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We present a model of sedimentation in a subsiding fluvio-deltaic basin with steady sediment

supply and unsteady base level. We demonstrate that mass transfer in a fluvio-deltaic basin

is analogous to heat transfer in a generalized Stefan problem, where the basin’s shoreline

represents the phase front. We obtain a numerical solution to the governing equations

for sediment transport and deposition in this system via an extension of a deforming-

grid technique from the phase-change literature. Through modification of the heat-balance

integral method, we also develop a semi-analytical solution, which agrees well with the

numerical solution. We construct a space of dimensionless groups for the basin and perform a

systematic exploration of this space to illustrate the influence of each group on the shoreline

trajectory. Our model results suggest that all subsiding fluvio-deltaic basins exhibit a standard

autoretreat shoreline trajectory in which a brief period of shoreline advance is followed by

an extended period of shoreline retreat. Base-level cycling produces a shoreline response that

varies relative to the autoretreat signal. Contrary to previous studies, we fail to observe either

a strong phase shift between shoreline and base level or a pronounced attenuation of the

amplitude of shoreline response as the frequency of base-level cycling decreases. However, the

amplitude of shoreline response to base-level cycling is a function of the basin’s age.

1 Introduction

A sedimentary basin is a significant thickness of genetically related sedimentary rock

that accumulates due to subsidence of the earth’s crust over geologic time scales [1].

The creation and destruction of sedimentary basins are attributable to the movement of

rigid lithospheric plates that comprise the earth’s upper mantle and crust; sedimentary

basins are thus a direct consequence of plate tectonics. Tectonic uplift of the earth’s crust

exposes previously buried rocks, including ancient sedimentary basins, to the surficial

processes of erosion and long distance transport by rivers, which together create a supply

of sediment and deliver it to regions of tectonically driven crustal subsidence, where it

accumulates and is preserved as the deposits of a sedimentary basin. Subsidence is a

necessary condition for the formation of a sedimentary basin; it is the only mechanism by

which a significant thickness (kilometers) of sedimentary rock can accumulate. Regions of

crustal uplift and net erosion commonly are separated from regions of subsidence and net
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Figure 1. A simplified fluvio-deltaic basin.

sediment accumulation by fault zones in which tectonic stresses are dissipated via relative

motion of the crust.

A fluvio-deltaic sedimentary basin consists of a subaerial fluvial plain, where sediment

is transported and deposited by rivers, coupled to a subaqueous delta, where sediment

transport and deposition occur via slope failure (avalanching), the settling of fine-grained

sediments from suspension in the water column, and the entrainment and deposition of

sediment by wind- and tide-generated currents. The boundary between the fluvial and

deltaic regimes is the shoreline, where, by definition, the elevation of the earth’s surface

coincides with base level. For most basins, base level is sea level. Figure 1 shows a

simplified fluvio-deltaic basin in which a long, linear fault zone separates a subsiding

crustal block, which serves as a locus of sediment accumulation, from an uplifted and

eroded crustal block, which is the basin’s sediment source. To first order, the geometry

of the basin is independent of the transverse (fault-parallel) direction. This independence

is a consequence of the continual transverse migration and periodic reorganization of

individual river channels on the fluvial plain, which, on geologic time scales, distribute

sediment uniformly in the transverse direction. Because the river channels are the ultimate

source of sediment for the delta, the same channel migration and switching are responsible

for the uniform distribution of sediment across the width of the delta. The effects of

currents enhance this transverse smearing process.

Preservation of depositional and erosional surfaces within the basin generates the strata

that give sedimentary rocks a characteristic layered appearance at a variety of length

scales. Stratigraphy is the study of the geometry and chronology of strata. In fluvio-

deltaic basins the generation of large-scale stratigraphic signals is driven by three basin

boundary conditions: (1) sediment supply to the basin, (2) the spatial distribution and

rate of tectonic subsidence, and (3) base level. The stratigraphic evolution of a fluvio-

deltaic basin can be envisioned as a competition between these boundary conditions.
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Growth of the fluvial plain and delta is driven by the supply of sediment to the basin

and the efficacy of its transport and deposition. Together these produce an increase

in the elevation of the depositional surface and an overall lengthening of the fluvio-

deltaic system. This lengthening is attenuated by tectonic subsidence, which lowers the

depositional surface and creates space that must be filled for continued growth. The

simplistic depositional strata (dashed lines) of Figure 1 reflect the evolution of this

balance between sediment supply and subsidence. Fluctuations in base level can affect

profoundly this balance by influencing the partitioning of sediment between the fluvial

plain and the delta, which in turn determines the growth rate of one section relative to

the other. A basin’s strata record the complex superposition of these boundary conditions

over its lifespan.

Stratigraphers use this record to solve the inverse problem: the strata are used to

infer a basin’s history of sediment supply, tectonism, and base level. Not unexpectedly, a

unique solution to the inverse problem is difficult to obtain. A fundamental problem is the

uncertainty and/or inapplicability of rock dating methods. Also, the identification and

correlation of stratigraphic indicators are non-trivial and fraught with uncertainty. When

observed at the outcrop scale, basin-scale stratigraphic indicators are commonly subtle

features, often difficult to discern, and thus subject to the bias of human interpretation.

Mapping of these features requires that they be correlated between outcrops, and the

certainty of such correlation depends strongly on the frequency of outcrops, which in

many locations is limited. Furthermore, crustal deformation associated with tectonic

uplift and exposure of ancient basins often disrupts the lateral continuity of stratigraphic

indicators and renders their correlation problematic.

In a fluvio-deltaic basin, the shoreline is associated with a relatively unambiguous lateral

transition in grain size, sedimentary structures, and depositional slope that records the

change from fluvial to submarine transport processes. The width of this transition zone,

which is controlled by the strength of waves and tides and by the sediment grain size

delivered to the delta, scales the uncertainty associated with the identification of shoreline

in the basin’s strata. In general, this width is small relative to the basin’s characteristic

length scale. Hence, in contrast to many basin-scale stratigraphic indicators, the ancient

shoreline often can be identified with near certainty and its position tightly constrained.

The shoreline can be envisioned as an internal moving boundary of the fluvio-deltaic

system. At any time, its lateral position is determined by a complex interaction of the

basin’s boundary conditions. Its trajectory preserved in the basin’s strata provides a

record of this interaction. An understanding of the shoreline response to sediment supply,

tectonic subsidence, and base level is therefore of fundamental importance to stratigraphers

interested in solving the aforementioned inverse problem. In addition, because the shoreline

trajectory of many basins preserves information of past sea level, a careful comparison of

shoreline trajectories from basins of similar age allows stratigraphers to reconstruct the

history of global sea level.

Our objectives in this paper are to (1) develop a mathematical model of fluvio-deltaic

sedimentation in a subsiding basin with fluctuating base level, (2) demonstrate that this

model is a generalized Stefan problem, in which the shoreline represents the moving

boundary, (3) identify a set of dimensionless groups associated with the problem, and (4)

illustrate how these groups control the shoreline trajectory.
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2 A basin filling model

2.1 Previous work

Previous models of basin-scale sedimentation on geologic time scales can be classified

broadly as either geometric, in which some aspect (typically the slope) of the sediment-

water interface is specified, or dynamic, in which the sediment-water interface evolves

according to a quantitative representation of sediment transport and deposition. Pitman

[16] presented a simple and elegant model, amenable to analytical solution, with which he

studied the shoreline response to the rate of base-level fall. Angevine [2] extended Pitman’s

model to treat periodic fluctuations in the rate of base-level fall and demonstrated the

existence of a frequency-dependent phase shift between shoreline position and base level.

In addition, Angevine [2] showed that the amplitude of shoreline response to base level

is strongly attenuated such that a basin behaves as a high-pass filter to base-level cycling.

Jervey [7] and Posamentier and Vail [17] generated a suite of graphical, mass-conserving

models in which the geometry of the fluvial plain and delta are known a priori.

Existing dynamic models of basin-scale sedimentation have focused generally on the

generation and interpretation of strata and not on the determination of the shoreline

trajectory. Kenyon and Turcotte [10] presented a diffusional model of equilibrium deltaic

sedimentation in a non-subsiding, flat-bottomed basin in which a priori knowledge of the

rate of shoreline advance was assumed. Paola et al. [14] addressed sedimentation in a

purely fluvial basin, i.e. a basin without a submarine component, as a diffusional process

with a moving boundary at the downstream terminus of the river network. Flemings &

Jordan [4] and Jordan & Flemings [8] presented coupled, diffusional treatments of fluvial

and submarine sedimentation in which the fluvial and submarine regimes were assigned

different diffusivities. These authors did not discuss the moving-boundary aspects of their

problems and, on the basis of computed shoreline position, enforced a posteriori conditions

on the spatial distribution of diffusivity. Finally, Kaufman et al. [9] modeled fluvial and

deltaic sedimentation as a non-linear diffusional process with a depth-dependent diffusivity.

2.2 Mathematical model

Consider a cross section through an idealized fluvio-deltaic basin such as that shown in

Figure 2. A steady flux of sediment is delivered to the basin, 0 6 x 6 L, as a line source of

strength qso at x = 0. The basement of the basin, b(x, t), is subsiding under the influence

of regional tectonism at a specified, steady, and spatially variable rate, σ(x), where σ is

measured positive downward and has a mean value σ. The base level, Zbl(t), can vary in

time in a prescribed manner with an amplitude and period of A and T , respectively. We

denote by s(t) and u(t), respectively, the positions of the shoreline and the intersection of

the delta toe with basement. The elevation of the sediment-water interface is η(x, t).

We introduce four terms from the geologic nomenclature that will facilitate later discus-

sion. In the context of this development, regression and transgression refer, respectively,

to the seaward (̇s > 0) and landward (̇s < 0) migration of the shoreline. Progradation and

retrogradation refer, respectively, to the seaward growth (u̇ > 0) and landward retreat

(u̇ < 0) of the entire fluvio-deltaic system; note that shoreline transgression is possible in

a prograding fluvio-deltaic system.
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Figure 2. Cross section of an idealized basin used in the mathematical model.

Sediment transport in the submarine section, s(t) 6 x 6 u(t), is dominated by avalanche

processes. In our model, submarine slope readjustment proceeds at a rate that is large

relative to that which characterizes fluvial sediment transport such that the delta maintains

a linear profile of slope α, where in general α is a function of grain size, pore pressure,

and seismicity. We ignore the net offshore transfer of sediment by wind- and tide-

generated currents. Our model of passive (grain flow) submarine sediment transport is

most applicable to coarse-grained systems with low wave energy, in which transport of

sediment in suspension is minimal.

Sediment transport in the fluvial section is diffusional. The sediment flux, qs(x, t), varies

linearly with the slope of the sediment-water interface such that the sediment continuity

equation reduces to a linear diffusion equation in η(x, t) with a sink term to represent

sediment extraction via tectonic subsidence,

∂η

∂t
+ σ(x) = υ

∂2η

∂x2
, 0 6 x 6 s(t), (2.1)

where the sediment diffusivity, υ, depends primarily on the water discharge in the fluvial

system [14]. The appendix contains a simplified derivation of (2.1).

We apply the following boundary conditions to (2.1)

∂η

∂x

∣∣∣∣
0,t

= −qso
υ
, (2.2)

η(s, t) = Zbl(t). (2.3)

The Neumann condition (2.2) relates the bed slope at the basin’s upstream boundary to

the strength of the sediment line source, and the Dirichlet condition (2.3) equates the bed

elevation at the shoreline to base level. An additional relation is required to locate the

shoreline and thereby close the problem. We enforce global sediment conservation

qso =
d

dt

∫ s

0

(η − b)dx+
d

dt

∫ u

s

[Zbl + α(s− x)− b]dx, (2.4)
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and use the relations

∂b

∂t
= −σ(x), (η − b)|u,t = 0, (2.5)

to derive an expression for sediment transfer between the fluvial and deltaic regimes

−υ ∂η
∂x

∣∣∣∣
s,t

= qs(s, t) = (u− s)
(
α
ds

dt
+
dZbl

dt

)
+

∫ u

s

σ(x)dx. (2.6)

Equation (2.6) can be derived from purely geometric arguments.

The incipient basin has no fluvial section, a uniform water depth of H , and an initial

delta length of H · α−1. The initial condition is

s(0) = 0. (2.7)

Subsidence is the sum of constant and deviatoric terms, both of which scale with the

mean subsidence rate

σ(x) = σ
[
1 + χΓ

(
x · L−1

)]
, (2.8)

where Γ is a dimensionless, O(1) function, and χ sets the amplitude of the deviatoric term.

Note that the tectonic length scale (L) is embedded in Γ . We restrict our analysis to a

continuum of first-order subsidence profiles, for which

Γ = −1 + 2x · L−1, χ ∈ [−1, 1] . (2.9)

Likewise, the base level is the sum of equilibrium and periodic components

Zbl(t) = Zeq + Aζ
(
t · T−1

)
, (2.10)

where ζ is any dimensionless, periodic, O(1) function. Here, we impose sinusoidal forcing,

ζ(t) = sin 2πt · T−1 (2.11)

and allow Zeq → 0. In the interest of generality, we retain the Γ and ζ notation.

We restrict our analysis to progradation (u̇ > 0) across basement, in which case the

position of the delta toe is

u(t) = [Aζ + αs+H + (1− χ)σt] ·
(
α− 2χ

σt

L

)−1

. (2.12)

The seaward basin boundary is defined by a symmetry plane, parallel to the y − z plane,

at x = L. Should the delta toe intersect this plane, its position will remain fixed, i.e.

u = L, though its elevation may vary according to the balance between sedimentation and

subsidence rates. In general, if the rate of relative base-level rise, i.e. σ+ Żbl , is sufficiently

large, the delta toe may retreat, in which case the system is retrogradational, (2.12) no

longer holds, and the position of the delta toe is determined via its intersection with

previously deposited sediments. We do not address this scenario here, as the additional

complexity would blur the analysis.
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3 A generalized Stefan problem

We can write (2.6) as an integro-differential equation for the shoreline trajectory

(u− s)αds
dt

= qs(s, t)− (u− s)dZbl
dt
−
∫ u

s

σ(x)dx. (3.1)

The fluvial system cannot extract sediment from the delta, i.e. qs(s, t) > 0, which is

equivalent to a statement of unidirectional mass transfer across the shoreline. The rate

of shoreline translation is thus determined by the balance between sediment supplied to

the shoreline by the fluvial system, qs(s, t), and the net rate at which space is created or

destroyed across the delta by the combination of tectonic subsidence and fluctuations in

base level. If this balance is positive, i.e. if the fluvial system can deliver more sediment

to the shoreline than is required to maintain the present delta configuration, the shoreline

will advance; conversely, if this balance is negative, the shoreline will retreat such that the

fluvial system is shortened sufficiently for (3.1) to be satisfied with qs(s, t) > 0.

Our model of fluvio-deltaic sedimentation is a generalized Stefan problem [3], in which

the shoreline is analogous to a melting front, the fluvial bed elevation is equivalent to the

temperature distribution in a conduction-dominated liquid phase, base level and water

depth at the delta toe are analogous to the time-dependent melting temperature and latent

heat, respectively, and tectonic subsidence can be envisaged as a distributed heat sink in

the liquid phase. We interpret (3.1) as a generalized Stefan condition that equates the

rate of shoreline translation to the sum of sediment flux delivered to the shoreline by the

fluvial system and a pair of source/sink terms that embodies the net rate at which space

is created across the delta.

In the limit of zero subsidence (σ → 0), steady base level (Żbl → 0), and uniform water

depth H , the governing equation (2.1), boundary conditions (2.2, 2.3, and 2.6), and initial

condition (2.7) reduce to

∂η

∂t
= υ

∂2η

∂x2
, 0 6 x 6 s(t), (3.2)

∂η

∂x

∣∣∣∣
0,t

= −qso
υ
, (3.3)

η(s, t) = 0, (3.4)

−υ ∂η
∂x

∣∣∣∣
s,t

= qs(s, t) = H
ds

dt
, (3.5)

s(0) = 0, (3.6)

In this limit, the analogy to the fixed-flux, single-phase Stefan problem [3] is exact.

4 Dimensional analysis

In this section, we use the length, elevation, and time scales, L, qsoL · υ−1, and L2 · υ−1,

respectively, to recast the governing equations in dimensionless form and thereby identify

a set of dimensionless groups that (1) controls the behaviour of a subsiding fluvio-deltaic

basin with unsteady base level and (2) allows for the meaningful comparison of shoreline
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trajectories from basins of differing size, sediment supply, transport efficiency, and tectonic

style. The basin of Figure 2 is described by a set of six independent, dimensionless groups

{em, Λ, χ, bo, ε, τ} ≡
{
qso

αυ
,
qso

σL
, χ,

Hυ

qsoL
,
Aυ

qsoL
,
Tυ

L2

}
, (4.1)

which defines a parameter space for the problem.

If sediment transport in the marine regime is slope-dependent, then the ratio of slope

scales, em, is the relative efficiency of marine sediment transport; we expect em < 1. The

capture ratio, Λ, embodies the global balance between sediment supplied to the basin

and the rate at which space is created by tectonic subsidence [13]. The basin’s spatial

distribution of subsidence, i.e. its tectonic style, is controlled by χ. The dimensionless

initial water depth is bo. Finally, ε and τ are the dimensionless amplitude and period of

any imposed base-level forcing.

It is instructive to quantify the length, elevation, and time scales that characterize a

subsiding fluvio-deltaic basin. We are interested in modelling the deposition of kilometers

of sediment on geologic time scales, i.e. tens of million of years, in basins with tectonic

length scales of hundreds of kilometers and for which sea level is base level. We define a

representative basin with a tectonic length scale (L) of 103 km and a fluvial diffusivity (υ)

of 106 m2 · a−1, which together yield a basin response time (L2 · υ−1) of one million years

(1 Ma). (The Appendix contains a derivation of υ and the calculation of its value for this

representative basin.) The fluvial slope scale for a basin of this size does not exceed a few

parts in a thousand, and we set qso · υ−1 = 10−3 for the representative basin, which yields

an elevation scale (qsoL · υ−1) of 1 km.

The depositional slope scale of the marine system (α) is greater than that of its fluvial

counterpart, and based on observation we do not expect the ratio of slopes scales, i.e.

em, to be less than a few parts in a hundred [18]. Hence, 10−2 < em < 100, and we

assign the representative basin a marine efficiency of 10−1. The choice of representative

values for the remaining groups ( Λ , χ , and bo ) is somewhat arbitrary. We restrict our

analysis to starved basins, for which 0 < Λ < 1, and set Λ = 0.5. The representative basin

has no deviatoric subsidence component (χ = 0). The only restriction on bo is that the

dimensionless initial delta length be small relative to unity; we assign bo a value of 10−1,

which gives u(0) = 10−2. The representative basin thus occupies the point {0.1, 0.5, 0.0, 0.1}
in the subspace {em, Λ, χ, bo}.

We can constrain the values of ε and τ by considering two widely accepted mechanisms

for global (eustatic) sea-level change. First, variations in the rate of sea-floor spreading

are thought to produce high-amplitude, low-frequency (A ≈ 102 m, 101 < T < 102 Ma)

eustatic fluctuations [16]. Second, changes in the volume of continental ice sheets have been

shown to generate high-amplitude, high-frequency (101 < A < 102 m, 10−2 < T < 100

Ma) glacio-eustatic fluctuations [5]. Thus, for qsoL · υ−1 and L2 · υ−1 of 1 km and 1 Ma,

respectively, we might expect 0 < ε < 10−1 and 10−2 < τ < 102. We define a representative

base-level cycle by {ε, τ} = {5 · 10−2, 100}.
The dimensionless governing equation, boundary conditions, and initial condition are

∂η

∂t
+

1

Λ
[1 + χΓ (x)] =

∂2η

∂x2
, 0 6 x 6 s(t), (4.2)
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∂η

∂x

∣∣∣∣
0,t

= −1, (4.3)

η(s, t) = εζ(t · τ−1), (4.4)

−∂η
∂x

∣∣∣∣
s,t

= qs(s, t) = (u− s)
(

1

em

ds

dt
+ ε

dζ

dt
+

1

Λ

)
+
χ

Λ

∫ u

s

Γ (x)dx, (4.5)

s(0) = 0, (4.6)

where for the remainder of the manuscript, unless otherwise noted, all variables are

dimensionless. With Γ given by (2.9), the position of the delta toe is

u(t) =

[
s

em
+ εζ + bo +

t

Λ
(1− χ)

]
·
(

1

em
− 2t

χ

Λ

)−1

. (4.7)

Note that we recover the limiting case of § 3 with Λ → ∞, bo → 1, ε → 0, and χ and τ

irrelevant.

5 Solution techniques

5.1 Numerical method

A closed-form analytical solution to (4.2)–(4.7) is unavailable. We obtain a numerical

solution via a front-tracking, control-volume approach, similar to that described in Voller

and Peng [20], with 101 uniformly distributed nodes. To capture accurately the small-time

shoreline behavior, we use a logarithmic temporal discretization. The fluvial bed elevation

and the (non-zero) shoreline position at the initial simulation time are approximated with

a semi-analytical solution discussed below.

5.2 Mass Balance Integral (MBI) method

Integral-profile methods commonly are used to obtain approximate, semi-analytical so-

lutions to moving-boundary problems. The classic example is the Heat-Balance Integral

approach used in solidification studies, whereby the temperature distribution is approxi-

mated with a low-order polynomial and the principle of global energy conservation used

to derive an ordinary differential equation in the position of the phase front [6]. We use

a modified version of this approach – the Mass Balance Integral (MBI) method – to

generate approximate shoreline trajectories from (4.2)–(4.7).

The approximate fluvial bed elevation is the sum of a polynomial of order M and base

level

η(x, t) ≈
M∑
m=1

am(s− x)m + εζ, 0 6 x 6 s(t). (5.1)

For steady sediment supply, the global sediment budget is simply∫ u

0

(η − b) = t+ 1
2
emb

2
o, (5.2)

where the second term on the right-hand side of (5.2) is the area of the sediment wedge

https://doi.org/10.1017/S0956792500004198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792500004198


442 J. B. Swenson et al.

filling the incipient basin. Expanding (5.2) gives a polynomial of order M + 1 in s(t)

M∑
m=1

am

m+ 1
sm+1 − 1

2em
(u− s)2 + (bo + εζ)u+

ut

Λ
[1 + χ(u− 1)] = t+ 1

2
emb

2
o. (5.3)

We limit the present analysis to M 6 3, for which the am satisfy

a2
1 + c1a1 + c0 = 0,

c1 = (s− u)
[
ε
dζ

dt
+

1

Λ
+
χ

Λ
(u+ s− 1)− 1

ems

(
δM,2 + δM,3

)]
, (5.4)

c0 =
(u− s)
em

[
ε
dζ

dt
+

1

Λ
(1− χ+ 2χs)− 1

s
δM,2 −

(
1

s
+
χ

Λ
s

)
δM,3

]
,

a2 =
1

2s

(
1− a1 +

χ

Λ
s2δM,3

) (
δM,2 + δM,3

)
, (5.5)

a3 = − χ

3Λ
δM,3, (5.6)

(δ is the Kroneker delta function.) We determine the am as follows:

(i) Equation (5.6) is a consequence of steady sediment supply

dqs

dt

∣∣∣∣
0,t

=
∂3η

∂x3

∣∣∣∣
0,t

− χ

Λ

dΓ

dx

∣∣∣∣
0

. (5.7)

(ii) The Neumann condition at the sediment source gives (5.5).

(iii) We obtain (5.4) by enforcing the shoreline Stefan condition and then using the rate

of change in bed elevation at the shoreline

dη

dt

∣∣∣∣
s,t

=
ds

dt
· ∂η
∂x

∣∣∣∣
s,t

+
∂2η

∂x2

∣∣∣∣
s,t

− 1

Λ
[1 + χΓ (s)] = ε

dζ

dt
(5.8)

to eliminate the explicit dependence on ṡ, which reduces (5.3) to a simple transcen-

dental equation in s(t).

For the case of M = 1 an alternative approach is to satisfy the Neumann condition

at the sediment source, in which case a1 = 1. We demonstrate below that this approach

often gives satisfactory results.

6 Results

In this section we present shoreline trajectories generated from numerical and semi-

analytical solutions to the governing equations of § 4; due to space limitations, we present

a single cross section of basin strata.

6.1 The representative basin’s stratigraphic response with steady base level

The representative basin’s strata and corresponding shoreline trajectory (numerical and

semi-analytical solutions) are shown in Figures 3 and 4, respectively. The trajectory is
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Figure 3. Representative basin’s strata at t = 2.0 with temporal spacing of ∆t = 0.1.

characteristic of a starved (Λ < 1) fluvio-deltaic basin with steady base level (ε · τ−1 = 0)

and displays a relatively brief period of regression (̇s > 0) followed by an extended period

of transgression (̇s < 0), which culminates in the complete drowning of the basin (s→ 0).

This prolonged period of shoreline retreat is a manifestation of the volumetric imbalance

between the basin’s sediment supply (qso) and the rate at which subsidence creates space

to be filled (σL). Muto & Steel [11] termed this phenomenon ‘autoretreat,’ and we will

refer to a shoreline trajectory of the form shown in Figure 4 as an autoretreat trajectory.

With reference to Figure 4, we define several autoretreat parameters. We denote by

Tfluv , sar , and tar the fluvial lifespan, i.e. the time interval over which the system maintains

a fluvial component (s > 0), the shoreline maximum in the autoretreat trajectory, and the

onset of autoretreat, respectively. In all subsiding fluvio-deltaic basins with ε · τ−1 = 0,

maximum regression (̇s = 0) corresponds to the onset of autoretreat.

Historically, quantitative treatments of shoreline migration presume the existence

of an equilibrium state in which the shoreline is stationary [16, 8]. Typically, this is

realized by subjecting the basin to steady external forcing (sediment supply, subsidence,

and base level) such that it evolves to a state in which the rates of sedimentation and

subsidence are everywhere equal. Fluctuations in the basin’s boundary conditions drive

it from this equilibrium state. Hence, in the context of traditional models, a shoreline

regression/transgression preserved in the rock record is attributed to a temporal variation

in sediment supply, subsidence rate, base level, or some combination thereof. A direct

consequence of our analysis is that, in general, the basin does not possess an equilib-

rium configuration, and the aforementioned regression/transgression might be a natural

consequence of long-term sediment starvation rather than a change in basin boundary

conditions. Our model admits a steady-state solution if Λ = 1, ε · τ−1 = 0, and the move-

ment of the delta toe is arrested by a discontinuity in subsidence at the distal boundary,

i.e. by a cliff at x = u = 1.
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Figure 4. (a) The characteristic autoretreat shoreline trajectory of a subsiding fluvio-deltaic basin

with steady base level. The solid curve is the numerical solution; open symbols denote the semi-

analytical solution with polynomials of order M, M = 1, 2, and 3. (b) Exploded view of s− t space

near the onset of autoretreat.

6.2 Comparison of solution techniques

Before embarking on an exploration of the basin’s parameter space, we compare the

numerical and semi-analytical (MBI) solution techniques. In the interest of conserving

space, we limit our discussion to the trajectories of Figure 4.

When viewed over the basin’s fluvial lifespan, the numerical and nonlinear (M = 2, 3)

MBI solutions are nearly degenerate (Figure 4(a)). Figure 4(b) shows the region of s− t
space near the onset of autoretreat where the difference in trajectories is greatest. The

quadratic and cubic solutions are indistinguishable at this scale, and neither differs from

the numerical solution by more than 0.2%. The linear solution (M = 1) with a1 = 1

compares well with numerical and higher-order MBI solutions everywhere but near the

onset of autoretreat, where it underestimates the shoreline position by no more than

5% relative to the numerical solution. Unfortunately, a linear trial function that satisfies

the shoreline Stefan condition (4.5) admits a non-physical, complex shoreline trajectory.

In general, the level of agreement between the numerical and nonlinear MBI solutions

shown in Figure 4 persists throughout those regions of the full parameter space that we

investigate below.

6.3 The shoreline response of a subsiding basin with steady base level

In this section, we explore systematically the subspace {em, Λ, χ, bo} to determine the

influence on shoreline trajectory (relative to that of the representative basin) of variations

in each group. We accomplish this by varying each group over a geologically plausible

range and constructing a corresponding suite of shoreline trajectories; in each suite, the

solid curves and open symbols represent the numerical and MBI (M = 3) solutions,

respectively.
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Figure 5. Sensitivity of the autoretreat shoreline trajectory to variations in (a) marine efficiency

(em), (b) capture ratio (Λ), (c) tectonic style (χ), and (d) initial water depth (bo). The solid curves

and open circles denote the numerical and semi-analytical (M = 3) solutions, respectively.

We begin by investigating the effects of an order-of-magnitude variation in marine

efficiency (Figure 5(a)). The fluvial lifespan is strongly dependent on the marine efficiency:

a basin with em ≈ 1 is characterized by Tfluv ≈ 1, whereas a system with em << 1, which is

more typical of real basins, is characterized by Tfluv >> 1. Apparently, inefficient marine

transport prolongs the basin’s lifespan. The explanation for this behavior is geometric.

For a given water depth, as em increases, so does the delta length and, correspondingly,

the shoreline sediment flux required to maintain progradation. The shoreline maximum

and the onset of autoretreat display a weaker dependency on marine efficiency; as em
increases both sar and tar decrease monotonically.

The influence of the capture ratio (Λ) on shoreline trajectory is shown in Figure 5(b).

Recall that Λ−1 scales the strength of the sink term in (2.1). An emaciated basin (Λ << 1)
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suffers a limited fluvial lifespan (Tfluv << 1), an early onset of autoretreat (tar << 1),

and a highly attenuated shoreline maximum (sar << 1). Conversely, a slightly starved

basin (Λ ≈ 1) enjoys a long fluvial lifespan (Tfluv >> 1), a delayed onset of autoretreat

(tar ≈ 1), and an O(1) shoreline maximum (sar ≈ 0.5).

The shoreline response to variations in tectonic style (χ) is shown in Figure 5(c). All

three autoretreat parameters, Tfluv , tar , and sar , increase with increasing χ. We explain this

behavior by noting that progradation in a basin with χ < 0 occurs predominantly within a

region (x < 0.5) where the rate of subsidence exceeds the mean value. The opposite is true

of a basin characterized by χ > 0. For χ = 1, the reduced rate of autoretreat for t > 1.4

is a consequence of the delta toe intersecting the symmetry plane at x = 1, which reduces

the rate of delta lengthening and, by sediment continuity, the rate of fluvial shortening.

Finally, in Figure 5(d) we show the effects of an order-of-magnitude variation in initial

water depth, bo, which affects primarily the initial rate of shoreline advance. The influence

of bo is most discernible near the onset of autoretreat, where it appears that a decrease

in initial water depth yields a slight decrease in tar and a minor increase in sar . However,

when viewed over the fluvial lifespan of the basin, the shoreline trajectories are nearly

degenerate (Figure 5(d), inset). Our analysis indicates that variations in bo have minimal

impact on the autoretreat parameters, from which we conclude that a fluvio-deltaic basin

is relatively insensitive to its initial configuration.

6.4 The effects of base-level cycling

In this section we demonstrate the sensitivity of the representative basin’s shoreline

trajectory to changes in base level. To illustrate this, we consider independently the

shoreline response to variable-amplitude and variable-frequency sinusoidal base-level

cycling. Throughout this exercise, the remaining controlling groups are fixed at their

representative values given in § 4.

In Figure 6 we show the shoreline trajectory generated with a representative base-level

cycle, i.e. {ε, τ} = {5 · 10−2, 100}, together with its corresponding autoretreat (ε · τ−1 = 0)

trajectory of Figure 4. The figure focuses on the region of s − t space near the onset of

autoretreat, where the effects of base-level forcing are most pronounced. During periods of

sub-equilibrium (ζ < 0) and super-equilibrium (ζ > 0) base level, the shoreline trajectory

generally is situated outboard (seaward) and inboard (landward), respectively, of the

autoretreat trajectory. To first order, the shoreline response is in phase with base level

such that maxima and minima in shoreline position correspond approximately to minima

and maxima in base level, respectively. The amplitude of shoreline response is, however,

a function of the basin’s age; the basin progressively attenuates the base-level signal with

increasing age.

We treat the shoreline response to base-level cycling as the superposition of base-level

and autoretreat trajectories and define a residual shoreline, sres, as the difference between

the shoreline response to base-level forcing and the corresponding autoretreat trajectory,

sauto, for which ε · τ−1 = 0:

sres(t) = s(t)− sauto(t). (6.1)

If the basin remains progradational throughout base-level cycling, i.e. if ε · τ−1 << 1, then
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Figure 6. The shoreline response of the representative basin to representative base-level cycling.

The solid curve and open symbols denote the numerical and semi-analytical (M = 3) solutions,

respectively. The bold curve is the autoretreat trajectory of Figure 4. The dashed curve is base level

(εζ).

to first order the residual shoreline response is

sres(t) ≈ −ε · ft · ζ (t · τ−1 + ϕ
)
. (6.2)

The amplitude of the shoreline response scales (geometrically) with ε. The transfer

function, ft, embodies the basin’s capacity to amplify/attenuate the base-level signal

relative to the geometric shoreline response (ft → 1). The phase shift between shoreline

and base level is ϕ. In general, for a given point in the subspace {em, Λ, χ, bo}, both ft and

ϕ are functions of ε, τ, and t. By analysing the shoreline response to a range of amplitudes

and frequencies, we can describe qualitatively the structure of ft and ϕ.

Figure 7 shows the residual shoreline trajectories (numerical solutions only) generated

by an order-of-magnitude variation in the amplitude of base-level forcing (with τ = 1).

Not unexpectedly, for ε << 1, the transfer function is nearly independent of ε. The weak

dependence of ft on ε is asymmetric with respect to the sign of ζ. The basin appears

to filter weakly high-amplitude forcing during super-equilibrium base level (ζ > 0) and,

conversely, filter weakly low-amplitude forcing during sub-equilibrium base level (ζ < 0).

The residual shoreline trajectory is approximately in phase with base level, i.e. ϕ ≈ 0,

regardless of the forcing amplitude.

The most striking feature of Figure 7 is the transfer function’s strong dependence on

basin age, which is a direct consequence of sediment starvation (autoretreat) and has a

simple geometric explanation. If the fluvial slope at the shoreline changes with time, as it

must by (4.5), then the amplitude of shoreline response to base-level cycling must change

as well. In particular, during autoretreat (t > tar), the fluvial system shortens continually

(̇s < 0) while the delta lengthens continually (u̇ > 0). Therefore, the sediment flux and the

fluvial slope at the shoreline increase with time, from which it follows (geometrically) that

the amplitude of shoreline response must decrease with time.
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Figure 7. The residual shoreline responses (numerical solutions only; scaled with ε) to

variable-amplitude base-level cycling with τ = 1. The dashed curve is ζ.

In Figure 8 we show the residual shoreline trajectories generated by base-level cycling

with a fixed amplitude of ε = 5 · 10−2 and a period that varies according to 2k , where

k = −1, 0, 1, 2. Smaller values of k drive the basin into a retrogradational state, which we

wish to avoid, and larger values of k yield τ > Tfluv . The shoreline response to base-level

cycling appears progressively attenuated with increasing τ, which would suggest that ft is

strongly dependent on τ; however, we believe that ft is only weakly dependent on τ and

that, instead, the attenuation is a consequence of the transfer function’s dependence on

basin age, as discussed above. To first order, sres and ζ are in phase, i.e. ϕ ≈ 0, regardless of

the forcing frequency. However, there exists a weak, asymmetric phase shift that increases

with decreasing forcing frequency and is most visible in the trajectories of Figure 8(b), for

which τ = 2 and τ = 4. The shoreline response leads base level during super-equilibrium

forcing, but is retarded during sub-equilibrium forcing such that ϕ ≈ 0 over the entire

cycle. At higher forcing frequencies (τ < 1), the phase shift is very small (ϕ << 1), nearly

symmetric over the cycle, and attenuated with increasing basin age (Figure 8(a)).

If a cycle of shoreline migration preserved in a basin’s strata can be attributed un-

equivocally to a change in base level, then the first-order predictions of our analysis

have important implications for solving the inverse problem. Our theory suggests that

the amplitude of the driving base-level cycle is the product of the observed amplitude of

shoreline migration (∆s; dimensioned), the fluvial slope scale (qso · υ−1), and the inverse

of the O(1) transfer function (f−1
t ). For a given amplitude of shoreline response, the

amplitude of the driving base-level cycle increases with the basin’s age; this manifestation

of basin-scale sediment starvation is not captured in analyses that presume the existence

of an equilibrium basin configuration. Furthermore, the amplitude of the driving base-

level signal is largely independent of the time interval (T ) represented by the shoreline

cycle. To first order, times of maximum shoreline transgression and regression preserved

in the strata correspond to maxima and minima in the driving base-level cycle. The last

two predictions stand in contrast to those of previous analyses, which indicate that (1)
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Figure 8. The residual shoreline responses (numerical solutions only; scaled with ε) to variable-

frequency base-level cycling with ε = 5 · 10−2. (a) τ = 2−1, τ = 20; (b) τ = 21, τ = 22. The dashed

curves represent ζ with τ = 20 (a) and τ = 22 (b).

the amplitude of the driving base-level cycle increases non-linearly with the duration of

the preserved shoreline cycle and (2) times of maximum transgression and regression are

potentially phase-shifted significantly (ϕ→ 0.25 for τ >> 1) with respect to maxima and

minima in base level [16, 2, 8].

7 Conclusions

We have presented an analysis of sedimentation in a subsiding fluvio-deltaic basin with

steady sediment supply and unsteady base level and demonstrated that mass transfer in

this system is analogous to heat transfer in a generalized Stefan problem. This observation

allowed us to use generalizations of numerical and analytical solution techniques from

the phase-change literature to generate shoreline trajectories. The salient points of our

analysis are:

7.1 General shoreline behavior

(i) A subsiding basin with Λ < 1 and steady base level possesses a characteristic

autoretreat [11] shoreline trajectory in which a brief period of regression is followed

by an extended period of transgression, independent of the basin’s location in the

subspace {em, Λ, χ, bo}.
(ii) The autoretreat parameters, Tfluv , sar , and tar , increase with increasing Λ and χ and

decreasing em.

(iii) The shoreline response is insensitive to the basin’s initial bathymetry (bo).
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7.2 The effects of base-level cycling

(i) The shoreline response to base-level cycling displays neither strong, frequency-

dependent phase-shifting nor attenuation. This finding contradicts those of some

earlier studies [16, 2, 8] and has important implications for the interpretation of the

rock record (the inverse problem).

(ii) The amplitude of the shoreline response to base-level cycling in a starved (Λ < 1)

basin is attenuated progressively with increasing basin age.

In summary, we note the following: (1) the present theory is testable, particularly

the limiting case of § 3, which could be simulated in a standard flume; (2) a more

complicated treatment of submarine sedimentation will alter but not destroy the analogy

between mass transfer in a fluvio-deltaic system and heat transfer in a generalized Stefan

problem; and (3) the dimensionless groups that appear in our governing equations are

largely model-independent and characterize any subsiding fluvio-deltaic basin with slope-

dependent sediment transport and periodic base level. Our analysis should thus serve

as a point of departure for more complicated models of basin-scale sedimentation as a

moving-boundary problem.

Acknowledgements

We thank Mark Person for generous access to the Gibson Computational Hydroge-

ology Laboratory at the University of Minnesota. This research was funded in part by

National Science Foundation Grants GER-93-54936 and EAR-94-05807 (JBS), Minnesota

Supercomputer Institute Grant (VRV), and a Schlumberger Foundation Grant (VRV).

Appendix A Diffusional fluvial sediment transport

The following derivation parallels that of Paola et al. [14]. Consider a unit width of basin

normal to the mean transport direction, i.e. into the page in Figure 2, with a channelized

fraction β and bed slope S . The flow is described by an average depth (h), velocity (U),

and kinematic bed shear stress (τo), which is the shear stress divided by fluid density.

Conservation of sediment volume in a subsiding, non-compacting basin is

(1− φo)
[
∂η

∂t
+ σ(x)

]
= − ∂

∂x
(βqs) , (A 1)

where φo is the depositional porosity (φo ≈ 0.5). Conservation of water volume is

qw = βhU, where qw is normalized water discharge. Let ho and So scale the flow depth and

bed slope, respectively, within a channel. For length and time scales greater than 7ho · S−1
o

and 2h2
o · (qsoSo)−1, respectively, Ribberink & Van der Sande [19] showed that nonlinear

(‘backwater’) terms are insignificant and the streamwise momentum balance simplifies to

the depth–slope product, i.e. τo = ghS , where g is gravitational acceleration. We relate τo
to the velocity through a dimensionless drag coefficient, i.e. τo = CfU

2, where Cf ≈ 10−2.

Combining this relation, the depth-slope product, and continuity in water discharge, we

find

τ3/2
o = −β−1gqw

√
CfS, (A 2)
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The semi-empirical relation of Meyer-Peter & Müller [12] provides a statement of

momentum conservation for the transported sediment

qs =
8 (τo − τoc)3/2

g
(
sg − 1

) , (A 3)

where τoc is the critical kinematic shear stress required to initiate sediment motion on

the bed and sg is the sediment specific gravity (sg ≈ 2.65). In braided, gravel bed rivers

with easily eroded banks, Parker [15] showed that τo ≈ (1 + γ) τoc, where γ ≈ 0.2 − 0.4;

conversely, in meandering, sand bed rivers with strong banks, τo >> τoc. To first order

(A.3) reduces to a linear relationship between sediment flux and bed slope

βqs = −qw 8κ
√
Cf

g
(
sg − 1

) ∂η
∂x
, (A 4)

where, in a broad sense, κ is a function of channel type

κ =

{ [
γ/(1 + γ

]3/2
, braided

1, meandering.
(A 5)

If we treat qw and κ as constants within the basin’s fluvial regime, then (A1) is a linear

diffusion equation in η
∂η

∂t
+ σ(x) = υ

∂2η

∂x2
, (A 6)

where the fluvial diffusivity depends primarily on the water discharge in the system,

υ = qw
8κ
√
Cf

(1− φo) (sg − 1
)
.

(A 7)

With the above values of φo, Cf , and sg , we find υ ≈ qwκ.

In § 6, we assigned a representative basin a tectonic length scale of 103 km. The

normalized water discharge (qw) is the product of a catchment length, Lc, which often

scales like L, and a precipitation rate, ṗ. With Lc = L, ṗ = 1 m · a−1 (a typical value

for a humid climate), and κ = 1, we find υ ≈ L, or, for the representative basin,

υ ≈ 106 m2 · a−1.
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