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Abstract

Let f be analytic in the unit disk D = {z ∈ C : |z| < 1} and let S be the subclass of normalised univalent
functions with f (0) = 0 and f ′(0) = 1, given by f (z) = z +

∑∞
n=2 anzn. Let F be the inverse function of

f, given by F(ω) = ω +
∑∞

n=2 Anω
n for |ω| ≤ r0( f ). Denote by S∗p(α) the subset of S consisting of the

spirallike functions of order α in D, that is, functions satisfying

Re
{
e−iγ z f ′(z)

f (z)

}
> α cos γ,

for z ∈ D, 0 ≤ α < 1 and γ ∈ (−π/2, π/2). We give sharp upper and lower bounds for both |a3| − |a2| and
|A3| − |A2| when f ∈ S∗p(α), thus solving an open problem and presenting some new inequalities for
coefficient differences.
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1. Introduction

Let A denote the class of analytic functions f in the unit disk D = {z ∈ C : |z| < 1}
normalised by f (0) = 0 = f ′(0) − 1. For z ∈ D, a function f ∈ A has the representation

f (z) = z +
∞∑

n=2

anzn. (1.1)

Let S denote the subclass of all univalent (that is, one-to-one) functions inA.
For f ∈ S denote by F, the inverse of f , given by

F(ω) = ω +
∞∑

n=2

Anω
n, (1.2)

valid on some disk |ω| ≤ r0( f ).
In 1985, de Branges [2] solved the famous Bieberbach conjecture by showing that

if f ∈ S, then |an| ≤ n for n ≥ 2, with equality when f (z) = k(z) := z/(1 − z)2, or a
rotation of it. It was therefore natural to ask if for f ∈ S, the inequality ||an+1| − |an|| ≤ 1
is true when n ≥ 2. This was shown not to be the case even when n = 2 [3], and the
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following sharp bounds hold:

−1 ≤ |a3| − |a2| ≤ 3
4 + e−λ0 (2e−λ0 − 1) = 1.029 · · · ,

where λ0 is the unique value of λ in 0 < λ < 1, satisfying the equation 4λ = eλ.
Hayman [5] showed that if f ∈ S, then ||an+1| − |an|| ≤ C, where C is an abso-

lute constant. The exact value of C is unknown, the best estimate to date being
C = 3.61 · · · [4], which because of the sharp estimate above when n = 2, cannot be
reduced to 1.

Hayman’s seminal result ||an+1| − |an|| ≤ C for n ≥ 2, was proved in 1963, using his
distinctive method developed to study areally mean p-valent functions. A different
proof was provided by Milin, using the now well-known Lebedev–Milin inequalities,
and an excellent account of this result can be found in Duren’s book [3]. Little progress
has been made estimating the value of C. It was shown by Ilina [6] in 1968 that
C < 4.26 · · · . Using a modification of Milin’s method, Grispan [4] improved this
bound in 1976 to show that for n ≥ 2,

−2.97 · · · < |an+1| − |an| < 3.61 · · ·
No other advances appear to have been made in this direction during the intervening

years, until a recent result of Obradović et al. [9] who, using the Grunsky inequalities,
have shown that the upper bound for C can be improved when n = 3 to |a4| − |a3| ≤
2.1033 · · · .

In [10], the present authors gave sharp upper and lower bounds for |a3| − |a2|, when
f belongs to some important subclasses of starlike and convex functions in D. Also,
in [11], the same authors gave corresponding sharp bounds for |A3| − |A2| for f ∈ S and
a variety of subclasses.

2. Definitions

The classes S∗(α) and S∗p(α) of starlike and spirallike functions of order α are
defined as follows.

DEFINITION 2.1. Let f ∈ A be given by (1.1). For 0 ≤ α < 1, denote by S∗(α) the
subclass ofS consisting of starlike functions of order α, so that f ∈ S∗(α) if and only if,
for z ∈ D,

Re
{z f ′(z)

f (z)

}
> α.

Although similar in the form of definition, the class of spirallike functions
defined below is significantly more difficult to deal with, with relatively little precise
information known.

DEFINITION 2.2. Let f ∈ A be given by (1.1). For 0 ≤ α < 1, denote by S∗p(α) the
subclass of S consisting of spirallike functions of order α, so that f ∈ S∗p(α) if and
only if, for z ∈ D and γ ∈ (−π/2, π/2),

Re
{
e−iγ z f ′(z)

f (z)

}
> α cos γ. (2.1)
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We note that S∗(0) is the class of starlike functions S∗, and that Leung [7]
established the sharp inequalities ||an+1| − |an|| ≤ 1 for n ≥ 2. In [10], corresponding
inequalities for functions in S∗(α) were obtained in the case n = 2.

The problem of extending these inequalities to the class S∗p(α) has been considered
by Arora et al. [1], and earlier by Li [8]. In [1, 8], using Leung’s method, it was shown
that Leung’s result remains valid in S∗p(α) for all n ≥ 2 when α = 0. Also in [8], Li
gave a partial solution to finding sharp upper and lower bounds for |a3| − |a2| when
0 ≤ α < 1 and γ ∈ (−π/2, π/2). In this paper we give the complete solution to finding
sharp upper and lower bounds for |a3| − |a2| in S∗p(α), together with corresponding
sharp upper and lower bounds for |A3| − |A2|.

3. Preliminary lemma

Denote by P the class of analytic functions p with positive real part on D given by

p(z) = 1 +
∞∑

n=1

pnzn. (3.1)

In the subsequent sections we note that the classes P, S∗p(α) and the functionals
|a3| − |a2| and |A3| − |A2| are rotationally invariant.

We will use the following lemma given in [11], concerning the coefficients of
functions in P, given by (3.1), noting that for our application it is critical that B2 ∈ C.
In [11] the general nature of Lemma 3.1 enabled sharp upper and lower bounds to be
found for |A3| − |A2| for a variety of classes of convex and starlike functions.

LEMMA 3.1. Let B1, B2 and B3 be numbers such that B1 ≥ 0, B2 ∈ C and B3 ∈ R. Let
p ∈ P and be given by (3.1). Define Ψ+(p1, p2) and Ψ−(p1, p2) by

Ψ+(p1, p2) = |B2 p2
1 + B3 p2| − |B1 p1| and Ψ−(p1, p2) = −Ψ+(p1, p2).

Then

Ψ+(p1, p2) ≤
⎧⎪⎪⎨⎪⎪⎩
|4B2 + 2B3| − 2B1, when |2B2 + B3| ≥ |B3| + B1,
2|B3|, otherwise,

(3.2)

and

Ψ−(p1, p2) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2B1 − B4, when B1 ≥ B4 + 2|B3|,

2B1

√
2|B3|

B4 + 2|B3|
, when B2

1 ≤ 2|B3|(B4 + 2|B3|),

2|B3| +
B2

1

B4 + 2|B3|
, otherwise,

(3.3)

where B4 = |4B2 + 2B3|. All inequalities in (3.2) and (3.3) are sharp.
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4. Bounds for |a3| − |a2|
We prove the following inequalities for functions in S∗p(α).

THEOREM 4.1. Let f ∈ S∗p(α) be given by (1.1). Then for 0 ≤ α < 1,

− 2(1 − α) cos γ√
1 +
√

1 + 4(2 − α)(1 − α) cos2 γ

≤ |a3| − |a2| ≤ (1 − α) cos γ. (4.1)

Both inequalities are sharp.

PROOF. First note that from (2.1) we can write

e−iγ
(z f ′(z)

f (z)
− 1
)
= cos γ (α + (1 − α)p(z) − 1) , (4.2)

for some p ∈ P. Thus, equating coefficients, we obtain

a2 = (1 − α)eiγp1 cos γ,

a3 =
1
2 (1 − α)(eiγp2 cos γ + (1 − α)e2iγp2

1 cos2 γ). (4.3)

We first use Lemma 3.1 to find the upper bound for |a3| − |a2|. From (4.3), we obtain

|a3| − |a2| = 1
2 (1 − α) cos γ(|p2 + (1 − α)eiγp2

1 cos γ| − |2p1|),

so that in Lemma 3.1 we take B1 = 2, B2 = (1 − α)eiγ cos γ and B3 = 1. A simple
calculation shows that the condition |2B2 + B3| ≥ |B3| + B1 is equivalent to

√
1 + 4(1 − α) cos2 γ + 4(1 − α)2 cos2 γ ≥ 3,

which is easily seen to be false unless cos γ = 1 and α = 0, which reduces to the case
of starlike functions. Thus from Lemma 3.1 we deduce that |a3| − |a2| ≤ (1 − α) cos γ
as required.

It is easy to see that equality holds in the right-hand inequality in (4.1) when f ∈
S∗p(α) satisfying (4.2) with p(z) = (1 + z2)/(1 − z2).

For the lower bound we use Lemma 3.1 and write

|a2| − |a3| = (1 − α) cos γ(|p1| − 1
2 |p2 + (1 − α)eiγp2

1 cos γ|),

so that in Lemma 3.1 we take B1 = 1, B2 = ((1 − α)eiγ cos γ)/2 and B3 = 1/2. Check-
ing the conditions for Ψ−(p1, p2), we find that with these values of B1, B2 and B3, the
second condition is satisfied, which after some simplification gives the bound

|a2| − |a3| ≤
2(1 − α) cos γ√

1 +
√

1 + 4(2 − α)(1 − α) cos2 γ

,

as required.
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To see that this lower bound is sharp, consider f ∈ S∗p(α) defined by (4.2) with

p(z) =
1 + ζ1(ζ2 + 1)z + ζ2z2

1 + ζ1(ζ2 − 1)z − ζ2z2 ,

where

ζ1 =
1√

1 + |μ|
, ζ2 = −ei arg μ and μ = 1 + 2(1 − α)eiγ cos γ.

Then

a2 =
2(1 − α)eiγ cos γ√

1 + |μ|
and a3 = 0,

which gives equality in the left-hand inequality in (4.1), and so completes the proof of
Theorem 4.1. �

REMARK 4.2. When α = 0, we obtain the result obtained by Li in [8].

5. Bounds for the difference |A3| − |A2| of inverse coefficients

We first note that since f ( f −1(ω)) = ω; equating coefficients gives

A2 = −a2 and A3 = 2a2
2 − a3. (5.1)

We first find the upper bounds.

THEOREM 5.1. Let f ∈ S∗p(α), with inverse coefficients given by (1.2). Then

|A3| − |A2| ≤ (1 − α) cos γ
(
−2 +

√
1 − 12(1 − α)(3α − 2) cos2 γ

)
(5.2)

when
1
√

3
< cos γ ≤ 1 and 0 ≤ α ≤ 5

6
− 1

6

√
1 + 8 sec2 γ,

and

|A3| − |A2| ≤ (1 − α) cos γ

when
1
√

3
< cos γ ≤ 1 and

5
6
− 1

6

√
1 + 8 sec2 γ < α < 1,

and also when

0 < cos γ ≤ 1
√

3
and 0 ≤ α < 1.

All the inequalities are sharp.

PROOF. Using (4.3) and (5.1), a simple calculation gives

|A3| − |A2| = 1
2 (1 − α) cos γ(| − 3(1 − α)eiγ cos γ p2

1 + p2| − 2|p1|).
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We apply Lemma 3.1, with B1 = 2, B2 = −3(1 − α)eiγ cos γ and B3 = 1, and check the
conditions for the bound Ψ+(p1, p2).

The condition |2B2 + B3| ≥ |B3| + B1 is satisfied when |1 − 6 cos γ(1 − α)eiγ| ≥ 3,
which is equivalent to

√
1 − 12(1 − α) cos2 γ + 36(1 − α)2 cos2 γ ≥ 3. A calculation

shows that this condition is valid when
1
√

3
< cos γ ≤ 1 and 0 ≤ α ≤ 5

6
− 1

6

√
1 + 8 sec2 γ.

Thus substituting the chosen values of B1, B2 and B3 into Lemma 3.1 gives

|A3| − |A2| ≤ (1 − α) cos γ
(
−2 +

√
1 − 12(1 − α)(3α − 2) cos2 γ

)
when

1
√

3
< cos γ ≤ 1 and 0 ≤ α ≤ 5

6
− 1

6

√
1 + 8 sec2 γ,

and

|A3| − |A2| ≤ (1 − α) cos γ

when

1
√

3
< cos γ ≤ 1 and

5
6
− 1

6

√
1 + 8 sec2 γ < α < 1,

and also when

0 < cos γ ≤ 1
√

3
and 0 ≤ α < 1.

The first bound in (5.2) is sharp when p(z) = (1 + z)/(1 − z), and the second bound
is sharp when p(z) = (1 + z2)/(1 − z2). �

We next find the lower bounds.

THEOREM 5.2. Let f ∈ S∗p(α), with inverse coefficients given by (1.2). Then

|A2| − |A3| ≤
2(1 − α) cos γ√

1 +
√

1 + 12(1 − α)(3α − 2) cos2 γ

. (5.3)

PROOF. We again use Lemma 3.1, this time with B1 = 2, B2 = −3(1 − α)eiγ cos γ
and B3 = 1, so that B2

1 ≤ 2|B3|(|4B2 + 2B3| + 2|B1|) is true for all α ∈ [0, 1) and γ ∈
(−π/2, π/2), which on substitution gives the required inequality (5.3).

To see that this lower bound is sharp, consider f ∈ S∗p(α) defined by (4.2) with

p(z) =
1 + ζ1(ζ2 + 1)z + ζ2z2

1 + ζ1(ζ2 − 1)z − ζ2z2 ,
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where

ζ1 =
1

√
1 + |ν|

, ζ2 = −ei arg ν and ν = 1 − 6(1 − α)eiγ cos γ.

Then

A2 =
−2(1 − α)eiγ cos γ

√
1 + |ν|

and A3 = 0,

which gives equality in (5.3). �

REMARK 5.3. It is easy to see that when γ = 0 in all of the above results, we obtain
the corresponding inequalities obtained in [10, 11].
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