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This paper reviews recent attempts to describe the two- and three-qubit Hilbert space

geometries. In the first part, this is done with the help of Hopf fibrations of hyperspheres. It

is shown that the associated Hopf map is strongly sensitive to states’ entanglement content.

In the two-qubit case, a generalisation of the celebrated one-qubit Bloch sphere

representation is described. In the second part, we present Hilbert space discrete versions,

which are comparable to polyhedral approximations of spheres in standard geometry.

1. Introduction

The rapidly growing field of quantum information is based on the subtle and often

counter-intuitive properties of quantum-state entanglement (Bouwmeester et al. 2000;

Nielsen and Chuang 2000). It is therefore of great interest to have a geometrical picture

of this latter property, directly written in the Hilbert space where the quantum evolution

takes place. However, even with a few qubits, this space is of high dimension, which makes

it difficult to visualise, and entanglement turns out to be a complicated concept (see, for

example, Kus and Zyczkowski (2001) and Levay (2004)).

In this paper, we show that this task can, nevertheless, be accomplished fully for two

qubits, and partly for three qubits. For one qubit (a single two-level system), a well-known

tool in quantum optics is the Bloch sphere (S2) representation, which is related to Hopf

fibration of the S3 hypersphere (Urbanke 1991). A generalisation for a two-qubit system

has been proposed (Mosseri and Dandoloff 2001) in the framework of the S7 sphere Hopf

fibration, and will be recalled below. An interesting result is that the S7 Hopf fibration

is entanglement sensitive, and therefore provides a kind of foliation for the 2 qubits

(projective) Hilbert space with respect to their entanglement content. An extension of this

description to a three-qubit system, using the S15 Hopf fibration, will also be presented

here.

In the second part of the paper we present some optimal discretised Hilbert spaces

(which are similar to what polytopes are to continuous hyperspheres), and their interesting

relation to dense sphere packings in high-dimensional real space.
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2. Entanglement and Hopf fibrations

An n-qubit state can be written as

|Ψ〉 =

2n−1∑
l=0

tl |l〉 with tl ∈ �, and the normalisation
∑

|tl |2 = 1 .

Here |l〉 stands for the n-qubit base-2 decomposition of the integer l, with each qubit

being associated with one basis factor of the n-qubit tensor product

|l〉 = |α1〉1 ⊗ |α2〉2 ⊗ · · · |αn〉n
where αj = 0 or 1 according to the decomposition of l. In principle, the n-qubit Hilbert

space is �2n , or �P 2n−1 for the projective version where the global phase freedom is taken

into account. But the normalisation condition makes it more natural to consider S2n+1−1

spheres embedded in �2n+1

.

2.1. One qubit, Bloch sphere and the S3 Hopf fibration

A single qubit state can be written as

|Ψ〉 = t0 |0〉 + t1 |1〉 , t0, t1 ∈ �, |t0|2 + |t1|2 = 1 . (1)

Viewed as pairs of real numbers, the two normalised components t0, t1 generate a unit

radius sphere S3 embedded in R4. The global phase freedom sends the S3 sphere to

the (unit radius) S2 Bloch sphere, with coordinates related to expectation values of the

standard spin operators (represented by the Pauli matrices).

To describe the Hopf map in an analytical form, we go back to the definition of S3 as

pairs of complex numbers (t0, t1). The Hopf map is defined as the composition of a map

h1 from S3 to R2 (+∞), followed by an inverse stereographic map h2 from R2 to S2:

h1 :
S3 −→ R2 + {∞}

(t0, t1) −→ C = t0t
−1
1

t0, t1 ∈ �

h2 :
R2 + {∞} −→ S2

C −→ M(X,Y , Z)
X2 + Y 2 + Z2 = 1 (2)

where z is the complex conjugate of z. The first map h1 clearly shows that the full S3 great

circle, parametrised by (t0 exp iω, t1 exp iω), is mapped onto the same single point with

complex coordinate C . It is easy to show that, with R2 cutting the unit radius S2 along

the equator, and the north pole (along the Z axis) as the stereographic projection pole,

the S2 Hopf fibration base coordinates coincide with the well-known S2 Bloch sphere

coordinates:

X = 〈σx〉Ψ = 2Re(t0t1)

Y = 〈σy〉Ψ = 2 Im(t0t1)

Z = 〈σz〉Ψ = |t0|2 − |t1|2 .
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Fig. 1. S 3 Hopf fibration after a stereographic map onto R3. Circular S 1 fibres are mapped onto

circles in R3, apart from the exceptional fibre through the projection pole, which is mapped onto a

vertical straight line. Fibres can be grouped into a continuous family of nested tori, three of which

are shown in the figure.

The σx,y,z are the standard Pauli matrices (we add the identity matrix as the matrix σw
for later use):

σw =

[
1 0

0 1

]
σz =

[
1 0

0 −1

]

σx =

[
0 1

1 0

]
σy =

[
0 −i

i 0

]
.

It is tempting to try to visualise the full (S3) Hilbert space with its fibre structure. This

can be achieved through a (direct) stereographic map from S3 to R3 (Figure 1). Each S3

circular fibre is mapped onto a circle in R3, apart from the image of the unique S3 great

circle passing through the projection pole, which is a straight line.

One way to obtain a global phase free description is to use the density matrix description,

which reads for this pure case as the projector

ρΨ = |Ψ〉 〈Ψ| =
1

2

(
1 + Z X − iY

X + iY 1 − Z

)
.

It is clear that ρΨ = ρeiϕΨ, for any angle ϕ, which shows that the pure state density

matrix represents the quantum phase up to a global phase. The vanishing determinant of

ρ is related to the unit radius of the Bloch sphere. For one-qubit mixed states, the latter

condition is relaxed and density matrices are represented by points inside a unit ball B3

limited by the Bloch sphere.
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2.2. Two-qubit entanglement and the S7 Hopf fibration

A generic two-qubit state can be written as

|Ψ〉 = t0 |00〉 + t1 |01〉 + t2 |10〉 + t3 |11〉

where we have explicitly used the base-2 decomposition to highlight the underlying tensor

product. A state |Ψ〉 is said to be ‘separable’ if, through the use of individual qubit basis

rotations, it can be written as a simple product:

|Ψ〉 = |ϕ〉1 ⊗ |θ〉2 .

It is easy to show that this is only possible if

t0t3 − t1t2 = 0 .

The deviation of the left-hand side from zero leads to a measure of state entanglement

c = 2 |t0t3 − t1t2| ,

which is known as the ‘concurrence’ (Wootters 1998), which will play an important role

below. Indeed, we aim to foliate the two qubit projective Hilbert space �P 3, in terms of

equi-concurrence manifolds. As will soon become clear, the S7 Hopf fibration will prove

to be of great help in fulfilling this task (Mosseri and Dandoloff 2001).

The S7 Hopf fibration is defined along the same lines as in the S3 case, but using

quaternions (with the quaternion algebra denoted �), instead of complex numbers. We

combine two complex components into a quaternion (using the quaternionic j unit) in the

form

q1 = t0 + t1j , q2 = t2 + t3j , q1,q2 ∈ � . (3)

A point (representing the state |Ψ〉) on the unit radius S7 is represented as a pair of

quaternions
(
q1,q2

)
satisfying |q1|2 + |q2|2 = 1. The Hopf map from S7 to the base S4 is

the composition of a map h1 from S7 to R4 (+∞), followed by an inverse stereographic

map h2 from R4 to S4.

h1 :
S7 −→ R4 + {∞}

(q1, q2) −→ Q = q1q
−1
2

q1,q2 ∈ �

h2 :
R4 + {∞} −→ S4

Q −→ M(xl)

l=4∑
l=0

x2
l = 1 . (4)

The base space S4 is not embedded in S7: the fibration is again non-trivial (as in the

S3 case). The fibre is a unit S3 sphere: the S7 points
(
q1,q2

)
and (q1q, q2q), with q a unit

quaternion (geometrically an S3sphere) are mapped onto the same Q value.

Writing Q in terms of the original components tl ,

Q = q1q
−1
2 =

1

sin2
(
θ/2

) (C1 + C2j) (5)

with sin
(
θ/2

)
= |q2|, C1 =

(
t0t2 + t1t3

)
, C2 = (t0t3 − t1t2) and C1, C2 ∈ �.
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The simple relation between the concurrence entanglement measure c and the C2 term

is striking: c = 2 |C2|. This shows that, if correctly oriented, the Hopf map is entanglement

sensitive! Indeed, states that are mapped onto pure complex values for Q are separable

states. In addition, the fibre structure implies that a whole S3 manifold is singled out with

the same entanglement content.

It is also instructive to consider the S4 base coordinates,

x0 = |q1|2 − |q2|2

= 〈σz ⊗ Id〉Ψ

x1 + ix2 = 2
(
t0t2 + t1t3

)
(6)

= 〈(σx + iσy) ⊗ Id〉Ψ

x3 + ix4 = 2 (t0t3 − t1t2) .

We can now foliate �P 3 with respect to c. Recall that one must identify states that

are equivalent under a global phase shift: eiϕ |Ψ〉 ∼ |Ψ〉. Under multiplication by eiϕ, the

first three coordinates on the base S4 are left unchanged, while x3 + ix4 suffers a doubled

phase shift e2iϕ. Apart from c = 0 (separable states), this implies that for fixed c the

projective manifold is generically the product of a partial Bloch sphere and an S3 sphere

with opposite points identified, which corresponds to an SO(3) manifold. When c = 0, the

situation is different since multiplying Ψ by eiϕ precisely moves the representative point

onto a circle of the Hopf fibration on the S3 fibre (the latter then reduces to the partial

Bloch sphere of the second qubit). So, for separable two-qubit states, one recovers the

expected result that the projective Hilbert space is the product of the two partial Bloch

spheres. In all cases, the partial Bloch sphere radius r is simply related to the concurrence

through r =
√

1 − c2. One also recovers the fact that this radius vanishes for maximally

entangled states (MES), and the MES manifold reduces to SO(3).

Note also that any MES can be obtained from a separable 2-qubit state under the

action of an (antilinear) operator

K =
1√
2
(1 + T )

with T the time-reversal operator T = −J(σy ⊗σy), and J the operator (acting here on the

left) that takes the complex conjugate of all complex numbers involved in an expression.

This correspondance is many-to-one since the MES manifold (SO(3)) is 3 dimensional,

while the separable manifold (S2 × S2) is 4 dimensional

As a whole, the concurrence based foliation of �P 3, with r =
√

1 − c2, is given by

Figure 2.

2.3. Three qubits and the S15 Hopf fibration

A generic three-qubit state can be written as

|Ψ〉 =

7∑
l=0

tl |l〉 with tl ∈ �, and
∑

|tl |2 = 1 .
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Fig. 2. Foliation of the two-qubit Hilbert space with respect to state entanglement.

The |Ψ〉 normalisation condition leads us to consider the 15-dimensional sphere S15

embedded in R16. This suggests looking to see whether the third Hopf fibration (that of

S15, with base S8 and fibres S7) could be helpful in describing the three-qubit Hilbert

space geometry (Bernevig and Chen 2003; Mosseri 2006). One should first recognise

that the concept of entanglement becomes more complicated as more qubits are added.

Should we consider the entanglement of one qubit with respect to the other two qubits

(irrespective of the degree of entanglement between these latter two), or some ‘true’

three-qubit entanglement, as measured for instance by the 3-tangle (Coffman et al. 2000)?

It is interesting here to recall the notion of entanglement invariants, which are functions

of the state component tl and are invariant under the action of local unitary operations

(the latter leaving entanglement unchanged). For two qubits, there are 2 such invariants,

the (trivial) norm of the state and the concurrence. As we have seen, the latter can also

be expressed in term of the partial Bloch sphere radius (r =
√

1 − c2), which is the same

for the two qubits. Therefore, as shown above, the S7 Hopf map displays the two-qubit

invariant. For three qubits, there are 6 invariants, which can be expressed in different

ways. A possible choice is the norm of the state, the three radii rj , j = 1 · · · 3 of the partial

Bloch spheres, the 3-tangle τ3 together with one more that was introduced by J. Kempe

(Kempe 1999)

Omitting the trivial norm invariant, we would like to foliate the (14-dimensional) three-

qubit projective Hilbert space �P 7 with respect to the different values of the invariant

5-tuplets. This task is rather complicated, and has not yet been fully completed; however,

we shall see now that the S15 Hopf fibrations can tell us something about this manifold.

To define the fibration, one proceeds along the same lines as for the previous S3 and

S7 cases, but now using octonions (with the octonion algebra denoted �). The interested

reader should refer to the appendix of Mosseri (2006) for information about the octonion

multiplication that is used here. We write

a = a′ + a′′e, b = b′ + b′′e, a, b ∈ �, and a′, a′′, b′, b′′ ∈ � , (7)

and a point (representing the state |Ψ〉) on the unit radius S15 as a pair of octonions (a, b)

satisfying |a|2 + |b|2 = 1. But, to get a Hopf map of physical interest, with coordinates

simply related to interesting observable expectation values, one needs to define a slightly

tricky relation between |Ψ〉 and the pair of octonions (a, b) as follows:

a = (t0 + t1j,t2 + jt3) = (t0 + t1j,t2 + t3j) =
(
a′, a′′) (8)

b = (t4 + t5j,t6 + jt7) = (t4 + t5j,t6 + t7j) =
(
b′, b′′) .
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The Hopf map from S15 to the base S8 is the composition of a map h1 from S15 to R8

(+∞), followed by an inverse stereographic map h2 from R8 to S8:

h1 :
S15 −→ R8 + {∞}

(a, b) −→ P = ab−1
a, b ∈ �

h2 :
R8 + {∞} −→ S8

P −→ M(xl)

l=8∑
l=0

x2
l = 1 . (9)

The base space S8 is not embedded in S15: the fibration is again non-trivial. The fibre

is a unit S7 sphere, the proof of which is trickier (and not given here) than in the lower

dimension case. The h1 map leads to

P = ab−1 =
1

sin2 θ/2
(Q1 + Q2e) (10)

with sin θ/2 = |b| , Q1 = (b′a′ + a′′b′′), Q2 =
(
−a′′b′ + b′′a′) and Q1, Q2 ∈ �.

Athough it is not evident at first sight, the Hopf map is still entanglement sensitive

in this case. To show this, it is instructive first to express Q1 and Q2 in terms of the tl
components read out from (8):

Q1 =
(
t0t4 + t1t5 + t2t6 + t3t7) + (t0t5 − t1t4 + t2t7 − t3t6

)
j

Q2 =
(
t0t6 + t2t4 + t3t5 − t1t7) + (t1t6 − t2t5 + t0t7 − t3t4

)
j .

Introducing the generalised complex concurrence terms Tij,kl = titj − tktl allows us to

write the coordinates on the unit radius base S8 in a synthetic form. The second map

h2 sends states onto points on S8, with coordinates xl , with l running from to 0 to 8. With

the inverse stereographic pole located on the S8 ‘north pole’ (x0 = +1), and the target

space R8 cutting S8 along the equator, we get the following coordinate expressions

x0 = cos θ

= |a|2 − |b|2

= 〈σz ⊗ Id ⊗ Id〉Ψ

x1 + i x2 = 2
(
t0t4 + t1t5 + t2t6 + t3t7

)
(11)

=
〈(
σx + i σy

)
1

⊗ Id ⊗ Id
〉

Ψ

x3 + i x4 = 2
(
T05,14 + T27,36

)
x5 + i x6 = 2

(
T06,24 + T35,17

)
x7 + i x8 = 2

(
T16,25 + T07,34

)
.

Three-qubit states in which the first qubit is separated from the other two map onto

a point such that xj = 0, for j = 3 · · · 8. Indeed, in a multi-qubit state, a given qubit is

separated from the others when its partial Bloch sphere has a radius r1 = 1. The first

qubit partial Bloch sphere is spanned here by the triplet (x0, x1, x2). Returning to the

above definition of the h1 map, this means that in that case the Hopf map carries an
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Fig. 3. Nesting of the three Hopf fibrations.

octonion couple onto a pure complex number P . Therefore, as for the two-qubit case, the

S15 Hopf fibration is also entanglement sensitive for three qubits!

After modding out the global phase (we aim to describe the projective Hilbert space

�P 7), the first three base coordinates remain invariant. When r1 < 1, multiplication of |Ψ〉
by eiϕ induces a complex orbit of the representative point spanned by the six coordinates

x3···8, which live on an S5 sphere of radius r′
1 =

√
1 − r21. We call M(r′

1), without further

characterisation, the manifold obtained as the S5 sphere modulo these orbits. In addition,

when ϕ = π the representative point returns to its original position on the base. This

means that a given S7 fibre appears twice along this orbit, opposite points being identified.

The S7 fibre is then turned into a 7-dimensonal real projective plane �P 7. We eventually

get the following foliation of �P 7 with respect to the single invariant r1:

— For r1 = 1, it is the product of radius one sphere S2 (which is also �P 1), with �P 3, the

projective Hilbert space of the second and third qubit. Note that, here, multiplication

by a complex number leaves the S7 fibre invariant, and, therefore, modding out the

base sends it to �P 3.

— For 0 < r1 < 1, it is the product of S2(r1) (a sphere of radius r1), the M(r′
1) manifold

and �P 7

— For r1 = 0, it is the product of the M(1) manifold and �P 7

Note that there is nothing special about the first qubit, apart from a special orientation

of the Hopf fibration that singles out its properties. A better insight into an entanglement-

based foliation problem would be to use three distinct S15 Hopf fibrations (instead of

one), such that each of the three qubit partial Bloch spheres is singled out by the first

three coordinates on the base. Put more simply, one may try to describe the Hilbert space

geometry in a space spanned by the three partial Bloch sphere radii (r1, r2, r3). But this is

not the end of the story, since there will still be two other invariants to take into account.

Finally, let us stress the nice nesting of the three Hopf fibrations of S3, S7 and S15,

the fibre in the larger dimensional space being the the full fibred space in the lower

dimensional case, as illustrated in Figure 3.
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3. Hilbertian polytopes

In this section, we describe discretised versions of the n-qubit projective Hilbert space

�P 2n−1, which are analogous to standard polytopes with respect to spherical spaces.

These ‘Hilbertian polytopes’ will be described using two a priori different (algebraic and

geometric) approaches, which eventually lead to the same structures. These structures

have been defined from a generic point of view, and details given for one and two qubits

by C. Rigetti, M. Devoret and one of the current authors (Remy Mosseri) in Rigetti

et al. (2004). This construction will be recalled briefly here; in addition, we will also

describe the three-qubit case, with its 1080 states in �P 7.

3.1. Discretisation based on stabiliser theory

We first define the n-qubit Pauli group Gn as the set of all n-fold tensor products of 2 × 2

Pauli matrices, with four possible overall phases to satisfy the closure requirement:

Gn = {σw, σx, σy, σz}⊗n ⊗ {±1,±i} .

We use Σαβ...ζ = σα ⊗ σβ ⊗ · · · ⊗ σζ to denote the generalised Pauli matrices.

Here we disregard the phases {±1,±i} required for closure of Gn under multiplication

and deal with the set Sn of 4n generalised Pauli matrices rather than the group Gn. Doing

this, the stabilisers of Gn transfer to Abelian subsets of Sn, called pseudostabilisers. The

largest possible subsets of Sn whose elements all mutually commute have 2n elements,

and are denoted san, where a labels the different subsets. These maximal pseudostabilisers

form the foundation of this discretisation procedure.

Finally, the Hilbertian polytope Hn is defined as the set of n-qubit state vectors that

are the common eigenvectors of the elements of san, for all subsets a.

The uniform Hilbertian polytope on n qubits Hn contains

Vn = 2n
n−1∏
k=0

(2n−k + 1)

vertices, or states. The following table gives the first values of Vn, along with Cn, the

number of classical bit configurations for comparison.

n 1 2 3 4 5 6 7

Vn 6 60 1080 36720 2423520 315057600 81284860800

Cn 2 4 8 16 32 64 128

Vn grows as 2(n2+3n)/2, so the information content is super-extensive in n.

We now turn to an explicit construction of the uniform Hilbertian polytope for the

one- and two-qubit cases.
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3.2. The one-qubit case: H1

We show here that H1 is isomorphic to an octahedron. For one qubit, the set Sn is simply

the Pauli matrices: S1 = {σw, σx, σy, σz}. The last three σ′s anti-commute with one another,

while they all commute with the identity σw . So the three sets of mutually commuting

matrices are trivial to construct: s11 = {σw, σz} , s21 = {σw, σx} and s31 = {σw, σy} .
When the elements of sl1 are diagonalised (for l = 1, 2, 3), we obtain the following six

states, which sit on an octahedron on the Bloch sphere:

|+z〉 = |0〉 , |−z〉 = |1〉
|+x〉 = 1√

2

(
|0〉 + |1〉

)
, |−x〉 = 1√

2

(
|0〉 − |1〉

)
|+y〉 = 1√

2

(
|0〉 + i |1〉

)
, |−y〉 = 1√

2

(
|0〉 − i |1〉

)
.

3.3. The two-qubit case: H2

The set of generalised Pauli matrices for two qubits S2 comprises 16, 4 × 4 matrices

given by Σλµ = σλ ⊗ σµ, with λ, µ = w, x, y, z.

One finds fifteen pseudostabilisers, yielding four simultaneous eigenvectors each and

contributing four states to H2. We therefore recover the result that H2 has sixty states.

These subsets can be classified as corresponding to entangled or product states. Nine

sets correspond to product states, and the other six (marked with an ∗) correspond to

maximally entangled states. We list these eigenvectors in Table 1 as unnormalised row

vectors.

Note that the first stabiliser of the product sector corresponds to the computational

basis, while the first stabiliser of the entangled sector corresponds to the Bell basis.

3.4. Connection with an alternate approach to discretisation: shelling the high-dimensional

dense lattices

We will now present another, more geometrical, approach to Hilbert space discretisation,

which uses the successive shells of dense lattices in �2n+1

to discretise the high dimensional

hyperspheres. At the same time, we must take into account the global phase freedom,

and show how a discretisation of the projective Hilbert space is induced (this means that

several points on S2n−1 will represent the same physical state). In the light of this, it is

important to distinguish between ‘qubit states’ (the quantum states associated with the

points on S2n−1) and ‘physical states’ (the states in the projective Hilbert space, which has

the geometry of a complex projective space CP 2n−1).

We consider the family of laminated lattices Λi. These laminated lattices form a series

that starts with the triangular lattice in 2d (the densest lattice in 2d). Λ3 is obtained

as a particular sequence of Λ2 lattices packed in a third dimension, which gives the

face-centred cubic lattice, one of the two densest lattices in 3d. Appropriately packing Λ3

lattices along a fourth dimension leads to Λ4, whose first shell is precisely the {3, 4, 3}
polytope (Coxeter 1973), which we will use here for the one-qubit case. Upon iteration,

this construction eventually leads to the Λ8 = E8 lattice suitable for the two-qubit case.
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Table 1.

Set

1 (0, 0, 0, 1) (0, 1, 0, 0) (0, 0, 1, 0) (1, 0, 0, 0)

2 (0, 0,−1, 1) (−1, 1, 0, 0) (0, 0, 1, 1) (1, 1, 0, 0)

3 (0, 0, i, 1) (i, 1, 0, 0) (0, 0,−i, 1) (−i, 1, 0, 0)

4 (0,−1, 0, 1) (0, 1, 0, 1) (−1, 0, 1, 0) (1, 0, 1, 0)

5 (1,−1,−1, 1) (−1, 1,−1, 1) (−1,−1, 1, 1) (1, 1, 1, 1)

6 (−i,−1, i, 1) (i, 1, i, 1) (i,−1,−i, 1) (−i, 1,−i, 1)

7 (0, i, 0, 1) (0,−i, 0, 1) (i, 0, 1, 0) (−i, 0, 1, 0)

8 (−i, i,−1, 1) (i,−i,−1, 1) (i, i, 1, 1) (−i,−i, 1, 1)

9 (−1, i, i, 1) (1,−i, i, 1) (1, i,−i, 1) (1, i, i,−1)

10∗ (0,−1, 1, 0) (−1, 0, 0, 1) (1, 0, 0, 1) (0, 1, 1, 0)

11∗ (i, 0, 0, 1) (0,−i, 1, 0) (0, i, 1, 0) (−i, 0, 0, 1)

12∗ (1, 1,−1, 1) (−1, 1, 1, 1) (1,−1, 1, 1) (1, 1, 1,−1)

13∗ (i,−i, 1, 1) (i, i,−1, 1) (i, i, 1,−1) (−i, i, 1, 1)

14∗ (i, 1,−i, 1) (−i, 1, i, 1) (i,−1, i, 1) (i, 1, i,−1)

15∗ (−1,−i, i, 1) (−1, i,−i, 1) (1,−i,−i, 1) (1, i, i, 1)

We shall focus here on the set of 240 sites belonging to the E8 first shell that forms the

so-called Gosset polytope and, as for the one-qubit case, enumerate the physical states

they represent. Finally, we will present new results with a set of 1080 discrete 3-qubits

states that originate from the 16-dimensional dense lattice Λ16.

3.5. The one-qubit case and the Λ4 lattice

We give two possible (dual) coordinates for the {3, 4, 3} vertices: in each case as a

real quadruplet and a complex pair. The correspondence between real quadruplets and

complex pairs amounts simply to taking the first two (last two) real numbers as the real

and imaginary part of the first (second) complex number. The first (second) complex

number in the pair corresponds to t0 (t1).

A first set, denoted T1, is the union of the eight permutations of type (±1, 0, 0, 0) and

the sixteen permutations of type 1
2
(±1,±1,±1,±1). Note that, modulo a global phase

factor, these twenty-four points really represent six different physical states, which appear

on the Bloch sphere as opposite points on the three orthogonal axes x, y, z. Indeed, the
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four points given in the following table

Real quadruplets Complex pairs

(1, 0, 0, 0) (1, 0)

(−1, 0, 0, 0) (−1, 0)

(0, 1, 0, 0) (i, 0)

(0,−1, 0, 0) (−i, 0)

represent the states |Ψ1, ω〉 = eiω |0〉, with ω = 0, π/2, π, 3π/2, which map to the same

point on the Bloch sphere (the north pole), and they are therefore associated with the

physical state |Ψ1〉 . Equivalently, the four points given in the following table

Real quadruplets Complex pairs

(0, 0, 1, 0) (0, 1)

(0, 0,−1, 0) (0,−1)

(0, 0, 0, 1) (0, i)

(0, 0, 0,−1) (0,−i)

represent the four states |Ψ2, ω〉 = eiω |1〉 with ω = 0, π/2, π, 3π/2. The other sixteen

vertices represent four other physical states as follows:

|Ψ3〉 ≡ ei(ω+π/4)√
2

(
|0〉 − |1〉

)
, |Ψ4〉 ≡ ei(ω+π/4)√

2

(
|0〉 − |1〉

)
,

|Ψ5〉 ≡ ei(ω+π/4)√
2

(
|0〉 + i |1〉

)
, |Ψ6〉 ≡ ei(ω+π/4)√

2

(
|0〉 − i |1〉

)
,

with ω = 0, π/2, π, 3π/2.

It will be useful for the discrete two-qubit construction given later to describe a second

version of the polytope {3, 4, 3}, in which the twenty-four vertices form a set T2 given

by twenty-four permutations of the type {±1,±1, 0, 0} /
√

2. This polytope is obtained

from the original one by means of a screw motion on S3 of angle π/4. This set leads to

twenty-four states

|Φl , ω〉 = ε |Ψl , ω〉 , l = 1..6, ω = 0, π/2, π, 3π/2, and ε = eiπ/4

and to the six one-qubit physical states |Φl〉 identical to |Ψl〉 . Indeed, the six states |Ψj〉
sit at the vertices of a regular octahedron. Since the only difference between the states

|Φl , ω〉 and |Ψl , ω〉 is a global phase, they map onto the same six points on the Bloch

sphere.

3.6. The two-qubit case and the E8 lattice

The 240 vertices of the Gosset polytope belong to a sphere S7. These 240 vertices may be

separated into ten equivalent subsets, each belonging to non-intersecting S3 spheres. This
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is just a discrete version of the S7 Hopf fibration, with fibers S3 and base S4(Sadoc and

Mosseri 1999; Sadoc and Mosseri 1993; Manton 1987).

We use here quaternionic coordinates instead of complex or real ones. The above set

T1, scaled such that the corresponding points belong to a sphere S3 of radius 1√
2
, is now

given by

T1 = {± 1√
2
,± i√

2
,± j√

2
,± k√

2
,

1

2
√

2
(±1 ± i ± j ± k)} ,

where i, j and k are the standard unit quaternions. The set T2 stays on a unit sphere and

is given by

T2 = { 1√
2
(±1 ± i),

1√
2
(±1 ± j),

1√
2
(±1 ± k),

1√
2
(±i ± j),

1√
2
(±i ± k),

1√
2
(±j ± k)} .

The 240 vertices of the Gosset polytope belong to the ten sets:

S1 = (T2, 0), S2 = (0, T2), S3 = (T1, T1), S4 = (T1,−T1),

S5 = (T1, iT1), S6 = (T1,−iT1), S7 = (T1, jT1), S8 = (T1,−jT1),

S9 = (T1, kT1), S10 = (T1,−kT1).

Each of the ten sets gives a copy of a {3, 4, 3} polytope on a fiber S3. The points can be

Hopf mapped, as described above, onto the base space S4. The location of the mapped

point is intimately related to the entanglement of the corresponding two-qubit state.

It is then easy to verify that the sets S1 to S6 correspond to separable states, while sets

S7 to S10 correspond to maximally entangled states.

More precisely, the six sets S1 · · · S6 encompass 6 × 24 = 144 vertices, forming 36

physical states in all, with four values of the global phase for each qubit state. Note

that the precise value of the phases are important here in order that our discretisation

procedure uniformly covers the full Hilbert space. Using the above defined eigenstates of

the one-qubit Pauli matrices, these states are given by the following table:

|±x〉 ⊗ |±x〉 ei(π/4+mπ/2) |±x〉 ⊗ |±y〉 ei(π/4+mπ/2) |±x〉 ⊗ |±z〉 eimπ/2

|±y〉 ⊗ |±x〉 ei(π/4+mπ/2) |±y〉 ⊗ |±y〉 ei(π/4+mπ/2) |±y〉 ⊗ |±z〉 eimπ/2

|±z〉 ⊗ |±x〉 eimπ/2 |±z〉 ⊗ |±y〉 eimπ/2 |±z〉 ⊗ |±z〉 ei(π/4+mπ/2)

where m = 0, 1, 2, 3 triggers the global phase. Each of the nine entries stands for the four

possible sign combinations, leading to the thirty-six physical states mentioned earlier. A

simple view of these separable states consists in relating them to the ‘product’ of two

octahedra, each one belonging to the Bloch sphere of the individual qubits.

The remaining four sets (4×24 = 96 sites in all) lead to a slightly more subtle structure.

We find a total of twenty-four different physical MES, with four phase-distinct two-qubit

states for each. But in the present case, the phase-distinct states actually belong to two

different sets, either (S7, S8) or (S9, S10). These twenty-four physical states can be written
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as in the following table:

1√
2

(
|+z,+z〉 + eiθ |−z,−z〉

)
1√
2

(
|+z,−z〉 + eiθ |−z, z〉

)
1√
2

(
|+z,+x〉 + eiθ |−z,−x〉

)
1√
2

(
|+z,−x〉 + eiθ |−z,+x〉

)
1√
2

(
|+z,+y〉 + eiθ |−z,−y〉

)
1√
2

(
|+z,−y〉 + eiθ |−z,+y〉

)

with θ = 0, π/2, π, 3π/2.

Note that these twenty-four entangled states, together with the above thirty-six separable

states, are in one-to-one correspondence, up to a global phase, with the sixty discrete states

on H2 presented earlier.

3.7. Finer discretisations of H2: higher E8 shells

The present lattice approach has the benefit of allowing finer discrete sets to be explored in

a straightforward manner by considering the higher-order shells in E8. This construction

would provide a uniform set of two-qubit states, some of which would have intermediate

entanglement. A note of caution is in order here, since we are only interested in describing

normalised quantum states. Lattice points that are aligned, as viewed from the origin,

contribute to the same two-qubit state.

We will not give here a detailed description of these finer discretisations of H2. However,

we note that the number MJ of sites on the Jth shell around an E8 vertex is simply given

by

MJ = 240
∑
d|J

d3,

where d denotes integers that divide J (Conway and Sloane 1988). The table below

displays these numbers for the first four shells.

J 1 2 3 4

M 240 2160 6720 17520

Again, the physical states are obtained from these two-qubit states by modding out a

global phase.

The shell-by-shell analysis, and its relation to the Hopf map, has been given elsewhere

(Sadoc and Mosseri 1999; Sadoc and Mosseri 1993). It allows us to get points on the

second shell corresponding to states having concurrence 0, 1/2, 1/
√

2, 1. The third shell

contributes states of concurrence 0, 1/3, 2/3,
√

5/3,
√

8/3 and 1.

3.8. The three-qubit case: H3 and the Λ16 lattice

This case should be related to the dense lattice Λ16 in �16 (Conway and Sloane 1988).

It is interesting to note that the number of lattice sites closest to the origin – the lattice

‘kissing number’ – for this case is 4320, which is precisely four times the expected number

of vertices on the uniform Hilbertian polytope H3. We are therefore likely to face a similar
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situation to the one we faced with the one- and two-qubit cases, where there were four

phase-related qubit states associated with each physical state. And, indeed, the four-to-one

relation between the Λ16 first shell sites and the vertices of H3 has been checked.

With a suitably oriented S15 Hopf fibration, the 4320 sites in the first shell can be

organised as 18 sets of 240 sites belonging to an S7 fibre; each such set is a copy of a

240-site Gosset polytope, which therefore shows a nice nested structure. The 18 sets are

uniquely defined by the coordinates of the corresponding point on the base space S8. The

corresponding 18-site polytope is just the ‘cross polytope’ in �9, with two opposite points

along 9 orthogonal directions.

Upon modding out the global phase, we find that, as with the entangled 2-qubit states,

some phase-distinct states belong to different fibres. The 1080 discrete 3-qubit states belong

to three different classes: fully separable, products of one-qubit states and a maximally

2-qubits entangled state, and maximally entangled (as measured by the 3-tangle).

More precisely, among the 18 fibres:

— Six fibres (whose octonionic coordinates on the base space reduce to a complex

number) contain states that are either triple product states, or the product of the first

qubit and a MES in the remaining two qubits
— The remaining 12 fibres contain states that are either the product of the second or

third qubit and a MES in the remaining two qubits, or states with true (and maximal)

3-qubit entanglement, characterised by a 3-tangle equal to unity

As a whole, one gets:

— a set of 216 triple product states;
— a set of 432 states that are the product of one qubit and a MES in the remaining two;
— a set of 432 maximally entangled 3-qubit states (with unit 3-tangle).

Note that the first two sets could have been generated from the two- and one-qubit

analysis, with (suitably oriented) Λ8 and Λ4, while the third is really new.

The generalisation to more than three qubits cannot use the Hopf fibrations limited to

S15. A particularly interesting family to be checked further is the one described long ago

by John Leech (Leech 1964), which coincides with those studied here for N = 1, 2 and 3,

and whose kissing number is, for any N, precisely four times that given in the first part

of this paper for the number of states in the generic Hilbertian polytopes.
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