theorem, it is easily seen that (f;,) is strongly
non-normal on the imaginary axis iR, but for a point zo € /R and an open neighbourhood U
of zp, there is no N € N such that K C f;,(U) holds for all n > N for any compact set K C C
with K° # (.

From Theorem 2 we easily obtain the following characterisation of non-normality in terms
of the expanding property, which in some sense complements the statement of Montel’s
Theorem:

COROLLARY 1. Let Q C C be open, I C M(R2) a family of meromorphic functions and
20 € Q2. Then the following are equivalent:

(i) there exists A C Coo with |A| > 2 such that F is expanding at 7o with respect to A;
(i) F is non-normal at zop;

(iii) there exists E C Coo with |E| <2 such that F is expanding at 7o with respect to
Cwo \ E.

Proof. (i) = (ii) Suppose that F is expanding at zo with respect to some A C Cy, with
|A| > 2. Then there exists an infinite subfamily F C F that is strongly expanding at zp with
respect to A. By Theorem 2, the family Fis strongly non-normal at zg, hence J is non-normal
at zp.

(ii) = (iii) If F is non-normal at zg, there exists an infinite subfamily F C ¥ that is strongly
non-normal at zg. By Theorem 2, there then exists £ C Cy, with |E| <2 such that F is
expanding at zg with respect to C, \ E. The same then holds for the family JF.

(ii1) = (i) is obvious.

Let 3 C M(R2) be a family that is non-normal at a point zp € Q and consider the set
E; () =Ccx \ limsup, F. If F is expanding at zo with respect to Coo \ E for some set
E C Cu, we obviously have E, (F) C E. If F is a family of holomorphic functions on 2 that
is (strongly) non-normal at zg, we have oo € E,,(J), so that in this case we obtain that the
expanding property of F at zo in Theorem 2 and Corollary 1 holds with respect to C \ E for
some set £ C C with |E| < 1.

Example 3.

(i) Consider a compact set K C C with connected complement and let f be a function
that is continuous on K and holomorphic in K°. Further assume that f has at least
one singularity on 0K and denote by D C 9K the set of all singularities. Let (p,,) be a
sequence of polynomials converging uniformly on K to f (such a sequence exists by
Mergelian’s Theorem). Then, (p,,) is strongly non-normal on D, hence also expanding
at every point zg € D with respect to C \ E for some set £ C C with |E| < 1. Indeed,
since otherwise there exists a point zg € D, an open neighbourhood U of zp, and a
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subsequence (py,,) of (p,) that converges uniformly on compact subsets of U to a
function holomorphic in U, contradicting that f does not have an analytic continuation
across zog € D.

(i1) Consider the function f(z)=|z| on the interval [—1,1] and denote by (p};) the
sequence of polynomials of best uniform approximation to f on [—1, 1]. Then, accord-
ing to the previous example, (p}) is strongly non-normal at the point 0. However, since
P(z) = oo for n — oo spherically uniformly on compact subsets of C \ [—1, 1] (e.g.
[28]), the family (p}) is strongly non-normal on [—1, 1], hence expanding at every
point zg € [—1, 1] with respect to C \ E for some set E C C with |E| < 1. (Note that
the strong non-normality on [—1, 1] also holds for several specific ray sequences of
best uniform rational approximants to f on [—1, 1] ([28, corollary 1-3]).) In fact, [5,
corollary 2] implies that (p}) is expanding on [—1, 1] with respect to C, as it shows
the existence of a subsequence (py; ) of (p}) that is strongly expanding on [—1, 1] with
respect to C.

(iii) Consider again a function f(z) = Y - ayz” that is holomorphic on ) and has at least
one singularity on 0ID. Then the family of partial sums (s;) is non-normal on 9D,
hence, (s;) is expanding at every zg € 9D with respect to C \ E for some set £ C C
with |E| < 1. In fact, (s,) is expanding on 9D with respect to C, as results in [5,13]

1
show that if (a,,) is a sequence such that limy_, ~ |ank | " =1, the subfamily (s,,) is
strongly expanding on dD with respect to C.

A further consequence of Theorem 2 and the fact that we have E,(F) C E if I C M(Q2)
is expanding at zo € Q2 with respect to C \ E is the following statement for the case

|y ()] =2.

COROLLARY 2. Let 2 C C be open and F C M(S2) be a family of meromorphic functions.
Consider zo € Q2 and suppose that J is (strongly) non-normal at zo with |EZO(3)| =2. Then
T is (strongly) expanding at zo with respect to Coo \ E,(T).

Proof. Suppose that J is non-normal at zg. By Corollary 1, there then exists £ C C, with
|E| <2 such that F is expanding at zo with respect to C \ E. Since E,,(F) C E, we obtain
E.,(J)=E.If J is strongly non-normal at z, every infinite subfamily F c ¥ is non-normal
at zo with Ey, F) = E,,(3), hence expanding at zo with respect to Co \ E(F).

Example 4.

(i) Consider again the family F:= {€¢"* 4 (1 — 1/n):n € N}, which is strongly non-
normal at the point 0. It is easily seen that J is strongly expanding at 0 with respect
to Cx \ {1, 00}, but since Ey(F) = {oo}, this can not be derived from Corollary 2.
On the other hand, the family J:= {€™ + (1 — 1/a!) : n € N} is strongly non-normal
at the point 0 with Ey(F) = {1, oo} (note that for each neighbourhood U of 0 and
each 1 #w e C, there is some N with w— 14 1/n! € exp (nU) for all n> N, but
1/n! & exp (nD) for sufficiently large n). So, in this case Corollary 2 can be applied.

(i) Consider again a power series f(z):ijiO a,z’ with radius of convergence 1
and denote by (s,) its partial sums. As mentioned in Example 3, the family
F = {5, : n € N} is expanding on 0D with respect to C, so that for every zo € 0D we
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have E,,(F) = {oo} (note that this is also easily derived from the classical Jentzsch
Theorem ([19]) stating that for every a € C, every zg € dD is a limit point of a-points
of the partial sums). However, a further result of Jentzsch ([20]) states that there exist
power series with radius of convergence 1, such that the zeros of some subsequence
(87, ) of the partial sums do not have a finite limit point. Hence, in this case Corollary
2 shows that the family F= {5y, : k € N} is strongly expanding with respect to C \ {0}
at every point zg € dID at which the function does not admit an analytic continuation
(there must be at least one such point), since Fis strongly non-normal at such zp with
EZO(C;") = {0, co}. In a similar vein, it was shown in [18, theorem 1] that there exists
a function f holomorphic on ID and continuous on I with at least one singularity
on 9D, for which the zeros of some subsequence (p}, ) of the sequence (p}) of
polynomials of best uniform approximation do not have a finite limit point. Hence,
as before, Corollary 2 can be applied to the family ' = {p}, :k € N} at every singular
point zg € 9D of f, since JF is strongly non-normal at zp (see Example 3 (i)) and we
have E, () = {0, oo}. Moreover, [18, theorem 2] shows the existence of a function f
that is holomorphic on ID and continuous on ID with at least one singularity on 0D, for
which there is a sequence (g,) of polynomials of near-best uniform approximation
that has no finite limit point of zeros. Hence, in this case Corollary 2 implies that
the family F = {q, : n € N} is strongly expanding with respect to C\ {0} at every
singular point zg € dD of f.

4. Expanding families of derivatives

In the following, we show that under certain conditions, (strong) non-normality of a fam-
ily F C M(2) at a point zg € 2 implies that the family of derivatives is (strongly) expanding
at zo with respect to C\ {0}, hence in particular (strongly) non-normal at zg. Throughout
this section, we denote by F® the family of kth derivatives of the functions in F, that is
F® = (f® : f € T}, where k is some natural number.

THEOREM 3. Let Q2 C C be open and F C M(S2) be a family of meromorphic functions.
Consider zog € Q2 and suppose that F is (strongly) non-normal at zg. Further assume that F
is not expanding at zo with respect to C. Then, for every k € N, the family T® is (strongly)
expanding at zg with respect to C \ {0}.

Proof. We first assume that J is strongly non-normal at zo. By assumption, J is not
expanding at zo with respect to C, hence there exists an open neighbourhood U; of zp and a
compact set K1 C C such that K \ f(U1) # @ holds for cofinitely many f € J.

Now assume that there exists k € N, such that F® is not strongly expanding at zg with
respect to C\ {0}. Then there exists an open neighbourhood U; of zp and a compact set
K> C C\ {0} such that K, \ f®(U5) # @ holds for infinitely many f € F.

In particular, we can find a se(}uence (f») in I, and sequences (c,(f)) in K| and (cﬁ,z)) in K>,
such that the equations f;,(z) = cfz ) and f,(lk) ()= c,(f) have no roots in U := Uj N U, for every
n € N. From [10, theorem 3-17], which is an extension of Gu’s famous normality criterion
(e.g. [17,29]), we obtain that (f;,) is normal in U, hence also at zg, in contradiction to the
strong non-normality of J at zp.

If F is non-normal at zp, there exists an infinite subfamily ¥ C ¥ that is strongly non-
normal at zg. By assumption, ¥ is not expanding at zop with respect to C, hence the same
holds for 7, so that by the above argumentation, F® s strongly expanding at zg with respect
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to C \ {0} for every k € N. Hence, F%® is expanding at zo with respect to C \ {0} for every
keN.

Remark 3. Note that the assumption that J is not expanding at zo with respect to C turns
out to be necessary, as is seen e.g. by considering the sequence of polynomials f;,(z) = nz
and zo = 0. Moreover, it is easily seen that a similar argumentation as in the proof of the
theorem leads to the following result: Let €2 C C be open and F C M(2) be a family of
meromorphic functions. Consider zg € €2 and suppose that F is (strongly) non-normal at zg.
Further assume that for some k € N, the family 7 is not expanding at zo with respect to
C\ {0}. Then, the family ¥ is (strongly) expanding at zg with respect to C.

COROLLARY 3. Let 2 C C be open and I C M(Q) be a family of meromorphic functions.
Consider zo € Q and suppose that F is (strongly) non-normal at zo. Suppose further that
there exists an open neighbourhood U of zg and a number M > 0, such that for cofinitely
many f € F there is a point ay € C with ’af’ <M and ag ¢ f(U). Then, for every k € N, the
family F® is (strongly) expanding at zo with respect to C \ {0}.

Proof. Since it follows from the assumptions that F is not expanding at zgp with respect to
C, the statement follows from Theorem 3.

Note that the assumptions of Corollary 3 are fulfilled if F C M(2) is (strongly)
non-normal at zo € 2 and for some a € C we have a € E,(J), hence in particular if

|Eqy()| =2.
Example 5.

(1) In Example 4 (ii) we considered strongly non-normal families J of polynomials for
which E,,(F) = {0, oo}, hence we obtain that the corresponding families of derivatives
F® are strongly expanding at zo with respect to C \ {0} for every k € N.

(i1) Consider the family (f,,) with f;, := exp®”, the nth iterate of e*. Then J(f;) coincides
with the Julia set of €%, which is known to equal C ([25]). According to Example 1
(i), we thus have that (f,) is strongly non-normal on C. Furthermore, we obviously
have 0 € E,(f,,) for every zg € C, so that Corollary 3 implies that for every k € N, the

family (f,gk) ) is strongly expanding on C with respect to C \ {0}.

We mention that the statement of Corollary 3 remains valid to some extent, if instead of
omitting a value ay in some neighbourhood of zg, cofinitely many functions f € J have a
value ay that they take with sufficiently high multiplicity in that neighbourhood.

PROPOSITION 3. Let Q2 C C be open and F C M(R2) be a family of meromorphic functions.
Consider zo € Q2 and suppose that 3 is (strongly) non-normal at zo. Suppose further that
there exists an open neighbourhood U of zo, a number M > 0 and some k € N, such that for
cofinitely many f € F there is a point ar € C with |afi <M, such that the ag-points of f in
U have multiplicity at least k + 2. Then the family F% is (strongly) expanding at zo with
respect to C \ {0}.

Proof. Again, we first consider the case that J is strongly non-normal at zg. Assuming
that F® is not strongly expanding at zo with respect to C\ {0}, there exists an open

https://doi.org/10.1017/S0305004121000700 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004121000700

522 THIERRY MEYRATH AND JURGEN MULLER

neighbourhood U; of zg and a compact set K C C\ {0} such that K\ f®(U)# ¢ for
infinitely many f € J. In particular, we can find a sequence (c,) in K with ¢, — ¢ for some
¢ # 0, and a sequence (f;,) in F such that ¢, ¢ f,gk)(U 1) for every n € N. For n € N sufficiently
large, say n > N, there is a point ay, € C with |afn| < M, such that the ay,-points of f, in U
have multiplicity at least k + 2. Setting g,(z) = f,(z) — ay, for n > N, we obtain that the func-
tions g, only have zeros of multiplicity at least k + 2 in U’ := U N U;. Furthermore, since
cn ¢ gg,k)(U’) for every n > N, it follows from [9, lemma 2-7] that the family {g, : n > N} is
normal in U’, and as |af;1| < M for every n > N, the same holds for the family {f;, : n > N}.
This is in contradiction to the strong non-normality of F at zg.

If F is non-normal at zg, the statement follows as before from the fact that F contains a
strongly non-normal subfamily.

In general, the number k + 2 can not be replaced by k + 1 in Proposition 3. Indeed, for
fixed k € N, the family (f;,) with

Zk+ 1

-1

is strongly non-normal at the point O and has only zeros of multiplicity £+ 1 (see also
[31]). But as f,gk)(z) # 1 for every n € N and every z € C, the familiy (fék)) is obviously not
expanding at O with respect to C \ {0}. Nevertheless, under certain additional conditions,
k + 2 can be replaced by k + 1:

1
fn(Z) = E

PROPOSITION 4. Under each of the following additional conditions, the statement of
Proposition 3 remains valid if k + 2 is replaced by k + 1:

(1) the functions f € F are holomorphic in Q;
(i1) the functions f € F only have multiple poles;

(iii) there exists a sequence (z,) in QL with z, — zo and F is strongly non-normal at z,, for
everyn e N.

Proof. Using [7, lemma 4] and [27, lemma 6], respectively, the proofs of (i) and (ii) are
similar to the proof of Proposition 3. In order to prove the third statement, we note that
using [8, lemma 2-9], a similar argumentation as in the proof of Proposition 3 implies
that the family (g,) with g,(z) =f,(z) — ay, is quasinormal in some neighbourhood U of
Z0. Since |‘1fn| < M for every n € N, the same then holds for the family (f;,) ([10, lemma
5-2]). This contradicts the assumption that the set {z: J is strongly non-normal at z} has an
accumulation point in U.
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