
TLP 3 (6): 717–763, November 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S1471068403001741 Printed in the United Kingdom

717

Logic programming in the context of
multiparadigm programming:

the Oz experience�

PETER VAN ROY

Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

(e-mail: pvr@info.ucl.ac.be)

PER BRAND

Swedish Institute of Computer Science, S-164 28 Kista, Sweden

(e-mail: perbrand@sics.se)

DENYS DUCHIER

Universität des Saarlandes, D-66123 Saarbrücken, Germany

(e-mail: Denys.Duchier@ps.uni-sb.de)

SEIF HARIDI, CHRISTIAN SCHULTE

Royal Institute of Technology (KTH), S-164 28 Kista, Sweden

(e-mail: {seif,schulte}@imit.kth.se)

MARTIN HENZ

National University of Singapore, Singapore 117543

(e-mail: henz@comp.nus.edu.sg)

Abstract

Oz is a multiparadigm language that supports logic programming as one of its ma-

jor paradigms. A multiparadigm language is designed to support different programming

paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with

equal ease. This paper has two goals: to give a tutorial of logic programming in Oz; and

to show how logic programming fits naturally into the wider context of multiparadigm

programming. Our experience shows that there are two classes of problems, which we call

algorithmic and search problems, for which logic programming can help formulate practical

solutions. Algorithmic problems have known efficient algorithms. Search problems do not

have known efficient algorithms but can be solved with search. The Oz support for logic

programming targets these two problem classes specifically, using the concepts needed for each.

This is in contrast to the Prolog approach, which targets both classes with one set of concepts,

which results in less than optimal support for each class. We give examples that can be run

interactively on the Mozart system, which implements Oz. To explain the essential difference

between algorithmic and search programs, we define the Oz execution model. This model

subsumes both concurrent logic programming (committed-choice-style) and search-based logic

� This paper is a much-extended version of the tutorial talk “Logic Programming in Oz with Mozart”
given at the International Conference on Logic Programming, Las Cruces, New Mexico, November 1999.
Some knowledge of traditional logic programming (with Prolog or concurrent logic languages) is
assumed.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

718 P. Van Roy et al.

programming (Prolog-style). Furthermore, as consequences of its multiparadigm nature, the

model supports new abilities such as first-class top levels, deep guards, active objects, and

sophisticated control of the search process. Instead of Horn clause syntax, Oz has a simple,

fully compositional, higher-order syntax that accommodates the abilities of the language. We

give a brief history of Oz that traces the development of its main ideas and we summarize

the lessons learned from this work. Finally, we give many entry points into the Oz literature.

KEYWORDS: multiparadigm programming, language design, Prolog, Oz, encapsulated search,

concurrent constraint programming, history, software development

1 Introduction

In our experience, logic programming can help give practical solutions to many

different problems. We have found that all these problems can be divided into two

classes, each of which needs a totally different approach:

• Algorithmic problems. These are problems for which efficient algorithms are

known. This includes parsing, rule-based expert systems, and transformations

of complex symbolic data structures. For such problems, a logical specifi-

cation of the algorithm is sometimes simpler than an imperative specification.

In that case, deterministic logic programming or concurrent logic programming

may be natural ways to express it. Logical specifications are not always simpler.

Sometimes an imperative specification is better, e.g. for problems in which state

updating is frequent. Many graph algorithms are of the latter type.

• Search problems. These are problems for which efficient algorithms are not

known. This may be either because such algorithms are not possible in

principle or because such algorithms have not been made explicit. We cite, e.g.

NP-complete problems (Garey & Johnson, 1979) or problems with complex

specifications whose algorithms are difficult for this reason. Some examples of

search problems are optimization problems (planning, scheduling, configura-

tion), natural language parsing, and theorem proving. These kinds of problems

can be solved by doing search, i.e. with nondeterministic logic programming.

But search is a dangerous tool. If used naively, it does not scale up to real

applications. This is because the size of the search space grows exponentially

with the problem size. For a real application, all possible effort must be made

to reduce the need for search: use strong (global) constraints, concurrency

for cooperative constraints, heuristics for the search tree, etc. (Schulte &

Smolka, 1999). For problems with complex specifications, using sufficiently

strong constraints sometimes results in a polynomial-time algorithm (Koller &

Niehren, 2000).

For this paper, we consider logic programming as programming with executable

specifications written in a simple logic such as first-order predicate calculus. The Oz

support for logic programming is targeted specifically towards the two classes of

algorithmic problems and search problems. The first part of this paper (sections 2–6)

shows how to write logic programs in Oz for these problems. Section 2 introduces

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 719

deterministic logic programming, which targets algorithmic problems. It is the most

simple and direct way of doing logic programming in Oz. Section 3 shows how

to do nondeterministic logic programming in the Prolog style. This targets neither

algorithmic nor search problems, and is therefore only of pedagogical interest.

Section 4 shows how to do concurrent logic programming in the classical tradition.

This targets more algorithmic problems. Section 5 extends section 4 with state. In our

experience, state is essential for practical concurrent logic programming. Section 6

expands on section 3 to show how search can be made practical.

The second part of this paper (sections 7–9) focuses on the essential difference

between the techniques used to solve algorithmic and search problems. This leads

to the wider context of multiparadigm programming. Section 7 introduces the Oz

execution model, which has a strict functional core and extensions for concurrency,

lazy evaluation, exception handling, security, state, and search. The section explains

how these extensions can be used in different combinations to provide different

programming paradigms. In particular, section 7.4 explains the abstraction of

computation spaces, which is the main tool for doing search in Oz. Spaces make

possible a deep synthesis of concurrent and constraint logic programming. Section 8

gives an overview of other research in multiparadigm programming and a short

history of Oz. Finally, section 9 summarizes the lessons we have learned in the Oz

project on how to do practical logic programming and multiparadigm programming.

This paper gives an informal (yet precise) introduction targeted towards Prolog

programmers. A more complete presentation of logic programming in Oz and its

relationship to other programming concepts is given in the textbook by Van Roy &

Haridi (2002).

2 Deterministic logic programming

We call deterministic logic programming the case when the algorithm’s control flow

is completely known and specified by the programmer. No search is needed. This is

perfectly adapted to sequential algorithmic problems. For example, a deterministic

naive reverse can be written as follows in Oz:

declare
proc {Append Xs Ys Zs}

case Xs
of nil then Zs=Ys
[] X|Xr then Zr in

Zs=X|Zr {Append Xr Ys Zr}
end

end

proc {NRev Xs Ys}
case Xs
of nil then Ys=nil
[] X|Xr then R in

{NRev Xr R}
{Append R [X] Ys}

end
end

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

720 P. Van Roy et al.

This syntax should be vaguely familiar to people with some knowledge of Prolog

and functional programming (Sterling & Shapiro, 1986; Maier & Warren, 1988;

Thompson, 1999; Cousineau & Mauny, 1998). We explain it briefly, pointing out

where it differs from Prolog. All capitalized identifiers refer to logic variables in

a constraint store.1 Append and NRev are procedures whose arguments are passed

by unification, as in Prolog. The declare declares new global identifiers, Append

and NRev, which are bound to the newly-created procedure values. This means that

the order of the declarations does not matter. All local variables must be declared

within a scope, e.g. “Zr in” and “R in” declare Zr and R with scopes to the next

enclosing end keyword. A list is either the atom nil or a pair of an element X and

a list Xr, written X|Xr. The [] is not an empty list, but separates clauses in a case

statement (similar to a guarded command, except that case is sequential).

We explain briefly the semantics of the naive reverse to highlight the relationship to

logic programming. The constraint store consists of equality constraints over rational

trees, similar to what is provided by many modern Prolog systems. Statements

are executed sequentially. There are two basic operations on the store, ask and

tell (Saraswat, 1993):

• The tell operation (e.g. Ys=nil) adds a constraint; it performs unification. The

tell is an incremental tell; if the constraint is inconsistent with the store then

only a consistent part is added and an exception is raised (e.g. see Smolka

(1995b) for a formal definition).

• The ask operation is the case statement (e.g. case Xs of X|Xr then...else

...end). It waits until the store contains enough information to decide whether

the pattern is matched (entailment) or can never be matched (disentailment).

The above example can be written in a functional syntax. We find that a functional

syntax often greatly improves the readability of programs. It is especially useful when

it follows the data flow, i.e. the input and output arguments. In Oz, the definition of

NRev in functional syntax is as follows:

declare
fun {Append Xs Ys}

case Xs of nil then Ys
[] X|Xr then X|{Append Xr Ys} end

end

fun {NRev Xs}
case Xs of nil then nil
[] X|Xr then {Append {NRev Xr} [X]} end

end

This is just syntactic sugar for the procedural definition. In Oz, a function is

just a shorter way of writing a procedure where the procedure’s last argument is

the function’s output. The statement Ys={NRev Xs} has identical semantics to the

procedure call {NRev Xs Ys}.

1 Including Append and NRev, which are bound to procedure values (lexically-scoped closures).

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 721

From the semantics outlined above, it follows that Append and NRev do not

search. If there is not enough information to continue, then the computation will

simply block. For example, take these two calls:

declare X Y A B in
{Append [1] X Y}
{Append A [2] B}

(The declare . . . in introduces new variables.) The first call, {Append [1] X Y},

will run to completion since Append does not need the value of its second argument.

The result is the binding of Y to 1|X. The second call, {Append A [2] B}, will

suspend the thread it is executing in. This is because the case statement does not

have enough information to decide what A is. No binding is done. If another thread

binds A, then execution will continue.

This is how Oz supports deterministic logic programming. It is purely declarative

logic programming with an operational semantics that is fully specified and determin-

istic. Programs can be translated in a straightforward way to a Horn clause syntax.

However, deductions are not performed by resolution. The execution can be seen as

functional programming with logic variables and dynamic typing, carefully designed

to have a logical semantics. Resolution was originally designed as an inference rule

for automatic theorem provers (Robinson, 1965); it is not a necessary part of a logic

programming language.

Note that there are higher-order procedures as in a functional language, but no

higher-order logic programming, i.e. no logic programming based on a higher-order

logic. Higher-order procedures are useful within first-order logic programming as a

tool to structure programs and build abstractions.

We find that adding logic variables to functional programming is an important

extension for three reasons. First, it allows to do deterministic logic programming

in a straightforward way. Secondly, it increases expressiveness by allowing powerful

programming techniques based on incomplete data structures, such as tail-recursive

append and difference lists (Clark & Tärnlund, 1977; Sterling & Shapiro, 1986). The

third reason is perhaps the most important: adding concurrency to this execution

model gives a useful form of concurrent programming called declarative concurrency

(see section 7.2).

3 Nondeterministic logic programming

We call nondeterministic logic programming the situation when search is used to

provide completeness. Using search allows finding solutions when no other algorithm

is known.2 Oz provides the choice statement as a simple way to introduce search.

The choice statement creates a choice point for its alternatives.

2 To be precise, search is a general technique that works for any problem by giving just the problem
specification, but it can be impractical because it does brute force exploration of a potentially large
space of candidate solutions. Search can be made more efficient by incorporating problem-specific
knowledge, e.g. games can be programmed using alpha-beta search.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

722 P. Van Roy et al.

The choice statement allows to do Prolog-style generative execution. However,

this style of programming does not scale up to real-world search problems.3 In

our opinion, its primary value is pedagogical and exploratory. That is, it can be

used on small examples to explore and understand a problem’s structure. With this

understanding, a more efficient algorithm can often be designed. When used naively,

search will not work on large examples due to search space explosion.

Search is a fundamental part of constraint programming. Many techniques have

been devised there to reduce greatly the size of the search space. Section 6 gives a

simple example to illustrate some of these techniques.

Here is a nondeterministic naive reverse with choice:

proc {Append Xs Ys Zs}
choice Xs=nil Zs=Ys
[] X Xr Zr in Xs=X|Xr Zs=X|Zr {Append Xr Ys Zr}
end

end

proc {NRev Xs Ys}
choice Xs=nil Ys=nil
[] X Xr in Xs=X|Xr {Append {NRev Xr} [X] Ys}
end

end

(In this and all further examples, we leave out the declare for brevity.) Because

this example does not use higher-order programming, there is a direct translation to

the Horn clause syntax of Prolog:

append(Xs, Ys, Zs) :- Xs=nil, Zs=Ys.

append(Xs, Ys, Zs) :- Xs=[X|Xr], Zs=[X|Zr], append(Xr, Ys, Zr).

nrev(Xs, Ys) :- Xs=nil, Ys=nil.

nrev(Xs, Ys) :- Xs=[X|Xr], nrev(Xr, Yr), append(Yr, [X], Ys).

If the Oz program is run with depth-first search, its semantics will be identical to

the Prolog version.

Controlling search

The program for nondeterministic naive reverse can be called in many ways, e.g. by

lazy depth-first search (similar to a Prolog top level)4, eager search, or interactive

search (with the Explorer tool (Schulte, 1999b; Van Roy, 1999a)). All of these search

abilities are programmed in Oz using the notion of computation space (see section 7).

Often the programmer will never use spaces directly (although he or she can), but

3 For problems with a small search space, they may be sufficient. For example, a practical diagnostics
generator for the VLSI-BAM microprocessor was written in Prolog (Holmer et al., 1996; Van Roy,
1989b).

4 Lazy search is different from lazy evaluation in that the program must request the next solution (see
section 7) explicitly.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 723

will use one of the many predefined search abstractions provided in the Search

module (see section 6.2).

As a first example, let us introduce an abstraction, called search object, that is

similar to a Prolog top level. It does depth-first search and can be queried to obtain

successive solutions. Three steps are needed to use it:5

declare P E in
% 1. Define a new search query:
proc {P S} X Y in {Append X Y [1 2 3 4 5]} S=sol(X Y) end

% 2. Set up a new search engine:
E={New Search.object script(P)}

% 3. Calculate and display the first solution:
% (and others, when repeated)
local X in {E next(X)} {Browse X} end

Let us explain each of these steps:

1. The procedure P defines the query and returns the solution S in its single

argument. Because Oz is a higher-order language, the query can be any

statement. In this example, the solution has two parts, X and Y. We pair them

together in the tuple sol(X Y).

2. The search object is an instance of the class Search.object. The object is

created with New and initialized with the message script(P).

3. The object invocation {E next(X)} finds the next solution of the query P. If

there is a solution, then X is bound to a list containing it as single element. If

there are no more solutions, then X is bound to nil. Browse is a tool provided

by the system to display data structures.

When running this example, the first call displays the solution [sol(nil [1 2 3

4 5])], that is, a one-element list containing a solution. Successive calls display the

solutions [sol([1] [2 3 4 5])], . . . ,[sol([1 2 3 4 5] nil)]. When there are

no more solutions, then nil is displayed instead of a one-element list.

The standard Oz approach is to use search only for problems that require it. To

solve algorithmic problems, one does not need to learn how to use search in the

language. This is unlike Prolog, where search is ubiquitous: even procedure applica-

tion is defined in terms of resolution, and thus search. In Oz, the choice statement

explicitly creates a choice point, and search abstractions (such as Search.object,

above) encapsulate and control it. However, the choice statement by itself is a

bit too simplistic, since the choice point is statically placed. The usual way to add

choice points in Oz is with abstractions that dynamically create a choice point

whose alternatives depend on the state of the computation. The heuristics used are

called the distribution strategy. For example, the procedure FD.distribute allows

to specify the distribution strategy for problems using finite domain constraints.

Section 6.3 gives an example of this approach.

5 For clarity, we leave out syntactic short-cuts. For example, calculating and displaying the next solution
can be written as {Browse {E next($)}}.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

724 P. Van Roy et al.

4 Concurrent logic programming

In concurrent logic programming, programs are written as a set of don’t-care

predicates and executed concurrently. That is, at most one clause is chosen from each

predicate invocation, in a nondeterministic way from all the clauses whose guards

are true. This style of logic programming is incomplete, just like deterministic

logic programming. Only a small part of the search space is explored due to

the guarded clause selection. The advantage is that programs are concurrent, and

concurrency is essential for programs that interact with their environment, e.g. for

agents, GUI programming, OS interaction, etc. Many algorithmic problems are of

this type. Concurrency also permits a program to be organized into parts that

execute independently and interact only when needed. This is an important software

engineering property.

In this section, we show how to do concurrent logic programming in Oz. In

fact, the full Oz language allows concurrency and search to be used together (see

section 7). The clean integration of both in a single language is one of the major

strengths of Oz. The integration was first achieved in Oz’s immediate ancestor, AKL,

in 1990 (Haridi & Janson, 1990). Oz shares many aspects with AKL but improves

over it in particular by being compositional and higher-order.

4.1 Implicit versus explicit concurrency

In early concurrent logic programming systems, concurrency was implicit, driven

solely by data dependencies (Shapiro, 1989). Each body goal implicitly ran in its own

thread. The hope was that this would make parallel execution easy. But this hope

has not been realized, for several reasons. The overhead of implicit concurrency is

too high, parallelism is limited without rewriting programs, and detecting program

termination is hard. To reduce the overhead, it is possible to do lazy thread creation,

that is, to create a new thread only when the parent thread would suspend. This

approach has a nice slogan, “as sequential as possible, as concurrent as necessary,”

and it allows an efficient implementation. But the approach is still inadequate because

reasoning about programs remains hard.

After implementing and experimenting with both implicit concurrency and lazy

thread creation, the current Oz decision is to do only explicit thread creation (see

section 8.2). Explicit thread creation simplifies debugging and reasoning about

programs, and is efficient. Furthermore, experience shows that parallelism (i.e.

speedup) is not harder to obtain than before; it is still the programmer’s responsibility

to know what parts of the program can potentially be run in parallel.

4.2 Concurrent producer-consumer

A classic example of concurrent logic programming is the asynchronous producer-

consumer. The following program asynchronously generates a stream of integers

and sums them. A stream is a list whose tail is an unbound logic variable. The tail

can itself be bound to a stream, and so forth.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 725

proc {Generate N Limit Xs}
if N<Limit then Xr in

Xs=N|Xr
{Generate N+1 Limit Xr}

else Xs=nil end
end

proc {Sum Xs A S}
case Xs
of X|Xr then {Sum Xr A+X S}
[] nil then S=A
end

end

local Xs S in
thread {Generate 0 150000 Xs} end % Producer thread
thread {Sum Xs 0 S} end % Consumer thread
{Browse S}

end

This executes as expected in the concurrent logic programming framework. The

producer, Generate, and the consumer, Sum, run in their own threads. They

communicate through the shared variable Xs, which is a stream of integers. The

case statement in Sum synchronizes on Xs being bound to a value.

This example has exactly one producer feeding exactly one consumer. It therefore

does not need a nondeterministic choice. More general cases do, e.g. a client-server

application with more than one client feeding a server. Without additional informa-

tion, the server never knows which client will send the next request. Nondeterministic

choice can be added directly to the language, e.g. the WaitTwo operation of

section 7.2. It turns out to be more practical to add state instead. Then non-

deterministic choice is a consequence of having both state and concurrency, as

explained in section 5.

4.3 Lazy producer-consumer

In the above producer-consumer example, it is the producer that decides how many

list elements to generate. This is called supply-driven or eager execution. This is an

efficient technique if the total amount of work is finite and does not use many

system resources (e.g. memory or calculation time). On the other hand, if the total

work potentially uses many resources, then it may be better to use demand-driven or

lazy execution. With lazy execution, the consumer decides how many list elements to

generate. If an extremely large or a potentially unbounded number of list elements

are needed, then lazy execution will use many fewer system resources at any given

point in time. Problems that are impractical with eager execution can become

practical with lazy execution.

Lazy execution can be implemented in two ways in Oz. The first way, which is

applicable to any language, is to use explicit triggers. The producer and consumer

are modified so that the consumer asks the producer for additional list elements.

In our example, the simplest way is to use logic variables as explicit triggers. The

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

726 P. Van Roy et al.

consumer binds the end of a stream to X|_. The producer waits for this and binds

X to the next list element.

Explicit triggers are cumbersome because they require the producer to accept

explicit communications from the consumer. A better way is for the language

to support laziness directly. That is, the language semantics would ensure that a

function is evaluated only if its result were needed. Oz supports this syntactically by

annotating the function as “lazy”. Here is how to do the previous example with a

lazy function that generates a potentially infinite list:

fun lazy {Generate N}
N|{Generate N+1}

end

proc {Sum Xs Limit A S}
if Limit>0 then

case Xs
of X|Xr then

{Sum Xr Limit-1 A+X S}
end

else S=A end
end

local Xs S in
thread Xs={Generate 0} end
thread {Sum Xs 150000 0 S} end
{Browse S}

end

Here the consumer, Sum, decides how many list elements should be generated. The

addition A+X implicitly triggers the generation of a new list element X. Lazy execution

is part of the Oz execution model; section 7.2 explains how it works.

4.4 Coroutining

Sequential systems often support coroutining as a simple way to get some of the

abilities of concurrency. Coroutining is a form of non-preemptive concurrency in

which a single locus of control is switched manually between different parts of a

program. In our experience, a system with efficient preemptive concurrency almost

never needs coroutining.

Most modern Prolog systems support coroutining. The coroutining is either

supported directly, as in IC-Prolog (Clark & McCabe, 1979; Clark et al., 1982),

or indirectly by means of an operation called freeze which provides data-driven

computation. The freeze(X,G) operation, sometimes called geler(X,G) from

Prolog II which pioneered it (Colmerauer, 1982), sets up the system to invoke

the goal G when the variable X is bound (Sterling & Shapiro, 1986). With freeze

it is possible to have “non-preemptive threads” that explicitly hand over control

to each other by binding variables. Because Prolog’s search is based on global

backtracking, the “threads” are not independent: if a thread backtracks, then other

threads may be forced to backtrack as well. Prolog programming techniques that

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 727

depend on backtracking, such as search, deep conditionals, and exceptions, cannot

be used if the program has to switch between threads.

5 Explicit state

From a theoretical point of view, explicit state has often been considered a

forbidden fruit in logic programming. We find that using explicit state is important

for fundamental reasons related to program modularity (Van Roy & Haridi,

2002).

There exist tools to use state in Prolog while keeping a logical semantics when

possible. See for example SICStus Objects (Carlsson et al., 1999), Prolog++ (Moss,

1994), and the Logical State Threads package (K̊agedal et al., 1997). An ancestor

of the latter was used to help write the Aquarius Prolog compiler (Van Roy, 1989a;

Van Roy & Despain, 1992).

Functional programmers have also incorporated state into functional languages,

e.g. by means of set operations in LISP/Scheme (Steele, Jr., 1984; Abelson et al.,

1996), references in ML (Milner et al., 1990), and monads in Haskell (Wadler, 1992).

5.1 Cells (mutable references)

State is an explicit part of the basic execution model in Oz. The model defines the

concept of cell, which is a kind of mutable reference. A cell is a pair of a name C

and a reference X. There are two operations on cells:

{NewCell X C} % Create new cell with name C and content X
{Exchange C X Y} % Update content to Y and bind X to old content

Each Exchange atomically accesses the current content and defines a new content.

Oz has a full-featured concurrent object system which is completely defined in

terms of cells (Henz, 1997b; Henz, 1997a). The object system includes multiple

inheritance, fine-grained method access control, and first-class messages. Section 7

gives more information about cells and explains how they underlie the object system.

5.2 Ports (communication channels)

In this section we present another, equivalent way to add state to the basic model.

This is the concept of port, which was pioneered by AKL. A port is a pair of a

name P and a stream Xs (Janson et al., 1993). There are two operations on ports:

{NewPort Xs P} % Create new port with name P and stream Xs
{Send P X} % Add X to port’s stream asynchronously

Each Send asynchronously adds one more element to the port’s stream. The port

keeps an internal reference to the stream’s unbound tail. Repeated sends in the same

thread cause the elements to appear in the same order as the sends. There are no

other ordering constraints on the stream.

Using ports gives us the ability to have named active objects. An active object,

in its simplest form, pairs an object with a thread. The thread reads a stream of

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

728 P. Van Roy et al.

internal and external messages, and invokes the object for each message. The Erlang

language is based on this idea (Armstrong et al., 1996). Erlang extends it by adding

to each object a mailbox that does retrieval by pattern matching.

With cells it is natural to define non-active objects, called passive objects, shared

between threads. With ports it is natural to define active objects that send messages

to each other. From a theoretical point of view, these two programming styles

have the same expressiveness, since cells and ports can be defined in terms of each

other without changing time or space complexity (Henz, 1997a; Lauer & Needham,

1978). They differ in practice, since depending on the application one style might be

more convenient than the other. Database applications, which are centered around a

shared data repository, find the shared object style natural. Multi-agent applications,

defined in terms of collaborating active entities, find the active object style natural.

5.3 Relevance to concurrent logic programming

From the perspective of concurrent logic programming, explicit state amounts to

the addition of a constant-time n-way stream merge, where n can grow arbitrarily

large at run-time. That is, any number of threads can concurrently send to the same

port, and each send will take constant time. This can be seen as the ability to give

an identity to an active object. The identity is a first-class value: it can be stored in a

data structure and can be passed as an argument. It is enough to know the identity

to send a message to the active object.

Without explicit state it impossible to build this kind of merge. If n is known only

at run-time, the only solution is to build a tree of stream mergers. With n senders,

this multiplies the message sending time by O(log n). We know of no simple way to

solve this problem other than by adding explicit state to the execution model.

5.4 Creating an active object

Here is an example that uses a port to make an active object:

proc {DisplayStream Xs}
case Xs of X|Xr then {Browse X} {DisplayStream Xr}
else skip end

end

declare P in % P has global scope
local Xs in % Xs has local scope

{NewPort Xs P}
thread {DisplayStream Xs} end

end

Sending to P sends to the active object. Any number of clients can send to the active

object concurrently:

thread {Send P 1} {Send P 2} . . . end % Client 1
thread {Send P a} {Send P b} . . . end % Client 2

The elements 1, 2, a, b, etc., will appear fairly on the stream Xs. Port fairness is

guaranteed because of thread fairness in the Mozart implementation.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 729

Here is a more compact way to define the active object’s thread:

thread
{ForAll Xs proc {$ X} {Browse X} end}

end

The notation proc {$ X} . . . end defines an anonymous procedure value, which

is not bound to any identifier. ForAll is a higher-order procedure that applies a

unary procedure to all elements of a list. ForAll keeps the dataflow synchronization

when traversing the list. This is an example how higher-orderness can be used to

modularize a program: the iteration is separated from the action to be performed

on each iteration.

6 More on search

We have already introduced search in section 3 by means of the choice statement

and the lazy depth-first abstraction Search.object. The programming style shown

there is too limited for many realistic problems. This section shows how to make

search more practical in Oz. We only scratch the surface of how to use search in

Oz; for more information we suggest the Finite Domain and Finite Set tutorials in

the Mozart system documentation (Schulte & Smolka, 1999; Müller, 1999).

6.1 Aggregate search

One of the powerful features of Prolog is its ability to generate aggregates based on

complex queries, through the built-in operations setof/3 and bagof/3. These are

easy to do in Oz; they are just special cases of search abstractions. In this section

we show how to implement bagof/3. Consider the following small biblical database

(taken from (Sterling & Shapiro, 1986)):

proc {Father F C}
choice F=terach C=abraham

[] F=terach C=nachor
[] F=terach C=haran
[] F=abraham C=isaac
[] F=haran C=lot
[] F=haran C=milcah
[] F=haran C=yiscah

end
end

Now consider the following Prolog predicate:

children1(X, Kids) :- bagof(K, father(X,K), Kids).

This is defined in Oz as follows:

proc {ChildrenFun X Kids}
F in

proc {F K} {Father X K} end
{Search.base.all F Kids}

end

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

730 P. Van Roy et al.

The procedure F is a lexically-scoped closure: it has the external reference X hidden

inside. This can be written more compactly with an anonymous procedure value:

proc {ChildrenFun X Kids}
{Search.base.all proc {$ K} {Father X K} end Kids}

end

The Search.base.all abstraction takes a one-argument procedure and returns the

list of all solutions to the procedure. The example call:

{Browse {ChildrenFun terach}}

returns [abraham nachor haran]. The ChildrenFun definition is deterministic; if

called with a known X then it returns Kids. To search over different values of X we

give the following definition instead:

proc {ChildrenRel X Kids}
{Father X _}
{Search.base.all proc {$ K} {Father X K} end Kids}

end

The call {Father X _} creates a choice point on X. The “_” is syntactic sugar for

local X in X end, which is just a new variable with a tiny scope. The example

call:

{Browse {Search.base.all
proc {$ Q} X Kids in {ChildrenRel X Kids} Q=sol(X Kids) end}}

returns:

[sol(terach [abraham nachor haran])
sol(terach [abraham nachor haran])
sol(terach [abraham nachor haran])
sol(abraham [isaac])
sol(haran [lot milcah yiscah])
sol(haran [lot milcah yiscah])
sol(haran [lot milcah yiscah])]

In Prolog, bagof can use existential quantification. For example, the Prolog predicate:

children2(Kids) :- bagof(K, X^father(X,K), Kids).

collects all children such that there exists a father. This is defined in Oz as follows:

proc {Children2 Kids}
{Search.base.all proc {$ K} {Father _ K} end Kids}

end

The Oz solution uses _ to add a new existentially-scoped variable. The Prolog

solution, on the other hand, introduces a new concept, namely the “existential

quantifier” notation X^, which only has meaning in terms of setof/3 and bagof/3.

The fact that this notation denotes an existential quantifier is arbitrary. The Oz

solution introduces no new concepts. It really does existential quantification inside

the search query.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 731

6.2 Simple search procedures

The procedure Search.base.all shown in the previous section is just one of a

whole set of search procedures provided by Oz for elementary nondeterministic

logic programming. We give a short overview; for more information see the System

Modules documentation in the Mozart system (Duchier et al., 1999b). All procedures

take as argument a unary procedure {P X}, where X is bound to a solution. Except

for lazy search, they all provide depth-first search (one and all solution) and branch-

and-bound search (with a cost function). Here are the procedures:

• Basic search. This is the simplest to use; no extra parameters are needed.

• General-purpose search. This allows parameterizing the search with the max-

imal recomputation distance (for optimizing time and memory use), with an

asynchronous kill procedure to allow stopping infinite searches, and with the

option to return solutions either directly or encapsulated in computation spaces

(see section 7.4). Search implemented with spaces using strategies combining

cloning and recomputation is competitive in time and memory with systems

using trailing (Schulte, 1999a). Using encapsulation, general-purpose search

can be used as a primitive to build more sophisticated searches.

• Parallel search. When provided with a list of machines, this will spread out the

search process over these machines transparently. We have benchmarked real-

istic constraint problems on up to six machines with linear speedups (Schulte,

2002; Schulte, 2000b; Schulte, 2000a). The order in which the search tree is

explored is nondeterministic, and is likely to be different from depth-first or

breadth-first. If the entire tree is explored, then the number of exploration

steps is the same as depth-first search. The speedup is a consequence of this

fact together with the spreading of work.

• Lazy search. This provides next solution and last solution operations, a stop

operation, and a close operation. This is a first-class Prolog top level.

• Explorer search. The Explorer is a concurrent graphic tool that allows to

visualize and interactively guide the search process (Schulte, 1999b; Schulte,

1997a). It is invaluable for search debugging and for gaining understanding of

problem structure.

All of these procedures are implemented in Oz using computation spaces (see

section 7.4). Many more specialized search procedures are available for constraint

programming, and the user can easily define his or her own.

6.3 A more scalable way to do search

The original motivation for doing search in Oz comes from constraint programming.

To do search, Oz uses a concurrent version of the following approach, which is

commonly used in (sequential) constraint logic programming:

• First, declaratively specify the problem by means of constraints. The constraints

have an operational as well as a declarative reading. The operational reading

specifies the deductions that the constraints can make locally. To get good

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

732 P. Van Roy et al.

functor Fractions % Name of module specification
import FD % Needs the module FD
export script:P % Procedure P defines the problem

define
proc {P Sol}

A B C D E F G H I BC EF HI
in

Sol=sol(a:A b:B c:C d:D e:E f:F g:G h:H i:I)
BC={FD.decl} EF={FD.decl} HI={FD.decl}
%%% The constraints:
Sol:::1#9 % Each letter represents a digit
{FD.distinct Sol} % All digits are different
BC=:10*B+C % Definition of BC
EF=:10*E+F % Definition of EF
HI=:10*H+I % Definition of HI
A*EF*HI+D*BC*HI+G*BC*EF=:BC*EF*HI % Main constraint
%%% The distribution strategy:
{FD.distribute ff Sol}

end
end

Fig. 1. A more scalable way to do search.

results, the constraints must be able to do deductions over big parts of the

problem (i.e. deductions that consider many problem variables together). Such

constraints are called “global”.

• Second, define and explore the search tree in a controlled way, using heuristics

to exploit the problem structure. The general technique is called “propagate

and distribute”, because it alternates propagation steps (where the constraints

propagate information amongst themselves) with distribution steps (where a

choice is selected in a choice point).6 For example, see Smolka (1996) for more

explanation.

This approach is widely applicable. For example, it is being applied successfully to

computational linguistics (Duchier, 1999; Koller & Niehren, 2000; Duchier et al.,

1999a). In this section, we show how to solve a simple integer puzzle. Consider the

problem of finding nine distinct digits A, B, . . . ,I , so that the following equation holds:

A/BC + D/EF + G/HI = 1

Here, BC represents the integer 10 × B + C . Figure 1 shows how to specify this as

a constraint problem. The unary procedure {P Sol} fully defines the problem and

the distribution strategy. The problem is specified as a conjunction of constraints on

Sol, which is bound to a record that contains the solution.7 The record has fields

a, . . . , i, one for each solution variable. The problem constraints are expressed in

6 The term “distribution” as used here refers to the distribution of ∧ over ∨ in the logical formula
c ∧ (a ∨ b) and has nothing to do with distributed systems consisting of independent computers
connected by a network.

7 To be precise, Sol is bound to a feature tree, which is a logical formulation of a record.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 733

terms of finite domains, i.e. finite sets of integers. For example, the notation 1#9

represents the set {1, 2, . . . , 9}. The constraints are defined in the module FD (Duchier

et al., 1999b). For example, FD.distinct is a global constraint that asserts that all

its component variables are distinct integers.

Fractions defines P inside a functor, i.e. a module specification, in Oz terminology.

The functor defines explicitly what process-specific resources the module needs. This

allows us to set up a parallel search engine that spreads the constraint solving over

several machines (Duchier et al., 1998). If execution is always in the same process,

then the functor is not needed and it is enough to define the procedure P. Let’s set

up a parallel search engine:

E={New Search.parallel
init(adventure:1#rsh galley:1#rsh norge:1#rsh)}

This sets up an engine on the three machines adventure, galley, and norge.

The engine is implemented using computation spaces (see section 7.4) and Mozart’s

support for distributed computing (see Haridi et al. (1998)). A single process is

created on each of these machines using the remote shell operation rsh (other

operations are possible including secure shell ssh for secure communication and

local shell sh for shared-memory multiprocessors). The following command does

parallel search on the problem specified in Fractions:

local X in {E all(Fractions X)} {Browse X} end

This installs the functor Fractions on each of the three machines and generates

all the solutions. This is an example of a more scalable way to do search: first use

global constraints and search heuristics, and then use parallel execution if necessary

for performance.

Oz is currently one of the most advanced languages for programming search.

Competitors are CLAIRE and SaLSA (Caseau et al., 1999a; Laburthe & Caseau,

1998; Caseau et al., 1999b) and OPL (Van Hentenryck, 1999). Search is also an

important part of constraint programming in general (Marriott & Stuckey, 1999).

7 The Oz execution model

So far, we have highlighted different parts of Oz without showing how they interact,

something like the proverbial elephant that is different things to different people. This

section gives the simple execution model that underlies it all. We define the execution

model in terms of a store (section 7.1) and a kernel language (section 7.2). Section 7.3

explains how different subsets of the kernel language support different programming

paradigms. The section also explains why supporting multiple paradigms is useful.

Finally, section 7.4 defines computation spaces and how they are used to program

search.

7.1 The store

The Oz store consists of four parts (see figure 2): a thread store, a constraint store, a

mutable store, and a trigger store. The constraint store contains equality constraints

over the domain of rational trees. In other words, this store contains logic variables

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

734 P. Van Roy et al.

S2 S3S1 Sn...

Constraint store

W=c1

Y=42

Z=person(age: Y)

(monotonic)
Mutable store

(nonmonotonic)

U
Q=p1:proc {$ X} X=Z end

c3:Q

c1:Z

Thread store

Trigger store

c2:X
c4:Z (X,Q)

X

Fig. 2. The Oz store.

that are either unbound or bound. A bound variable references a term (i.e. atom,

record, procedure, or name) whose arguments themselves may be bound or unbound.

Unbound variables can be bound to unbound variables, in which case they become

identical references. The constraint store is monotonic, i.e. bindings can only be

added, not removed or changed.

The mutable store consists of mutable references into the constraint store. Mutable

references are also called cells (Henz, 1997a). A mutable reference consists of two

parts: its name, which is a value, and its content, which is a reference into the

constraint store. The mutable store is nonmonotonic because a mutable reference can

be changed.

The trigger store consists of triggers, which are pairs of variables and one-

argument procedures. Since these triggers are part of the basic execution model,

they are sometimes called implicit triggers, as opposed to the explicit triggers of

section 4.3. Triggers implement by-need computation (i.e. lazy execution) and are

installed with the ByNeed operation. We will not say much about triggers in this

paper. For more information, see Van Roy & Haridi (2002) and Mehl et al. (1998).

The thread store consists of a set of threads. Each thread is defined by a statement

Si. Threads can only have references into the constraint store, not into the other

stores. This means that the only way for threads to communicate and synchronize

is through shared references in the constraint store. We say a thread is runnable,

also called ready, if it can execute its statement. Threads are dataflow threads, i.e. a

thread becomes runnable when the arguments needed by its statement are bound. If

an argument is unbound then the thread automatically suspends until the argument

is bound. Since the constraint store is monotonic, a thread that is runnable will stay

runnable at least until it executes one step of its statement. The system guarantees

weak fairness, which implies that a runnable thread will eventually execute.

7.2 The kernel language

All Oz execution can be defined in terms of a simple kernel language, whose syntax

is defined in figure 3. The full Oz language provides syntactic support for additional

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 735

〈s〉 ::= skip
| 〈x〉1=〈x〉2

| 〈x〉=〈l〉(〈f〉1:〈x〉1 ... 〈f〉n:〈x〉n)
| 〈s〉1 〈s〉2

| local 〈x〉 in 〈s〉 end
| if 〈x〉 then 〈s〉1 else 〈s〉2 end
| case 〈x〉 of 〈l〉(〈f〉1:〈x〉1 ... 〈f〉n:〈x〉n) then 〈s〉1 else 〈s〉2 end
| proc {〈x〉 〈y〉1 ... 〈y〉n} 〈s〉 end
| {〈x〉 〈y〉1 ... 〈y〉n} CORE

| thread 〈s〉 end CONCURRENCY

| {ByNeed 〈x〉 〈y〉} LAZINESS

| try 〈s〉1 catch 〈x〉 then 〈s〉2 end
| raise 〈x〉 end EXCEPTIONS

| {ByNeedFail 〈x〉 〈y〉}

| {NewName 〈x〉} SECURITY

| 〈y〉=!!〈x〉

| {IsDet 〈x〉 〈y〉}
| {NewCell 〈x〉 〈y〉}
| {Exchange 〈x〉 〈y〉 〈z〉} STATE

| 〈space〉 SEARCH

Fig. 3. The Oz kernel language.

language entities (such as functions, ports, objects, classes, and functors). The system

hides their efficient implementation while respecting their definitions in terms of

the kernel language. This performance optimization can be seen as a second kernel

language, in between full Oz and the kernel language. The second kernel language

is implemented directly.

From the kernel language viewpoint, n-ary functions are just (n+ 1)-ary pro-

cedures, where the last argument is the function’s output. In figure 3, statements

are denoted by 〈s〉, computation space operations by 〈space〉 (see figure 6), logic

variables by 〈x〉, 〈y〉, 〈z〉, record labels by 〈l〉, and record field names by 〈f〉.
The semantics of the kernel language is given in Van Roy & Haridi (2002) (except

for spaces) and in Schulte (2002, 2000b) (for spaces). For comparison, the semantics

of the original Oz language is given in Smolka (1995a). The kernel language splits

naturally into seven parts:

• CORE: The core is strict functional programming over a constraint store. This

is exactly deterministic logic programming with explicit sequential control. The

if statement expects a boolean argument (true or false). The case state-

ment does pattern matching. The local statement introduces new variables

(declare is a syntactic variant whose scope extends over the whole program).

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

736 P. Van Roy et al.

• CONCURRENCY: The concurrency support adds explicit thread creation.

Together with the core, this gives dataflow concurrency, which is a form of

declarative concurrency. Compared to a sequential program, this gives the

same results but incrementally instead of all at once. This is deterministic logic

programming with more flexible control than the core alone. This is discussed

at length in Van Roy & Haridi (2002).

• LAZINESS: The laziness support adds the ByNeed operation, which allows

to express lazy execution, which is the basic idea of nonstrict functional

languages such as Haskell (Mehl et al., 1998; Mehl, 1999; Hudak et al.,

1992).8 Together with the core, this gives demand-driven concurrency, which is

another form of declarative concurrency. Lazy execution gives the same results

as eager execution, but calculates only what is needed to achieve the results.

Again, this is deterministic logic programming with more flexible control than

the core alone. This is important for resource management and program

modularity. Lazy execution can give results in cases when eager execution

does not terminate.

• EXCEPTIONS: The exception-handling support adds an operation, try, to

create an exception context and an operation, raise, to jump to the innermost

enclosing exception context. {ByNeedFail 〈x〉 〈y〉} is needed to handle the

interaction between laziness and exceptions.

• SECURITY: The security support adds name values, which are unforgeable

constants that do not have a printable representation. Calling {NewName X}

creates a fresh name and binds it to X. A name is a first-class “right” or

“key” that supports many programming techniques related to security and

encapsulation. The security support also includes read-only views of logic

variables. Calling 〈y〉=!!〈x〉 creates a read-only view 〈y〉 of the variable 〈x〉.
This is needed to build abstract data types that export logic variables.

• STATE: The state support adds explicit cell creation and an exchange

operation, which atomically reads a cell’s content and replaces it with a new

content. This is sufficient for sequential object-oriented programming (Smolka,

1995b; Henz, 1997b; Henz, 1997a). Another, equivalent way to add state is by

means of ports, which are explained in section 5.

• SEARCH: The search support adds operations on computation spaces (shown

as 〈space〉), which are explained in section 7.4. This allows to express

nondeterministic logic programming (see sections 3 and 6). A computation

space encapsulates a choice point, i.e. don’t-know nondeterminism, allowing the

program to decide how to pick alternatives. Section 7.4 explains spaces in more

detail and shows how to program search with them. The choice statement,

which is used in the examples of sections 3 and 6.1, can be programmed with

spaces (see section 7.4.5).

8 In Mozart, the module Value contains this operation: ByNeed=Value.byNeed.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 737

7.2.1 Concurrency and state

Adding both concurrency and state to the core results in the most expressive

computation model. There are two basic approaches to program in it: message

passing with active objects or atomic actions on shared state. Active objects are used

in Erlang (Armstrong et al., 1996). Atomic actions are used in Java and other con-

current object-oriented languages (Lea, 2000). These two approaches have the same

expressive power, but are appropriate for different classes of applications (multi-

agent versus data-centered) (Van Roy & Haridi, 2002; Lauer & Needham, 1978).

7.2.2 Nondeterministic choice

Concurrent logic programming is obtained by extending the core with concurrency

and nondeterministic choice. This gives a model that is more expressive than

declarative concurrency and less expressive than concurrency and state used together.

Nondeterministic choice means to wait concurrently for one of several conditions

to become true. For example, we could add the operation WaitTwo to the core with

concurrency. {WaitTwo X Y} blocks until either X or Y is bound to a nonvariable

term.9 It then returns with 1 or 2. It can return 1 if X is bound and 2 if Y is bound.

WaitTwo does not need to be added as an additional concept; it can be programmed

in the core with concurrency and state.

7.2.3 Lazy functions

The lazy annotation used in section 4.3 is defined in terms of ByNeed. Calling

{ByNeed P X} adds the trigger (X,P) to the trigger store. Doing a computation

that needs X or attempts to bind X will execute {P X} in a new thread. We say a

value is needed by an operation if the thread executing the operation would suspend

if the value were not present. For example, the function:

fun lazy {Generate N}
N|{Generate N+1}

end

is defined as:

fun {Generate N}
P X in

proc {P Y} Y=N|{Generate N+1} end
{ByNeed P X}
X

end

P will only be called when the value of {Generate N} is needed. We make two

comments about this definition. First, the lazy annotation is given explicitly by the

programmer. Functions without it are eager. Second, Mozart threads are extremely

lightweight, so the definition is practical. This is a different approach than in nonstrict

9 In Mozart, the module Record contains this operation: {WaitTwo X Y} is written as
{Record.waitOr X#Y}.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

738 P. Van Roy et al.

NONDET. CHOICE
CONCURRENCY

Concurrent LP

CONCURRENCY

Sequential OOP

Declarative concurrency

Nondeterministic LP

Lazy FP

Deterministic LP
Strict FP

Concurrent OOP with dataflow
‘‘Passive objects’’ + threads

Concurrent LP with fast merge
‘‘Active objects’’ + messages

Same kernel language,

CONCURRENCY

CONCURRENCY

different viewpoints

CONCURRENCY

LP with search and concurrency
Multiparadigm programming

CORE

CORE

CORE
STATE

CORE

CORE
SEARCH

CORE
LAZINESS

CORE
STATE

CORE

STATE
CORE
STATE

SEARCH
LAZINESS

Fig. 4. Some programming paradigms in Oz.

languages such as Haskell, where lazy evaluation is the default and strictness analysis

is used to regain the efficiency of eager evaluation (Hudak et al., 1992).

7.3 Multiparadigm programming

Many different programming styles or “paradigms” are possible by limiting oneself to

different subsets of the kernel language. Some popular styles are object-oriented pro-

gramming (programming with state, encapsulation, and inheritance), functional

programming (programming with values and pure functions), constraint program-

ming (programming with deduction and search), and sequential programming (pro-

gramming with a totally-ordered sequence of instructions). Some interesting subsets

of the kernel language are shown in figure 4. The full Oz language provides syntactic

and implementation support that makes these paradigms and many others equ-

ally easy to use. The execution model is simple and general, which allows the different

styles to coexist comfortably. This ability is known as multiparadigm programming.

The justification of limiting oneself to one particular paradigm is that the program

may be easier to write or reason about. For example, if the thread construct is not

used, then the program is purely sequential. If the ByNeed operation is not used,

then the program is strict. Experience shows that different levels of abstraction often

need different paradigms (see section 9.4) (Schlichting & Thomas, 1991; Van Roy &

Haridi, 2002). Even if the same basic functionality is provided, it may be useful to

view it according to different paradigms depending on the application needs (Lauer

& Needham, 1978).

How is it possible for such a simple kernel language to support such different

programming styles? It is because paradigms have many concepts in common, as

figures 3 and 4 show. A good example is sequential object-oriented programming,

which can be built from the core by adding just state (see Smolka (1995b) for details):

• Procedures behave as objects when they internally reference state.

• Methods are different procedures that reference the same state.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 739

• Classes are records that group related method definitions.

• Inheritance is an operation that takes a set of method definitions and one or

more class records, and constructs a new class record.

• Creation of new object instances is done by a higher-order procedure that

takes a class record and associates a new state pointer with it.

Oz has syntactic support to make this style easy to use and implementation support

to make it efficient. The same applies to the declarative paradigms of functional and

logic programming. Strict functions are restricted versions of procedures in which

the binding is directional. Lazy functions are implemented with ByNeed.

For logic programming, procedures become relations when they have a logical

semantics in addition to their operational semantics. This is true within the core. It

remains true if one adds concurrency and laziness to the core. We illustrate the lo-

gical semantics with many examples in this paper, starting in section 2. In the core,

the if and case statements have a logical semantics, i.e. they check entailment and

disentailment. To make the execution complete, i.e. to always find a constructive

proof when one exists, it is necessary to add search. Oz supports search by means of

computation spaces. When combined with the rest of the model, they make it possible

to program a wide variety of search algorithms in Oz, as explained in the next section.

7.4 Computation spaces

Computation spaces are a powerful abstraction that permits the high-level pro-

gramming of search abstractions and deep guard combinators, both of which are

important for constraint and logic programming. Spaces are a natural way to

integrate search into a concurrent system. Spaces can be implemented efficiently:

on real-world problems the Mozart 1.1.0 implementation using copying and re-

computation is competitive in time and memory use with traditional systems using

trailing-based backtracking (Schulte, 1999a). Spaces are compositional, i.e. they can

be nested, which is important for building well-structured programs.

This section defines computation spaces, the operations that can be performed

on them (see figure 6), and gives a few examples of how to use them to program

search. The discussion in this section follows the model in Schulte (2002, 2000b).

This model is implemented in Mozart 1.1.0 (Mozart Consortium, 2000) and refines

one presented earlier (Schulte, 1997b; Schulte, 2000c). The space abstraction can be

made language-independent; Henz et al. (1999) describe a C++ implementation of

a similar abstraction that supports both trailing and copying.

7.4.1 Definition

A computation space is just an Oz store with its four parts. The store we have

seen so far is a single computation space with equality constraints over rational

trees. To deal with search, we extend this in two ways. First, we allow spaces to be

nested. Second, we allow other constraint systems in a space. Since spaces are used

to encapsulate potential variable bindings, it is important to be precise about the

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

740 P. Van Roy et al.

Space A

Space B

Top Level Space

A
nc

es
to

rs
X

Ta

Tb
X=Term

Threads Ta, Tb, and Tc all see●

variable X.

If Tb binds X then Tb & Tc will
see the binding. Ta won’t unless
Space B is merged into Space A.

●

Space C

Tc

Y

D
es

ce
nd

an
ts parent

parent

binding

sees

sees

Current space

sees

parent

● Only Tc sees Y (Ta and Tb don’t).

Fig. 5. Visibility of variables and bindings in nested spaces.

visibility of variables and bindings. Figure 5 gives an example. The general rules for

the structure of computation spaces are as follows:

• There is always a top level computation space where threads may interact with

the external world. The top level space is just the store of section 7.1. Because

the top level space interacts with the external world, its constraint store always

remains consistent, that is, each variable has at most one binding that never

changes once it is made. A thread that tries to add an inconsistent binding to

the top level constraint store will raise a failure exception.

• A thread may create a new computation space. The new space is called a child

space. The current space is the child’s parent space. At any time, there is a tree

of computation spaces in which the top level space is the root. With respect to

a given space, a higher one in the tree (closer to the root) is called an ancestor

and a lower one is called a descendant.

• A thread always belongs to exactly one computation space. A variable always

belongs to exactly one computation space.

• A thread sees and may access variables belonging to its space as well as to all

ancestor spaces. The thread cannot see the variables of descendant spaces.

• A thread cannot see the variables of a child space, unless the child space is

merged with its parent. Space merging is an explicit program operation. It

causes the child space to disappear and all the child’s content to be added to

the parent space.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 741

• A thread may add bindings to variables visible to it. This means that it may

bind variables belonging to its space or to its ancestor spaces. The binding will

only be visible in the current space and its descendants. That is, the parent

space does not see the binding unless the current space is merged with it.

• If a thread in a child space tries to add an inconsistent binding to its constraint

store, then the space fails.

7.4.2 State of a space

A space is runnable if it or a descendant contains a runnable thread, and blocked

otherwise. Let us run all threads in the space and its descendants, until the space is

blocked. Then the space can be in one of the following further states:

• The space is stable. This means that no additional bindings done in an ancestor

can make the space runnable. A stable space can be in four further states:

— The space is succeeded. This means that it contains no choice points. A

succeeded space contains a solution.

— The space is distributable. This means that the space has one thread that

is suspended on a choice point with two or more alternatives. A space

can have at most one choice point; attempting to create another gives a

run-time error.

— The space is failed. This is defined in the previous section; it means that

the space attempted to bind the same variable to two different values. No

further execution happens in the space.

— The space is merged. This means that the space has been discarded and

its constraint store has been added to its parent. Any further operation on

the space is an error. This state is the end of a space’s lifetime.

• The space is suspended. This means that additional bindings done in an

ancestor can make the space runnable. Being suspended is usually a temporary

condition due to concurrency. It means that some ancestor space has not yet

transferred all required information to the space. A space that stays suspended

indefinitely usually indicates a programmer error.

7.4.3 Programming search

A search strategy defines how the search tree is explored, e.g. depth-first seach, limited

discrepancy search, best-first search, and branch-and-bound search. A distribution

strategy defines the shape and content of the search tree, i.e. how many alternatives

exist at a node and what constraint is added for each alternative. Computation spaces

can be used to program search strategies and distribution strategies independent of

each other. That is, any search strategy can be used together with any distribution

strategy. Here is how it is done:

• Create the space and initialize it by running an internal program that defines

all the variables and constraints in the space.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

742 P. Van Roy et al.

〈space〉 ::={NewSpace 〈x〉 〈y〉}
|{Choose 〈x〉 〈y〉}
|{Ask 〈x〉 〈y〉}
|{Commit 〈x〉 〈y〉}
|{Clone 〈x〉 〈y〉}
|{Inject 〈x〉 〈y〉}
|{Merge 〈x〉 〈y〉}

Fig. 6. Primitive operations for computation spaces.

• Propagate information inside the space. The constraints in a space have

an operational semantics. In Oz terminology, an operationalized version of

a constraint is called a propagator. Propagators execute concurrently; each

propagator executes inside its own thread. Each propagator reads its arguments

and attempts to add information to the constraint store by restricting the

domains of its arguments.

• All propagators execute until no more information can be added to the store

in this manner. This is a fixpoint calculation. When no more information can

be added, then the fixpoint is reached and the space has become stable.

• During a space’s execution, the computation inside the space can decide to

create a choice point. The decision which constraint to add for each alternative

defines the distribution strategy. One of the space’s threads will suspend when

the choice point is created.

• When the space has become stable, then execution continues outside the

space, to decide what to do next. There are different possibilities depending

on whether or not a choice point has been created in the space. If there is

none, then execution can stop and return with a solution. If there is one, then

the search strategy decides which alternative to choose and commits to that

alternative.

Notice that the distribution strategy is problem-dependent: to add a constraint we

need to know the problem’s constraints. On the other hand, the search strategy

is problem-independent: to pick an alternative we do not need to know which

constraint it corresponds to. The next section explains the operations we need to

implement this approach. Then, section 7.4.5 gives some examples of how to program

search.

7.4.4 Space operations

Now we know enough to define the primitive space operations. There are seven

principal ones (see figure 6).

• {NewSpace P X}, when given a unary procedure P, creates a new computation

space X. In this space, a fresh variable R, called the root variable, is created,

and {P R} is invoked in a new thread.

• {Choose N Y} is the only operation that communicates with a parent space.

It creates a choice point with N alternatives. Then it blocks, waiting for an

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 743

{Ask X A}
case A of
alternatives(N) then

{Commit X I}
end

...

{Choose N I}
case I

1. Block

5. Synch on alternative
(pass I)

of 1 then ...

end
...

6. Run alternative
[] 2 then ...

...
...

(pass N)
3. Synch on stability

(in parent space)
Search strategy

Computation space X

...

4. Calculate alternative

2. Block

...

Fig. 7. Communication between a space and its search strategy.

alternative to be chosen by a Commit operation on the space (see below). The

Choose call defines only the number of alternatives; it does not specify what

to do for any given alternative. Choose returns with Y=I when alternative

1�I�N is chosen. A maximum of one choice point may exist in a space at

any time.

• {Ask X A} asks the space X for its status. As soon as the space becomes stable,

A is bound. If X is failed, merged, or succeeded, then A is bound to failed,

merged, or succeeded. If X is distributable, then A=alternatives(N), where

N is the number of alternatives.

• {Commit X I}, if X is a distributable space, causes the blocked Choose call

in the space to continue with I as its result. This may cause a stable space to

become not stable again. The space will resume execution until a new fixpoint

is reached. The integer I must satisfy 1�I�N, where N is the first argument of

the Choose call.

• {Clone X C}, if X is a stable space, creates an identical copy (a clone) of

X in C. This allows the alternatives of a distributable space to be explored

independently.

• {Inject X P} is similar to space creation except that it uses an existing space

X. It creates a new thread in the space and invokes {P R} in the thread, where

R is the space’s root variable. This may cause a stable space to become not

stable again. The space will resume execution until a new fixpoint is reached.

Adding constraints to an existing space is necessary for some search strategies

such as branch-and-bound and saturation.

• {Merge X Y} binds Y to the root variable of space X and discards the space.

7.4.5 Using spaces

These seven primitive operations are enough to define many search strategies and

distribution strategies. The basic technique is to use Choose, Ask, and Commit to

communicate between the inside of the space and the outside of the space. Figure 7

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

744 P. Van Roy et al.

fun {DFE S}
case {Ask S}
of failed then nil
[] succeeded then [S]
[] alternatives(2) then C={Clone S} in

{Commit S 1}
case {DFE S} of nil then {Commit C 2} {DFE C}
[] [T] then [T]
end

end
end

% Given procedure {P Sol}, returns solution [Sol] or nil:
fun {DFS P}

case {DFE {NewSpace P}} of nil then nil
[] [S] then [{Merge S}]
end

end

Fig. 8. Depth-first single solution search.

shows how the communication works: first the space informs the search strategy

of the total number of alternatives (N). Then the search strategy picks one (I) and

informs the space. Let us now present briefly a few examples of how to use spaces.

For complete information on these examples and many other examples we refer the

reader elsewhere (Schulte, 2002; Schulte, 2000b).

Depth-first search. Our first example implements a search strategy. Figure 8 shows

how to program depth-first single solution search in the case of binary choice points.

This explores the search tree in depth-first manner and returns the first solution it

finds. The problem is defined as a unary procedure {P Sol} that gives a reference

to the solution Sol, just like the example in section 6.3. The solution is returned in a

one-element list as [Sol]. If there is no solution, then nil is returned. In P, choice

points are defined with the Choose operation.

Naive choice point. Our second example implements a distribution strategy. Let

us implement a naive choice point, namely one that defines a set of alternative

statements to be chosen. This can be defined as follows:

case {Choose N}
of 1 then S1

[] 2 then S2

. . .

[] N then Sn
end

Oz provides the following more convenient syntax for this technique:

choice S1 [] . . . [] Sn end

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 745

This is exactly how the choice statement is defined. This statement can be used

with any search strategy, such as the depth-first strategy we defined previously or

other strategies.

Andorra-style disjunction (the dis statement). Let us now define a slightly more

complex distribution strategy. We define the dis statement, which is an extension

of choice that eliminates failed alternatives and commits immediately if there is a

single remaining alternative:

dis G1 then S1 [] . . . [] Gn then Sn end

In contrast to choice, each alternative of a dis statement has both a guard and

a body. The guards are used immediately to check failure. If a guard Gi fails

then its alternative is eliminated. This extension is sometimes called determinacy-

directed execution. It was discovered by D. H. D. Warren and called the Andorra

principle (Haridi & Brand, 1988; Santos Costa et al., 1991).

The dis statement can be programmed with the space operations as follows.

First encapsulate each guard of the dis statement in a separate space. Then execute

each guard until it is stable. Discard all failed guards. Finally, using the Choose

operation, create a choice point for the remaining guards. See Schulte (2002, 2000b)

for details of the implementation. It can be optimized to do first-argument indexing

in a similar way to Prolog systems. We emphasize that the whole implementation is

written within the language.

The first-fail strategy. In practice, dis is not strong enough for solving real constraint

problems. It is too static: its alternatives are defined textually in the program code. A

more sophisticated distribution strategy would look more closely at the actual state

of the execution. For example, the first-fail strategy for finite domain constraints

looks at all variables and places a choice point on the variable whose domain is the

smallest. First-fail can be implemented with Choose and a set of reflective operations

on finite domain constraints. The Mozart system provides first-fail as one of many

preprogrammed strategies.

Deep guard combinators. A constraint combinator is an operator that takes con-

straints as arguments and combines them to form another constraint. Spaces are a

powerful way to implement constraint combinators. Since spaces are compositional,

the resulting constraints can themselves be used as inputs to other constraint

combinators. For this reason, these combinators are called deep guard combinators.

This is more powerful than other techniques, such as reification, which are flat:

their input constraints are limited to simple combinations of built-in constraints.

Some examples of deep guard combinators that we can program are deep negation,

generalized reification, propagation-based disjunction (such as dis), constructive

disjunction, and deep committed-choice.

8 Related work

We first give a brief overview of research in the area of multiparadigm programming.

We then give a short history of Oz.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

746 P. Van Roy et al.

8.1 Multiparadigm languages

Integration of paradigms is an active area of research that has produced a variety

of different languages. We give a brief glimpse into this area. We do not pretend

to be exhaustive; that would be the subject of another paper. As far as we know,

there is no other language that covers as many paradigms as Oz in an equitable

way, i.e. with a simple formal semantics (Smolka, 1995a; Van Roy & Haridi, 2002)

and an efficient implementation (Mehl et al., 1995; Mehl, 1999; Scheidhauer, 1998;

Schulte, 2002; Schulte, 2000b). An early discussion of multiparadigm programming

in Oz is given in Müller et al. (1995). It gives examples in functional, logic, and

object-oriented styles.

A short-term solution to integrate different paradigms is to use a coordination

model (Carriero & Gelernter, 1989, 1992). The prototypical coordination model is

Linda, which provides a uniform global tuple space that can be accessed with a

small set of basic operations (concurrent reads and writes) from any process that

is connected to it. A Linda layer can act as “glue” between languages of different

paradigms. Let us now look at more substantive solutions.

Within the imperative paradigm, there have been several efforts to add the abilities

of functional programming. Smalltalk has “blocks”, which are lexically-scoped clos-

ures (Goldberg & Robson, 1983). Java has inner classes, whose instances are lexically-

scoped closures (with minor limitations). Java supports the final annotation, which

allows programming with stateless objects. Using inner classes and final allows to

do functional programming in Java. However, this technique is verbose and its use

is discouraged (Arnold & Gosling, 1998). More ambitious efforts are C++ libraries

such as FC++ (McNamara & Smaragdakis, 2000) and language extensions such

as Pizza (Odersky & Wadler, 1997) and Brew (Baumgartner et al., 2001), which

translate into Java. These provide much better support for functional programming.

Within the functional paradigm, the easiest way to allow imperative programming

is to add locations with destructive assignment. This route was taken by languages

such as Lisp (Steele, Jr., 1984), Scheme (Clinger & Rees, 1991), and SML (Harper

et al., 1986). The M-structures of Id (Nikhil, 1994a) and its successor pH (Nikhil,

1994b; Nikhil & Arvind, 2001) fall in this category as well. Objective Caml is a

popular object-oriented dialect of ML that takes this approach (Chailloux et al.,

2000; Rémy & Vouillon, 1998). Oz also takes this approach, building an object

system from a functional core by adding the cell as its location primitive.

In Haskell, state is integrated using the monadic style of programming (Wadler,

1992; Peyton Jones & Wadler, 1993) which generalizes the continuation-passing

style. Because Haskell is a nonstrict language, it cannot easily add locations with

destructive assignment. The monadic style allows to control the sequentialization

necessary for various kinds of side effecting (I/O, error handling, nondeterministic

choice). However, because it imposes a global state threading, it has difficulties with

respect to concurrency and modularity. See Van Roy & Haridi (2002) for a discussion

of the relative merits of the state threading approach versus the location approach.

Within the logic paradigm, there have been many attempts to add an object

system (Davison, 1993). Prominent examples are Prolog++ (Moss, 1994) and

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 747

SICStus Objects (Carlsson et al., 1999). These approaches use locations as primitives,

much like the functional approach.

Functions have been added in several ways to logic languages. A first approach is

LIFE, which provides functions as a kind of relation that is called by entailment, i.e.

the function call waits until its arguments have enough information. This delaying

mechanism is called residuation (Aı̈t-Kaci & Nasr, 1989; Aı̈t-Kaci & Podelski, 1993;

Aı̈t-Kaci & Lincoln, 1988; Aı̈t-Kaci et al., 1994). A second approach extends the basic

resolution step to include the deterministic evaluation of functions. This execution

strategy, called narrowing, underlies the Curry language (Hanus, 1994; Hanus, 1997).

A third approach is taken by Lambda Prolog (Nadathur & Miller, 1995). It uses

a more powerful logic than Horn logic as a basis for programming. In particular,

functional programming is supported by providing λ terms as data structures, which

are handled by a form of higher-order unification. A fourth approach is taken

by HiLog (Chen et al., 1993), which introduces a higher-order syntax that can be

encoded into the first-order predicate calculus.

The Oz approach is to provide first-class procedure values and to consider them

as constants for the purposes of unification. This approach cleanly separates the

logical aspects from the higher-order programming aspects. All the other approaches

mentioned are more closely tied to the resolution operation. In addition, the Oz

approach provides the full power of lexically-scoped closures as values in the

language. Finally, Oz provides entailment checking as a separate operation, which

allows it to implement call by entailment.

Erlang is a notable example of a multiparadigm language. It has a layered

design (Armstrong et al., 1996; Wikström, 1994). Erlang programs consist of active

objects that send messages to each other. A strict functional language is used

to program the internals of the active objects. Each active object contains one

thread that runs a recursive function. The object state is contained in the function

arguments. This model is extended further with distribution and fault tolerance.

The layered approach is also taken by pH, a language designed for defining

algorithms with implicit parallelism (Nikhil, 1994b; Nikhil & Arvind, 2001). Its core

is based on Haskell. It has two extensions. The first extension is a single-assignment

data type, I-structures. This allows to write functional programs that have dataflow

behavior. The second extension is a mutable data type, M-structures. This allows

stateful programs. This design has similarities to Oz, with logic variables being the

single-assignment extension and cells the mutable extension.

Concurrent logic programming has investigated in depth the use of logic variables

for synchronization and communication. They are one of the most expressive

mechanisms for practical concurrent programming (Bal et al., 1989; Van Roy

& Haridi, 2002). Since logic variables are constrained monotonically, they can

express monotonic synchronization. This allows declarative concurrency (also called

determinate concurrency), which is concurrent programming with no observable

nondeterminism. The concurrent logic language Strand evolved into the coordin-

ation language PCN (Foster, 1993) for imperative languages. In the functional

programming community, the futures of Multilisp (Halstead, 1985) and the I-

structures of Id (Nikhil, 1994a) allow to synchronize on the result of a concurrent

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

748 P. Van Roy et al.

GHC (1985)

AKL (1990)LIFE (1988)

KLIC (1994)

...

...

Oz 1 (1995)

Oz 2 (1996)

Oz 3 (1999)

KL1

FGHC FCP

Explicit thread creation, computation spaces

Distribution, resources, laziness

Quiet guards

Parlog (1983)
Concurrent Prolog,

IC−Prolog (1979) Coroutining

Concurrent logic programming

Encapsulated search, state (ports)

Prolog (1972) Sequential logic programming

Concurrent
Constraints

Maher (1987)
Saraswat (1990)

Flat guards

Higher−order, compositional, solve combinator

Fig. 9. History of Oz.

computation. Both realize a restricted form of logic variable. Finally, the Goffin

project (Chakravarty et al., 1995) uses a first-order concurrent constraint language

as a coordination language for Haskell processes.

The multiparadigm language Leda was developed for educational purposes (Budd,

1995). It is sequential, supports functional and object-oriented programming, and

has basic support for backtracking and a simple form of logic programming that is

a subset of Prolog.

8.2 History of Oz

Oz is a recent descendant of a long line of logic-based languages that originated with

Prolog (see figure 9). We summarize briefly the evolutionary path and give some

of the important milestones along the way. First experiments with concurrency

were done in the venerable IC-Prolog language where coroutining was used to

simulate concurrent processes (Clark & McCabe, 1979; Clark et al., 1982). This

led to Parlog and Concurrent Prolog, which introduced the process model of logic

programming, usually known as concurrent logic programming (Clark, 1987; Shapiro,

1983; Shapiro, 1987). The advent of GHC (Guarded Horn Clauses) simplified

concurrent logic programming considerably by introducing the notion of quiet

guards (Ueda, 1985). A clause matching a goal will fire only if the guard is entailed

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 749

by the constraint store. This formulation and its theoretical underpinning were

pioneered by the work of Maher and Saraswat as they gave a solid foundation to

concurrent logic programming (Maher, 1987; Saraswat & Rinard, 1990; Saraswat,

1993). The main insight is that logical notions such as equality and entailment can

be given an operational reading. Saraswat’s concurrent constraint model is a model

of concurrent programming with a logical foundation. This model was subsequently

used as the basis for several languages including AKL and Oz.

On the practical side, systems with “flat” guards (which are limited to basic

constraints or system-provided tests) were the focus of much work (Tick, 1995). The

flat versions of Concurrent Prolog and GHC, called FCP and FGHC respectively,

were developed into large systems (Institute for New Generation Computer Tech-

nology, 1992; Shapiro, 1989). The KL1 (Kernel Language 1) language, derived from

FGHC, was implemented in the high-performance KLIC system. This system runs

on sequential, parallel, and distributed machines (Fujise et al., 1994). Some of the

implementation techniques in the current Mozart system were inspired by KLIC,

notably the distributed garbage collection algorithm.

An important subsequent development was AKL (Andorra Kernel Language)

(Janson & Haridi, 1991; Janson, 1994; Janson et al., 1993), which added state (in

the form of ports), encapsulated search, and an efficient implementation of deep

guards. AKL is the first language that combines the abilities of constraint logic

programming and concurrent logic programming. AKL implements encapsulated

search using a precursor of computation spaces. When local propagation within

a space cannot choose between different disjuncts, then the program can try each

disjunct by cloning the computation space.

The initial Oz language, Oz 1, was inspired by AKL and LIFE, and added

higher-order procedures, programmable search based on the solve combinator (a

less expressive precursor of spaces (Schulte et al., 1994; Schulte & Smolka, 1994)),

compositional syntax, and the cell primitive for mutable state (Smolka, 1995b).

Oz 1 features a new record data type that was inspired by LIFE (Smolka & Treinen,

1994; Van Roy et al., 1996). Concurrency in Oz 1 is implicit and based on lazy

thread creation. When a statement blocks, a new thread is created that contains

only the blocked statement. The main thread is not suspended but continues with

the next statement. Oz 1 features a concurrent object system designed for lazy thread

creation, based on state threading and monitors.

Oz 2 improves on its predecessor Oz 1 with an improved concurrency model and

an improved model for encapsulated search. Oz 2 replaces the solve combinator

of Oz 1 by computation spaces. In contrast to the solve combinator, spaces allow

programming important search strategies such as parallel search, the Oz Explorer,

and strategies based on recomputation. Oz 2 abandons implicit concurrency in

favor of an explicit thread creation construct. Thread suspension and resumption

are still based on dataflow using logic variables. Our experience shows that explicit

concurrency makes it easier for the user to control application resources. It allows

the language to have an efficient and expressive object system without sequential

state threading in method definitions. It allows a simple debugging model and it

makes it easy to add exception handling to the language.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

750 P. Van Roy et al.

The current Oz language, Oz 3, conservatively extends Oz 2 with support for

first-class module specifications, called functors (Duchier et al., 1998), and for open,

robust, distributed programming (Haridi et al., 1998; Van Roy et al., 1999; Haridi

et al., 1999; Van Roy, 1999b; Smolka et al., 1995). A functor specifies a module in

terms of the other modules it needs. Distribution is transparent, i.e. the language

semantics is unchanged independent of how the program is distributed. With respect

to logic programming, the distributed extension has two properties:

• The top level space is efficiently distributed over multiple processes. In

particular, the top level store is implemented by a practical algorithm for

distributed rational tree unification (Haridi et al., 1999).

• A child computation space is a stationary entity that exists completely in one

process. Due to the communication overheads involved, we have not found it

worthwhile to distribute one child space over multiple processes. Constraint

propagation within a child space is therefore completely centralized. Parallel

search engines (see example in section 6.3) are implemented by putting child

spaces in different processes.

In all versions of Oz, concurrency is intended primarily to model logical concurrency

in the application rather than to achieve parallelism (speedup) in the implementation.

However, the distributed implementation is useful for parallel execution. It is

optimized to be particularly efficient on shared-memory multiprocessors. For that

case, we have experimented with an implementation of interprocess communication

using shared pages between address spaces (Haridi et al., 1998).

9 Lessons learned

One of the goals of the Oz project was to use logic programming for real-world

problems. During the course of the project, we have tried out many implementations

and programming techniques, and built many applications. From this experience,

we have learned many lessons both for practical logic programming and for multi-

paradigm programming. Here is a summary of the most important of these lessons.

We agree with the conclusions of Hughes, namely that higher-order procedures are

essential and that laziness (demand-driven execution) is useful (Hughes, 1989).

9.1 Be explicit (“magic” does not work)

• Provide explicit concurrency (older concurrent logic programming systems

have implicit concurrency). This is important for interaction with the environ-

ment, efficiency, facilitating reasoning (e.g. for termination), and debugging. It

is also important for distributed programming.

• Provide explicit search (Prolog has implicit search). The majority of Prolog

programs solve algorithmic problems, which do not need search, yet one

cannot use Prolog without learning about search. Furthermore, for search

problems the search must be very controllable, otherwise it does not scale to

real applications. Prolog’s implicit search is much too weak; this means that

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 751

inefficient approaches such as meta-interpreters are needed. We conclude that

Prolog’s search is ineffective for both algorithmic and search problems.

• Provide explicit state (in C++ and Java, state is implicit, e.g. Java variables

are stateful unless declared final). By explicit state we mean that the language

should declare mutable references only where they are needed. Explicit

state should be used sparingly, since it complicates reasoning about programs

and is costly to implement in a distributed system. On the other hand, explicit

state is crucial for modularity, i.e. the ability to change a program component

without having to change other components.

• Provide explicit laziness (in Haskell, laziness is implicit for all functions).

Explicitly declaring functions as lazy makes them easy to implement and

documents the programmer’s intention. This allows the system to pay for

laziness only where it is used. A second reason is declarative concurrency:

supporting it well requires eager as well as lazy functions. A third reason is ex-

plicit state. With implicit laziness (and a fortiori with nonstrictness), it is harder

to reason about functions that use explicit state. This is because the order of

function evaluation is not determined by syntax but is data dependent.

9.2 Provide primitives for building abstractions

• Full compositionality is essential: everything can be nested everywhere. For

maximum usefulness, this requires higher-order procedures with lexical scop-

ing. User-defined abstractions should be carefully designed to be fully com-

positional.

• The language should be complete enough so that it is easy to define new

abstractions. The developer should have all the primitives necessary to build

powerful abstractions. For example, in addition to lexical scoping, it is

important to have read-only logic variables, which allow to build abstractions

that export logic variables and still protect them (Mehl et al., 1998). There

is no distinction between built-in abstractions and application-specific ones,

except possibly regarding performance. Examples of built-in abstractions are

the object system, reentrant locks, distribution support, and user interface

support.

9.3 Factorize and be lean

Complexity is a source of problems and must be reduced as much as possible:

• Factorize the design at all levels of abstraction, both in the language and the

implementation. Keep the number of primitive operations to a minimum. This

goal is often in conflict with the goal of having an efficient implementation.

Satisfying both is difficult, but sometimes possible. One approach that helps

is to have a second kernel language, as explained in section 7.2. Another

approach is “loosening and tightening”. That is, develop the system in semi-

independent stages, where one stage is factored and the next stage brings the

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

752 P. Van Roy et al.

factors together. A typical example is a compiler consisting of a naive code

generator followed by a smart peephole optimizer.

• It is important to have a sophisticated module system, with lazy loading,

support for mutually-dependent modules, and support for application deploy-

ment. In Mozart, both Oz and C++ modules can be loaded lazily, i.e. only

when the module is needed. In this way, the system is both lean and has lots

of functionality. Lazy loading of Oz modules is implemented with the ByNeed

operation (see section 7.2). Support for mutually-dependent Oz modules means

that cyclic dependencies need to bottom out only at run-time, not at load-time.

This turns out to be important in practice, since modules often depend on each

other. Support for application deployment includes the ability to statically link

a collection of modules into a single module. This simplifies how modules

are offered to users. A final point is that the module system is written within

the language, using records, explicit laziness, and functors implemented by

higher-order procedures.

• It is important to have a powerful interface to a lower-level language. Mozart

has a C++ interface that allows to add new constraint systems (Mehl et al.,

2000; Müller, 2000). These constraint systems are fully integrated into the

system, including taking advantage of the full power of computation spaces.

The current Mozart system has four constraint systems, based on rational trees

(for both “bound records” and “free records” (Van Roy et al., 1996)), finite

domains (Schulte & Smolka, 1999), and finite sets (Müller, 1999). Mozart also

supports memory management across the interface, with garbage collection

from the Oz side (using finalization and weak pointers) and manual control

from the C++ side.

9.4 Support true multiparadigm programming

In any large programming project, it is almost always a good idea to use more than

one paradigm:

• Different parts are often best programmed in different paradigms.10 For

example, an event handler may be defined as an active object whose new

state is a function of its previous state and an external event. This uses both

the object-oriented and functional paradigms and encapsulates the concurrency

in the active object.

• Different levels of abstraction are often best expressed in different paradigms.

For example, consider a multi-agent system programmed in a concurrent logic

language. At the language level, the system does not have the concept of state.

But there is a higher level, the agent level, consisting of stateful entities called

“agents” sending messages to each other. Strictly speaking, these concepts do

not exist at the language level. To reason about them, the agent level is better

specified as a graph of active objects.

10 Another approach is to use multiple languages with well-defined interfaces. This is more complex, but
can sometimes work well.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 753

It is always possible to encode one paradigm in terms of another. Usually this is

not a good idea. We explain why in one particularly interesting case, namely pure

concurrent logic programs with state (Janson et al., 1993). The canonical way to

encode state in a pure concurrent logic program is by using streams. An active object

is a recursive predicate that reads an internal stream. The object’s current state is the

internal stream’s most-recent element. A reference to an active object is a stream that

is read by that object. This reference can only be used by one sender object, which

sends messages by binding the stream’s tail. Two sender objects sending messages

to a third object are coded as two streams feeding a stream merger, whose out-

put stream then feeds the third object. Whenever a new reference is created, a new

stream merger has to be created. The system as a whole is therefore more complex

than a system with state:

• The communication graph of the active objects is encoded as a network of

streams and stream mergers. In this network, each object has a tree of stream

mergers feeding into it. The trees are created incrementally during execution,

as object references are passed around the system.

• To regain efficiency, the compiler and run-time system must be smart enough

to discover that this network is equivalent to a much simpler structure in

which senders send directly to receivers. This “decompilation” algorithm is so

complex that to our knowledge no concurrent logic system implements it.

On the other hand, adding state directly to the execution model makes the system

simpler and more uniform. In that case, programmer-visible state (e.g. active objects

with identities) is mapped directly to execution model state (e.g. using ports for

many-to-one communication), which is compiled directly into machine state. Both

the compiler and the run-time system are simple. One may argue that the stateful exe-

cution model is no longer “pure”. This is true but irrelevant, since the stateful model

allows simpler reasoning than the “pure” stateless one.

Similar examples can be found for other concepts, e.g. higher-orderness, concur-

rency, exception handling, search, and laziness (Van Roy & Haridi, 2002). In each

case, encoding the concept increases the complexity of both the program and the

system implementation. In each case, adding the concept to the execution model

gives a simpler and more uniform system. We conclude that a programming language

should support multiple paradigms.

9.5 Combine dynamic and static typing

We define a type as a set of values along with a set of operations on those values. We

say that a language has checked types if the system enforces that operations are only

executed with values of correct types. There are two basic approaches to checked

typing, namely dynamic and static typing. In static typing, all variable types are

known at compile time. No type errors can occur at run-time. In dynamic typing,

the variable type is known with certainty only when the variable is bound. If a

type error occurs at run-time, then an exception is raised. Oz is a dynamically-typed

language. Let us examine the trade-offs in each approach.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

754 P. Van Roy et al.

Dynamic typing puts fewer restrictions on programs and programming than

static typing. For example, it allows Oz to have an incremental development

environment that is part of the run-time system. It allows to test programs or

program fragments even when they are in an incomplete or inconsistent state. It

allows truly open programming, i.e. independently-written components can come

together and interact with as few assumptions as possible about each other. It

allows programs, such as operating systems, that run indefinitely and grow and

evolve.

On the other hand, static typing has at least three advantages when compared

to dynamic typing. It allows to catch more program errors at compile time.

It allows for a more efficient implementation, since the compiler can choose a

representation appropriate for the type. Last but not least, it allows for partial

program verification, since some program properties can be guaranteed by the type

checker.

In our experience, we find that neither approach is always clearly better. Sometimes

flexibility is what matters; at other times having guarantees is more important. It

seems therefore that the right type system should be “mixed”, that is, allow both static

and dynamic typing. This allows the following development methodology, which is

consistent with our experience. In the early stages of application development,

when we are building prototypes, dynamic typing is used to maximize flexibility.

Whenever a part of the application is completed, then it is statically typed to

maximize correctness guarantees and efficiency. For example, module interfaces and

procedure arguments could be statically typed to maximize early detection of errors.

The most-executed part of a program could be statically typed to maximize its

efficiency.

Much work has been done to add some of the advantages of dynamic typing to

a statically-typed language, while keeping the good properties of static typing:

• Polymorphism adds flexibility to functional and object-oriented languages.

• Type inferencing, pioneered by ML, relieves the programmer of the burden of

having to type the whole program explicitly.

Our proposal for a mixed type system would go in the opposite direction. In the

mixed type system, the default is dynamic typing. Static typing is done as soon

as needed, but not before. This means that the trade-off between flexibility and

having guarantees is not frozen by the language design, but is made available

to the programmer. The design of this mixed type system is a subject for future

research.

Mixed typing is related to the concept of “soft typing”, an approach to type

checking for dynamically-typed languages (Cartwright & Fagan, 1991). In soft

typing, the type checker cannot always decide at compile time whether the program

is correctly typed. When it cannot decide, it inserts run-time checks to ensure safe

execution. Mixed typing differs from soft typing in that we would like to avoid

the inefficiency of run-time checking, which can potentially change a program’s time

complexity. The statically-typed parts should be truly statically typed.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 755

9.6 Use an evolutionary development methodology

The development methodology used in the Oz project has been refined over many

years, and is largely responsible for the combination of expressive power, semantic

simplicity, and implementation efficiency in Mozart. The methodology is nowhere

fully described in print; there are only partial explanations (Smolka, 1995b; Van

Roy, 1999b). We summarize it here.
At all times during development, there is a robust implementation. However, the

system’s design is in continuous flux. The system’s developers continuously intro-

duce new abstractions as solutions to practical problems. The burden of proof is

on the developer proposing the abstraction: he or she must prototype it and show

an application for which it is necessary. The net effect of a new abstraction must

be either to simplify the system or to greatly increase its expressive power. If this

seems to be the case, then intense discussion takes place among all developers to

simplify the abstraction as much as possible. Often it vanishes: it can be completely

expressed without modifying the system. This is not always possible. Sometimes it

is better to modify the system: to extend it or to replace an existing abstraction by

a new one.
The decision whether to accept an abstraction is made according to several criteria

including aesthetic ones. Two major acceptance criteria are related to implementation

and formalization. The abstraction is acceptable only if its implementation is efficient

and its formalization is simple.
This methodology extends the approaches put forward by Hoare, Ritchie and

Thompson (Hoare, 1987; Ritchie, 1987; Thompson, 1987). Hoare advocates design-

ing a program and its specification concurrently. He also explains the importance

of having a simple core language. Ritchie advises having the designers and others

actually use the system during the development period. In Mozart, as in most

Prolog systems, this is possible because the development environment is part of

the run-time system. Thompson shows the power of a well-designed abstraction.

The success of Unix was made possible due to its simple, powerful, and appropriate

abstractions.
With respect to traditional software design processes, this methodology is closest

to exploratory programming, which consists in developing an initial implementa-

tion, exposing it to user comment, and refining it until the system is adequate

(Sommerville, 1992). The main defect of exploratory programming, that it results

in systems with ill-defined structure, is avoided by the way the abstractions are

refined and by the double requirement of efficient implementation and simple

formalization.
The two-step process of first generating abstractions and then selecting among

them is analogous to the basic process of evolution. In evolution, an unending source

of different individuals is followed by a filter, survival of the fittest (Darwin, 1859). In

the analogy, the individuals are abstractions and the filters are the two acceptance

criteria of efficient implementation and simple formalization. Some abstractions

thrive (e.g. compositionality with lexical scoping), others die (e.g. the “generate and

test” approach to search is dead, being replaced by propagate and distribute), others

are born and mature (e.g. dynamic scope, which is currently under discussion), and

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

756 P. Van Roy et al.

others become instances of more general ones (e.g. deep guards, once basic, are now

implemented with spaces).

10 Conclusions and perspectives

The Oz language provides powerful tools for both the algorithmic and search classes

of logic programming problems. In particular, there are many tools for taming search

in real-world situations. These tools include global constraints, search heuristics, and

interactive libraries to visualize and guide the search process.

Oz is based on a lean execution model that subsumes deterministic logic program-

ming, concurrent logic programming, nondeterministic logic programming, con-

straint programming, strict and nonstrict functional programming, and concurrent

object-oriented programming. Oz supports declarative concurrency, a little-known

form of concurrent programming that deserves to be more widely known. Because of

appropriate syntactic and implementation support, all these paradigms are easy to

use. We say that Oz is multiparadigm. It is important to be multiparadigm because

good program design often requires different paradigms to be used for different

parts of a program. To a competent Oz programmer, the conventional boundaries

between paradigms are artificial and irrelevant.

The Mozart system implements Oz and is in continuing development by the

Mozart Consortium (Mozart Consortium, 2000). Research and development started

in 1991. The current release has a full-featured development environment and is

being used for serious application development. This paper covers most of the basic

language primitives of Oz. We only briefly discussed the object system, the module

system (i.e. functors), and constraint programming, because of space limitations. In

addition to ongoing research in constraint programming, we are doing research

in distribution, fault tolerance, security, transactions, persistence, programming

environments, software component architectures, tools for collaborative applications,

and graphic user interfaces. Another important topic, as yet unexplored, is the design

of a mixed type system that combines the advantages of static and dynamic typing.

The work on distribution and related areas started in 1995 (Smolka et al., 1995).

Most of these areas are traditionally given short shrift by the logic and functional

programming communities, yet they merit special attention due to their importance

for real-world applications.

Acknowledgements

This paper is based on the work of many people over many years. Many of the

opinions expressed are shared by other members of the Mozart Consortium. We

thank all the contributors and developers of the Mozart system. We thank Danny

De Schreye for suggesting the ICLP99 tutorial on which this paper is based. We

thank Krzysztof Apt, Manuel Hermenegildo, Kazunori Ueda, and others for their

questions and comments at the ICLP99 tutorial where the original talk was given.

We thank the anonymous referees for their comments that helped us much improve

the presentation. Finally, we give a special thanks to Juris Reinfelds. This research

was partly financed by the Walloon Region of Belgium in the PIRATES project.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 757

References

Abelson, H., Sussman, G. J. and Sussman, J. (1996) Structure and Interpretation of Computer

Programs, 2 ed. MIT Press.

Aı̈t-Kaci, H. and Lincoln, P. (1988) LIFE: A natural language for natural language. MCC

Technical Report ACA-ST-074-88. MCC, ACA Program.

Aı̈t-Kaci, H. and Nasr, R. (1989) Integrating logic and functional programming. Journal of

Lisp and Symbolic Computation 2, 51–89.

Aı̈t-Kaci, H. and Podelski, A. (1993) Towards a meaning of LIFE. Journal of Logic

Programming 16(3–4), 195–234.

Aı̈t-Kaci, H., Dumant, B., Meyer, R., Podelski, A. and Van Roy, P. (1994) The Wild LIFE

handbook. Available at http://www.info.ucl.ac.be/people/PVR/handbook.ps.

Armstrong, J., Williams, M., Wikström, C. and Virding, R. (1996) Concurrent Programming in

Erlang. Prentice-Hall.

Arnold, K. and Gosling, J. (1998) The Java Programming Language, 2 ed. Addison-Wesley.

Ashenhurst, R. L. and Graham, S. (eds). (1987) ACM Turing Award Lectures: The first twenty

years. ACM Press.

Bal, H. E., Steiner, J. G. and Tanenbaum, A. S. (1989) Programming languages for distributed

computing systems. ACM Computing Surveys 21(3), 261–322.

Baumgartner, G., Jansche, M. and Peisert, C. D. (2001) Support for functional programming in

Brew. Workshop on Multiparadigm Programming with Object-oriented Languages (MPOOL),

European Conference on Object-Oriented Programming (ECOOP). vol. 7, pp. 111–125. John

von Neumann Institute for Computing.

Budd, T. A. (1995) Multiparadigm Programming in Leda. Addison-Wesley.

Carlsson et al. (1999) SICStus Prolog 3.8.1. Available at http://www.sics.se.

Carriero, N. and Gelernter, D. (1989) Linda in context. Communications of the ACM 32(4),

444–458.

Carriero, N. and Gelernter, D. (1992) Coordination languages and their significance.

Communications of the ACM 35(2), 96–107.

Cartwright, R. and Fagan, M. (1991) Soft typing. Proceedings ACM SIGPLAN ’91 Conference

on Programming Language Design and Implementation (PLDI), pp. 278–292.

Caseau, Y., Josset, F.-X. and Laburthe, F. (1999a) CLAIRE: Combining sets, search and rules

to better express algorithms. Proceedings International Conference on Logic Programming

(ICLP 99), pp. 245–259. MIT Press.

Caseau, Y., Laburthe, F. and Silverstein, G. (1999b) A meta-heuristic factory for vehicle routing

problems. In: Jaffar, J. (ed.), Proceedings Fifth International Conference on Principles and

Practice of Constraint Programming (CP ’99), pp. 144–158.

Chailloux, E., Manoury, P. and Pagano, B. (2000) Développement d’applications avec Objective

Caml. O’Reilly. In French.

Chakravarty, M., Guo, Y. and Köhler, M. (1995) Goffin: Higher-order functions meet

concurrent constraints. First International Workshop on Concurrent Constraint Programming.

Venice, Italy.

Chen, W., Kifer, M. and Warren, D. S. (1993) HiLog: A foundation for higher-order logic

programming. Journal of Logic Programming 15(3), 187–230.

Clark, K. L. (1987) PARLOG: the language and its applications. In: de Bakker, A. J.

Nijman J. W. and Treleaven, P. C. (eds.), Proceedings Conference on Parallel Architectures

and Languages Europe (PARLE), Vol. II: Parallel languages. Lecture Notes in Computer

Science 259, pp. 30–53. Springer-Verlag.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

758 P. Van Roy et al.

Clark, K. L. and McCabe, F. (1979) The control facilities of IC-Prolog. In: Michie, D. (ed.),

Expert Systems in the Micro-electronic Age, pp. 122–149. Edinburgh University Press.

Clark, K. L. and Tärnlund, S. (1977) A first order theory of data and programs. Proceedings

IFIP Congress, pp. 939–944. North-Holland.

Clark, K. L., McCabe, F. G. and Gregory, S. (1982) IC-PROLOG — language features. In:

Clark, K. L. and Tärnlund, S. (eds.), Logic Programming, pp. 253–266. Academic Press.

Clinger, W. and Rees, J. (1991) The revised4 report on the algorithmic language Scheme. Lisp

Pointers IV(3), 1–55.

Colmerauer, A. (1982) PROLOG II reference manual and theoretical model. Technical report,

Université Aix-Marseille II, Groupe d’Intelligence Artificielle.

Cousineau, G. and Mauny, M. (1998) The Functional Approach to Programming. Cambridge

University Press.

Darwin, C. (1964) On the Origin of Species by Means of Natural Selection, or the preservation

of favoured races in the struggle for life. Harvard University Press (originally John Murray,

London, 1859).

Davison, A. (1993) A survey of logic programming-based object oriented languages. Research

Directions in Concurrent Object-oriented Programming. MIT Press.

Duchier, D. (1999) Axiomatizing dependency parsing using set constraints. Sixth Meeting on

Mathematics of Language (MOL6).

Duchier, D., Kornstaedt, L., Schulte, C. and Smolka, G. (1998) A Higher-order Module

Discipline with Separate Compilation, Dynamic Linking, and Pickling. Technical report,

Programming Systems Lab, DFKI and Universität des Saarlandes.

Duchier, D., Gardent, C. and Niehren, J. (1999a) Concurrent constraint programming in

Oz for natural language processing. Lecture notes, http://www.ps.uni-sb.de/~niehren/

oz-natural-language-script.html.

Duchier, D., Kornstaedt, L., Müller, T., Schulte, C. and Van Roy, P. (1999b) System modules.

Technical report, Mozart Consortium. Available at http://www.mozart-oz.org.

Foster, I. (1993) Strand and PCN: Two generations of compositional programming languages.

Technical report, Preprint MCS-P354-0293, Argonne National Laboratories.

Fujise, T., Chikayama, T., Rokusawa, K. and Nakase, A. (1994) KLIC: A portable

implementation of KL1. Fifth Generation Computing Systems (FGCS ’94), pp. 66–79.

Gabbay, D. M., Hogger, C. J. and Robinson, J. A. (eds). (1995) Handbook of Logic in Artificial

Intelligence and Logic Programming, Vol. 5. Oxford University Press.

Garey, M. R. and Johnson, D. S. (1979) Computers and Intractibility. W.H. Freeman.

Goldberg, A. and Robson, D. (1983) Smalltalk-80: The language and its implementation.

Addison-Wesley.

Halstead, R. H. (1985) MultiLisp: A language for concurrent symbolic computation. ACM

Transactions on Programming Languages and Systems 7(4), 501–538.

Hanus, M. (1994) The integration of functions into logic programming: From theory to

practice. Journal of Logic Programming 19/20, 583–628.

Hanus, M. (1997) A unified computation model for functional and logic programming.

Proceedings 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL 97), pp. 80–93.

Haridi, S. and Brand, P. (1988) Andorra Prolog – an integration of Prolog and committed-

choice languages. Proceedings International Conference on Fifth Generation Computer

Systems (FGCS), vol. 2, pp. 745–754. Ohmsha Ltd. and Springer-Verlag.

Haridi, S. and Janson, S. (1990) Kernel Andorra Prolog and its computation model.

Proceedings 7th International Conference on Logic Programming (ICLP 90), pp. 31–48.

MIT Press.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 759

Haridi, S., Van Roy, P., Brand, P. and Schulte, C. (1998) Programming languages for distributed

applications. New Generation Computing 16(3), 223–261.

Haridi, S., Van Roy, P., Brand, P., Mehl, M., Scheidhauer, R. and Smolka, G. (1999) Efficient

logic variables for distributed computing. ACM Transactions on Programming Languages

and Systems 21(3), 569–626.

Harper, R., MacQueen, D. and Milner, R. (1986) Standard ML. Technical report ECS-LFCS-

86-2, University of Edinburgh, Department of Computer Science.

Henz, M. (1997a) Objects for Concurrent Constraint Programming. The Kluwer International

Series in Engineering and Computer Science, vol. 426. Kluwer Academic.

Henz, M. (1997b) Objects in Oz. PhD thesis, Universität des Saarlandes, Fachbereich

Informatik, Saarbrücken, Germany.

Henz, M., Müller, T. and Ng, K. B. (1999) Figaro: Yet another constraint programming library.

Workshop on Parallelism and Implementation Technology for Constraint Logic Programming,

International Conference on Logic Programming (iclp 99).

Hoare, C. A. R. (1987) The emperor’s old clothes. In: Ashenhurst, R. L. and Graham, S.

(eds.), ACM Turing Award Lectures: The first twenty years. ACM Press.

Holmer, B. K., Sano, B., Carlton, M., Van Roy, P. and Despain, A. M. (1996) Design

and analysis of hardware for high performance Prolog. Journal of Logic Programming 29,

107–139.

Hudak, P., Peyton Jones, S. L., Wadler, P., Boutel, B., Fairnbairn, J., Fasel, J. H., Guzmán,

M. M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, R. B., Nikhil, R. S., Partain, W.

and Peterson, J. (1992) Report on the programming language Haskell, a non-strict purely

functional language. ACM SIGPLAN Notices 27(5), R1–R164.

Hughes, J. (1989) Why functional programming matters. The Computer Journal 32(2), 98–107.

Institute for New Generation Computer Technology (ed). (1992) Fifth Generation Computer

Systems 1992, Vols. 1, 2. Ohmsha Ltd. and IOS Press.

Janson, S. (1994) AKL – a multiparadigm programming language. PhD thesis, Uppsala

University and SICS.

Janson, S. and Haridi, S. (1991) Programming paradigms of the Andorra Kernel Language.

Logic Programming, Proceedings 1991 International Symposium (ISLP), pp. 167–183. MIT

Press.

Janson, S., Montelius, J. and Haridi, S. (1993) Ports for objects in concurrent logic programs.

Research Directions in Concurrent Object-oriented Programming. MIT Press.

K̊agedal, A., Van Roy, P. and Dumant, B. (1997) Logical State Threads 0.1. SICStus Prolog

package available at http://www.info.ucl.ac.be/people/PVR/implementation.html.

Koller, A. and Niehren, J. (2000) Constraint programming in computational linguistics. In:

Barker-Plummer, D., Beaver, D., van Benthem, J. and di Luzio, P. Scotto (eds.), Proceedings

Eighth CSLI Workshop on Logic Language and Computation. CSLI Press.

Laburthe, F. and Caseau, Y. (1998) SALSA: A language for search algorithms. In: Maher,

M. and Puget, J.-F. (eds.), Proceedings Fourth International Conference on Principles and

Practice of Constraint Programming (CP ’98). Lecture Notes in Computer Science 1520,

pp. 310–324. Springer-Verlag.

Lauer, H. C. and Needham, R. M. (1978) On the duality of operating system structures. Second

International Symposium on Operating Systems, IRIA. (Reprinted in Operating Systems

Review 13(2), 1979, 3–19.)

Lea, D. (2000) Concurrent Programming in Java, 2 ed. Addison-Wesley.

Maher, M. (1987) Logic semantics for a class of committed-choice programs. Proceedings

Fourth International Conference on Logic Programming (ICLP 87), pp. 858–876. MIT Press.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

760 P. Van Roy et al.

Maier, D. and Warren, D. S. (1988) Computing with Logic: Logic programming with Prolog.

Addison-Wesley.

Marriott, K. and Stuckey, P. J. (1999) Programming with Constraints: An introduction. MIT

Press.

Müller, M., Müller, T. and Van Roy, P. (1995) Multiparadigm programming in Oz. In: Smith,

D., Ridoux, O. and Van Roy, P. (eds.), Workshop on the Future of Logic Programming,

International Logic Programming Symposium (ILPS 95).

McNamara, B. and Smaragdakis, Y. (2000) Functional programming in C++. Proceedings

Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00),

pp. 118–129.

Mehl, M. (1999) The Oz Virtual Machine: Records, Transients, and Deep Guards. Doctoral

dissertation, Universität des Saarlandes, Im Stadtwald, 66041 Saarbrücken, Germany.

Mehl, M., Scheidhauer, R. and Schulte, C. (1995) An abstract machine for Oz. In:

Hermenegildo, M. and Swierstra, S. D. (eds.), Programming Languages, Implementations,

Logics and Programs, Seventh International Symposium, PLILP’95. Lecture Notes in Com-

puter Science 982, pp. 151–168. Springer-Verlag.

Mehl, M., Schulte, C. and Smolka, G. (1998) Futures and by-need synchronization for Oz.

Draft, Programming Systems Lab, Universität des Saarlandes.

Mehl, M., Müller, T., Schulte, C. and Scheidhauer, R. (2000) Interfacing to C and C++.

Technical report, Mozart Consortium. Available at http://www.mozart-oz.org.

Milner, R., Tofte, M. and Harper, R. (1990) Definition of Standard ML. MIT Press.

Moss, C. (1994) Prolog++: The power of object-oriented and logic programming. Addison-

Wesley.

Mozart Consortium (2000) The Mozart programming system (Oz 3), version 1.1.0. Available

at http://www.mozart-oz.org.

Müller, T. (1999) Problem solving with finite set constraints in Oz. A tutorial. Technical report,

Mozart Consortium. Available at http://www.mozart-oz.org.

Müller, T. (2000) The Mozart constraint extensions tutorial. Technical report, Mozart

Consortium. Available at http://www.mozart-oz.org.

Nadathur, G. and Miller, D. (1995) Higher-order logic programming. In: Gabbay, D. M.,

Hogger, C. J. and Robinson, J. A. (eds.), Handbook of Logic in Artificial Intelligence and

Logic Programming, Vol. 5. Oxford University Press.

Nikhil, R. S. (1994a) ID language reference manual version 90.1. Technical report, Memo 284-2,

MIT, Computation Structures Group.

Nikhil, R. S. (1994b) An overview of the parallel language Id – a foundation for pH, a parallel

dialect of Haskell. Technical report, Digital Equipment Corporation, Cambridge Research

Laboratory.

Nikhil, R. S. and Arvind. (2001) Implicit Parallel Programming in pH. Morgan Kaufmann.

Odersky, M. and Wadler, P. (1997) Pizza into Java: translating theory into practice. Proceedings

24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL

97), pp. 146–159.

Peyton Jones, S. L. and Wadler, P. (1993) Imperative functional programming. Proceedings

20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL), pp. 71–84.

Rémy, D. and Vouillon, J. (1998) Objective ML: An effective object-oriented extension to

ML. Theory and Practice of Object Systems 4(1), 27–50.

Ritchie, D. M. (1987) Reflections on software research. In: Ashenhurst, R. L. and Graham,

S. (eds.), ACM Turing Award Lectures: The first twenty years. ACM Press.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 761

Robinson, J. A. (1965) A machine-oriented logic based on the resolution principle. Journal of

the ACM 12, 23–41.

Santos Costa, V., Warren, D. H. D. and Yang, R. (1991) Andorra-I: A parallel Prolog system

that transparently exploits both And- and Or-parallelism. Proceedings 3rd ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPOPP), pp. 83–93.

Saraswat, V. and Rinard, M. (1990) Concurrent constraint programming. Proceedings 17th

ACM Symposium on Principles of Programming Languages (POPL 90), pp. 232–245.

Saraswat, V. A. (1993) Concurrent Constraint Programming. MIT Press.

Scheidhauer, R. (1998) Design, Implementierung und Evaluierung einer virtuellen Maschine für

Oz. Doctoral dissertation, Universität des Saarlandes, Im Stadtwald, 66041 Saarbrücken,

Germany. In German.

Schlichting, R. D. and Thomas, V. T. (1991) A multi-paradigm programming language for

constructing fault-tolerant, distributed systems. Technical report TR 91-24, University of

Arizona, Department of Computer Science.

Schulte, C. (1997a) Oz Explorer: A visual constraint programming tool. In: Naish, L. (ed.),

Proceedings 14th International Conference on Logic Programming (ICLP 97), pp. 286–300.

MIT Press.

Schulte, C. (1997b) Programming constraint inference engines. In: Smolka, G.

(ed.), Proceedings 3rd International Conference on Principles and Practice of Constraint

Programming. Lecture Notes in Computer Science 1330, pp. 519–533. Springer-Verlag.

Schulte, C. (1999a) Comparing trailing and copying for constraint programming. In: De

Schreye, D. (ed.), Proceedings International Conference on Logic Programming (ICLP 99),

pp. 275–289. MIT Press.

Schulte, C. (1999b) Oz Explorer–Visual constraint programming support. Technical report,

Mozart Consortium. Available at http://www.mozart-oz.org.

Schulte, C. (2000a) Parallel search made simple. In: Beldiceanu, N., Harvey, W., Henz, M.,

Laburthe, F., Monfroy, E., Müller, T., Perron, L. and Schulte, C. (eds.), Proceedings TRICS:

Techniques foR Implementing Constraint programming Systems, a post-conference workshop

of CP 2000, pp. 41–57.

Schulte, C. (2000b) Programming constraint inference services. Doctoral dissertation,

Universität des Saarlandes, Fachbereich Informatik, Saarbrücken, Germany.

Schulte, C. (2000c) Programming deep concurrent constraint combinators. In: Pontelli, E.

and Costa, V. S. (eds.), Practical Aspects of Declarative Languages, Second International

Workshop, PADL 2000. Lecture Notes in Computer Science 1753, pp. 215–229. Springer-

Verlag.

Schulte, C. (2002) Programming Constraint Services. Lecture Notes in Artificial Intelligence

2302. Springer-Verlag.

Schulte, C. and Smolka, G. (1994) Encapsulated search in higher-order concurrent constraint

programming. In: Bruynooghe, M. (ed.), Logic Programming: Proceedings International

Symposium, pp. 505–520. MIT Press.

Schulte, C. and Smolka, G. (1999) Finite domain constraint programming in Oz. A tutorial.

Technical report, Mozart Consortium. Available at http://www.mozart-oz.org.

Schulte, C., Smolka, G. and Würtz, J. (1994) Encapsulated search and constraint programming

in Oz. In: Borning, A. H. (ed.), Second Workshop on Principles and Practice of Constraint

Programming. Lecture Notes in Computer Science 874, pp. 134–150. Springer-Verlag.

Shapiro, E. (1983) A subset of Concurrent Prolog and its interpreter. Technical report, TR-003.

Institute for New Generation Computer Technology (ICOT), Cambridge, MA.

Shapiro, E. (ed.) (1987) Concurrent Prolog: Collected papers. Vols. 1–2. MIT Press.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

762 P. Van Roy et al.

Shapiro, E. (1989) The family of concurrent logic programming languages. ACM Computing

Surveys 21(3), 413–510.

Smolka, G. (1995a) The definition of Kernel Oz. Constraints: Basics and trends. Lecture Notes

in Computer Science 910, pp. 251–292. Springer-Verlag.

Smolka, G. (1995b) The Oz programming model. Computer Science Today. Lecture Notes in

Computer Science 1000, pp. 324–343. Springer-Verlag.

Smolka, G. (1996) Problem solving with constraints and programming. ACM Computing

Surveys 28(4es).

Smolka, G. and Treinen, R. (1994) Records for logic programming. Journal of Logic

Programming 18(3), 229–258.

Smolka, G., Schulte, C. Van Roy, P. (1995) PERDIO – Persistent and distributed programming

in Oz. BMBF project proposal. Available at http://www.ps.uni-sb.de.

Sommerville, I. (1992) Software Engineering. Addison-Wesley.

Steele, Jr., G. L. (1984) Common LISP: The language. Digital Press.

Sterling, L. and Shapiro, E. (1986) The Art of Prolog – advanced programming techniques.

Series in Logic Programming. The MIT Press.

Thompson, K. (1987) Reflections on trusting trust. In: Ashenhurst, R. L. and Graham, S.

(eds)., ACM Turing Award Lectures: The first twenty years. ACM Press.

Thompson, S. (1999) Haskell: The craft of functional programming, second edition. Addison-

Wesley.

Tick, E. (1995) The deevolution of concurrent logic programming. Journal of Logic

Programming 23(2), 89–123.

Ueda, K. (1985) Guarded Horn Clauses. In: Wada, E. (ed.), Logic Programming ’85,

Proceedings 4th Conference. Lecture Notes in Computer Science 221, pp. 168–179. Springer-

Verlag.

Van Hentenryck, P. (1999) The OPL Programming Language. MIT Press. (Software available

from ILOG France.)

Van Roy, P. (1989a) A useful extension to Prolog’s Definite Clause Grammar notation. ACM

Sigplan Notices 24(11), 132–134.

Van Roy, P. (1989b) VLSI-BAM Diagnostic Generator. Prolog program to generate assembly

language diagnostics, Aquarius Project, UC Berkeley, Alvin Despain.

Van Roy, P. (1999a) Logic programming in Oz with Mozart. In: De Schreye, D. (ed.),

Proceedings International Conference on Logic Programming (ICLP 99), pp. 38–51. MIT

Press.

Van Roy, P. (1999b) On the separation of concerns in distributed programming: Application

to distribution structure and fault tolerance in Mozart. International Workshop on Parallel

and Distributed Computing for Symbolic and Irregular Applications (PDSIA 99).

Van Roy, P. and Despain, A. (1992) High-performance logic programming with the Aquarius

Prolog compiler. IEEE Computer January, 54–68.

Van Roy, P. and Haridi, S. (2002) Concepts, techniques, and models of computer programming.

Book in progress. Draft available at http://www.info.ucl.ac.be/people/PVR/book.

html.

Van Roy, P., Mehl, M. and Scheidhauer, R. (1996) Integrating efficient records into

concurrent constraint programming. Proceedings 8th International Symposium on Program-

ming Languages, Implementations, Logics, and Programs (PLILP ’96). Springer-Verlag.

Van Roy, P., Haridi, S., Brand, P., Smolka, G., Mehl, M. and Scheidhauer, R. (1997) Mobile

objects in Distributed Oz. ACM Transactions on Programming Languages and Systems, 19(5),

804–851.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

Logic programming in Oz 763

Van Roy, P., Haridi, S. and Brand, P. (1999) Distributed programming in Mozart – A tutorial

introduction. Technical report, Mozart Consortium. Available at http://www.mozart-oz.

org.

Wadler, P. (1992) The essence of functional programming. Proceedings 19th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL 92), pp. 1–14. Invited

talk.

Wikström, C. (1994) Distributed programming in Erlang. 1st International Symposium on

Parallel Symbolic Computation (PASCO 94), pp. 412–421. World Scientific.

https://doi.org/10.1017/S1471068403001741 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001741

