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Abstract

Information extraction is the process of converting unstructured text into a structured data base containing
selected information from the text. It is an essential step in making the information content of the text
usable for further processing. In this paper, we describe how information extraction has changed over the
past 25 years, moving from hand-coded rules to neural networks, with a few stops on the way. We connect
these changes to research advances in NLP and to the evaluations organized by the US Government.
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1. Introduction

This anniversary issue gives us an opportunity to look back at the past 25 years of information
extraction (IE)—consider what has changed and why these changes have occurred.

First, a few definitions:

IE is the automatic identification and classification of instances of user-specified types of enti-
ties, relations, and events from text. The output is structured information (e.g., a database) which
can be readily interpreted by other applications. The specification may take the form of exam-
ples or verbal descriptions of the information to be extracted. Texts which the user considers
equivalent should be mapped to the same output structure.

Although there are exceptions, the information to be extracted is limited to specific individuals
and specific events. Generic information, conditional information, statements of knowledge, and
beliefs are excluded. These restrictions are intended to make the task more tractable and the output
easier to interpret than general language understanding.

This is distinguished from open IE, which reduces text to a set of elementary sentences (subject—
verb-object triples) for human consumption or search (but does not necessarily involve the
collapsing of alternative verbal descriptions to a canonical form).

Although common evaluation corpora now are an integral component of most areas of NLP,
shared US Government evaluations have played a particularly large role in the development of IE.
Although these evaluations are referred to as “conferences,” they involve much more: the speci-
fication of a task, the implementation of a system for the task by participants, the release of test
data, and its processing and scoring. The past 30 years have seen three major series of evaluations:

MUC (Message Understanding Conference) Begun in 1988 to find a way to evaluate IE, the MUCs
established IE as a major application of NLP (Sundheim 1996).
ACE (Automatic Content Extraction) Replaced the filling of one complex and task-specific tem-
plate with a few dozen more general relations and events. Produced lots of annotated
training data, fostering development of supervised methods (Doddington et al. 2004).
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KBP (Knowledge Base Population) Increased the scale of the data to be processed, with the goal
of creating a unified data base connecting tens of thousands of entities with about 40 rela-
tions and then answering questions about selected entities. Provided minimal annotated
training data, thereby encouraging semi-supervised methods (Ji and Grishman 2011).

The regular evaluations of IE in turn have served as a model for evaluations in many other
areas of NLP.

The frequent evaluations (every 1 or 2 years) make it possible to get an accurate picture of the
varied approaches to IE over the past 30 years. Each participant in an evaluation was required to
provide a (multi-page) system description. The participants included both universities and indus-
try, and were motivated (by the possibilities of Government contracts) to incorporate what they
believed was “best practice”, not just the most publishable methods.

Since the conferences have all been organized by US Government agencies, it is not surprising
that the initial participants were primarily from the US. But as the meetings progressed, they took
on a more international character. By 2005, 6 out of 15 groups were non-US. By 2010, only 7 out
of 20 KBP participants were from the US and 6 from Europe with the balance widely distributed.

2. Before corpora: rule-based systems

If we turn back the clock to 1994—25 years ago—and the start of this journal, we will find a new
NLP technology being introduced to the wider world.

The information explosion of the last decade has placed increasing demands on processing
and analyzing large volumes of online data. In response, the Advanced Research Projects
Agency (ARPA) has been supporting research to develop a new technology called IE. IE is
a type of document processing which captures and outputs factual information contained
within a document. Similar to an information retrieval system, an IE system responds to a
user’s information need. Whereas an Information Retrieval (IR) system identifies a subset of
documents in a large text database or in a library scenario a subset of resources in a library,
an IE system identifies a subset of information within a document (Okurowski 1993).

This announcement was based on a series of MUCs which had defined the task of IE and
its evaluation. The conference series began in 1988 with invitations to a meeting (“MUC-1”) at
NOSC (Naval Ocean Systems Command) to discuss how IE might be evaluated. In order to be
able to compare systems, there was agreement on the need for a shared template capturing the
most important information in a document. Systems would be judged on how accurately they
filled these template slots. MUC-2 represented a trial run of such an evaluation; MUC-3 agreed
on scoring using recall, precision, and F measure. (F measure, the harmonic mean of recall and
precision, was suggested as the primary metric for assigning a rank to participating systems.)

MUC-1 and MUC-2 both used Navy exercise message traffic (“rainforms” and “opreps”) as the
corpus. A typical message is as follows:

22.1 VISUAL SIGHTING OF PERISCOPE
FOLLOWED BY ATTACK WITH ASROC AND TORPEDOS.
22.2 SUBMARINE WENT SINKER.
22.3 LOOSEFOO0T 722/723 CONTINUE SEARCH.
22.4 FOUR BUOY ROAD PLACED BETWEEN CONSTELLATION AND DATUM.

The template planned for MUC-2 is shown in Appendix A.

MUC-3 and 4 used news about terrorism in Latin America (Chinchor et al. 1993). A sam-
ple message is shown in Appendix B along with one of the filled templates generated from this
message.
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As the task got better defined, the number of participants grew. By MUC-5, in 1993 there were
16 participants, evenly divided between universities and companies (primarily defense contrac-
tors) (MUC 1993). The MUC tasks were getting larger in other respects as well. Participants
in MUC-5 had a choice of two extraction topics (joint ventures or microelectronics) and two
languages (English or Japanese). The templates were substantially more complex than in prior
years.* Following MUC-5, the tasks were simplified to limit the effort required to participate.
To emphasize faster development of IE systems for new domains, the time from the release of
training material to the actual evaluation was reduced to one month. MUC-6 involved executive
succession; MUC-7 involved rocket launches.

Participation in multiple MUCs had led to some convergence of extraction architecture, a long
pipeline including some familiar names (Hobbs 1993). It quickly became clear, for example, that
a preprocessor to identify names was essential. But there were still basic areas of disagreement.

2.1 To parse or not to parse

One disagreement concerned full-sentence parsing. The job of IE is to analyze the structure of the
input text and then, guided by that structure, to generate the specified output relations. The ques-
tion is how much structure to build. One possible answer is to build a full parse tree, thus defining
the role of every word in the sentence. However, this was not so easy to do in 1990. Grammars
were constructed by hand and were either too tight (failed to parse 1/3 to 1/2 of sentences) or too
loose (produced dozens of parses). The typical solution was to combine a tight grammar with a
mechanism to recover a partial parse if no full sentence parse was possible. For MUC-5, half the
participants (8) tried to generate full parses of each sentence; it’s not always clear how successful
they were. Most of these sites cited some linguistic formalism: GB (Government-Binding Theory),
LFG (Lexical Functional Grammar), HPSG (Head-driven Phrase Structure Grammar), and CCG
(Combinatory Categorial Grammar) were represented at MUC-5.

The primary alternative to a full parse was partial parsing (chunking). This was faster and more
reliable, but only generated some of the required structure; semantic patterns had to do the rest.
Consider, for example, the “name” event for hiring an executive. It may appear as a simple active
sentence, “IBM named Fred president” (pattern company named person position), a passive sen-
tence, “Fred was named president of IBM,” a relative clause, “Fred, who was named president of
IBM,” etc. This was OK for a sentence expressing a single event, but consider a sentence expressing
two events:

Fred, who was named president of IBM last year, suddenly resigned yesterday.

The pattern for the relative clause still matches, but the other event (Fred . . . resigned) is split
in two. Creating a full set of patterns to handle all these cases is quite tricky.

The SRI team provided a neat solution. They implemented event rules which were applied
nondeterministically and could skip selected constituents. For example, the simple active sentence
pattern for “resigned” was extended to

person relativePronoun (nounGroup | other)* verbGroup (nounGroup | other)* resigned

which could skip the relative clause, matching both “Fred” and “resigned.” Because the pat-
terns are applied nondeterministically, both patterns would match and two events would be
reported. The resulting system, FASTUS, was fast and effective (Hobbs et al. 1993 1997). The
SRI researchers were careful to point out that this solution was suitable for IE but not for a general
language understanding task which needs to capture the relation between events.

2This was a period of heightened concern in the US regarding commercial competition from Japan, in semiconductors and
through joint ventures, and the possibility of using IE may have led to a more realistic and complex task.
PThere is less emphasis on linguistic formalism in current research, presumably because the major decisions are now made

at the time of treebank creation and are not easily revisited.
“This is a simplification of the actual SRI pattern.
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At this time, the first corpus trained systems, for part-of-speech tagging, became available
(Church 1988). They were significantly more accurate than their rule-based predecessors and
began to find some limited use in MUC-5.

2.2 Building a domain model

Once the input data have been syntactically analyzed, we must detect mentions of interest, identify
their arguments, and generate the output structure. This was generally achieved through a process
of semantic pattern matching, although described in different terms by different sites. The pat-
terns consisted of English words, domain-specific word classes, and syntactic roles. If the system
generated a full-sentence parse tree, the pattern had to match a subtree; if the system generated
sequences of chunks, the pattern had to match a subsequence.

Studying the source texts and building the domain model remains something of a craft. If the
word classes are too general or the patterns too brief, the system will overextract (low precision).
More than likely, some patterns will be omitted and the system will underextract.

The one site which explored the possibility of (partially) automating this process was the group
from the University of Massachusetts, Amherst, that participated in MUC-4. Most MUC task
specifications included a small number (typically 100) of hand-tagged example documents. For
MUC-3 and MUC-4, the Government provided these 100 annotated documents, but also over
1000 unlabeled documents, half of which were on the same topic. This provided an opening for a
semi-supervised learner. The documents were divided into those that included a relevant event (in
this case, a terrorist incident) and those that did not. This was a much smaller job than annotating
the documents with their slot fillers. Meanwhile, the corpus was parsed and for every noun phrase
in the corpus its immediate context (generally a subject-verb-object structure) was recorded.
Then they computed, for every context, the fraction of documents containing that phrase which
are relevant to the extraction task. These are ranked, and the top-ranked phrases are collected as
promising extraction patterns (Riloff 1996). This set of patterns was as effective at IE as a set of
manually selected patterns.

Completion of the Penn TreeBank in the mid-1990s (Marcus et al. 1993) led to a series of
treebank-trained parsers of increasing accuracy (Collins 1996) and made full-sentence parsing
more competitive. This came too late to have a significant influence on the remaining two MUCs—
BBN was the only site to incorporate a treebank-based parser (Miller et al. 1998)—but it left the
field well prepared for supervised methods which required accurate parsers.

2.3 Dividing the task

Up through MUC-5, the only way to participate in an MUC was to create a complete system to
fill event templates, which might require several component subsystems. To encourage develop-
ment of these components, MUC-6 split off three tasks, named entity tagging, coreference, and
template element, with separate evaluations (Grishman and Sundheim 1996). These were seen as
more general scenario-independent tasks. The original task was dubbed scenario template. This
brought greater attention to these tasks and favored the rise of NLP specialists who concentrated
on one task. Having a separate evaluation also made it feasible to “plug and play.” MUC-7 added
a fifth task, the template relation task.

The named entity task in particular quickly took on a life of its own. It had lots of things going
for it. It was easy to explain. It is not too difficult to implement a system (using hand-coded rules)
which exhibits useful performance. It became a separate task at just the time that machine-learning
methods were being introduced. And it was useful by itself.

Finally after MUC-7 questions were raised about the value of continued MUCs. Some of the
templates were very specific; MUC-5 included a template with more than 40 slots. This led to a
lot of work not directly relevant to IE technology. Scores of the top performers seemed to have
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topped out at F = 50-60. A working group was formed which recommended extracting a set of
elementary events and their arguments rather than a monolithic template (Hirschman et al. 1999).
This became a basic theme of the ACE program, which started in 2001.

3. Supervised methods: ACE
3.1 Entity, relation, and event

In ACE, the information in each document is represented by a set of entities, relations, and events.
There are seven types of entities, six types of relations, and eight types of events. The types are
shown in Appendix C; each type is further divided into subtypes (not shown). Relations are binary;
events may have any number of arguments. With minor exceptions, arguments must be entities or
temporal expressions (thus excluding relations or events which take other events as arguments).
The arguments to a relation or event must appear in the same sentence; this makes annotation
more tractable. It also simplifies modeling because it reduces relation tagging to a classification
task (classifying all pairs of entities in the same sentence).

The annotated corpora of the ACE evaluations are still widely used as benchmarks for IE. In
particular, the three types of data structures produced for the 2005 evaluation are still being used
to annotate additional data (Aguilar et al. 2014).

Another basic theme was supervised training. It had become clear from the MUCs and con-
temporaneous NLP research that annotating training data could be an effective way of improving
extraction performance. To support such training, a sizable investment was made in corpus anno-
tation. New corpora were released annually. The largest, for ACE 2005, was 300,000 words of
English and comparable amounts of Chinese and Arabic.

In addition, to gauge the robustness of the extraction, one release included noisy output from
audio transcripts and OCR (optical character recognition), but this was not further pursued.

As we have already noted, in the early 1990s there was a shift in the core NLP tasks to corpus-
trained models, initially for part-of-speech tagging and then for parsing, which greatly improved
the quality of intermediate results.

We will consider in turn the most popular models for each type of IE structure: named entities,
entities, relations, and events.

3.2 Named entity

The general role of this component is to identify and classify all the names in our corpus. More
abstractly, its job is to encapsulate all the messy, ad hoc structures which are not part of the core
language. In addition to names, this may include addresses, times of day, and chemical formulas
(Nadeau and Sekine 2007).

This is essentially a sequence labeling problem and is typically solved by an MEMM (Maximum
Entropy Markov Model) or a CRF (Conditional Random Field) at the token level (Nadeau and
Sekine 2007). There is a small benefit from taking into account global features which capture name
consistency across documents: if the same name appears in two documents, we favor the analysis
which assigns the two instances the same name type (Finkel et al. 2005). A lot of features are
required to classify names not seen in training—primarily shape, prefixes, and suffixes. In some of
the top systems, this feature-based approach has been replaced by a system which operates dual
sequence models, one at the token level, one at the character level (Klein et al. 2003).

3.3 Entities

Entity generation will typically operate on parser output. It has two principal functions: grouping
together coreferential phrases and assigning each group a semantic type. ACE has seven entity
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semantic types, shown in Appendix C. Groups not in one of these seven types are dropped. What
remains is a set of entities, each consisting of a set of entity mentions.

Several types of models have been used for coreference, principally mention-mention mod-
els (which first classify each pair of entity mentions as to the probability of coreference and then
resolves conflicts) and mention-entity models (which make a single pass over a document, pro-
cessing entity mentions in text order, either assigning the mention to a previously created entity
or constructing a new entity) (Ng 2017).

3.4 Relations

As we noted earlier, because relations are between pairs of entities in the same sentence, it is
possible to treat relation tagging as a classification problem, classifying each pair as a relation type
or NONE. Extensive studies were made using maximum entropy methods and trying a wide variety
of features, including words, entity types, and dependency relations (Kambhatla 2004; Jiang and
Zhai 2007). Kernel methods have also successfully been used (Zhao and Grishman 2005).

3.5 Events

A proper treatment of events is more challenging because it involves the interaction of the trigger
(the principal word defining the event) and multiple arguments. It is consequently a structured
prediction task. The simplest solution is to decide first on the type of event, if any, and then to
analyze the arguments (Ahn 2006). This, however, loses considerable accuracy because for many
common verbs their meaning depends on the arguments it takes. For example, firing a person is a
different type of event than firing a rocket.

A better solution is to use joint inference: optimize for a combination of label choices if these
choices interact. Besides the interaction of event type with event arguments just noted, there are
interactions between the types of adjacent events (attacks often co-occur with deaths) (Li et al.
2013).

Event extraction is followed by event coreference, whose role is to identify multiple mentions of
the same event. As was the case for entity coreference, there are several viable strategies, including
mention-pair models and mention-ranking models (Lu and Ng 2018). These models rely on the
argument structures of the mentions: they classify a pair of event mentions as potentially corefer-
ential if the event types are consistent and the argument values are compatible. Some examples of
compatible arguments can be learned through bootstrapping, but performance is modest (Huang
etal. 2019). The problem in part is that many cases of event coreference are complicated, involving
containment or partial overlap.

4. Semi-supervised methods

ACE was a success in terms of producing annotated corpora and research results, but there were
issues it did not address. In particular, it treated documents separately, whereas many realistic
tasks involved large numbers of interrelated documents. Information about an individual may
need to be pieced together from several documents. To address these questions, NIST (the US
National Institute of Standards and Technology) organized the annual “Text Analysis Conference”
and its central task, “Knowledge Base Population” (KBP) (Ji and Grishman 2011). Starting in 2009,
the KBP task added additional components year by year. We will describe the “Cold Start” variant
as of 2017, when the data sets were largely complete.

Participants were given a large collection of unannotated documents, a mix of newspaper arti-
cles and blogs, two to four million documents in each of English, Chinese, and Spanish. A small
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portion of these, 30,000 documents in each language, served as the test corpus; sites were expected
to build a graph in which each node represented an individual, organization, GPE (Geo-Political
Entity), location, or facility mentioned in the test collection. Associated with each type of node
were a set of properties. whose value could be a number, a date, a string, or another node in the
network. For example, a person node would have an age property whose value is an integer and
whose city_of_birth was a GPE node.

In addition, sites had to link the entities to the arguments of events appearing in the test
collection.

Compared to ACE, the test corpora were about two orders of magnitude larger. At this scale,
complete manual annotation of the test corpus was not feasible. Scoring was done by sampling:
NIST selected some names mentioned in the test corpus and checked whether (1) the system
had created a node for this name and (2) the node had the desired property. Training docu-
ments for the various annotation tasks were minimal—small samples the first year a task was
run, augmented in subsequent years by the annotations required for scoring.

The large volumes of unannotated data and the lack of annotated training encouraged experi-
mentation with semi-supervised methods—learning from partially labeled data. Most direct was
the generalization of the earlier work in MUC-4 to bootstrapping, an iterative strategy starting
from a small labeled seed. Bootstrapping was successfully applied to scenario template (Yangarber
et al. 2000), named entities (Collins and Singer 1999), and relations (Agichtein and Gravano
2000). However, success was not always assured; adding an incorrect element might lead the
bootstrapping badly astray.

Participants were also provided with a large data base, BaseKB. This enabled researchers to
explore an approach to training a relation classifier termed distant supervision (Mintz et al. 2009).
The basic idea of distant supervision is to convert an existing set of facts into an annotated corpus
and then use the annotated corpus to train a classifier in the usual way. Suppose we have a database

with a relation R consisting of pairs < x1, ¥; >, < X2, ¥2 >, ..., and that some of these pairs appear
in the corpus separated by word sequences w;. We will annotate every sequence w; as expressing
relation R.

The basic model makes strong assumptions which are not satisfied by realistic data. It assumes
that if a pair < x;, y; > matches a sentence in the corpus, then that sentence expresses relation R.
Violations of this assumption lead to a noisy annotated corpus, with many false positives and
false negatives. An alternative MIML (Multilnstance MultiLabel) model requires only that at least
one instance of the pair represent a relation and that the pair may represent more than one rela-
tion label. This model leads on average to cleaner annotations (Surdeanu et al. 2012). Further
improvements can be made by combining the distant supervision with some manually annotated
data (Pershina et al. 2014).

More radical approaches are also being tried, including few-shot methods and even zero-shot
methods. These address the situation where you have an event extractor which can recognize
N event types and now want to add the ability to recognize an N + first event type. In a few-shot
method, a small amount of training data is provided; in a zero-shot method, no additional training
data is provided. Huang et al. (2018) propose to ground the event types and event instances in a
shared semantic space based on the arguments to the event and then, given a new event instance,
assign it to the closest type. Levy et al. (2017) convert a relation into a set of questions and then
rely on a reading comprehension system to answer these questions.

Whether distant supervision can outperform hand-built patterns or supervised training
depends on several factors. Preparing patterns by hand requires considerable skill and insight
but may yield a relatively clean (high precision) system. The preparation of an annotated cor-
pus may require less skill but more time. Distant supervision requires the least labor but may
produce the noisiest model. Most likely the best method will involve some combination of these
approaches.
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5. Deep learning

Advances in deep learning (multilayer neural networks) have had a dramatic effect on all of NLP
over the past few years; IE was no exception.

Neural networks provide a major advantage over the trainable models which preceded them
(primarily maximum entropy models): given sufficient training data and time, they can capture
arbitrary functions of their inputs. That means that they do not require manual feature engineer-
ing. On the other hand, the time factor may be significant; citing training times of one or two
weeks is not unusual.

The most widespread change brought about by neural networks was the way in which words are
represented. Although prior models had made some use of smoothing lexical dependencies, words
were generally treated as discrete symbols. If a vector representation were required it would take
the form of a sparse 1-hot vector. Practical neural networks, however, required a representation
using continuous-valued, low-dimension vectors. In effect, each word is represented by a point in
d-space, termed its word embedding. Several methods were developed which captured the seman-
tic properties of the vocabulary, in particular that words which were semantically similar would
appear close-by in d-space.

Wt note here some aspects of the deep learning IE models. The primary network types currently
in use are CNNs (Convolutional Neural Networks) and RNNs (Recurrent Neural Networks) using
LSTMs (Long Short-Term Memories) (Yin et al. 2017).
5.0.0.1 Named entities. The best named entity performance is currently obtained by combin-
ing a dual token/character model with contextualized word embeddings (Akbik et al. 2019)
Performance on the standard test set (the Reuters newswire used by CONLL for the 2003
evaluation) has improved from an F measure of 89 in 2003 to an F of 93 (Li ef al. 2018).
5.0.0.2 Relations. CNNss offer a particularly simple network structure but the convolution oper-
ates within a fixed window size, which may limit the ability to capture dependencies spanning the
entire sentence. ACE relations are mostly realized at close range, with the entities separated by
fewer than four words. This makes it reasonable to implement relation extraction using a CNN;
Nguyen and Grishman (2015) reported good results with windows of two, three, and four tokens.

5.0.0.3 Events. As noted above, event extraction can involve multiple interactions which may
benefit from joint inference. In a neural network, these interactions can be captured directly
through a set of “memory matrices” whose values are assigned as part of the network training
and then used for event trigger and argument prediction (Nguyen et al. 2016).

Event extraction is in substantial part a matter of word sense disambiguation. But until recently
each word was assigned a single word embedding and so did not capture sense distinctions.
Contextualized word embeddings relax that constraint, making the embedding dependent on con-
text. Using contextualized word embeddings on the ACE corpus improves event classification by
about two points F-measure (Lu and Nguyen 2018).

6. User-generated media

Another significant addition of the last few years was the processing of user-generated data.
Twitter was founded in 2006; currently about 500,000,000 tweets are sent each day. Automatically
monitored tweets provide a source of current activities second to none, so they have become a
target for NLP developers (Panem et al. 2014). There is now a annual workshop on the analysis
of such informal communication, WNUT (Workshop on Noisy User-Generated Text, web site
http://noisy-text.github.io/).

But the tweets are quite different from the well-edited texts of newswires which had been the
target of most NLP. The tweets may contain many variant spellings, little or no punctuation, and
newly coined terms. In consequence, taggers which were trained on edited text performed poorly
on tweets (e.g., a top-ranked named entity tagger which obtained an F score over 90% on the
standard Reuters test corpus obtained an F score of about 40% on tweet corpora).
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The WNUT workshops include an annual multi-site evaluation, but the performance of these
tweet-optimized systems was not much better; top performance in the 2016 evaluation was F =
52% (Strauss et al. 2016). Generally the taggers used similar designs to those described above,
principally CRFs and RNNs built using LSTMs. Because individual tweets provide much less
context, tweet taggers must rely more on name lists (e.g., gazetters). Taking advantage of global
consistency—a preference for assigning the same token the same tag in different tweets—is also
important (Ritter et al. 2011; Liu et al. 2011; Cherry and Guo 2015). (As we noted earlier, global
consistency also plays a role, but a smaller one, in tagging edited text.)

7. Evaluation

At first glance, IE evaluation seems rather straightforward. We agreed already at MUC-3 to score
using recall, precision, and F measure. We prepare a key and compare it to the IE system’s

response.
Il number of slots correctly filled in system response
recall =
number of slots filled in key
. number of slots correctly filled in system response
precision =

number of slots filled in system response

and then compute the F-measure using

_ 1/recall + 1/precision
B 2

It quickly became clear that things would not be so simple. Systems were supposed to gener-
ate one template per event; if a document reported two events, two templates should be filled.
However, the system response did not explicitly specify how to pair up the templates in the key
and response. To address this issue, possible alignments of key and response templates were gen-
erated and scored, and the maximum score was reported (MUC no date). A similar problem arose
at a smaller scale if there were multiple participants in an event. In general this recall/precision
model provided satifactory and intuitive scores when new tasks were added to MUC. The one
exception was the coreference task. One scoring scheme was originally designed and an elegant
alternative was proposed at the MUC conference, but neither seemed intuitive.d To this day there
are disagreements regarding coreference scoring metrics (Luo 2005).

When MUC was divided into four and later five tasks, each was given its own scoring metric,
which made sense since each task might be used independently. The ACE evaluation, in con-
trast, was based on a set of parallel cost models for entities, relations, and events. Each model
combined detection, classification, clustering (i.e., coreference), and additional features. The offi-
cial score (“ACE value”) was based on all these factors, suitably weighted. A positive value is
assigned to each element correctly recognized and a false alarm penalty is charged for each
incorrect output. The score could be negative if the number of errors exceeded the number of cor-
rectly identified elements (Doddington et al. 2004). This is a standard ROC (Receiver Operating
Characteristic) model but was not intuitive to the participants; in consequence, it was used for
formal Government reports but little used in the published literature.®

In place of the cost model, most researchers report recall/precision scores for relations and
events. These scores are highly dependent on the accuracy of entity extraction since only entities
can serve as arguments of relations and events. To isolate improvements to relation and event
extraction, most researchers assume that the relation or event extractor is provided with perfect

1/F

4By intuitive we mean that the ranking of scores generally corresponded to peoples notion of better output.
Possibly also because the raw value scores were so low for events—below 15%—and participants felt embarrassed to report
such a score.
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information about entities. This has the benefit of producing higher (more optimistic) scores than
running a real entity extractor.

With the shift to deep-learning taggers which are capable of representation learning, some
researchers now assume the relation tagger has minimal information regarding entities—only
their position in the sentence, not their semantic type. These shifts—reflecting changing research
goals—must be taken into account when comparing tagger performance.

8. Looking ahead

We have briefly described the wide range of approaches that have been developed over the past 25
years for building IE systems, and the gradual rise in task performance which has accompanied
the introduction of these approaches. The result is a growing set of applications in finance (Ding
et al. 2015), medicine (Wang et al. 2018), and science (Peters et al. 2014). Still, performance (F
score) after more than 25 years of development has only advanced from the low 60s to the low 70s
on standard event classification benchmarks, and there are serious obstacles to be faced in further
improving the scores. What are our prospects?

(1) In some regards, the standard benchmarks (drawn from newswires and blogs) are par-
ticularly difficult because the range of topics is so broad, increasing the risk of event
misclassification Most applications involve a narrower range of topics and so yield higher
performance than the benchmarks.

(2) There will be errors and uncertainties in the human annotations which limit the score we
can get. This applies even to texts carefully prepared using dual annotation and reconcilia-
tion, such as ACE corpora. Annotating relations requires identifying two endpoints which
are easily missed. Relatively abstract categories will lead to uncertainties in classification for
both relations and events (Min and Grishman 2012). We should embrace this vagueness as
part of the power of natural language and take account of it in our evaluations.

(3) There will be examples which require world knowledge and inference. For instance, the
ACE events include a phone event (a subtype of contact). Given the sentence “Fred phoned
Jim and he later returned the call.” the system must be able to infer that Jim later called
Fred. Handling such cases properly may require a deeper modeling of the events. This is
much more feasible in a narrow domain.

(4) Insufficient training data. We expect that we would get several percent improvement in
event extraction just by doubling the amount of ACE training data. But “just” may not be
an appropriate word when the data were a major government investment. Going forward,
we could not afford similar investment for everyone who wants an IE system of their own.
Here we may be saved by semi-supervised or unsupervised methods. At a minimum the
unsupervised systems could provide cores of relation and event types, which then can be
extended and adjusted for particular users, using some form of domain adaptation.

(5) Pipeline problems. IE remains a multi-stage process where earlier stages may introduce
errors which are magnified by later stages. Joint inference strategies can reduce this effect.

And we should keep in mind that deep learning is still a young technology from which we can
expect continuing improvements in machine learning just as the advent of Bidirectional Encoder
Representations from Transformers (BERT) and contextualized embeddings has given many sys-
tems a boost of late (Devlin et al. 2018). So our prospects for continued improvement seem pretty
good.

As performance improves, the number of applications which become commercially viable will
continue to grow. To maintain market share for their platforms, every one of the “tech giants”
(along with multiple start-ups) is now counted on to provide an NLP API including all of the
elements of the pipeline, and to update it steadily, bringing state-of-the-art NLP components
much closer to IE applications. In this market-driven environment there may be less demand
for the Government to guide research by funding fresh evaluations.
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Appendix A. MUC-2 template

MUC-1 and 2 involved Navy messages. MUC-1 was exploratory and did not involve a shared template. The first shared tem-
plate, developed for MUC-2, is shown here (Sundheim 1996).

MESSAGE ID

EVENT: HIGHEST LEVEL OF ACTION DETECT, TRACK, TARGET,
HARASS, ATTACK, OTHER
FORCE INITIATING EVENT: FRIENDLY, HOSTILE, NO DATA
CATEGORY(S) OF EVENT AGENT(S): AIR, SURF, SUB, NO DATA
CATEGORY(S) OF EVENT OBJECT(S): AIR, SURF, SUB, LAND, NO DATA
ID(S) OF O-TH LEVEL AGENT(S):
ID(S) OF O-TH LEVEL OBJECT(S):
INSTRUMENT(S) OF O-TH AGENT(S):
LOC OF OBJECT(S) AT EVENT TIME:
TIME(S) OF EVENT:
RESULT(S) OF EVENT: 1. RESPONSE BY OPPOSING FORCE
2. HOLDING CONTACT, LOST CONTACT
3. CONTINUING TO TRACK,
STOPPED TRACKING
4. HOLDING TARGET, LOST TARGET
5. (NO) DAMAGE OR LOSS TO AGENT,
(NO) DAMAGE OR LOSS TO OBJECT -
6. else, NO DATA
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Some of the slots in the template are multiple choices, such as the FORCE INITIATING EVENT slot; alternative fills are
separated by commas. Other slots, such as the ID slots, prefer to be filled with specific vessel IDs, locations and times when
those are available.

Appendix B. Sample message and template for MUC-3

B.1 Message
TST1-MUC3-0099

LIMA, 25 OCT 89 (EFE) -- [TEXT] POLICE HAVE REPORTED THAT
TERRORISTS TONIGHT BOMBED THE EMBASSIES OF THE PRC AND THE SOVIET
UNION. THE BOMBS CAUSED DAMAGE BUT NO INJURIES.

A CAR-BOMB EXPLODED IN FRONT OF THE PRC EMBASSY, WHICH IS IN THE
LIMA RESIDENTIAL DISTRICT OF SAN ISIDRO. MEANWHILE, TWO BOMBS WERE
THROWN AT A USSR EMBASSY VEHICLE THAT WAS PARKED IN FRONT OF THE
EMBASSY LOCATED IN ORRANTIA DISTRICT, NEAR SAN ISIDRO.

POLICE SAID THE ATTACKS WERE CARRIED OUT ALMOST SIMULTANEQOUSLY AND
THAT THE BOMBS BROKE WINDOWS AND DESTROYED THE TWO VEHICLES.

NO ONE HAS CLAIMED RESPONSIBILITY FOR THE ATTACKS SO FAR. POLICE
SOURCES, HOWEVER, HAVE SAID THE ATTACKS COULD HAVE BEEN CARRIED OUT BY
THE MAOIST "SHINING PATH" GROUP OR THE GUEVARIST "TUPAC AMARU
REVOLUTIONARY MOVEMENT" (MRTA) GROUP. THE SOURCES ALSO SAID THAT THE
SHINING PATH HAS ATTACKED SOVIET INTERESTS IN PERU IN THE PAST.

IN JULY 1989 THE SHINING PATH BOMBED A BUS CARRYING NEARLY 50
SOVIET MARINES INTO THE PORT OF EL CALLAO. FIFTEEN SOVIET MARINES WERE
WOUNDED.

SOME 3 YEARS AGO TWO MARINES DIED FOLLOWING A SHINING PATH BOMBING
OF A MARKET USED BY SOVIET MARINES.

IN ANOTHER INCIDENT 3 YEARS AGO, A SHINING PATH MILITANT WAS KILLED
BY SOVIET EMBASSY GUARDS INSIDE THE EMBASSY COMPOUND. THE TERRORIST
WAS CARRYING DYNAMITE.

THE ATTACKS TODAY COME AFTER SHINING PATH ATTACKS DURING WHICH
LEAST 10 BUSES WERE BURNED THROUGHOUT LIMA ON 24 OCT.

B.2 Afilled scenario template

This is one of three templates which should be generated for this message. The full set appears in MUC (1991). The “/”
separates alternative correct slot fills.

0. MESSAGE ID TST1-MUC3-0099

1. TEMPLATE ID 1

2. DATE OF INCIDENT 24 OCT 89 - 25 OCT 89

3. TYPE OF INCIDENT BOMBING

4. CATEGORY OF INCIDENT TERRORIST ACT

5. PERPETRATOR: ID OF INDIV(S) "TERRORISTS "

6. PERPETRATOR: ID OF ORG(S) "SHINING PATH"
"TUPAC AMARU REVOLUTIONARY MOVEMENT" /
"MRTA"
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7. PERPETRATOR: CONFIDENCE POSSIBLE: "SHINING PATH"
POSSIBLE: "TUPAC AMARU REVOLUTIONARY MOVEMENT / "MRTA"
8. PHYSICAL TARGET: ID(S) "EMBASSIES" / "EMBASSIES OF THE PRC"

9. PHYSICAL TARGET: TOTAL NUM 1 / PLURAL

10. PHYSICAL TARGET: TYPE(S) DIPLOMAT OFFICE OR RESIDENCE: "EMBASSIES" / "EMBASSIES OF THE PRC"

11. HUMAN TARGET: ID(S) -
12. HUMAN TARGET: TOTAL NUM -
13. HUMAN TARGET: TYPE(S) -

14. TARGET : FOREIGN NATION(S) "PEOPLES REP OF CHINA : "EMBASSIES" / "EMBASSIES OF THE PRC"

15. INSTRUMENT : TYPE(S) -

16. LOCATION OF INCIDENT PERU: LIMA (CITY): SAN ISIDRO (NEIGHBORHOOD)
17. EFFECT ON PHYSICAL TARGET(S) SOME DAMAGE: "EMBASSIES" / "EMBASSIES OF THE PRC"
18. EFFECT ON HUMAN TARGET NO INJURY : "-"

Appendix C. ACE entities, relations, and events
C.1 Entities

A GPE is a location with a government, such as a city, state, or country. Mentions of a GPE may refer to the land mass
(“He traveled to Florida”), the population (“Floida loves orange juice.”), or the government (“Florida declared a state of

emergency”).

Type Examples

person Fred Smith; the undertaker

organization Ford; San Francisco 49ers; a car manufacturer

GPE France; Los Angeles

location Nile; Mt. Everest; southern Africa

faclity ~ Disneyland the Berlin Wal; Aden's streets
vehicle  theU.S.S. Cole; the train; the helicopter
weapon Anthrax; bullets; tear gas

C.2 Relations

A relation expresses a relationship between two entities which are mentioned in the same sentence.

Type Examples
physical location of a person: Fred was in France
part-whole the lobby of the hotel; Paris, France

personal-social  his lawyer; his wife; his neighbor
org-affiliation the CEO of Microsoft; a student at Harvard
agent-artifact my home; my car

gen-affiliation a Methodist minister; American troops
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C.3 Events
These 8 event types are divided into 33 subtypes.

Type Examples

life is born; marries; dies
movement  transport; travel

transaction  sell; purchase; acquire

business found; merge

conflict  attack; demonstrate
contact meet; phone; write
personell hired; fired; elected
justvi‘ce - an;ést; &ial;vc‘onvvi‘ct
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