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Breaking waves entrain gas beneath the surface. The wave-breaking process energizes
turbulent fluctuations that break bubbles in quick succession to generate a wide range
of bubble sizes. Understanding this generation mechanism paves the way towards the
development of predictive models for large-scale maritime and climate simulations.
Garrett et al. (J. Phys. Oceanogr., vol. 30, 2000, pp. 2163–2171) suggested that
super-Hinze-scale turbulent break-up transfers entrained gas from large- to small-bubble
sizes in the manner of a cascade. We provide a theoretical basis for this bubble-mass
cascade by appealing to how energy is transferred from large to small scales in the energy
cascade central to single-phase turbulence theories. A bubble break-up cascade requires
that break-up events predominantly transfer bubble mass from a certain bubble size to
a slightly smaller size on average. This property is called locality. In this paper, we
analytically quantify locality by extending the population balance equation in conservative
form to derive the bubble-mass-transfer rate from large to small sizes. Using our proposed
measures of locality, we show that scalings relevant to turbulent bubbly flows, including
those postulated by Garrett et al. (J. Phys. Oceanogr., vol. 30, 2000, pp. 2163–2171) and
observed in breaking-wave experiments and simulations, are consistent with a strongly
local transfer rate, where the influence of non-local contributions decays in a power-law
fashion. These theoretical predictions are confirmed using numerical simulations in Part 2
(Chan et al., J. Fluid. Mech. vol. 912, 2021, A43), revealing key physical aspects of the
bubble break-up cascade phenomenology. Locality supports the universality of turbulent
small-bubble break-up, which simplifies the development of cascade-based subgrid-scale
models to predict oceanic small-bubble statistics of practical importance.
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1. Introduction

Turbulent bubbly flows with a wide range of bubble sizes are ubiquitous in nature and
engineering, including breaking waves in oceans (e.g. Blanchard & Woodcock 1957;
Medwin 1970; Melville 1996; Mortazavi et al. 2016). These bubbles contribute richly
to various transport phenomena with maritime and climate implications. Experiments
such as those by Deane & Stokes (2002), Tavakolinejad (2010), Blenkinsopp & Chaplin
(2010) and Masnadi et al. (2019) have measured the bubble-size distribution in breaking
waves. Their data suggest that several physical mechanisms are at play at different length
and time scales in the generation and evolution of these bubbles. These observations are
supported by recent numerical simulations of breaking Stokes waves by Wang, Yang &
Stern (2016) and Deike, Melville & Popinet (2016), hydraulic jumps by Mortazavi (2016)
as well as shear-flow free-surface turbulence by Yu et al. (2019) and Yu, Hendrickson &
Yue (2020). Many of these mechanisms are not well understood to date. Among various
proposed mechanisms, the fragmentation of bubbles by turbulence has garnered significant
interest. Turbulent fragmentation applies to fragmenting bubbles of sizes larger than the
Hinze scale, where the action of turbulent fluctuations dominates the effects of surface
tension (Kolmogorov 1949; Hinze 1955). These super-Hinze-scale bubbles have Weber
numbers of the order of or larger than unity. Note that most sub-Hinze-scale bubbles with
Weber numbers smaller than unity are expected to be formed by distinct fragmentation
mechanisms (Deane & Stokes 2002; Kiger & Duncan 2012; Chan, Urzay & Moin 2018b;
Mirjalili, Chan & Mani 2018; Chan et al. 2019; Mirjalili & Mani 2020). For this reason,
sub-Hinze-scale bubbles are not considered in detail in this work.

Kolmogorov (1949) and Hinze (1955) suggested that turbulent eddies successively
break up sufficiently large gaseous cavities into bubbles of various sizes. The average
break-up frequency of bubbles of size D fragmenting via this mechanism has been
postulated to scale as ε1/3D−2/3, where ε is the characteristic rate of turbulent kinetic
energy dissipation per unit mass. The concept behind this postulate is that the break-up
of a bubble is facilitated by an eddy of a comparable size in its neighbourhood (Hinze
1955; Chan et al. 2018b). It allows the break-up frequency to be directly estimated by the
inverse of the corresponding eddy turnover time. This frequency scaling is corroborated
at bubble sizes sufficiently larger than the Hinze scale by break-up frequencies for various
turbulent bubbly flows in the experiments described by Martínez-Bazán, Montañés &
Lasheras (1999a) and Rodríguez-Rodríguez, Gordillo & Martínez-Bazán (2006), and
preliminarily explored in the simulations by Chan et al. (2018a). Garrett, Li & Farmer
(2000) further proposed a quasi-steady bubble break-up cascade to explain the formation
of these bubbles. Here, large volumes of gas are entrained and subsequently broken up
in quick succession by turbulence, leading to an approximately steady rate of gaseous
mass transfer from large- to small-bubble sizes (from the point of view of the small- and
intermediate-sized bubbles). Garrett et al. (2000) suggested, via dimensional analysis of
a system with steady entrainment, that this cascade yields a quasi-stationary bubble-size
distribution with a D−10/3 power-law scaling. The theoretical analysis by Filippov (1961)
predicts a limiting form for the size distribution assuming a Markovian (memoryless)
break-up process, which coincides with the D−10/3 power-law scaling at intermediate
bubble sizes and times when the break-up frequency above is assumed. A similar scaling
was observed in ensemble-averaged size distributions from breaking waves at bubble
sizes sufficiently larger than the Hinze scale. These include the measured distributions
of Loewen, O’Dor & Skafel (1996), Deane & Stokes (2002), Rojas & Loewen (2007),
Blenkinsopp & Chaplin (2010) and Na et al. (2016) (see also figure 1 of Deike et al.
(2016)), as well as the computed distributions of Mortazavi (2016), Deike et al. (2016)
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Locality in the turbulent bubble break-up cascade

and Chan et al. (2018a,b). The bubble break-up cascade is strictly only present in flows
with infinite integral-scale Weber numbers where the Hinze scale is zero. However, these
experimental and numerical observations suggest that the cascade hypothesis may be
extended with reasonable accuracy to practical turbulent bubbly flows with sufficiently
large integral-scale Weber numbers where the Hinze scale is finite but still much smaller
than the integral length scale. Note, then, that the smallest fragmenting bubbles in the
break-up cascade, and all subsequent references to ‘small bubbles’ in this work, should
have sizes around or slightly larger than the Hinze scale. Note, also, that the previously
discussed scalings for the break-up frequency and the size distribution were formally
derived for a statistically stationary and homogeneous system, where all statistics are
invariant in space and time. However, one may assume in a system with a large separation
of scales that the large-scale dynamics does not significantly influence the small- and
intermediate-scale dynamics. These scalings would then also hold in small, localized
regions in various turbulent bubbly flows, including breaking waves.

The proposed and observed D−2/3 power-law scaling for the bubble break-up frequency
has traditionally been considered separately from the proposed and observed D−10/3

power-law scaling for the bubble-size distribution. This is in spite of the fact that
both scaling laws were derived on the basis of related assumptions (see also Chan &
Johnson 2019; Qi, Masuk & Ni 2020). As alluded to earlier, each of these scalings
was obtained via dimensional analysis. Thus, on its own, neither of these laws provides
unequivocal support to the presence of a bubble break-up cascade mechanism in turbulent
bubbly flows. For example, Yu et al. (2019, 2020) have proposed alternative mechanisms
contributing to similar power-law scalings in the bubble-size distribution, also via
dimensional analysis. To demonstrate the plausibility of a cascade mechanism, one has
to show that the underlying nature of the break-up dynamics is compatible with the
characteristics of a cascade. An ideal bubble break-up cascade should be size local, where
bubble mass is transferred on average from large to successively smaller bubble sizes.
In other words, locality is achieved when this net transfer rate across a certain bubble
size primarily depends on the break-up statistics of bubbles of similar sizes. Note that
locality is necessary for the dynamics at sufficiently small bubble sizes to be largely
independent of the dynamics at the largest bubble sizes. Independence from the large-size
dynamics enables these small- and intermediate-size dynamics to be universal in small,
localized regions in a variety of turbulent bubbly flows. In order for a universal bubble
break-up cascade at these small and intermediate sizes to be plausible, the aforementioned
power-law scalings will need to be reasonably compatible with the previously discussed
notion of locality. This compatibility has not been demonstrated to date, mostly because a
suitable tool has not been employed to assess it.

Population balance equations (Smoluchowski 1916, 1918; Landau & Rumer 1938;
Melzak 1953; Williams 1958; Friedlander 1960a,b; Filippov 1961; Valentas & Amundson
1966; Valentas, Bilous & Amundson 1966, and others) have been used to characterize
bubble break-up using a model kernel that includes both the break-up frequency and the
size distribution. This makes the population balance equation a good candidate tool to
demonstrate the plausibility of a universal bubble-mass cascade mechanism. However, it
is not traditionally presented in conservative form (Martínez-Bazán et al. 2010; Saveliev
& Gorokhovski 2012), where the size distribution is weighted by the bubble volume. This
obscures the links between the model kernel and the direct movement of bubble mass
from one bubble size to another (Hulburt & Katz 1964; Randolph 1964). Visualizing this
movement in bubble-size space is key to understanding and quantifying locality. Note that
the conservative population balance equation should strictly be presented as a function
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of mass, since mass is the true quantity being conserved (Carrica et al. 1999; Castro
& Carrica 2013). However, the equation is considered as a function of volume in this
work. This exploits the direct geometrical relationship between volume and size, and is
equivalent to taking the incompressible limit of the mass-conserving equation. In the case
of an oceanic breaking wave, for example, this is likely to be appropriate in the early
wave-breaking stages, since most of the entrained bubbles would then reside near the
wave surface. Care has to be taken for later stages of the wave-breaking process when
smaller bubbles may be swept deep below the surface and compressibility effects may
become important. One may perform a quantitative estimate of when these effects become
important through a scaling analysis comparing the characteristic capillary pressure at
a certain bubble size, σ/D, to the surrounding hydrostatic pressure, Ph, where σ is the
gas–liquid surface tension coefficient. Generally, bubbles of sizes larger than D ∼ σ/Ph =
(10−1/105) m = 1 μm may be effectively treated as incompressible. In the remainder
of this work, incompressibility is assumed, and the terms ‘mass’ and ‘volume’ are used
interchangeably. Scale-space transport has also been recently explored by Thiesset et al.
(2020) for liquid jet atomization in relation to the volume fraction field. They proposed
using two-point statistics instead of the size distribution to characterize scale locality.

In this work, a novel treatment of the population balance equation is used to demonstrate
that the previously discussed power-law scalings for the bubble break-up frequency and
size distribution are compatible with a bubble break-up cascade mechanism for turbulent
bubbly flows. The population balance equation in conservative form is used to derive the
bubble-mass-transfer flux, which describes the rate of transfer of gaseous mass between
bubbles of different sizes within a bubble population. The break-up flux from large- to
small-bubble sizes may be evaluated by averaging over many binary break-up events in
these flows, where it is assumed for simplicity that every parent bubble breaks into exactly
two child bubbles in each event. This paper analytically quantifies the degree to which
the break-up flux is local in bubble-size space. The presence of locality would support
the plausibility of the scalings proposed by Garrett et al. (2000), which are founded on a
cascade phenomenology. Detailed simulations may also be used to measure this flux and
its locality, and will be analysed in a companion paper (Chan et al. 2021, hereafter referred
to as Part 2).

This work constructs analogies between this picture of turbulent bubble break-up and the
ideas underlying the celebrated concept of the turbulent energy cascade (Richardson 1922;
Kolmogorov 1941; Onsager 1945). Inspiration is drawn from the eddy-viscosity-based
spectral energy transfer models of Obukhov (1941) and Heisenberg (1948a,b), as well as
the quasi-local spectral energy transfer models of Kovasznay (1948) and Pao (1965, 1968).
These parallels between the turbulent bubble-mass and energy cascades, in particular
the universality of both processes in small, localized regions of turbulent flows, lend
legitimacy to the idea of subgrid-scale modelling of bubbles in large-eddy simulations
(LES) of turbulent two-phase flows, which inherently involve a large separation of scales.

This paper is organized as follows. In § 2, the turbulent bubble-mass cascade is
introduced in a parallel fashion to the turbulent energy cascade. Since locality is argued
to be crucial for the validity of a cascade phenomenology, two measures of locality are
introduced in the context of bubble-mass transfer. In § 3, the mathematical formalism
required to quantify this locality is introduced. This includes the distribution of bubble
sizes, the conservative population balance equation describing the dynamics of the
bubble-size distribution and the model binary break-up kernel in the population balance
equation and the corresponding bubble-mass flux in bubble-size space. The locality of
this flux is analysed in § 4 in the context of self-similar energy and bubble-mass transfer.
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Figure 1. Schematic illustrating the trinity of universality, locality and self-similarity in a forward cascade.
This trinity only emerges in a system with sufficient scale separation.

In particular, scalings relevant to small, localized regions of turbulent bubbly flows are
used to obtain an expression for the bubble-mass flux due to turbulent break-up. The
measures of locality introduced at the end of § 2 are then used to elucidate the strength of
locality in this flux. In § 5, more parallels are drawn between the turbulent bubble-mass and
energy cascades using existing spectral energy transfer models as a guide. These parallels
may be used to guide the development of a subgrid-scale model for bubbles in LES of
turbulent two-phase flows. Finally, conclusions are drawn in § 6.

2. The features of a cascade mechanism

In a forward cascade mechanism, the small- and intermediate-scale dynamics of a
physical process, such as energy or bubble-mass transfer, should become independent
of the large-scale flow geometry as the scale separation is increased. In other
words, flow-dependent large-scale details should not directly influence the small- and
intermediate-scale dynamics if there exists a clear separation of scales, and the dynamics
is universal across various flows at these small and intermediate scales. This decoupling
between scales suggests that the small- and intermediate-scale dynamics are scale local.
When there is substantial scale separation, locality further implies that the dynamics in an
intermediate subrange of scales is independent of the largest and smallest scales. Because
no characteristic scale can be present in this intermediate subrange, the corresponding
dynamics must be self-similar with some degree of scale invariance. This trinity of
universality, locality and self-similarity is schematically illustrated in figure 1. These
classical ideas are reviewed for the well-established turbulent energy cascade in § 2.1.
Garrett et al. (2000) briefly alluded to a similar process for gaseous mass transfer in
turbulent bubbly flows, which is examined in § 2.2 with deliberate parallels to § 2.1. Note
that these cascades hold in two scenarios: either the flow of interest and the accompanying
entrainment of gas are statistically stationary, or they are quasi-steady over time scales
longer than those associated with turnover and break-up of most of the relevant (i.e.
small- and intermediate-sized) eddies and bubbles, respectively. Quasi-steadiness may
be assumed in small, localized regions of turbulent flows with a sufficient separation of
scales. Locality of the bubble-mass transfer in bubble-size space is vital to this cascade
phenomenology. § 2.3 discusses how locality may be quantified for the bubble-mass
transfer flux, Wb.

912 A42-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
83

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1083


W.H.R. Chan, P.L. Johnson and P. Moin

2.1. The turbulent energy cascade
The turbulent energy cascade in incompressible high-Reynolds-number single-phase flows
is approximately initiated at the integral length scale L, i.e. the size of the largest turbulent
motions, and is approximately terminated at the Kolmogorov length scale LK , i.e. the size
of the smallest turbulent motions. Consider, at some characteristic length scale Ln, the
characteristic inertial momentum flux ρlu2

Ln
, and the characteristic viscous stress μluLn/Ln.

Here, ρl and μl refer to the density and dynamic viscosity of the fluid, respectively, where
the subscript l assumes without loss of generality that the bulk flow involves a liquid, and
uLn refers to the magnitude of the characteristic velocity fluctuations associated with the
length scale Ln. In turbulent flows, the large scales are dominated by inertial effects, while
the small scales are dominated by viscous effects. The cross-over point Ln = LK occurs
where the characteristic inertial momentum flux approximately balances the characteristic
viscous stress, such that the Reynolds number

ReLn = ρluLnLn

μl
(2.1)

satisfies ReLn = ReLK = O(1). Applying the scaling uLn ∼ (εLn)
1/3, which holds in the

inertial subrange defined by LK � Ln � L, and is asymptotically valid at Ln ∼ LK , leads
to the following dimensional expression for the Kolmogorov length scale

LK ∼
(

μl

ρl

)3/4

ε−1/4. (2.2)

Note that LK is a function of only νl = μl/ρl and ε. At these small scales, the rate of energy
input from the large scales ε is approximately balanced by the rate of viscous dissipation
νlu2

LK
/L2

K . After non-dimensionalizing LK by L and assuming that the energy cascade rate
is dictated by the energy-containing scales ε ∼ u3

L/L, one may further obtain

LK

L
∼ Re−3/4

L . (2.3)

Taken together, these relations paint the following physical picture of the turbulent energy
cascade, which was first mooted by Richardson (1922) and then reiterated by Kolmogorov
(1941) and Onsager (1945): in a system with a sufficiently high integral-scale Reynolds
number ReL, turbulent kinetic energy is cascaded from the largest to the smallest scales
of turbulent motion at a rate ε that is governed only by the large scales and does not vary
with scale in a subrange of intermediate scales. Kolmogorov (1941) advanced a number
of similarity hypotheses to convey these ideas for turbulent kinetic energy transfer in
eddy-size space, which are recapitulated in appendix A.1. Note that the turbulent energy
cascade is strictly valid only in the limit of zero νl and infinite ReL, such that LK is
zero. However, it may be extended with reasonable accuracy to practical turbulent flows
with sufficiently large ReL, such that LK is finite but still much smaller than L, with the
understanding that the scale-invariant transfer of turbulent kinetic energy is an adequate
description only in the inertial subrange LK � Ln � L.

For breaking waves, the magnitude of LK may be estimated using the wavelength to
estimate L, and the corresponding wave phase velocity (gL)1/2/(2π)1/2 to estimate uL,
where g is the magnitude of standard gravity. For a more detailed discussion, including
the potential impact of the wave slope on the estimation of the characteristic scales, see
appendix B of Part 2. This yields Re−3/4

L ∼ 3 × 10−5 for a 1 m long wave. For the 27 cm
long waves simulated in Part 2, the corresponding dimensionless Kolmogorov length scale
is Re−3/4

L ∼ 1 × 10−4. In both cases, LK ≈ 30 μm.
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Locality in the turbulent bubble break-up cascade

2.2. The turbulent bubble-mass cascade
The turbulent bubble break-up cascade in high-Reynolds-number, high-Weber-number,
incompressible and immiscible two-phase flows is approximately initiated at L, i.e. the
size of the largest bubbles, and is approximately terminated at the Hinze scale LH , i.e. the
size of the smallest bubbles subject to turbulent break-up. Consider, at some characteristic
length scale Ln, the characteristic inertial momentum flux ρlu2

Ln
, and the characteristic

capillary pressure σ/DLn associated with a bubble of size DLn that is most relevant to
the system dynamics at this length scale. Here, σ refers to the surface tension coefficient
of the gas–liquid interface. If one assumes that a bubble interacts most strongly with an
eddy of the same size, then DLn = Ln. A physical justification for this assumption was
offered by Hinze (1955) and refined by Chan et al. (2018b). The cross-over point Ln = LH
between the large scales where inertial effects are dominant and the small scales where
capillary effects are dominant occurs where the characteristic inertial momentum flux
approximately balances the characteristic capillary pressure, such that the Weber number

WeLn = ρlu2
Ln

Ln

σ
(2.4)

satisfies WeLn = WeLH = O(1). At scales larger than the Hinze scale (Ln > LH and WeLn >

1), the dominance of inertial forces over capillary forces has been postulated to drive the
fragmentation of large gaseous cavities and bubbles (Kolmogorov 1949; Hinze 1955).
This mechanism implicitly assumes that the gaseous volume fraction in the gas–liquid
mixed-phase region (void fraction) is sufficiently low that coalescence between cavities
and bubbles is rare. The Hinze scale is dynamically relevant only when LK � LH , so
that viscous effects have a negligible influence on bubble fragmentation. The kinematic
viscosity of the dispersed gaseous phase νg should also not be significantly larger than νl,
so that the corresponding Kolmogorov length scale in the gaseous phase is not significantly
larger than LK in the liquid (Kolmogorov 1949). In addition, it is assumed that the density
of the dispersed gaseous phase ρg is smaller than ρl, so that inertial mechanisms involving
the dispersed phase may be neglected. Assuming again a sufficient separation of scales in
the system of interest in order for an inertial subrange to be present in the bulk turbulence,
and also that the void fraction of the mixed-phase region is sufficiently low that the
turbulence statistics are not significantly modified by the presence of the bubbles, the
following expression for the Hinze scale can be obtained

LH ∼
(

σ

ρl

)3/5

ε−2/5. (2.5)

Note that LH is a function of only σ/ρl and ε. At these small scales, the inertial momentum
flux, which scales as ρl(εLH)2/3, is approximately balanced by the capillary pressure,
which scales as σ/LH . After non-dimensionalizing LH by L and assuming again that ε ∼
u3

L/L, one may further obtain (see also Shinnar 1961; Narsimhan, Gupta & Ramkrishna
1979; Tsouris & Tavlarides 1994; Luo & Svendsen 1996; Apte, Gorokhovski & Moin 2003)

LH

L
∼ We−3/5

L . (2.6)

Observe the parallels between these statements and the corresponding statements in § 2.1,
and between the relations (2.1)–(2.3) and (2.4)–(2.6). One might surmise that the concept
of the bubble-mass cascade transferring gaseous mass from large to successively smaller
bubble sizes analogously follows the energy cascade discussed in § 2.1, provided the
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Scale

LLHLK

Energy cascade (ε, vl)

Bubble-mass cascade (ε, σ/ρl)

Figure 2. Schematic illustrating the forward energy and bubble-mass cascades in turbulent bubbly flows.

bubble-mass transfer is driven by turbulent eddies. In high-ReL and high-WeL bubbly flows,
these cascades may exist simultaneously, as illustrated in figure 2. A similar parallel was
drawn in the context of coalescence by Friedlander (1960a,b). Like the energy flux ε, the
bubble-mass flux Wb should be governed only by the large scales and should not vary
with size in a subrange of intermediate sizes. While self-similarity occurs in the inertial
subrange LK � Ln � L in the turbulent energy cascade, it should also be present in an
analogous intermediate bubble-size subrange LH � Ln � L in the turbulent bubble-mass
cascade. In addition, just as the transfer of energy should be interpreted in a statistical
sense through the statistics of the velocity structure functions, a probabilistic interpretation
of the transfer of gaseous mass across bubble sizes is warranted. This interpretation is
provided by the bubble-size distribution to be introduced in § 3.1. Finally, in the same way
that the discussion in § 2.1 may be mapped to a set of similarity hypotheses recapitulated
in appendix A.1, a set of similarity hypotheses for turbulent bubble-mass transfer in
bubble-size space corresponding to the discussion above is proposed in appendix A.2.
Note that the turbulent bubble-mass cascade is strictly valid only in the limit of zero
σ/ρl and infinite WeL, such that LH is zero. However, it may be extended with reasonable
accuracy to practical turbulent two-phase flows with sufficiently large WeL, such that LH is
finite but still much smaller than L, with the understanding that the size-invariant transfer
of bubble mass is an adequate description only in the intermediate bubble-size subrange
LH � Ln � L, i.e. for the fragmentation of super-Hinze-scale bubbles.

Aside from the assumptions listed above, the following should also hold in the
turbulent bubble-mass cascade. First, large pockets of gas (Ln ∼ L) need to be steadily
or quasi-steadily (from the point of view of the small and intermediate scales) injected
into a bulk volume of liquid to facilitate the transfer of bubble mass from large- to
small-bubble sizes. Second, buoyancy and gradual dissolution may be neglected in the
bubble dynamics. Third, a mechanism for the removal of small bubbles of sizes smaller
than LH exists to prevent their accumulation. This physical limit holds when the time scales
of the neglected secondary effects, such as coalescence, buoyancy, gradual dissolution and
the accumulation of small bubbles, exceed the flow and entrainment time scales of interest,
as alluded to by Garrett et al. (2000) as well.

For breaking waves, the magnitude of LH may be estimated in a similar fashion to the
estimate of LK in § 2.1. For a 1 m long wave, one may obtain We−3/5

L ∼ 3 × 10−3. For
the 27 cm long waves simulated in Part 2, one may similarly obtain We−3/5

L ∼ 1 × 10−2.
In both cases, LH ≈ 3 mm and LH/LK ∼ We−3/5

L Re3/4
L ∼ 102, thus satisfying the earlier

assumption LK � LH . More generally, one may write

LH

LK
∼

(
σ

μluLK

)3/5

. (2.7)
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D Bubble size

+

+

... ...

Wb=

Figure 3. Schematic illustrating the computation of the bubble break-up flux Wb(D) across a particular bubble
size D through the appropriate averaging of gaseous mass transfers from individual events as represented
by block arrows. Each row corresponds to an individual break-up event. Parent bubbles have a dark fill
colour, while child bubbles have a light fill colour. Child bubbles that contribute to Wb(D) are marked with
a dark border. For a more comprehensive illustration, refer to figure 11 and the accompanying description in
appendix B.

For air–water systems, the Kolmogorov velocity scale uLK will need to exceed
σ/μl ∼ 102 m s−1 in order for LK to exceed LH . Thus, the assumption is satisfied
for most terrestrial oceanic systems where the characteristic flow speed is slower
than this.

2.3. Locality in a universal framework for turbulent bubble break-up
The existence of a universal cascade mechanism for bubble break-up requires the break-up
process to be size local. It should be emphasized that locality of the averaged break-up
dynamics – not the locality of individual break-up events – is the measure of interest since
turbulent cascades should always be interpreted in a statistical manner. In order to enable
this statistical interpretation, the break-up flux, Wb, should be derived from the averaged
break-up dynamics, as illustrated in figure 3. Here, Wb(D) is the rate at which bubble
mass – or, equivalently in an incompressible system, gaseous volume – is transferred from
bubbles of sizes larger than D to bubbles of sizes smaller than D, and will be introduced in
more detail in § 3. The link between individual break-up events and the averaged break-up
dynamics is more concretely articulated through specific examples in appendix B.

Locality in Wb is quantified using two complementary measures inspired by the concepts
of infrared and ultraviolet locality introduced by L’vov & Falkovich (1992) and Eyink
(2005) for turbulent kinetic energy transfer. First, one is interested in the degree to which
incoming contributions to Wb(D) from all parent bubble sizes larger than D arise primarily
from sizes only slightly larger than D. This metric is termed infrared locality, since infrared
radiation has a longer wavelength than visible light. If the rate at which parent bubbles
of sizes between Dp > D and Dp + dDp transfer mass to bubbles of sizes smaller than
D is Ip(Dp|D) dDp, then Wb(D) is the integral of the incoming differential transfer rate
Ip(Dp|D) over all parent bubble sizes Dp > D. Figure 4(a) illustrates this relation between
Ip and Wb. With this decomposition of Wb, infrared locality may then be quantified by
considering how quickly the incoming differential transfer rate Ip(Dp|D) from parent
bubbles decays with increasing Dp
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D Dp1 Dp2 Dp3

Ip(Dp1|D)

Ip(Dp2|D)

Ip(Dp3|D)

…
…{Wb

Bubble size

D
log(bubble size)

log(Ip)
Infrared
locality

γp

Dp

Wb(b)(a)

Figure 4. Schematics illustrating infrared locality in the break-up flux Wb. Wb(D) may be computed
by integrating the incoming differential contributions Ip(Dp|D) from each parent bubble size Dp > D.
(a) Illustration of this decomposition of Wb. In particular, it depicts a system where the incoming differential
transfer rate Ip(Dp|D) from parent bubbles varies as Ip(Dp1|D) > Ip(Dp2|D) > Ip(Dp3|D) for Dp1 < Dp2 <

Dp3. This variation of Ip(Dp|D) with Dp is graphically depicted in (b). The limiting power-law exponent γp in
(b) describes the behaviour Ip(Dp → ∞|D). This exponent is revisited in the relations (4.7) and (4.15).

DEFINITION 2.1 (Infrared locality). If Wb(D) is written as

Wb(D) =
∫ ∞

D
dDp Ip(Dp|D), (2.8)

then infrared locality describes the rate at which Ip decays from Dp � D to Dp → ∞.

The variation of Ip(Dp|D) with Dp for an infrared local system is schematically
illustrated in figure 4(b).

Second, one is interested in the degree to which outgoing contributions to Wb(D) due to
all child bubble sizes smaller than D are due primarily to sizes only slightly smaller than D.
This metric is correspondingly termed ultraviolet locality. If the rate at which child bubbles
of sizes between Dc and Dc + dDc < D receive mass from bubbles of sizes larger than D is
Ic(Dc|D) dDc, then Wb(D) is the integral of the outgoing differential transfer rate Ic(Dc|D)

over all child bubble sizes Dc < D. Figure 5(a) illustrates this relation between Ic and Wb.
With this decomposition of Wb, ultraviolet locality may then be quantified by determining
how quickly the outgoing differential transfer rate Ic(Dc|D) to child bubbles decays with
decreasing Dc

DEFINITION 2.2 (Ultraviolet locality). If Wb(D) is written as

Wb(D) =
∫ D

0
dDc Ic(Dc|D), (2.9)

then ultraviolet locality describes the rate at which Ic decays from Dc � D to Dc → 0.

The variation of Ic(Dc|D) with Dc for an ultraviolet local system is schematically
illustrated in figure 5(b). To reiterate, these decompositions of Wb into Ip and Ic are
two distinct but complementary ways of analysing the contributions to Wb from different
bubble sizes. The sum of all Ip values over all eligible parent bubbles (Dp > D) yields
Wb(D), as does the sum of all Ic values over all eligible child bubbles (Dc < D).
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Ic(Dc1|D)

Ic(Dc2|D)

Ic(Dc3|D)

Wb

Wb

log(Ic)

γc

DDc1Dc2Dc3

…
… {

Bubble size
D

log(bubble size)

Ultraviolet
locality

Dc

(b)(a)

Figure 5. Schematics illustrating ultraviolet locality in the break-up flux Wb. Wb(D) may be computed
by integrating the outgoing differential contributions Ic(Dc|D) due to each child bubble size Dc < D.
(a) Illustration of this decomposition of Wb. In particular, it depicts a system where the outgoing differential
transfer rate Ic(Dc|D) to child bubbles varies as Ic(Dc1|D) > Ic(Dc2|D) > Ic(Dc3|D) for Dc1 > Dc2 > Dc3.
This variation of Ic(Dc|D) with Dc is graphically depicted in (b). The limiting power-law exponent γc in (b)
describes the behaviour Ic(Dc → 0|D). This exponent is revisited in the relations (4.8) and (4.16).

3. Mathematical formalism

In this section, the bubble-size distribution and its corresponding population balance
equation in conservative form, together with the typical model kernel for bubble break-up,
are introduced in order to derive a suitable expression for the break-up flux Wb, and thus the
locality measures Ip and Ic introduced in § 2.3. These quantities are used in § 4 to determine
the extent of validity of the bubble-mass cascade phenomenology in § 2.2, including the
proposed similarity hypotheses A.4–A.6 in appendix A.2.

3.1. The bubble-size distribution
At every location x, for every bubble size D, and at some time t, the number density
function

◦
f for a bubble population may be constructed by adding a contribution from each

bubble i = 1, . . . , Nb(t) having a centroid location xi and an equivalent size Di

◦
f (x, D; t) =

Nb(t)∑
i=1

δ (x − xi(t)) δ (D − Di (t)) , (3.1)

where δ is the Dirac delta function. Note that
◦
f is not a probability density function

since it is constructed through the accounting of bubbles in a single system snapshot.
The probability distribution of bubble sizes f may be obtained by ensemble averaging over
statistically independent but similar realizations

f (x, D; t) = 〈 ◦
f (x, D; t)〉. (3.2)

The probabilistic nature of this size distribution results in a break-up flux in § 3.3 that
is compatible with a statistical interpretation of the break-up dynamics. Note that the
dimensions of

◦
f and f are (length)−4 since the following constraints are satisfied over

some sampling volume
∫
Ω

dx = V that always contains all Nb(t) bubbles

Nb (t) =
∫

Ω

dx
∫ ∞

0
dD

◦
f (x, D; t) , 〈Nb (t)〉 =

∫
Ω

dx
∫ ∞

0
dD f (x, D; t) . (3.3a,b)

Here, the volume-integration (
∫
Ω

dx ·) and ensemble-averaging (〈·〉) operations commute
only if Ω and V are identical over all the ensemble realizations.
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While many flows, such as breaking waves, are intrinsically statistically unsteady and
inhomogeneous, smaller-scale dynamics with faster time scales relative to larger-scale
developments may evolve very similarly to statistically stationary and homogeneous
flows, as suggested in hypothesis A.1 in appendix A.1. This smaller-scale dynamics
occurs in small, localized regions of turbulent flows with sufficient scale separation. This
approximation of quasi-stationarity and quasi-homogeneity implies

f (x, D; t) ≈ f (D). (3.4)

In other words, the bubble-size distribution of a statistically stationary and homogeneous
turbulent bubbly flow at small and intermediate bubble sizes may shed light on what might
be the universal characteristics of a bubble population at small and intermediate bubble
sizes in small, localized regions of turbulent bubbly flows with sufficient scale separation,
and vice versa.

3.2. The population balance equation
The population balance equation was introduced by Smoluchowski (1916, 1918), Landau
& Rumer (1938), Melzak (1953), Williams (1958), Friedlander (1960a,b), Filippov (1961),
Randolph & Larson (1962), Fredrickson & Tsuchiya (1963) and Behnken, Horowitz &
Katz (1963) in their respective fields. It is used here to describe the evolution of the
bubble-size distribution f (x, D; t) in the four-dimensional phase space comprising the
three spatial dimensions x = (x1, x2, x3) and the bubble-size dimension D as follows
(Hulburt & Katz 1964; Randolph 1964)

∂
[

f (x, D; t) D3]
∂t

+ ∂
[
vi (x, D; t) f (x, D; t) D3]

∂xi
+ ∂

[
vD (x, D; t) f (x, D; t) D3]

∂D

= H(x, D; t), (3.5)

for some model term H that includes the effects of break-up, coalescence, entrainment
and other effects. Here, vi and vD represent the velocities of the bubble-volume-weighted
probability density function, f D3, in phase space along the spatial and bubble-size
dimensions, respectively. The D3-weighting enables the equation to be written in
conservative form (Martínez-Bazán et al. 2010; Saveliev & Gorokhovski 2012)
in the incompressible limit where mass and volume are equivalent, since bubble
mass is conserved by break-up and coalescence events. Following the arguments of
quasi-stationarity and quasi-homogeneity leading to (3.4), one may simplify (3.5) to

d
[
vD(D)f (D)D3]

dD︸ ︷︷ ︸
local transport

= H(D)︸ ︷︷ ︸
source and sink terms,
and non-local transport

. (3.6)

These mechanisms are schematically illustrated in figure 6, which depicts the movement
of f D3 in D-space, and are further discussed in appendix C.1. In summary, the
phase-space-based form of the population balance equation, (3.6), distinguishes the
contributions of local and non-local bubble-mass transport. As explained in appendix B,
individual break-up (and coalescence) events are non-local in size space. However, the
ensemble-averaged dynamics may be approximated as size local if it satisfies infrared and
ultraviolet locality, as discussed in § 2.3. These concepts are appropriate particularly in
the limit where the subspace of initial conditions for a bubbly system corresponding to an
initial collection of large bubbles is sufficiently sampled. If a quasi-stationary limit exists
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Locality in the turbulent bubble break-up cascade

Bubble size

Local transport

Non-local transport

Non-local transport

SourceSink

Figure 6. Schematic illustrating the physical significance of the terms in (3.6). Local transport denoted by the
lightly shaded block arrows corresponds to the left-hand side term, while the remaining mechanisms denoted
by the dark block arrows correspond to the right-hand side term.

for the system, then subsequent bubble break-up would lead to a continuous distribution
for f (D) after the transient dynamics has passed, as opposed to a discrete distribution
comprising a finite number of Dirac delta functions in bubble-size space. Then, if the
source and sink mechanisms are neglected, one may re-interpret the terms in (3.6) as

d
[
vD(D)f (D)D3]

dD︸ ︷︷ ︸
local transport approximation for

break-up and/or coalescence

= H(D)︸ ︷︷ ︸
error of local

transport approximation

. (3.7)

The population balance equation (3.5) is often alternatively written, in the limit where
mass-transfer processes such as dissolution that would cause individual bubble sizes to
continuously increase or decrease with time may be neglected, as

∂
[

f (x, D; t) D3]
∂t

+ ∂
[
vi (x, D; t) f (x, D; t) D3]

∂xi

= Tb (x, D; t) + Tc (x, D; t) + Ts (x, D; t) (3.8)

for some model terms Tb, Tc and Ts corresponding to break-up, coalescence and other
sources and sinks, respectively. Once again, (3.8) may be simplified to

0 = Tb(D)︸ ︷︷ ︸
break-up

+ Tc(D)︸ ︷︷ ︸
coalescence

+ Ts(D)︸ ︷︷ ︸
other sources

and sinks

. (3.9)

The kernel-based form of the population balance equation (3.9) isolates the contributions
to bubble-mass transport from individual physical processes. Since break-up and
coalescence processes do not create or destroy bubble mass, or bubble volume in the
incompressible limit, Tb(D) and Tc(D) must individually satisfy the conservation of
bubble mass; for example ∫ ∞

0
dD Tb(D) = 0. (3.10)

Recalling the assumptions in § 2.2, Tc(D) is assumed to be negligible, while Ts(D) is
assumed to be active only at small (D < LH) and large (D ∼ L) bubble sizes. Thus, at
intermediate bubble sizes, only Tb(D) is in play. The common model kernel for Tb(D) is
the subject of the next subsection. At these intermediate sizes, one may compare (3.7) with
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(3.9) to approximately obtain, in the limit of size-local break-up,

−d
[
vD(D)f (D)D3]

dD︸ ︷︷ ︸
local transport approximation

= Tb(D)︸ ︷︷ ︸
break-up

. (3.11)

The bubble break-up process may then be modelled by an appropriate velocity in
bubble-size space, vD(D), as will be further discussed in § 5.1. Quasi-stationarity and
quasi-homogeneity also imply that both terms in (3.11) are zero. In other words, the rate
of increase of the number of bubbles of size D due to the break-up of larger bubbles
is dynamically balanced by the rate of decrease due to break-up into smaller bubbles.
It is further shown in § 4 that this corresponds to the self-similarity of Wb(D) in the
intermediate bubble-size subrange LH � D � L, which emerges when there is a sufficient
separation of scales.

3.3. The model binary break-up kernel and the corresponding break-up flux
Assuming that all break-up events are independent of one another, i.e. that they follow
a Markovian (memoryless) stochastic process where each break-up event is independent
of all previous events, and that only binary break-up events occur, a model form for the
break-up kernel Tb(D) may be constructed as follows (e.g. Filippov 1961; Valentas &
Amundson 1966; Valentas et al. 1966; Coulaloglou & Tavlarides 1977; Ramkrishna 1985;
Martínez-Bazán et al. 1999a; Martínez-Bazán, Montañés & Lasheras 1999b; Chan et al.
2018a)

Tb(D) =
∫ ∞

D
dDp qb(D|Dp)gb(Dp)f (Dp)D3 − gb(D)f (D)D3. (3.12)

The first term on the right-hand side is a source (birth) term due to the break-up of bubbles
of sizes larger than D, while the second term is a sink (death) term due to the break-up
of bubbles of size D into smaller bubbles. The differential break-up rate gb(D)f (D) is the
expected differential rate of break-up events per unit domain volume for bubbles of size
D, which is modelled as being proportional to the average number of bubbles of size D
per unit domain volume and unit size, f (D). Then, gb(D) is the characteristic break-up
frequency of a bubble of size D. Also, qb(D|Dp) is the probability that a bubble of size
Dp breaks into a bubble of size D and another bubble of complementary volume such that
the total gaseous volume remains constant through the break-up event. Several properties
of qb(Dc|Dp) that will facilitate subsequent derivations are introduced in appendix C.2.
Non-binary break-up events are addressed in appendix D.1.

The corresponding break-up flux Wb(D) may be interpreted in two complementary
ways, recalling the concepts introduced at the end of § 2.3. First, it describes the net loss of
mass from bubbles of sizes larger than D due to the break-up process modelled by Tb(D), if
one decomposes Wb into its incoming contributions from various parent bubbles. Second,
it describes the net gain in mass in bubbles of sizes smaller than D, if one decomposes
Wb into its outgoing contributions to various child bubbles. From (3.10), it is evident that
these two quantities are equal in magnitude, leading to the following equivalent definitions
for the break-up flux

Wb(D) =
∫ D

0
dDc Tb(Dc) = −

∫ ∞

D
dDp Tb(Dp). (3.13)
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Locality in the turbulent bubble break-up cascade

Note that this implies in turn that

dWb(D)

dD
= Tb(D). (3.14)

Observe the parallels between (3.11) and (3.14), which will be addressed in § 5.1.
One may show that Wb satisfies

Wb(D) =
∫ D

0
dDc D3

c

∫ ∞

D
dDp qb

(
Dc|Dp

)
gb(Dp)f (Dp). (3.15)

A detailed derivation is provided in appendix C.2. Note that the dimensions of Wb are
(time)−1. Note, also, that Wb(D) has been expressed in terms of integrals with limits
involving D, similar to the expressions (2.8) and (2.9). One may then directly infer that

Ip(Dp|D) =
∫ D

0
dDc D3

cqb
(
Dc|Dp

)
gb(Dp)f (Dp), (3.16)

Ic(Dc|D) =
∫ ∞

D
dDp D3

cqb
(
Dc|Dp

)
gb(Dp)f (Dp). (3.17)

The analysis of the constituent terms in these quantities is the subject of the next section.
It is emphasized again that the break-up flux Wb averages the transfer of bubble mass

over many break-up events through the ensemble-averaging operation discussed in § 3.1.
Assuming each event occurs independently, (3.15) may be interpreted as the summation
of the bubble-mass (or gaseous volume) transfer qb(Dc|Dp)D3

c , multiplied by the average
differential break-up rate gb(Dp)f (Dp), over all relevant parent and child bubble sizes. This
is reiterated using concrete examples in appendix B.

4. Locality in bubble-mass transfer across bubble-size space

The presence of locality, and hence cascade-like behaviour, in the break-up flux Wb driven
by turbulence may be analysed using scalings for the constituent model terms gb(Dp)f (Dp)
and qb(Dc|Dp) suitable for turbulent bubble fragmentation. Consider, first, the variation of
the differential break-up rate gb(Dp)f (Dp) with the parent bubble size Dp. As discussed
in § 1 and as presented by Chan et al. (2018a,b), the bubble-size distribution has been
theoretically, experimentally and numerically demonstrated to scale as D−10/3

p for parent
bubbles of a set of intermediate sizes LH � Dp � L where fragmentation occurs due to
turbulence in the carrier phase. The D−10/3

p power-law scaling for the size distribution is
revisited in Part 2 in relation to a set of numerical simulations of breaking waves to be
discussed. Assuming

f (Dp) ∼ D−10/3
p (4.1)

in this range of bubble sizes, it remains to examine the scaling of the characteristic
break-up frequency gb with Dp. This may be estimated by recalling from § 2.1 that at some
length scale Dp in the inertial subrange LK � Dp � L, turbulent velocity fluctuations
scale as uDp ∼ D1/3

p . The characteristic break-up frequency of super-Hinze-scale bubbles
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of size Dp may then be estimated as the inverse of the corresponding eddy turnover time

gb(Dp) ∼ uDp/Dp ∼ D−2/3
p . (4.2)

This yields the following scaling for the differential break-up rate gbf in the intermediate
size subrange LH � Dp � L (Filippov 1961; Chan & Johnson 2019; Qi et al. 2020)

gb(Dp)f (Dp) ∼ D−4
p . (4.3)

The frequency scaling gb ∼ D−2/3
p has been suggested in other studies, including the

break-up models of Coulaloglou & Tavlarides (1977), Lee, Erickson & Glasgow (1987a,b)
and Martínez-Bazán et al. (1999a). In addition, Martínez-Bazán et al. (2010) and Qi et al.
(2020) demonstrated that several other models in the literature that may not at first seem
to have a D−2/3

p scaling do in fact predict a very similar scaling at sufficiently large Dp.
As mentioned in § 1, this frequency scaling was also observed in experiments discussed
by Martínez-Bazán et al. (1999a) and Rodríguez-Rodríguez et al. (2006), and is also
consistent with the breaking-wave simulations to be discussed in Part 2. It is emphasized
here that gb ∼ D−2/3

p is an appropriate scaling only for bubbles in the intermediate size
subrange LH � Dp � L where the action of turbulent velocity fluctuations dominates the
effects of surface tension for the purposes of fragmentation. Thus, bubbles of sizes very
close to the Hinze scale may have break-up frequencies that diverge from this idealized
scaling as capillary effects enter the picture. Note, also, that the ratio uDp/Dp in (4.2) may
still be used to estimate gb(Dp) for turbulent break-up outside of the inertial subrange if a
more general model for the turbulent kinetic energy spectrum is available to estimate uDp
as a more involved function of Dp.

A complete characterization of locality requires knowledge of the break-up probability
qb(Dc|Dp) as well. Compared to the scalings for f and gb above, there is less consensus
among analytical, experimental and numerical studies on the appropriate scaling of qb with
Dc and Dp in the context of turbulent break-up. Various model forms have been developed
from statistical ansatzes, phenomenological arguments and empirical data, as reviewed
in detail by Lasheras et al. (2002), Liao & Lucas (2009), Martínez-Bazán et al. (2010)
and Solsvik, Tangen & Jakobsen (2013). Two canonical distributions in bubble-volume
space are used as surrogate models to cover the range of these model forms: the uniform
distribution and the beta distribution. The validity of these surrogate models will be
examined using the simulations in Part 2.

4.1. Uniform distribution in bubble-volume space
Consider, first, the uniform distribution in bubble-volume space (D3-space)

qb

(
D3

c |D3
p

)
=

⎧⎪⎨
⎪⎩

2
D3

p
, 0 � D3

c � D3
p,

0, D3
p < D3

c,

(4.4)

where the factor of 2 arises from the assumption of binary break-up. From the properties of
qb discussed in appendix C.2, this is equivalent to the following distribution in bubble-size
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space (D-space)

qb(Dc|Dp) =

⎧⎪⎨
⎪⎩

6D2
c

D3
p

, 0 � Dc � Dp,

0, Dp < Dc,

(4.5)

where the additional factor of 3 arises from the change in variables from D3 to D. With
the available scalings for qb and gbf , the relations (3.16) and (3.17) yield

Ip(Dp|D) ∼
∫ D

0
dDc D5

cD−7
p ∼ D6D−7

p , Ic(Dc|D) ∼
∫ ∞

D
dDp D5

cD−7
p ∼ D5

cD−6.

(4.6a,b)

Observe that Ip and Ic rapidly decrease as Dp → ∞ and Dc → 0, respectively, indicating
that Wb may be reasonably approximated as size local. More specifically, the limits

Ip(Dp|D) ∼ D
γp
p ∼ D−7

p , (4.7)

Ic(Dc|D) ∼ Dγc
c ∼ D5

c (4.8)

hold as Dp → ∞ and Dc → 0, respectively. The exponents γp and γc were referenced
earlier in figures 4(b) and 5(b), respectively. Note that these relations hold even at Dp ∼ D
and Dc ∼ D, respectively, because qb is separable in Dp and Dc. Thus, a stronger statement
on locality may be made in the case of the uniform distribution; since

Wb(D) ∼
(∫ D

0
dDc D5

c

)
×

(∫ ∞

D
dDp D−7

p

)
(4.9)

may be expressed as the separable product of two integrals, one may further conclude that
Wb(D) may be directly approximated by a movement of bubble mass in bubble-size space
from some bubble size only slightly larger than D to some bubble size only slightly smaller
than D. Finally, as a self-consistency check, one may obtain the scaling of Wb(D) with D

Wb(D) ∼
∫ D

0
dDc D5

cD−6 ∼
∫ ∞

D
dDp D6D−7

p ∼ D6D−6 ∼ constant. (4.10)

If the underlying energy flux in the surrounding turbulence is scale invariant within
an inertial subrange, and the break-up probability is chosen to be size invariant in a
corresponding intermediate range of bubble sizes, then the resulting bubble break-up
flux is size invariant, confirming the presence of an intermediate size subrange where
the break-up process is self-similar in nature. Self-similarity is compatible with the
assumption of statistical quasi-stationarity and quasi-homogeneity as evidenced by (3.9)
and (3.14), assuming only Tb is active on the right-hand side of (3.9) in this intermediate
size subrange. The potential non-stationarity of a non-self-similar break-up process is
further addressed in appendix D.2.
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Figure 7. The symmetric beta distribution in D3-space (4.11) for various shape parameters α.

4.2. Beta distribution in bubble-volume space
Recall from § 3.3 that the break-up probability is symmetric in bubble-volume space. The
beta distribution that satisfies this constraint can take only a single shape parameter α, and
may be expressed in bubble-volume space, or D3-space, as

qb(D3
c |D3

p) =
⎧⎨
⎩2D3(α−1)

c

(
D3

p − D3
c

)α−1
D−6(α−1)−3

p /B(α, α), 0 � D3
c � D3

p,

0, D3
p < D3

c,
(4.11)

where B(α, α) is the beta function (Abramowitz & Stegun (1964), § 6.2), which is a
normalization constant for the beta distribution with shape parameter α, and the factor
of 2 arises from the assumption of binary break-up. This distribution is plotted in
figure 7 for several values of α. Note that the uniform distribution is recovered when
α = 1. The beta distribution is defined only for α > 0. When 0 < α < 1, the distribution
is U-shaped and goes to infinity at the endpoints of the domain, thus favouring the
formation of bubbles of unequal sizes. The formation of these bubbles is permitted in the
infinite-Weber-number limit where the Hinze scale is zero, as discussed in the introduction.
For practical flows with finite integral-scale Weber numbers, the favourable formation of
bubbles of sizes smaller than the Hinze scale may not be as plausible, and a more precise
surrogate model for qb may have to involve a truncated U-shaped beta distribution, or
an M-shaped distribution. Nevertheless, the U-shaped beta distribution should remain an
adequate surrogate model for parent bubbles of sizes Ln in the intermediate size subrange
LH � Ln � L and sufficiently larger than the Hinze scale. When α > 1, the distribution
is inverted-U-shaped and goes to zero at the endpoints, thus favouring the formation of
bubbles of equal sizes. The beta distribution is thus a reasonable surrogate model for
most observed and modelled break-up distributions, except for the class of M-shaped
distributions. One such distribution was introduced by Wang, Wang & Jin (2003); see the
reviews cited in the preamble of this section for more examples. The analogue of (4.11) in
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Figure 8. Integrands of Wb demonstrating the extent of (a) infrared locality using (4.13) and (b) ultraviolet
locality using (4.14) after substituting the symmetric beta distribution with various shape parameters α for the
probability distribution of child bubble volumes qb, as well as scalings for the differential bubble break-up rate
gbf corresponding to a turbulent break-up mechanism. Since the proportionality constants are dropped in (4.13)
and (4.14), the integrands here are plotted in arbitrary units, with the values at Dp = D (for (a)) and Dc = D
(for (b)) fixed at unity. The power-law fits at large Dp/D and small Dc/D correspond to the scaling limits in
(4.15) and (4.16) for α = 1/5 and α = 5.

bubble-size space, or D-space, is

qb(Dc|Dp) =
{

6D3α−1
c (D3

p − D3
c)

α−1D3−6α
p /B(α, α), 0 � D3

c � D3
p,

0, D3
p < D3

c .
(4.12)

With the available scalings for qb and gbf , the relations (3.16) and (3.17) yield

Ip(Dp|D) ∼
∫ D

0
dDc

D3α+2
c

(D3
p − D3

c)
1−α

D−1−6α
p ∼ D−1

p

∫ D3/D3
p

0
dx xα(1 − x)α−1, (4.13)

Ic(Dc|D) ∼
∫ ∞

D
dDp

D−1−6α
p

(D3
p − D3

c)
1−α

D3α+2
c ∼ D−1

c

∫ D3
c/D3

0
dx xα(1 − x)α−1. (4.14)
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The final integrals in (4.13) and (4.14) are the incomplete beta functions BD3/D3
p
(α + 1, α)

and BD3
c/D3(α + 1, α), respectively (Abramowitz & Stegun (1964), §§ 6.6.1 and 26.5.3).

The results discussed in § 4.1 are exactly recovered when α = 1. The expressions in (4.13)
and (4.14) are plotted in arbitrary units as functions of Dp/D and Dc/D, respectively,
in figure 8. As α increases, the rates of decay of Ip and Ic as Dp → ∞ and Dc → 0,
respectively, increase, indicating that as break-up events involving child bubbles of similar
sizes are increasingly favoured, the locality of the break-up process correspondingly
increases. At small α, where the most likely break-up events involve child bubbles of very
different sizes, the cascade is diffuse, or leaky, and the bubble break-up flux is less local.
Also, for sufficiently large Dp and sufficiently small Dc, (4.13) and (4.14) may respectively
be approximated as

Ip(Dp|D) ≈ D−1−6α
p

D3(1−α)
p

∼ D−4−3α
p ∼ D

γp
p , (4.15)

Ic(Dc|D) ≈ D3α+2
c ∼ Dγc

c . (4.16)

Recall that the exponents γp and γc were referenced earlier in figures 4(b) and 5(b),
respectively. Note, also, that in these limits, Ip decays at least as quickly as D−4

p , and
Ic grows at least as quickly as D2

c , so the break-up flux is always at least quasi-local
regardless of α, for values of α where the beta distribution is defined. Once again, the
results of § 4.1 are recovered – in an exact fashion – for α = 1. Note, in addition, that a
bubble break-up process best described by an M-shaped distribution may be modelled by
a superposition of two bubble-mass fluxes due to two qb values with different α values.
Since each bubble-mass flux is always at least quasi-local regardless of α, this implies that
M-shaped distributions also result in a net quasi-local flux. Finally, one may also examine
the dependence of Wb(D) on D as a self-consistency check

Wb(D) ∼
∫ D

0
dDc

[
D−1

c

∫ D3
c/D3

0
dx xα(1 − x)α−1

]

∼
∫ ∞

D
dDp

[
D−1

p

∫ D3/D3
p

0
dx xα(1 − x)α−1

]

∼
∫ 1

0
dy

[
y−1

∫ y3

0
dx xα(1 − x)α−1

]

∼ constant, (4.17)

which reveals, as expected, an intermediate bubble-size subrange for the bubble
break-up flux where the break-up process is self-similar in nature, if α is constant
over the size subrange. Once again, self-similar behaviour of Wb is compatible with
the statistical quasi-stationarity and quasi-homogeneity of the system (Tb = 0). The
potential non-stationarity of a non-self-similar break-up process is further addressed in
appendix D.2.

4.3. Revisiting some of the assumptions in the bubble break-up formalism
Note that the findings of this work assume that all break-up events are binary in nature.
The binary break-up assumption precludes the formation of satellite bubbles, which might
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Locality in the turbulent bubble break-up cascade

be assumed to decrease the locality of the resulting bubble-mass transfer and also disrupt
self-similarity. It turns out, however, that locality and self-similarity remain plausible in
such a scenario. Non-binary break-up events are addressed in appendix D.1. As mentioned
earlier, appendix D.2 discusses non-self-similar break-up mechanisms, which may be
relevant in systems without sufficient scale separation. It turns out that locality remains
relatively robust even in the absence of self-similarity.

The extent of locality in the break-up flux Wb(D), in particular the respective scalings of
Ip(Dp|D) and Ic(Dc|D) with Dp and Dc, will be examined in Part 2 via a direct evaluation
of the flux from all relevant break-up events in a breaking-wave simulation.

5. Model descriptions for bubble-mass transfer and their implications on
subgrid-scale modelling

5.1. Relations between bubble-mass and spectral energy flux models

The break-up flux Wb(D) = ∫ D
0 dDc Tb(Dc) describes the average movement of bubble

mass ∼f (D)D3 in bubble-size space (D-space) as governed by the population balance
equation given in (3.6) and (3.9), where the rate of change of f (D)D3 due to break-up is
Tb(D), recalling from the introduction that mass and volume are assumed to be equivalent
in the incompressible limit. This is analogous to how the transfer flux W(k) = ∫ k

0 dk′ T(k′)
describes the movement of turbulent kinetic energy E(k) in wavenumber space (k-space)
based on the spectral turbulent kinetic energy equation (Batchelor 1953)

∂E(k, t)
∂t

= T(k, t) − 2νlk2E(k, t), (5.1)

where the rate of change of E(k) due to interscale transfer is T(k), and the time dependence
drops off in the quasi-stationary limit. In particular, the double-integral form of the
break-up flux (3.15) is reminiscent of the spectral energy transfer model of Heisenberg
(1948a,b), where W(k) is modelled as a separable product of integrals

W(k) ∼
(∫ k

0
dk′E(k′)k′2

)
×

⎛
⎝∫ ∞

k
dk′′

√
E(k′′)
k′′3

⎞
⎠ . (5.2)

By substituting the inertial subrange scaling E(k) ∼ k−5/3 into (5.2), one obtains
k′−5/3k′2 ∼ k′1/3 and

√
k′′−5/3k′′−3 ∼ k′′−7/3 for the scalings of the two integrands,

suggesting some degree of infrared and ultraviolet locality, respectively. Remarkably, it
turns out that these model limits agree with the scalings obtained in the analyses by
Eyink (2005), Eyink & Aluie (2009) and Aluie & Eyink (2009) for the turbulent energy
cascade for a monofractal velocity field, as well as an earlier analysis by Kraichnan (1971)
based on closure approximations that also introduces a measure of locality and earlier
investigations by Zhou (1993a,b) based on numerical simulations. Note that these rates of
decay are slower than those obtained in §§ 4.1 and 4.2 for the bubble-mass flux integrands,
suggesting that the turbulent bubble-mass cascade may be more strongly local than the
turbulent energy cascade. One may further evaluate these integrals

W(k) ∼
∫ k

0
dk′k′1/3

∫ ∞

k
dk′′k′′−7/3 ∼ k4/3k−4/3 ∼ constant, (5.3)

in order to see that W(k) has no dependence on k, as one would expect for a self-similar
energy transfer process. Note that this self-similarity, in turn, implies that the underlying
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system dynamics is statistically steady or quasi-stationary, since T(k) must then be
negligible in the range of scales of interest. An analogous observation was made in the
case of the bubble break-up flux in §§ 4.1 and 4.2.

If the true W(k) is quasi-local in k-space, then it may be well approximated
by a wavenumber-local expression. This brings to mind the quasi-local models of
Kovasznay (1948) and Pao (1965, 1968). Kovasznay (1948) argued that if W(k) is
dependent only on E(k) and k, then the only dimensionally consistent expression is

W(k) ∼ [E(k)]3/2 k5/2. (5.4)

Subsequently, Pao (1965, 1968) allowed W(k) to depend on ε as well. If it is further
assumed that W(k) is linear in E(k), then it follows from dimensional arguments that

W(k) ∼ ε1/3k5/3E(k). (5.5)

In a similar fashion, Wb(D) may be justifiably modelled by an expression local in D-space
if there is sufficient quasi-locality in the break-up flux. From a comparison of (3.11)
and (3.14), it is clear that the local transport term in the phase-space-based population
balance equation provides an appropriate model form for a local Wb. Then, one desires an
appropriate model for the velocity of f (D)D3 in bubble-size space, vD(D), such that

Wb(D) ∼ vD(D)f (D)D3. (5.6)

If there exists an intermediate bubble-size subrange where Wb(D) is independent of D, and
f (D) ∼ D−10/3, then an appropriate model for vD(D) should satisfy

vD(D) ∼ D1/3. (5.7)

Note that this is similar to the scaling for the turbulent velocity fluctuations with eddy size
uD(D) ∼ D1/3. The scaling for vD was previously postulated by Garrett et al. (2000) on the
dimensional grounds that vD ∼ uD, but one should be cognizant of the difference between
bubble-size space and eddy-size space. In addition, the term ∂(vDf D3)/∂D in the original
supporting reference (Garrettson 1973) was used to model a dissolution process, meaning
that the model form referenced by Garrett et al. (2000) is applicable only to the change
in bubble mass in individual events. Here, the model form for size-local bubble-mass
transport is not applicable to individual events, as will be clarified by the discussion
in appendix B. The locality of the corresponding bubble-mass flux must necessarily be
interpreted in an averaged sense, as all turbulent cascades should be. In turn, the model
velocity vD strictly describes the averaged break-up dynamics in small, localized regions
of turbulent bubbly flows with sufficient scale separation.

To close this discussion, recall the scaling for the break-up frequency gb(D) ∼ D−2/3,
which may be interpreted as the inverse of the characteristic break-up time of bubbles
of size D. If one assumes that the flux Wb(D) is effectively described by a size-space
velocity vD(D) such that a characteristic size interval D is travelled in this characteristic
time, then one may write vD(D) ∼ gb(D)D, and thus Wb(D) ∼ gb(D)f (D)D4. The scaling
gb(D)f (D) ∼ D−4 is thus seen to follow directly from the assumption of a quasi-local
and self-similar bubble break-up flux. The scaling of Garrett et al. (2000) for f ∼
Qε−1/3D−10/3, obtained via dimensional analysis in an intermediate bubble-size subrange
using a steady large-scale entrainment rate Q, is also a direct consequence of quasi-locality
and self-similarity in the bubble-mass flux, with the additional consideration that Q ∼ Wb.
This exhibits a clear parallel to the turbulent energy cascade, where it is also typically
assumed that the energy production and cascade rates are of the same order of magnitude.
Some of these ideas are summarized in the schematic on bubble-mass transport in figure 9.
Further remarks on Q are provided in appendix E.
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Bubble sizeLocal transport of fD3

QWb

vD ~ gb × D

Figure 9. Schematic of local transport of bubble mass ∼f D3 in D-space. The large-scale entrainment rate Q
is directly related to the bubble-mass flux Wb ∼ vD f D3 ∼ gb f D4.

Dcut-off log(bubble size)

log( f )

Resolved

Wb, gb

Modelled

Figure 10. Schematic illustrating subgrid-scale modelling in turbulent bubbly flows.

5.2. Implications for subgrid-scale modelling
Aside from providing a theoretical basis for the scalings for f and vD proposed by
Garrett et al. (2000) through connections to the characteristic break-up frequency gb
(Kolmogorov 1949; Hinze 1955; Martínez-Bazán et al. 1999a), this work has also posited
that the bubble break-up cascade provides a universal description of the bubble break-up
dynamics at small and intermediate bubble sizes in small, localized regions of turbulent
bubbly flows with sufficient scale separation. For example, the break-up flux in these
small, localized regions should be constant in an intermediate subrange of bubble sizes
LH � Ln � L, provided the surrounding turbulence is sufficiently energetic. Universality
simplifies the task of subgrid-scale modelling in turbulent two-phase flows with a large
separation of scales, and lends legitimacy to a universal subgrid-scale model in the spirit
of LES of turbulent single-phase flows. In traditional LES, large-scale turbulent motions
and flow structures are resolved, while small-scale motions and structures are modelled.
The rationale for this approach is twofold, as discussed succinctly by Rogallo & Moin
(1984). Large-scale motions are influenced by the flow geometry and cannot be assumed
to have a universal character. They are thus explicitly resolved, along with the bulk of the
energy in the flow. Small-scale motions may be assumed to have a universal character
and are instead represented by models that dissipate energy in a universal fashion. A
similar idea may be applied to turbulent two-phase flows where a separation of scales
enables a universal description of the small scales. Large structures of the dispersed
phase are explicitly resolved via an interface-tracking or interface-capturing method,
while small structures of the dispersed phase are treated as subgrid entities using a
Lagrangian point-particle description. If the formation and dynamics of these subgrid
bubbles occur in a universal fashion, then simplified models may be used to generate
these bubbles through the modelled break-up of larger bubbles. For example, the results
of this work suggest that in simulations where the mesh resolution is larger than the
expected LH , the generation of super-Hinze-scale subgrid bubbles may be modelled via
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a bubble break-up cascade, as illustrated in figure 10. As noted in the introduction, most
sub-Hinze-scale bubbles are expected to be formed by distinct fragmentation mechanisms,
such as Mesler entrainment, as well as regular and irregular drop entrainment (Deane &
Stokes 2002; Kiger & Duncan 2012; Chan et al. 2018b, 2019). As such, the generation
of sub-Hinze-scale subgrid bubbles will have to be addressed separately in a manner
that bypasses the cascade considered in this work (see e.g. Chan et al. 2018a,b, 2019;
Mirjalili et al. 2018; Mirjalili & Mani 2020). It is envisioned that distinct subgrid-scale
models for sub-Hinze-scale and super-Hinze-scale subgrid bubbles be combined in an
additive fashion in order to account for this myriad of fragmentation mechanisms and
cover more bases for modelling the formation and dynamics of subgrid bubbles. A detailed
formulation of a suitable subgrid-scale model in the context of super-Hinze-scale subgrid
bubbles is under development. This model would use both the kernel-based break-up
model form (3.15), as well as the phase-space-based break-up model form (5.6).

6. Conclusions

This paper explores the properties of the bubble break-up cascade that was postulated by
Garrett et al. (2000) to generate a spectrum of bubble sizes beneath breaking waves, and
more generally in high-Reynolds-number and high-Weber-number turbulent flows. The
description of the turbulent bubble-mass cascade is strongly analogous to the turbulent
energy cascade in single-phase turbulence (Richardson 1922; Kolmogorov 1941; Onsager
1945). An intrinsic feature of these cascades is the approximate scale locality of interscale
fluxes. In the case of the bubble-mass cascade, this specifically refers to the bubble-mass
flux from large- to small-bubble sizes, which is governed by bubble break-up event
statistics. Novel manipulation of a mass-conserving population balance equation for the
bubble-size distribution, f , is shown to yield quantitative insights into the locality of this
flux. The key ingredient for locality is the adoption of turbulent-flow scalings for f and
the break-up frequency, gb, with theoretical, numerical and experimental support. With
these scalings, the flux is shown to be infrared local, where flux contributions from parent
bubbles of sizes Dp > D decay faster than (Dp/D)−4, and ultraviolet local, where flux
contributions to child bubbles of sizes Dc < D decay faster than (D/Dc)

−2. In other words,
the bubble-mass flux is approximately size local with a power-law decay for longer-range
interactions. These flux scalings suggest that the turbulent bubble-mass cascade is more
strongly local than the turbulent energy cascade. The presence of locality is not too
sensitive to the probability distribution of child bubble volumes, qb, but the shape of the
distribution influences the strength of locality. In the case of the uniform distribution,
for example, flux contributions from parent bubbles may decay as quickly as (Dp/D)−7,
and flux contributions to child bubbles may decay as quickly as (D/Dc)

−5. Under the
assumptions of quasi-stationarity and quasi-homogeneity, it may be further deduced that
the bubble break-up flux is self-similar in an intermediate bubble-size subrange, much
like the energy flux in the inertial subrange in the energy cascade. The theoretical tools
introduced here in Part 1 enable detailed inspection of numerical simulations of breaking
waves in a forthcoming companion paper, Part 2, through a detailed analysis of bubble
break-up statistics. Taken together, these findings confirm key physical aspects of the
turbulent bubble break-up cascade phenomenology and provide a theoretical basis for the
dimensional analysis of Garrett et al. (2000) using traditional turbulent-flow scalings for
bubble break-up (Kolmogorov 1949; Hinze 1955; Martínez-Bazán et al. 1999a). Locality
in the bubble-mass-transfer process implies that small-bubble break-up may be universal
in small, localized regions in a variety of turbulent bubbly flows with sufficient scale
separation. In particular, the results of this work have not been specifically derived for
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oceanic breaking waves, and might be broadly applicable to other turbulent two-phase
flows under appropriate conditions, such as bubble break-up in stirred tanks and reactors.
This universality lends legitimacy to the construction of universal subgrid-scale models
for the break-up of subgrid bubbles in LES of these flows.

On average, the bubble break-up cascade transfers bubble mass from large- to
small-bubble sizes. The sustained presence of this break-up cascade implies the eventual
dominance of the bubble dynamics by these small bubbles. Small bubbles are known
to linger in terrestrial air–water flows due to their low rise velocity (Garrettson 1973;
Thorpe 1982, 1992; Trevorrow, Vagle & Farmer 1994). Knowledge of the behaviour of
these bubbles is thus of practical importance for characterizing these flows. Effective
predictive modelling of the statistics of these bubbles leads to accurate prediction of
physical phenomena related to the acoustical and optical responses of these bubbles, such
as the persistent wake signatures of seafaring vessels. The results of Part 2 will demonstrate
the relevance of this cascade mechanism in realistic air–water flow configurations, while
the modelling approach to be introduced in forthcoming work is a step towards accurate
physics-based prediction of small-bubble statistics in these practical configurations.
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Appendix A. Similarity hypotheses for the turbulent energy and
bubble-mass cascades

A.1. Kolmogorov’s similarity hypotheses for high-Re single-phase turbulent flows
Kolmogorov’s hypotheses for the local structure of turbulence in high-ReL flows
(Kolmogorov 1941), which were phenomenologically reviewed in detail in § 2.1, were
paraphrased by Pope (2000, § 6.1.2) and are further paraphrased here for reference:

HYPOTHESIS A.1 (Local isotropy). In flows with sufficiently high Reynolds number, the
small-scale turbulent motions (Ln � L) are isotropic.

This hypothesis echoes the statements earlier that scalings relevant to statistically
stationary and homogeneous turbulent flows also apply in small, localized regions in a
variety of turbulent flows with sufficient scale separation.

HYPOTHESIS A.2 (First similarity hypothesis). For locally isotropic turbulence, the
statistics of the small-scale turbulent motions (Ln � L) have a universal form that is
uniquely determined by ε and νl.
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HYPOTHESIS A.3 (Second similarity hypothesis). At scales in the range LK � Ln � L
in locally isotropic turbulence, the statistics of the turbulent motions have a universal form
that is uniquely determined by ε and independent of νl.

Note that in the original hypotheses, the ‘statistics of the turbulent motions’ refer
specifically to the statistics of the second-order velocity structure functions.

A.2. Proposed similarity hypotheses for high-Re and high-We turbulent bubbly flows
A corresponding set of similarity hypotheses pertaining to the turbulent bubble-mass
cascade examined in § 2.2 is proposed here:

HYPOTHESIS A.4 (Single-size approximation). In bubbly flows with sufficiently high
Weber number, the statistics of sufficiently small bubbles of volumes L3

n � L3 may be
analysed by parameterizing each bubble by a single length scale Ln.

If the phase space of the bubble-size distribution contains no other important
dimensions, then the single-size approximation enables the treatment of the distribution
as a one-dimensional probability distribution in bubble-size space.

HYPOTHESIS A.5 (First similarity hypothesis for gas transfer in bubble-size space due to
turbulent break-up). The statistics of sufficiently small bubbles of sizes Ln � L have a
universal form that is uniquely determined by ε and σ/ρl.

HYPOTHESIS A.6 (Second similarity hypothesis for gas transfer in bubble-size space due
to turbulent break-up). The statistics of bubbles of sizes LH � Ln � L have a universal
form that is uniquely determined by ε and independent of σ/ρl.

Hypothesis A.6 implies the presence of an intermediate bubble-size subrange for
bubble-mass transfer in turbulent bubbly flows with sufficiently high WeL, in an analogous
fashion to the inertial subrange implied by hypothesis A.3.

The proposed hypotheses for the turbulent bubble-mass cascade are chiefly applicable
to low-order bubble statistics like the bubble-size distribution f , by analogy with the
low-order flow statistics referenced by Kolmogorov’s original similarity hypotheses.

Appendix B. Contributions of individual break-up events to the break-up flux Wb

The break-up flux Wb introduced in §§ 2.3 and 3.3 is a statistical quantification of the
bubble-mass-transfer rate due to many independent break-up events, obtained through the
ensemble-averaging operation discussed in § 3.1. The meaning and significance of locality
may be elucidated by isolating the contributions of each break-up event to the flux Wb(D).
Assume that a parent bubble of size Dp > D breaks up into two child bubbles of sizes
Dc1 and Dc2. Non-binary break-up events are further discussed in appendix D.1. By the
conservation of mass, these bubble sizes must satisfy the constraint D3

p = D3
c1 + D3

c2. The
contribution of each of these break-up events to the total flux Wb(D) across the bubble
size D depends on the magnitudes of Dc1 and Dc2 relative to D. Any such break-up event
has three possible outcomes. First, if Dc1 and Dc2 are both larger than D, then no bubble
mass is transferred to any bubbles of sizes smaller than D. The resulting contribution to
Wb(D) in this case is zero. Second, if Dc1 is smaller than D while Dc2 is larger than
D, then the volume D3

c1 is transferred from a bubble of size larger than D, i.e. Dp, to
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D Bubble size

Dp

Dp

Dp

Case 1: No contribution Dc2

Dc1

Dc2Dc1

D3
c1

Dc2Dc1

Dp
3

Case 2:

Case 3:

Figure 11. Schematics illustrating the three cases of break-up events discussed in appendix B. Parent bubbles
have a dark fill colour, while child bubbles have a light fill colour. Child bubbles that contribute to the
bubble-mass flux Wb(D) are marked with a dark border.

a bubble of size smaller than D, i.e. Dc1. Third, if both Dc1 and Dc2 are smaller than
D, then the volume D3

p = D3
c1 + D3

c2 is transferred from a bubble of size larger than D to
bubbles of sizes smaller than D. These three cases are schematically illustrated in figure 11.
The relative frequency of these three cases is encapsulated in the break-up probability
distribution qb(Dc|Dp) over all child bubble sizes Dc � Dp, as well as the ratio Dp/D. The
average contribution of a single break-up event involving a parent bubble of size Dp to the
total flux Wb(D) may be obtained by integrating the differential average volume transfer
qb(Dc|Dp)D3

c over all eligible child bubble sizes Dc < D. If these break-up events are
independent of one another, then the total flux Wb(D) may be constructed by multiplying
this average gaseous volume transfer due to a single event involving a parent bubble of
size Dp by the corresponding differential event rate per unit domain volume gb(Dp)f (Dp),
and then integrating over all eligible parent bubble sizes Dp > D. One may heuristically
construct the expression (3.15) for Wb given these considerations.

Two observations may be made about the relationship between the bubble-mass-transfer
rate due to individual break-up events and the average flux Wb. First, an individual event
that is itself non-local in bubble-size space may not contribute strongly to the non-locality
of the corresponding Wb if the frequency of this event is small. The intuition provided by
a single event may thus not offer the complete story on the locality of Wb. Second, the
bubble-mass-transfer rate is a volume-weighted quantity. Consider the case where a parent
bubble of size Dp > D breaks into two child bubbles of sizes Dc1 < D and Dc2 � Dc1.
While this may appear to be a highly non-local event since Dc1 is far removed from Dp,
the gaseous volume that is transferred from the bubble of size Dp to the bubble of size
Dc1 is D3

c1 � D3
p. The influence of this non-local transfer on the non-locality of Wb(D) is

limited by this volume weighting.

Appendix C. More about the mathematical formalism

C.1. The population balance equation
The population balance equation is a phenomenological evolution equation for a
probability density function in a predefined phase space describing a population of
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discrete entities. As such, the equation should respect the conservation laws governing this
population. In (3.5), the total mass of gas in all the bubbles is conserved in the x–D phase
space, except for buoyant degassing, the influx of gas due to processes like large-scale
entrainment, and analogous sink terms for the gaseous mass in the limit of small bubble
sizes. It has been implicitly assumed that a single parameter, D, suitably describes the
size of the bubbles (Williams 1958). As suggested in hypothesis A.4 in appendix A.2, this
is appropriate in a flow with a sufficiently high WeL. Note that the population balance
equation resembles the classical Liouville equation, except that no claim is made here
about the divergence of the phase-space velocity field. One may also interpret (3.5) as a
generalized Boltzmann equation (Garrettson 1973; Carrica et al. 1999; Solsvik & Jakobsen
2015) where bubbles may split, degas or be entrained in addition to colliding with one
another. These various effects are subsumed in the generalized collision term, H.

Equation (3.6) describes the movement of gaseous mass in bubble-size space in small,
localized regions of turbulent bubbly flows, albeit in a probabilistic manner. By the
conservation of total mass of gas and statistical quasi-stationarity, H(D) must satisfy∫ ∞

0
dD H(D) = Rd/V + Re/V = 0︸︷︷︸

statistical
quasi-stationarity

(C1)

in the limit of negligible buoyant degassing, where Rd < 0 and Re > 0 are the volumetric
rates of small-scale removal and large-scale addition, respectively. Noting that the
left-hand side of (3.6) is the conservative form of the convective operator acting on
f (D)D3, (C1) implies that the total amount of f (D)D3 in the entire semi-infinite D-space
cannot change except due to gas removal and/or addition, whose effects balance each
other in the limit of statistical quasi-stationarity. Break-up and coalescence events do not
generate or eliminate bubble mass, and thus do not contribute to the integral mass balance
in (C1).

In (3.9), one may decompose Ts(D) = Td(D) + Te(D) + Tg(D) into a small-scale sink
kernel Td(D), a large-scale source kernel Te(D), and a sink kernel due to buoyant degassing
Tg(D), such that

∫ ∞
0 dD Td(D) = Rd/V < 0 and

∫ ∞
0 dD Te(D) = Re/V > 0. If Td(D)

and Te(D) are assumed to be active only at small and large D, respectively, and Tc(D)

and Tg(D) are also assumed to be negligible, then an intermediate bubble-size subrange
LH � D � L emerges where Tb(D) = 0 as implied by hypothesis A.6 in appendix A.2.
Equations (3.11) and (3.14) further imply that Wb is constant in this size subrange in the
spirit of self-similarity.

C.2. The model break-up kernel
Several properties of the probability distribution of child bubble sizes, qb(Dc|Dp), are
introduced here (Ramkrishna 1985; Martínez-Bazán et al. 2010). The mechanics of
break-up require (Valentas et al. 1966)

qb(Dc|Dp) = 0 if Dc � Dp, (C2)

since a bubble cannot break to form bubbles larger than itself. Then, qb may be normalized
such that ∫ Dp

0
dDc qb(Dc|Dp) =

∫ ∞

0
dDc qb(Dc|Dp) = 2, (C3)
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where the factor of 2 arises from the assumption of binary break-up. As a result of this
normalization, as well as the conservation of bubble mass, qb will also need to satisfy∫ Dp

0
dDc qb(Dc|Dp)D3

c =
∫ ∞

0
dDc qb(Dc|Dp)D3

c = D3
p. (C4)

Also, if a bubble of size Dp breaks into two bubbles of sizes D1 and D2, then
qb(D1|Dp)/D2

1 = qb(D2|Dp)/D2
2 by symmetry. This is more readily seen by observing

equivalently that if a bubble of volume D3
p breaks into two bubbles of volumes D3

1 and
D3

2, then qb(D3
1|D3

p) = qb(D3
2|D3

p) by symmetry. An appropriate change in variables from
D3 to D yields the desired relation. Using the properties of qb described above, one may
verify that the model break-up kernel (3.12) satisfies (3.10) by direct substitution. One may
also show via these properties of qb that Wb satisfies

Wb(D) =
∫ D

0
dDc Tb(Dc)

=
∫ D

0
dDc

∫ ∞

Dc

dDp qb
(
Dc|Dp

)
gb(Dp)f (Dp)D3

c −
∫ D

0
dDc gb(Dc)f (Dc)D3

c

=
∫ D

0
dDc D3

c

∫ ∞

0
dDp qb

(
Dc|Dp

)
gb(Dp)f (Dp) −

∫ D

0
dDp gb(Dp)f (Dp)D3

p

=
∫ D

0
dDc D3

c

∫ ∞

0
dDp qb

(
Dc|Dp

)
gb(Dp)f (Dp)

−
∫ D

0
dDc D3

c

∫ D

0
dDp qb

(
Dc|Dp

)
gb(Dp)f (Dp)

=
∫ D

0
dDc D3

c

∫ ∞

D
dDp qb

(
Dc|Dp

)
gb(Dp)f (Dp). (C5)

Appendix D. Generalization of the bubble break-up formalism

D.1. Non-binary break-up
The constraints (C3) and (C4) need to be satisfied if bubbles in a system undergo
only binary break-up events. These constraints need to be modified in the case of
non-binary break-up. If the mean number of bubbles generated by a break-up event is
m � 2, then the factor of 2 on the right-hand side of (C3) will need to be replaced by
m. The beta-distribution surrogate model in § 4.2 may be correspondingly modified to
accommodate non-binary break-up. The generic beta distribution in bubble-volume space
with two shape parameters α and β takes the form

qb(D3
c |D3

p) =
⎧⎨
⎩CD3(α−1)

c

(
D3

p − D3
c

)β−1
D−3(α+β−2)−3

p /B(α, β), 0 � D3
c � D3

p,

0, D3
p < D3

c .

(D1)

In order for the constraints (C3) – with the right-hand side modified to m – and (C4) to
be satisfied, α and β need to satisfy (m − 1)α = β, and C needs to satisfy C = m. In
the binary break-up limit m = 2, one recovers α = β and C = 2. The distribution (D1) is
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Figure 12. The generic beta distribution in D3-space (D1) for various shape parameters α. Here, β is defined
to be equal to 2α so that m = C = 3.

plotted in figure 12 for several values of α in the case of m = 3. Note that for the same α,
the large-Dp and small-Dc limits, (4.15) and (4.16), remain the same regardless of the value
m takes. This implies that the degrees of locality are comparable in two break-up processes
that have different mean numbers of child bubbles but can be described with the same
α, which is the smaller of the two shape parameters characterizing the beta distribution.
Also, the break-up process remains self-similar as long as both α and β are constant over
the size subrange of interest. These results imply that locality and self-similarity remain
plausible in a break-up process that includes non-binary events.

D.2. Non-self-similar break-up
In the case of non-self-similar break-up, the scaling gbf ∼ D−4

p is no longer guaranteed to
hold, as alluded to in § 5.1. However, the locality of the break-up flux appears to remain
robust even in the absence of self-similarity. Consider the beta-distribution surrogate
model in § 4.2 with the binary break-up assumption. Equation (4.15) suggests that as
long as the differential break-up rate gbf is a decreasing function of Dp as Dp → ∞, the
break-up flux remains quasi-local for any permissible α. In the worst-case scenario α → 0,
γp remains negative as long as the condition stated above holds true. More rigorously, the
integral of Ip with respect to Dp from D to ∞ is only defined if Ip decays faster than D−1

p .
To ensure quasi-locality, one should then require that gbf also decays faster than D−1

p .
One may also argue the relative robustness of locality in the following manner: while a
size-dependent α immediately results in a size-dependent Wb, (4.15) and (4.16) suggest
that the break-up flux may remain size local even if α is a function of the bubble size of
interest.

Recall from §§ 4.1 and 4.2 that a self-similar Wb is compatible with the statistical
quasi-stationarity and quasi-homogeneity of the underlying system. Conversely, the
absence of self-similarity suggests that the underlying system dynamics may not be
statistically quasi-stationary. Consider (3.11) in relation to the discussion in the preceding
paragraph, which remarks that the break-up flux may remain size local even if it departs
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from self-similarity. This corresponds to the observation that the two terms of (3.11) may
still balance each other while being non-zero each. This, in turn, suggests that while an
appropriate velocity vD may still be used to model a non-self-similar break-up process if
there is sufficient locality, both vD and the bubble-size distribution f may become functions
of time in the absence of self-similarity. In this case, a time-invariant power-law variation
of f cannot be assumed.

Appendix E. The large-scale entrainment rate Q

The gaseous volume entrainment rate per unit domain volume, Q, is typically assumed
to be constant and imposed by integral-scale quantities like uL and L. It was observed
in § 5.1 that just as the large-scale energy production rate ε is also assumed to be the
turbulent kinetic energy cascade rate ε in the turbulent energy cascade, the large-scale
entrainment rate Q and the bubble-mass cascade rate Wb appear to be synonymous in the
turbulent bubble break-up cascade. Two follow-up remarks are in order here. First, Q and
ε are imposed by the large scales and may both depend on uL and L. Thus, Q itself may
appear to have an implicit dependence on ε, as remarked by Deike et al. (2016) and Yu
et al. (2020), who suggest that Q is an increasing function of ε. More specifically, the
quantity ε in hypotheses A.5 and A.6 and figure 2 may be equivalently replaced by Q to
no detriment. Second, recall from § 2.2 that inertial effects dominate at large scales and
capillary effects dominate at small scales. In a cascade mechanism with sufficient scale
separation, large-scale quantities like Q and ε are unlikely to have implicit dependences
on small-scale parameters like σ/ρl. Thus, in theories of bubble break-up that imply such
a dependence in the sense that f itself is proposed to be a function of σ/ρl, the underlying
mechanism may not be self-similar due to the lack of scale separation. This is also a
direct consequence of hypothesis A.6: if an intermediate subrange of bubble sizes exists
where the bubble dynamics is self-similar, then the corresponding bubble statistics are
not a function of σ/ρl. It follows from appendix D.2 that a quasi-stationary power-law
dependence should not be assumed in a system where the bubble statistics at intermediate
sizes depend on σ/ρl.
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