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Abstract

We investigate the behaviour of families of meromorphic functions in the neighbourhood
of points of non-normality and prove certain covering properties that complement Montel’s
Theorem. In particular, we also obtain characterisations of non-normality in terms of such
properties.
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1. Introduction

For an open set � ⊂C we denote by M(�) the set of meromorphic functions on �, by
which we mean all functions whose restriction to a connected component of � is either
meromorphic or constant infinity. Endowed with the topology of spherically uniform con-
vergence (i.e. uniform convergence with respect to the chordal metric χ) on compact subsets
of �, the space M(�) becomes a complete metric space (e.g. [12, Chapter VII]). As usual,
we say that a family F ⊂ M(�) is normal in �, if every sequence (fn) ⊂ F contains a sub-
sequence (fnk ) that converges spherically uniformly on compact subsets of � to a function
f ∈ M(�). The family F is called normal at a point z0 ∈ �, if there exists an open neighbour-
hood U of z0, such that F is normal in U. By J(F) we denote the set of points in �, at which
the family F is non-normal. If z0 ∈ J(F), the family F can still have infinite subfamilies
F̃ ⊂ F that are normal at z0, in other words, z0 ∈ J(F) does in general not imply z0 ∈ J(F̃).
We say that F is strongly non-normal at a point z0 ∈ �, if we have z0 ∈ J(F̃) for every infi-
nite subfamily F̃ ⊂ F. We further say that F is strongly non-normal on a relatively closed set
B ⊂ �, if F is strongly non-normal at every z0 ∈ B, that is if B ⊂ J(F̃) for every infinite sub-
family F̃ ⊂F. Moreover, we call F hereditarily non-normal on B, if some infinite subfamily
F̃ ⊂ F is strongly non-normal on B. Note that on a single point set, hereditary non-normality
is equivalent to non-normality, while this is in general not true for sets containing at least
two points.

For a family F ⊂ M(�) and an open set U ⊂ �, we write lim sup F(U) for the intersec-
tion of all

⋃
f ∈F̃ f (U), where F̃ ranges over the cofinite subsets of F. Moreover, for z0 ∈ �
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we denote by lim supz0
F the intersection of lim sup F(U) taken over all open neighbour-

hoods U ⊂ � of z0. Similarly, we write lim inf F(U) for the union of all
⋂

f ∈F̃ f (U), where

F̃ ranges over the cofinite subsets of F and lim infz0 F for the intersection of lim inf F(U)
taken over all open neighbourhoods U ⊂ � of z0. Obviously, we have that lim infz0 F ⊂
lim supz0

F, furthermore lim infz0 F = ⋂
F̃⊂F infinite lim supz0

F̃. For instance, if F = {fn : n ∈
N} with fn(z) = nz for even integers n and fn(z) = z for odd n, then lim sup0 F =C and
lim inf0 F = {0}.

The classical Montel Theorem suggests that the behaviour of families F ⊂ M(�) in neigh-
bourhoods of points z0 ∈ J(F) consists in some sense of spreading points, since it asserts that
for every z0 ∈ J(F), the set Ez0(F) := C∞ \ lim supz0

F contains at most two points, where
C∞ := C∪ {∞}. Hence, for every neighbourhood U of z0, every point a ∈C∞ is covered
by f (U) for infinitely many f ∈F, with at most two exceptions. In case that Ez0(F) con-
tains two points and F is strongly non-normal at z0, a further consequence of Montel’s
Theorem is that lim infz0 F = lim supz0

F, so that for every neighbourhood U of z0, every
point a ∈C∞ \ Ez0 (F) is covered by f (U) for cofinitely many f ∈F. Note, however, that
Montel’s Theorem does not contain any information about the ‘size’ of the individual sets
f (U), for instance, if U is any neighbourhood of a point z0 ∈ J(F), it is in general not clear
if for a given set A ⊂ lim supz0

F we have A ⊂ f (U) for infinitely many f ∈ F.
In this paper, we will further investigate the behaviour of (strongly) non-normal families

near points of non-normality and show certain covering and ‘expanding’ properties that
complement the statement of Montel’s Theorem. In particular, we will also derive different
characterisations of (strong) non-normality in terms of these properties.

2. Non-normality and topological transitivity

In the sequel, for λ > 0 and z0 ∈C we set Dλ(z0) := {z ∈C : |z − z0| < λ} and denote
by Dλ(z0) the closure of Dλ(z0) in C. For w0 ∈C∞, we further set Dχ

λ (w0) := {w ∈
C∞ : χ(w, w0) < λ}. We say that a family F ⊂ M(�) is (topologically) transitive with respect
to a point z0 ∈ �, if for every pair of non-empty open sets U ⊂ � and V ⊂C∞ with z0 ∈ U,
there exists f ∈ F such that f (U) ∩ V �= ∅. Note that in this case we have f (U) ∩ V �= ∅ for
infinitely many f ∈F. If f (U) ∩ V �= ∅ holds for cofinitely many f ∈F, we say that F is (topo-
logically) mixing with respect to z0. Furthermore, if for every non-empty open set U ⊂ �

with z0 ∈ U and every pair of non-empty open sets V1, V2 ⊂C∞, there exists f ∈F such that
f (U) ∩ Vi �= ∅ for i = 1, 2, we say that F is weakly mixing with respect to z0. Finally, we say
that F is transitive (or (weakly) mixing) with respect to a relatively closed set B ⊂ �, if F is
transitive (or (weakly) mixing) with respect to every z0 ∈ B.

With these notations, we obtain the following characterisation of (strong) non-normality.

THEOREM 1. Let � ⊂C be open, F ⊂ M(�) a family of meromorphic functions and
z0 ∈ �. Then we have:

(a) F is strongly non-normal at z0 if and only if F is mixing with respect to z0;

(b) the following are equivalent:

(i) F is non-normal at z0;
(ii) there exists an infinite subfamily F̃ ⊂ F that is mixing with respect to z0;

(iii) F is weakly mixing with respect to z0.
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Proof. (a) Let F be strongly non-normal at z0 and suppose that F is not mixing with
respect to z0. Then there exist non-empty open sets U ⊂ � and V ⊂C∞ with z0 ∈ U, and an
infinite subfamily F̃ ⊂ F such that f (U) ∩ V = ∅ for every f ∈ F̃. By Montel’s Theorem, we
obtain that F̃ is normal on U, hence also at z0, in contradiction to the strong non-normality
of F at z0.

On the other hand, suppose that F is mixing with respect to z0 ∈ �, but not strongly non-
normal at z0. Then there exists an open neighbourhood U of z0 and a sequence (fn) ⊂F, such
that (fn) converges spherically uniformly on compact subsets of U to a function f ∈ M(U).
Hence, for ε > 0 sufficiently small, we have that Dε(z0) ⊂ U and there exists δ > 0 and
w0 ∈C∞ such that f (Dε(z0)) ∩ Dχ

δ (w0) = ∅. Since (fn) is mixing with respect to z0, we obtain
that fn(Dε(z0)) ∩ Dχ

δ
2
(w0) �= ∅ for all n sufficiently large, in contradiction to the spherically

uniform convergence of (fn) to f on Dε(z0).
(b) (i) ⇒ (ii): Since F is non-normal at z0, there exists an infinite subfamily F̃ ⊂ F that is

strongly non-normal at z0. This subfamily is mixing with respect to z0 according to the first
statement of the theorem.

(ii) ⇒ (iii): This is clear, since a mixing family is also weakly mixing.
(iii) ⇒ (i): Suppose that F is weakly mixing with respect to z0. Further consider two non-

empty open sets V1, V2 ⊂C∞ such that infz∈V1,w∈V2 χ(z, w) > ε for some ε > 0. For k ∈N,
we set Uk := D 1

k
(z0) ∩ �. By assumption, for every k ∈N there is a function fk ∈F such that

fk(Uk) ∩ V1 �= ∅ and fk(Uk) ∩ V2 �= ∅, and hence points z(1)
k , z(2)

k ∈ Uk such that fk(z(1)
k ) ∈ V1

and fk(z(2)
k ) ∈ V2. Note that z(1)

k , z(2)
k ∈ Uk implies that z(1)

k → z0 and z(2)
k → z0 for k → ∞,

furthermore we have that χ(fk(z(1)
k ), fk(z(2)

k )) > ε for every k ∈N, and hence

χ(fk(z0), fk(z(1)
k )) >

ε

2
or χ(fk(z0), fk(z(2)

k )) >
ε

2
.

Hence, we can find a sequence (zk) with zk → z0 for k → ∞ and χ(fk(z0), fk(zk)) > ε
2 for

every k ∈N, implying that the family F is not spherically equicontinuous at z0, and thus also
not normal.

By Montel’s Theorem, it is clear that z0 ∈ J(F) implies that F is transitive with respect to
z0. On the other hand, it is easily seen that transitivity of a family with respect to some point
z0 ∈ � is in general not sufficient for non-normality at z0. For instance, if (zn) is a sequence
that is dense in C∞, the family (fn) of constant functions fn ≡ zn is transitive with respect to
any z0 ∈ �, while at the same time we have J(fn) = ∅. However, the following proposition
shows that this example is in some sense typical:

PROPOSITION 1. Let � ⊂C be open, F ⊂ M(�) a family of meromorphic functions and
z0 ∈ �. Suppose that F is transitive with respect to z0 and that z0 /∈ J(F). Then {f (z0) : f ∈F}
is dense in C∞.

Proof. Suppose that {f (z0) : f ∈F} is not dense in C∞. Then there is w ∈C∞ and ε > 0,
such that {f (z0) : f ∈F} ∩ Dχ

ε (w) = ∅. Consider now for k ∈N the sets Uk := D 1
k
(z0) ∩ �.

Since F is transitive with respect to z0, for every k ∈N there is fk ∈F such that
fk(Uk) ∩ Dχ

ε
2
(w) �= ∅. In particular, there is a sequence (zk) with zk ∈ Uk, and hence zk → z0

for k → ∞, such that fk(zk) ∈ Dχ
ε
2
(w) for k ∈N. On the other hand, we have fk(z0) /∈ Dχ

ε (w)
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for k ∈N. Finally, we obtain that

χ(fk(z0), fk(zk)) >
ε

2
for every k ∈N,

so that F is not spherically equicontinuous at z0, and thus also not normal, that is z0 ∈ J(F).

Example 1.

(i) Let f be an entire function that is neither constant nor a polynomial of degree 1, and
let F := {f ◦n : n ∈N} be the family of iterates of f . Then F is strongly non-normal
on the Julia set J = J(F), as follows e.g. from the facts that the repelling periodic
points are dense in J and that J is the boundary of the escaping set (e.g. [6,14,26,30]).
Here we have lim infz0 F ⊃C \ E for each z0 ∈ J, where E is the (empty or one-point)
set of Fatou exceptional values of f , that is the set of points w ∈C whose backward
orbit O−(w) := ⋃

n≥1{z : f ◦n(z) = w} is finite. Indeed, consider z0 ∈ J and an infinite

subfamily F̃ = {f ◦nk : k ∈N} with nk > 2. It follows from Picard’s Theorem that if
a ∈C is not Fatou exceptional, there are points a1, a2 ∈C with a1 �= a2 and f ◦2(a1) =
a = f ◦2(a2). Since F is strongly non-normal at z0, Montel’s Theorem implies that
the set C \ lim supz0

F̃− contains at most one point, where F̃− := {f ◦(nk−2) : k ∈N}.
Hence, {a1, a2} ∩ lim supz0

F̃− �= ∅, which implies a ∈ lim supz0
F̃.

(ii) Let M denote the Mandelbrot set and let, with p0 := idC, the family (pn) of poly-
nomials of degree 2n be recursively defined by pn := p2

n−1 + idC. Since pn → ∞
pointwise on C \ M for n → ∞ and |pn| ≤ 2 on M (e.g. [6]), we have ∂M ⊂ J(F),
where F := {pn : n ∈N0}, and no infinite subfamily of F can be normal at any point
of ∂M. Hence, F is strongly non-normal and thus mixing on ∂M.

(iii) A function f ∈ M(C) is called Yosida function, if it has bounded spherical derivative
f # (e.g. [24,32]). Hence, if f is not a Yosida function, there exists a sequence (zn)
in C with zn → ∞ and f #(zn) → ∞ for n → ∞. Marty’s Theorem (e.g. [29, p.75])
implies that the family (fn) with fn(z) := f (z + zn) is strongly non-normal at 0, hence
by Theorem 1, we obtain that (fn) is mixing with respect to 0. Note that it is easily
seen that if f ∈ M(C) is a Yosida function, then its order of growth is at most 2, while
entire Yosida functions are necessarily of exponential type (e.g. [11,24]).

For a family of meromorphic functions F ⊂ M(�) and N ∈N, we consider the family
F×N := {f ×N : f ∈F}, where f ×N : �N →C

N∞ with f ×N(z1, . . . , zN) = (f (z1), . . . , f (zN)).
We say that F×N is transitive with respect to z ∈ �N , if for every pair of non-empty open
sets U ⊂ �N and V ⊂C

N∞ with z ∈ U, there exists f ×N ∈ F×N such that f ×N(U) ∩ V �= ∅.
Furthermore, for a relatively closed set B ⊂ �, we say that F×N is transitive with respect
to BN , if F×N is transitive with respect to every z ∈ BN . We then have the following
characterisation of hereditary non-normality.

PROPOSITION 2. Let � ⊂C be open, F ⊂ M(�) a family of meromorphic functions and
B ⊂ � closed in �. Then the following are equivalent:

(i) F is hereditarily non-normal on B;

(ii) there exists an infinite subfamily F̃ ⊂ F that is mixing with respect to B;

(iii) for all N ∈N the family F×N is transitive with respect to BN.
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Proof. The equivalence of (i) and (ii) follows from Theorem 1.
(ii) ⇒ (iii): Without loss of generality consider F̃ to be countable, F̃ = {fn : n ∈N} say.

Let N ∈N and consider non-empty open sets U ⊂ �N and V ⊂C
N∞ with BN ∩ U �= ∅. Then

there exist non-empty open sets U1, . . . , UN with U1 × · · · × UN ⊂ U and B ∩ Ui �= ∅ for i =
1, . . . , N, and non-empty open sets V1, . . . , VN ⊂C∞ with V1 × · · · × VN ⊂ V . According
to the assumption, {fn:n > m} is transitive with respect to B, for all m ∈N. Inductively, we
can find a strictly increasing sequence (nk) in N with fnk (U1) ∩ V1 �= ∅ for all k ∈N. By
assumption, the family {fnk :k ∈N} is transitive with respect to B. Thus, the same argument

as above yields the existence of a subsequence (n(2)
k ) of (n(1)

k ) := (nk) with f
n(2)

k
(U2) ∩ V2 �= ∅

for all k ∈N. Proceeding in the same way, for any j with 2 ≤ j ≤ N we find subsequences
(n(j)

k ) of (n(j−1)
k ) with f

n(j)
k

(Uj) ∩ Vj �= ∅ for all k ∈N. In particular, for n := n(N)
1 , we obtain

that

(fn(U1) × · · · × fn(UN)) ∩ (V1 × · · · × VN) �= ∅,

hence also f ×N
n (U) ∩ V �= ∅, implying that F×N is transitive with respect to BN .

(iii) ⇒ (ii) The proof follows along the same lines as the proof of the corresponding part
of the Bès–Peris Theorem (e.g. [21, pp.76]).

Remark 1.

(i) Let K(A) denote the hyperspace of A ⊂C, that is the space of all non-empty com-
pact subsets of A endowed with the Hausdorff metric, and suppose that B as in
Proposition 2 has non-empty interior. Then [2, corollay 1·2] shows that, under the
conditions of Proposition 2, for each C-closed set A ⊂ B which coincides with the
closure of its interior, the family F|E is dense in C(E, C∞) for generically many sets
E ∈K(A).

(ii) We mention that Proposition 2 is an extension of Theorem 3·7 from the recent
paper [4].

Example 2.

(i) Consider a function f (z) = ∑∞
ν=0 aνzν that is holomorphic on the unit disk D. Suppose

that f has at least one singularity on ∂D and denote by D ⊂ ∂D the set of all singular-
ities. Then, denoting by sn(z) := (snf )(z) := ∑n

ν=0 aνzν the nth partial sum of f , the
family (sn) is non-normal on ∂D and strongly non-normal on D. Moreover, in case
D �= ∂D, Vitali’s Theorem implies that a subsequence of (sn) forms a normal family
at a point z0 ∈ ∂D \ D if and only if it converges to an analytic continuation of f in
some neighbourhood of z0. From refined versions of Ostrowski’s results on overcon-
vergence ([16, Theorems 3 and 4]), it follows that a subsequence (snk ) is strongly
non-normal at z0 ∈ ∂D \ D if and only if (sn) has no Hadamard–Ostrowski gaps rela-
tive to (nk), that is, if and only if there is a sequence (δk) of positive numbers tending
to 0 with

sup
(1−δk)nk≤ν≤nk

|aν |1/ν → 1

as k → ∞. In this case, the sequence (snk ) is already strongly non-normal at all z ∈
∂D. Since the non-normality of (sn) on ∂D implies that, given z0 ∈ ∂D \ D, some

https://doi.org/10.1017/S0305004121000700 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000700


516 THIERRY MEYRATH AND JÜRGEN MÜLLER

subsequence of (sn) is strongly non-normal at z0, we finally obtain that the family
(sn) is always hereditarily non-normal on ∂D. According to a result of Gardiner ([15,
corollary 3]), for each f that is holomorphic on D and analytically continuable to
some domain U such that C \ U is thin at some z0 ∈ ∂D but not continuable to the
point z0, the sequence (sn) has no Hadamard–Ostrowski gaps with respect to any (nk),
hence (sn) is strongly non-normal on ∂D. In particular, this holds for each f that has
an isolated singularity at some point z0 ∈ ∂D.

(ii) We write H0 for the space of functions holomorphic on C \ {1} that vanish at ∞. For
f (z) = 1/(1 − z), the sequence (snf ) is the geometric series which tends to ∞ spheri-
cally uniformly on compact subsets of C \D. From [3, theorem 1·1] it can be deduced
that generically many functions f ∈ H0 enjoy the property that some subsequence of
the sequence ((f − snf )(z)/zn) converges to 1/(1 − z) spherically uniformly on com-
pact subsets of C∞ \ {1}. This implies that the corresponding subsequence of (snf )
converges to ∞ spherically uniformly on compact subsets of C \D and thus forms a
normal family on C \D. In particular, (snf ) is not strongly non-normal at any point
z0 ∈C \D. On the other hand, if A is a countable and dense subset of C \D, from [23,
theorem 2] it follows that for generically many functions f ∈ H0, a subsequence (snk f )
of (snf ) converges to 0 pointwise on A. Since a result from [22] implies that for f ∈ H0,
normality of a subsequence of (snf ) at a point z0 ∈C \D forces the subsequence to
tend to ∞ spherically uniformly on compact subsets of some neighbourhood of z0, it
follows that no subsequence of (snk f ) can form a normal family at any point of C \D.
By the previous example, (snf ) is strongly non-normal on ∂D for f ∈ H0, thus we
obtain that for generically many f ∈ H0, the family (snf ) is hereditarily non-normal
on C \D. By Remark 1, for generically many f ∈ H0, the sequence (snf |E) is dense in
C(E, C∞) for generically many E ∈K(C \D) (see also [1, theorem 2]).

3. Non-normality and expanding families

We define the following ‘expanding’ property of families F ⊂ M(�).

Definition 1. Let � ⊂C be open, F ⊂ M(�) a family of meromorphic functions and z0 ∈
�. Consider further a set A ⊂C∞. We say that F is expanding at z0 with respect to A, if for
every open neighbourhood U ⊂ � of z0 and every compact set K ⊂ A we have K ⊂ f (U) for
infinitely many f ∈F. If K ⊂ f (U) holds for cofinitely many f ∈F, we say that F is strongly
expanding at z0 with respect to A. Finally, we say that F is (strongly) expanding on a set
B ⊂ � with respect to A, if F is (strongly) expanding with respect to A at every z0 ∈ B.

Note that if F is expanding at z0 with respect to A, there exists an infinite subfamily
F̃ ⊂F that is strongly expanding at z0 with respect to A. Moreover, in this case we have that
A is contained in lim supz0

F. Also note that F is strongly expanding at z0 with respect to

A if and only if every infinite subfamily F̃ ⊂F is expanding at z0 with respect to A, and in
this case, A is contained in lim infz0 F. On the other hand, we remark that A ⊂ lim infz0 F

does in general not imply that F is (strongly) expanding at z0 with respect to A. This can
for instance be seen by considering the family F := {enz + (1 − 1/n) : n ∈N}, for which we
have lim inf0 F =C (note that for each neighbourhood U of 0 and each w ∈C, there is some
N such that w − 1 + 1/n ∈ exp (nU) for all n ≥ N), but F is not expanding at 0 with respect
to any set A ⊂C with 1 ∈ A◦.
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Our next result establishes a relationship between strong non-normality and the expanding
property. Here and in the following, we denote by |E| ∈N0 ∪ {∞} the number of elements
of a set E ⊂C∞.

THEOREM 2. Let � ⊂C be open, F ⊂ M(�) a family of meromorphic functions and
z0 ∈ �. Then we have:

(i) if F is strongly non-normal at z0, then for each infinite subfamily F̃ ⊂ F there
exists E ⊂C∞ with |E| ≤ 2, such that F̃ is expanding at z0 with respect to C∞ \
E. Moreover, F is strongly expanding at z0 with respect to C∞ \ E, where E :=⋃

F̃⊂F infinite E
F̃

with E
F̃

⊂C∞ being some set such that F̃ is expanding at z0 with
respect to C∞ \ E

F̃
;

(ii) if | lim infz0 F| ≥ 2, then F is strongly non-normal at z0. In particular, this holds if F
is strongly expanding at z0 with respect to some A ⊂C∞ with |A| ≥ 2.

Proof. (i) Suppose that F is strongly non-normal at z0 and consider an infinite subfam-
ily F̃ ⊂ F. Then F̃ is strongly non-normal at z0 and assuming that F̃ is not expanding at
z0 with respect to C∞ \ E for any E ⊂C∞ with |E| ≤ 2, we obtain that for every E ⊂C∞
with |E| ≤ 2, there is an open neighbourhood U of z0 and a compact set K ⊂C∞ \ E, such
that K \ f (U) �= ∅ for cofinitely many f ∈ F̃. In particular, if F̃ is not expanding at z0 with
respect to C∞, we can find an open neighbourhood U1 of z0, a sequence (fn) in F̃, and a
sequence (an) in C∞ with an → a ∈C∞ for n → ∞, such that an /∈ fn(U1) for every n ∈N.
By assumption, F̃ is not expanding at z0 with respect to C∞ \ {a}, hence, there is an open
neighbourhood U2 of z0 and a compact set K2 ⊂C∞ \ {a}, such that K2 \ f (U2) �= ∅ for
cofinitely many f ∈ F̃. In particular, there is a subsequence (fnk ) of (fn), and a sequence
(bk) in K2 with bk → b ∈ K2 for k → ∞, such that bk /∈ fnk (U2) for every k ∈N. Since F̃

is not expanding at z0 with respect to C∞ \ {a, b}, a similar argumentation leads to an
open neighbourhood U3 of z0, a compact set K3 ⊂C∞ \ {a, b}, a subsequence (fnkl

) of (fnk )
and a sequence (cl) in K3 with cl → c ∈ K3 for l → ∞, such that cl /∈ fnkl

(U3) for every
l ∈N.

Finally, setting U = U1 ∩ U2 ∩ U3 we obtain that

{ankl
, bkl , cl} ∩ fnkl

(U) = ∅ for every l ∈N.

Furthermore, since a,b,c are pairwise distinct, there exists ε > 0 such that

χ(ankl
, bkl) χ(bkl , cl) χ(ankl

, cl) > ε,

for l ∈N sufficiently large, so that Carathéodory’s extension of Montel’s Theorem (e.g. [29,
p.104]) implies that (fnkl

) ⊂ F̃ is normal in U, hence also at z0, in contradiction to the strong

non-normality of F̃ at z0.
To prove the second statement, suppose that F is not strongly expanding at z0 with respect

to C∞ \ E. Then there is an infinite subfamily F̃ ⊂F that is not expanding at z0 with respect
to C∞ \ E, contradicting the fact that F̃ is expanding at z0 with respect to C∞ \ E

F̃
for some

set E
F̃

⊂C∞ with E
F̃

⊂ E.

(ii) Suppose that for some infinite subfamily F̃ = {fn:n ∈N} of F the sequence (fn) is
spherically uniformly convergent on compact subsets of a neighbourhood of z0. Then
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lim supz0
F̃ is a one-point set, and hence | lim infz0 F| ≤ 1. The second statement follows

from the fact that in this case we have A ⊂ lim infz0 F.

Remark 2. Note that if F is strongly non-normal at z0, F does not need to be strongly
expanding at z0 with respect to any open set A ⊂C∞. Indeed, let (qn) be an enumeration
of the Gaussian rational numbers with q2

n/n → 0 as n → ∞ and consider the family (fn)
with fn(z) := enz + qn for z ∈C. From Marty’s Theorem, it is easily seen that (fn) is strongly
non-normal on the imaginary axis iR, but for a point z0 ∈ iR and an open neighbourhood U
of z0, there is no N ∈N such that K ⊂ fn(U) holds for all n ≥ N for any compact set K ⊂C

with K◦ �= ∅.

From Theorem 2 we easily obtain the following characterisation of non-normality in terms
of the expanding property, which in some sense complements the statement of Montel’s
Theorem:

COROLLARY 1. Let � ⊂C be open, F ⊂ M(�) a family of meromorphic functions and
z0 ∈ �. Then the following are equivalent:

(i) there exists A ⊂C∞ with |A| ≥ 2 such that F is expanding at z0 with respect to A;

(ii) F is non-normal at z0;

(iii) there exists E ⊂C∞ with |E| ≤ 2 such that F is expanding at z0 with respect to
C∞ \ E.

Proof. (i) ⇒ (ii) Suppose that F is expanding at z0 with respect to some A ⊂C∞ with
|A| ≥ 2. Then there exists an infinite subfamily F̃ ⊂ F that is strongly expanding at z0 with
respect to A. By Theorem 2, the family F̃ is strongly non-normal at z0, hence F is non-normal
at z0.

(ii) ⇒ (iii) If F is non-normal at z0, there exists an infinite subfamily F̃ ⊂ F that is strongly
non-normal at z0. By Theorem 2, there then exists E ⊂C∞ with |E| ≤ 2 such that F̃ is
expanding at z0 with respect to C∞ \ E. The same then holds for the family F.

(iii) ⇒ (i) is obvious.

Let F ⊂ M(�) be a family that is non-normal at a point z0 ∈ � and consider the set
Ez0(F) =C∞ \ lim supz0

F. If F is expanding at z0 with respect to C∞ \ E for some set
E ⊂C∞, we obviously have Ez0(F) ⊂ E. If F is a family of holomorphic functions on � that
is (strongly) non-normal at z0, we have ∞ ∈ Ez0(F), so that in this case we obtain that the
expanding property of F at z0 in Theorem 2 and Corollary 1 holds with respect to C \ E for
some set E ⊂C with |E| ≤ 1.

Example 3.

(i) Consider a compact set K ⊂C with connected complement and let f be a function
that is continuous on K and holomorphic in K◦. Further assume that f has at least
one singularity on ∂K and denote by D ⊂ ∂K the set of all singularities. Let (pn) be a
sequence of polynomials converging uniformly on K to f (such a sequence exists by
Mergelian’s Theorem). Then, (pn) is strongly non-normal on D, hence also expanding
at every point z0 ∈ D with respect to C \ E for some set E ⊂C with |E| ≤ 1. Indeed,
since otherwise there exists a point z0 ∈ D, an open neighbourhood U of z0, and a
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subsequence (pnk ) of (pn) that converges uniformly on compact subsets of U to a
function holomorphic in U, contradicting that f does not have an analytic continuation
across z0 ∈ D.

(ii) Consider the function f (z) = |z| on the interval [−1, 1] and denote by (p	
n) the

sequence of polynomials of best uniform approximation to f on [−1, 1]. Then, accord-
ing to the previous example, (p	

n) is strongly non-normal at the point 0. However, since
p	

n(z) → ∞ for n → ∞ spherically uniformly on compact subsets of C \ [−1, 1] (e.g.
[28]), the family (p	

n) is strongly non-normal on [−1, 1], hence expanding at every
point z0 ∈ [−1, 1] with respect to C \ E for some set E ⊂C with |E| ≤ 1. (Note that
the strong non-normality on [−1, 1] also holds for several specific ray sequences of
best uniform rational approximants to f on [−1, 1] ([28, corollary 1·3]).) In fact, [5,
corollary 2] implies that (p	

n) is expanding on [−1, 1] with respect to C, as it shows
the existence of a subsequence (p	

nk
) of (p	

n) that is strongly expanding on [−1, 1] with
respect to C.

(iii) Consider again a function f (z) = ∑∞
ν=0 aνzν that is holomorphic on D and has at least

one singularity on ∂D. Then the family of partial sums (sn) is non-normal on ∂D,
hence, (sn) is expanding at every z0 ∈ ∂D with respect to C \ E for some set E ⊂C

with |E| ≤ 1. In fact, (sn) is expanding on ∂D with respect to C, as results in [5,13]

show that if (ank ) is a sequence such that limk→∞
∣
∣ank

∣
∣

1
nk = 1, the subfamily (snk ) is

strongly expanding on ∂D with respect to C.

A further consequence of Theorem 2 and the fact that we have Ez0(F) ⊂ E if F ⊂ M(�)
is expanding at z0 ∈ � with respect to C∞ \ E is the following statement for the case∣
∣Ez0(F)

∣
∣ = 2.

COROLLARY 2. Let � ⊂C be open and F ⊂ M(�) be a family of meromorphic functions.
Consider z0 ∈ � and suppose that F is (strongly) non-normal at z0 with

∣
∣Ez0 (F)

∣
∣ = 2. Then

F is (strongly) expanding at z0 with respect to C∞ \ Ez0 (F).

Proof. Suppose that F is non-normal at z0. By Corollary 1, there then exists E ⊂C∞ with
|E| ≤ 2 such that F is expanding at z0 with respect to C∞ \ E. Since Ez0 (F) ⊂ E, we obtain
Ez0(F) = E. If F is strongly non-normal at z0, every infinite subfamily F̃ ⊂F is non-normal
at z0 with Ez0 (F̃) = Ez0 (F), hence expanding at z0 with respect to C∞ \ Ez0(F).

Example 4.

(i) Consider again the family F := {enz + (1 − 1/n) : n ∈N}, which is strongly non-
normal at the point 0. It is easily seen that F is strongly expanding at 0 with respect
to C∞ \ {1, ∞}, but since E0(F) = {∞}, this can not be derived from Corollary 2.
On the other hand, the family F := {enz + (1 − 1/n!) : n ∈N} is strongly non-normal
at the point 0 with E0(F) = {1, ∞} (note that for each neighbourhood U of 0 and
each 1 �= w ∈C, there is some N with w − 1 + 1/n! ∈ exp (nU) for all n ≥ N, but
1/n! �∈ exp (nD) for sufficiently large n). So, in this case Corollary 2 can be applied.

(ii) Consider again a power series f (z) = ∑∞
ν=0 aνzν with radius of convergence 1

and denote by (sn) its partial sums. As mentioned in Example 3, the family
F = {sn : n ∈N} is expanding on ∂D with respect to C, so that for every z0 ∈ ∂D we
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have Ez0(F) = {∞} (note that this is also easily derived from the classical Jentzsch
Theorem ([19]) stating that for every a ∈C, every z0 ∈ ∂D is a limit point of a-points
of the partial sums). However, a further result of Jentzsch ([20]) states that there exist
power series with radius of convergence 1, such that the zeros of some subsequence
(snk ) of the partial sums do not have a finite limit point. Hence, in this case Corollary
2 shows that the family F̃ = {snk : k ∈N} is strongly expanding with respect to C \ {0}
at every point z0 ∈ ∂D at which the function does not admit an analytic continuation
(there must be at least one such point), since F̃ is strongly non-normal at such z0 with
Ez0(F̃) = {0, ∞}. In a similar vein, it was shown in [18, theorem 1] that there exists
a function f holomorphic on D and continuous on D with at least one singularity
on ∂D, for which the zeros of some subsequence (p	

nk
) of the sequence (p	

n) of
polynomials of best uniform approximation do not have a finite limit point. Hence,
as before, Corollary 2 can be applied to the family F = {p	

nk
: k ∈N} at every singular

point z0 ∈ ∂D of f , since F is strongly non-normal at z0 (see Example 3 (i)) and we
have Ez0 (F) = {0, ∞}. Moreover, [18, theorem 2] shows the existence of a function f
that is holomorphic on D and continuous on D with at least one singularity on ∂D, for
which there is a sequence (qn) of polynomials of near-best uniform approximation
that has no finite limit point of zeros. Hence, in this case Corollary 2 implies that
the family F = {qn : n ∈N} is strongly expanding with respect to C \ {0} at every
singular point z0 ∈ ∂D of f .

4. Expanding families of derivatives

In the following, we show that under certain conditions, (strong) non-normality of a fam-
ily F ⊂ M(�) at a point z0 ∈ � implies that the family of derivatives is (strongly) expanding
at z0 with respect to C \ {0}, hence in particular (strongly) non-normal at z0. Throughout
this section, we denote by F(k) the family of kth derivatives of the functions in F, that is
F(k) = {f (k) : f ∈F}, where k is some natural number.

THEOREM 3. Let � ⊂C be open and F ⊂ M(�) be a family of meromorphic functions.
Consider z0 ∈ � and suppose that F is (strongly) non-normal at z0. Further assume that F
is not expanding at z0 with respect to C. Then, for every k ∈N, the family F(k) is (strongly)
expanding at z0 with respect to C \ {0}.

Proof. We first assume that F is strongly non-normal at z0. By assumption, F is not
expanding at z0 with respect to C, hence there exists an open neighbourhood U1 of z0 and a
compact set K1 ⊂C such that K1 \ f (U1) �= ∅ holds for cofinitely many f ∈F.

Now assume that there exists k ∈N, such that F(k) is not strongly expanding at z0 with
respect to C \ {0}. Then there exists an open neighbourhood U2 of z0 and a compact set
K2 ⊂C \ {0} such that K2 \ f (k)(U2) �= ∅ holds for infinitely many f ∈F.

In particular, we can find a sequence (fn) in F, and sequences (c(1)
n ) in K1 and (c(2)

n ) in K2,
such that the equations fn(z) = c(1)

n and f (k)
n (z) = c(2)

n have no roots in U := U1 ∩ U2 for every
n ∈N. From [10, theorem 3·17], which is an extension of Gu’s famous normality criterion
(e.g. [17,29]), we obtain that (fn) is normal in U, hence also at z0, in contradiction to the
strong non-normality of F at z0.

If F is non-normal at z0, there exists an infinite subfamily F̃ ⊂ F that is strongly non-
normal at z0. By assumption, F is not expanding at z0 with respect to C, hence the same
holds for F̃, so that by the above argumentation, F̃(k) is strongly expanding at z0 with respect
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to C \ {0} for every k ∈N. Hence, F(k) is expanding at z0 with respect to C \ {0} for every
k ∈N.

Remark 3. Note that the assumption that F is not expanding at z0 with respect to C turns
out to be necessary, as is seen e.g. by considering the sequence of polynomials fn(z) = nz
and z0 = 0. Moreover, it is easily seen that a similar argumentation as in the proof of the
theorem leads to the following result: Let � ⊂C be open and F ⊂ M(�) be a family of
meromorphic functions. Consider z0 ∈ � and suppose that F is (strongly) non-normal at z0.
Further assume that for some k ∈N, the family F(k) is not expanding at z0 with respect to
C \ {0}. Then, the family F is (strongly) expanding at z0 with respect to C.

COROLLARY 3. Let � ⊂C be open and F ⊂ M(�) be a family of meromorphic functions.
Consider z0 ∈ � and suppose that F is (strongly) non-normal at z0. Suppose further that
there exists an open neighbourhood U of z0 and a number M > 0, such that for cofinitely
many f ∈F there is a point af ∈C with

∣
∣af

∣
∣ < M and af /∈ f (U). Then, for every k ∈N, the

family F(k) is (strongly) expanding at z0 with respect to C \ {0}.
Proof. Since it follows from the assumptions that F is not expanding at z0 with respect to

C, the statement follows from Theorem 3.

Note that the assumptions of Corollary 3 are fulfilled if F ⊂ M(�) is (strongly)
non-normal at z0 ∈ � and for some a ∈C we have a ∈ Ez0(F), hence in particular if∣
∣Ez0(F)

∣
∣ = 2.

Example 5.

(i) In Example 4 (ii) we considered strongly non-normal families F of polynomials for
which Ez0(F) = {0, ∞}, hence we obtain that the corresponding families of derivatives
F(k) are strongly expanding at z0 with respect to C \ {0} for every k ∈N.

(ii) Consider the family (fn) with fn := exp◦n, the nth iterate of ez. Then J(fn) coincides
with the Julia set of ez, which is known to equal C ([25]). According to Example 1
(i), we thus have that (fn) is strongly non-normal on C. Furthermore, we obviously
have 0 ∈ Ez0(fn) for every z0 ∈C, so that Corollary 3 implies that for every k ∈N, the

family (f (k)
n ) is strongly expanding on C with respect to C \ {0}.

We mention that the statement of Corollary 3 remains valid to some extent, if instead of
omitting a value af in some neighbourhood of z0, cofinitely many functions f ∈F have a
value af that they take with sufficiently high multiplicity in that neighbourhood.

PROPOSITION 3. Let � ⊂C be open and F ⊂ M(�) be a family of meromorphic functions.
Consider z0 ∈ � and suppose that F is (strongly) non-normal at z0. Suppose further that
there exists an open neighbourhood U of z0, a number M > 0 and some k ∈N, such that for
cofinitely many f ∈F there is a point af ∈C with

∣
∣af

∣
∣ < M, such that the af -points of f in

U have multiplicity at least k + 2. Then the family F(k) is (strongly) expanding at z0 with
respect to C \ {0}.

Proof. Again, we first consider the case that F is strongly non-normal at z0. Assuming
that F(k) is not strongly expanding at z0 with respect to C \ {0}, there exists an open
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neighbourhood U1 of z0 and a compact set K ⊂C \ {0} such that K \ f (k)(U1) �= ∅ for
infinitely many f ∈F. In particular, we can find a sequence (cn) in K with cn → c for some
c �= 0, and a sequence (fn) in F such that cn /∈ f (k)

n (U1) for every n ∈N. For n ∈N sufficiently
large, say n > N, there is a point afn ∈C with

∣
∣afn

∣
∣ < M, such that the afn-points of fn in U

have multiplicity at least k + 2. Setting gn(z) = fn(z) − afn for n > N, we obtain that the func-
tions gn only have zeros of multiplicity at least k + 2 in U′ := U ∩ U1. Furthermore, since
cn /∈ g(k)

n (U′) for every n > N, it follows from [9, lemma 2·7] that the family {gn : n > N} is
normal in U′, and as

∣
∣afn

∣
∣ < M for every n > N, the same holds for the family {fn : n > N}.

This is in contradiction to the strong non-normality of F at z0.
If F is non-normal at z0, the statement follows as before from the fact that F contains a

strongly non-normal subfamily.
In general, the number k + 2 can not be replaced by k + 1 in Proposition 3. Indeed, for

fixed k ∈N, the family (fn) with

fn(z) = 1

k!
zk+1

(z − 1
n )

is strongly non-normal at the point 0 and has only zeros of multiplicity k + 1 (see also
[31]). But as f (k)

n (z) �= 1 for every n ∈N and every z ∈C, the familiy (f (k)
n ) is obviously not

expanding at 0 with respect to C \ {0}. Nevertheless, under certain additional conditions,
k + 2 can be replaced by k + 1:

PROPOSITION 4. Under each of the following additional conditions, the statement of
Proposition 3 remains valid if k + 2 is replaced by k + 1:

(i) the functions f ∈ F are holomorphic in �;

(ii) the functions f ∈ F only have multiple poles;

(iii) there exists a sequence (zn) in � with zn → z0 and F is strongly non-normal at zn for
every n ∈N.

Proof. Using [7, lemma 4] and [27, lemma 6], respectively, the proofs of (i) and (ii) are
similar to the proof of Proposition 3. In order to prove the third statement, we note that
using [8, lemma 2·9], a similar argumentation as in the proof of Proposition 3 implies
that the family (gn) with gn(z) = fn(z) − afn is quasinormal in some neighbourhood U of
z0. Since

∣
∣afn

∣
∣ < M for every n ∈N, the same then holds for the family (fn) ([10, lemma

5·2]). This contradicts the assumption that the set {z : F is strongly non-normal at z} has an
accumulation point in U.

Acknowledgements. The authors would like to thank the anonymous reviewer for his
careful reading of the manuscript and his valuable comments and suggestions.

REFERENCES

[1] H.-P. BEISE, T. MEYRATH and J. MÜLLER. Universality properties of Taylor series inside the
domain of holomorphy. J. Math. Anal. Appl. 383 (2011), 234–238.

[2] H.-P. BEISE, T. MEYRATH and J. MÜLLER. Limit functions of discrete dynamical systems. Conform.
Geom. Dyn. 18 (2014), 56–64.

[3] H.-P. BEISE, T. MEYRATH and J. MÜLLER. Mixing Taylor shifts and universal Taylor series. Bull.
London Math. Soc. 47 (2015), 136–142.

https://doi.org/10.1017/S0305004121000700 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000700


Non-normality, transitivity and expanding families 523

[4] L. BERNAL-GONZÁLEZ, A. JUNG and J. MÜLLER. Universality vs. non-normality of families of
meromorphic functions. Proc. Amer. Math. Soc. 149 (2021), 761–771.

[5] H. P. BLATT, S. BLATT and W. LUH. On a generalization of Jentzsch’s theorem. J. Approx. Theory
159 (2009), 26–38.

[6] L. CARLESON and T. W. GAMELIN. Complex Dynamics (Springer, New York, 1993).
[7] J.-F. CHEN. Exceptional functions and normal families of holomorphic functions with multiple zeros.

Georgian Math. J. 18 (2011), 31–38.
[8] Q. CHEN, X. PANG and P. YANG. A new Picard type theorem concerning elliptic functions. Ann.

Acad. Sci. Fenn. Math. 40 (2015), 17–30.
[9] C. CHENG and Y. XU. Normality concerning exceptional functions. Rocky Mt. J. Math. 45 (2015),

157–168.
[10] C.-T. CHUANG. Normal families of meromorphic functions, (World Scientific, 1993).
[11] J. CLUNIE and W. K. HAYMAN. The spherical derivative of integral and meromorphic functions.

Comment. Math. Helv. 40 (1966), 117–148.
[12] J. B. CONWAY. Functions of One Complex Variable, I 2nd ed., (Springer, New York, 1978).
[13] A. DVORETZKY. On sections of power series. Ann. of Math. 51 (1950), 643–696.
[14] P. FATOU. Sur l’itération des fonctions transcendantes entières. Acta Math. 47 (1926), 337–360.
[15] S. GARDINER. Existence of universal Taylor series for nonsimply connected domains. Constr. Approx.

35 (2012), 245–257.
[16] W. GEHLEN. Overconvergent power series and conformal maps. J. Math. Anal. Appl. 198 (1996),

490–505.
[17] Y. X. GU. A normal criterion of meromorphic families. Sci. Sinica 1 (1979), 267–274.
[18] K. G. IVANOV, E. B. SAFF and V. TOTIK. On the behavior of zeros of polynomials of best and

near-best approximation. Canad. J. Math. 43 (1991), 1010–1021.
[19] R. JENTZSCH. Untersuchungen zur Theorie der Folgen analytischer Funktionen. Acta. Math. 41

(1918) 219–251.
[20] R. JENTZSCH. Fortgesetzte Untersuchungen über die Abschnitte von Potenzreihen. Acta. Math. 41

(1918), 253–270.
[21] K.-G. GROSSE-ERDMANN and A. PERIS. Linear Chaos, (Springer, London, 2011).
[22] T. KALMES, J. MÜLLER and M. NIESS. On the behaviour of power series in the absence of

Hadamard–Ostrowski gaps. C. R. Math. Acad. Sci. Paris 351 (2013), 255–259.
[23] A. MELAS. Universal functions on nonsimply connected domains. Ann. Inst. Fourier (Grenoble) 51

(2001), 1539–1551.
[24] D. MINDA. Yosida functions, Lectures on Complex Analysis (Xian, 1987), C.-T. CHUANG (ed.)

(World Scientific, Singapore, 1988), 197–213.
[25] M. MISIUREWICZ. On iterates of ez. Ergod. Theory Dynam. Systems. 1 (1981), 103–106.
[26] S. MOROSAWA, Y. NISHIMURA, M. TANIGUCHI and T. UEDA. Holomorphic Dynamics. (Cambridge

University Press, Cambridge, 2000).
[27] S. NEVO, X. PANG and L. ZALCMAN. Quasinormality and meromorphic functions with multiple

zeros. J. Anal. Math. 101 (2007), 1–23.
[28] E. B. SAFF and H. STAHL. Ray sequences of best rational approximants for |x|α . Canad. J. Math. 49

(1997), 1034–1065.
[29] J. L. SCHIFF. Normal Families, Springer, (New York, Berlin, Heidelberg, 1993).
[30] D. SCHLEICHER. Dynamics of entire functions. In: Holomorphic Dynamical Systems. Lecture Notes

in Math. vol. 1998 (Springer, Berlin, 2010), 295–339.
[31] Y. WANG and M. FANG. Picard values and normal families of meromorphic functions with multiple

zeros. Acta Math. Sinica (N.S.) 14 (1998), 17–26.
[32] K. YOSIDA. On a class of meromorphic functions. Proc. Phys.-Math. Soc. Japan 16 (1934), 227–235.

https://doi.org/10.1017/S0305004121000700 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000700

	Introduction
	Non-normality and topological transitivity
	Non-normality and expanding families
	Expanding families of derivatives

