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We derive a class of Navier–Stokes–Cahn–Hilliard systems that models two-phase flows with

mass transfer coupled to the process of chemotaxis. These thermodynamically consistent

models can be seen as the natural Navier–Stokes analogues of earlier Cahn–Hilliard–Darcy

models proposed for modelling tumour growth, and are derived based on a volume-averaged

velocity, which yields simpler expressions compared to models derived based on a mass-

averaged velocity. Then, we perform mathematical analysis on a simplified model variant

with zero excess of total mass and equal densities. We establish the existence of global weak

solutions in two and three dimensions for prescribed mass transfer terms. Under additional

assumptions, we prove the global strong well-posedness in two dimensions with variable fluid

viscosity and mobilities, which also includes a continuous dependence on initial data and

mass transfer terms for the chemical potential and the order parameter in strong norms.

Key words: Cahn–Hilliard equation, Navier–Stokes equations, mass transfer, chemotaxis,

volume-averaged velocity, mass-averaged velocity, well-posedness

1 Introduction

Biological phenomena such as tumour growth often involve complex interactions between

various actors that take place over multiple spatial and temporal scales [16, 17, 22, 23,

32, 37, 50, 53]. While discrete models that track the evolution of individual cells are able

to capture the biophysical rules proposed from biological intuition, the rapid increase

in computational costs with the number of cells and the difficulties encountered with

model calibration place limitations on discrete models. On the other hand, continuum

models, which group multiple characteristic properties into one or more phenomenological

parameters, tend to be too coarse at resolving the microstructures occurring at the level

of individual cells, but in exchange they offer a tractable phenomenological description
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of the key dynamics for which mathematical analysis and numerical simulations can be

carried out.

Within the class of continuum models, we focus on the category of diffuse inter-

face models, also commonly known as phase field models [9]. Although it is natural

to view interfaces separating different components of matter as idealized hypersurfaces

with zero thickness, these so-called sharp interface models break down when the interface

experiences topological changes. The diffuse interface models replace this hypersurface

description of the interface with a thin layer where microscopic mixing of the macroscop-

ically distinct components of matter are allowed. This not only yields systems of equations

that are better amenable to further analysis, but topological changes of the interface can

also be handled naturally (see e.g., [9, 48]).

In continuum models, the ensemble of cells is often assumed to be tightly packed and

move together with some averaged mixture velocity. Grounded in the observation that

the morphology of certain cells and tissues behaves akin to viscous fluids [7, 10, 22, 52],

many models treat the cells as viscous incompressible fluids, leading to a mathematical

consideration with the Navier–Stokes equations or Darcy’s law for the macroscopic

cellular velocity. The latter has been a popular choice for tumour growth (see, for

example, [17, 23, 32, 63] and the references therein), which treats the cells as viscous

inertia-less fluids, similar in spirit to the approach taken in [8].

In this work, we include inertia effects into the modelling, and obtain a Navier–Stokes

system for the mixture velocity. More precisely, we derive a thermodynamically consistent

model for a two-component fluid mixture, which allows for mass transfer between the

two components, in the presence of a chemical species that is subject to diffusion and

other transport mechanisms such as convection and chemotaxis. The general model is a

Navier–Stokes–Cahn–Hilliard system of the following form:

∂tρ + div

(
ρv − ρ2 − ρ1

2
m(ϕ)∇μ

)
= Γ1 + Γ2, (1.1a)

div v =
Γ1

ρ1

+
Γ2

ρ2

, (1.1b)

∂t(ρv) + div

(
ρv ⊗ v − ρ2 − ρ1

2
m(ϕ)v ⊗∇μ

)
= −∇p + div (2η(ϕ)Dv) (1.1c)

− div (B∇ϕ⊗∇ϕ) ,

∂tϕ + div (ϕv − m(ϕ)∇μ) =
Γ2

ρ2

− Γ1

ρ1

, (1.1d )

μ = AΨ ′(ϕ) − BΔϕ + Nϕ, (1.1e)

∂tσ + div (σv − n(ϕ)∇Nσ) = S. (1.1f )

Here, ρi, i = 1, 2, is the constant mass density of a pure component of fluid i, v is the

volume-averaged velocity of the mixture, Dv = 1
2
(∇v + (∇v)�) is the rate of deformation

tensor, p denotes the pressure and ρ and η denote the (averaged) density and viscosity

of the binary mixture, respectively. The order parameter ϕ is the difference in volume

fractions, with {ϕ = −1} representing fluid 1 and {ϕ = 1} representing fluid 2. In

terms of ϕ, a typical form of the averaged density ρ is given by the affine function
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ρ(ϕ) =
ρ2−ρ1

2
ϕ +

ρ2+ρ1

2
. μ stands for the chemical potential associated to ϕ, in which the

function Ψ ′ is the derivative of a potential Ψ that has two equal minima at ±1. The

constants A,B > 0 are related to the surface tension and the thickness of the interfacial

layers, while m(ϕ) denotes a non-negative mobility. The functions Γi, i = 1, 2, model the

mass transfer of fluid i. The density of a chemical species is given by σ, and S models a

reaction term for σ. The mobility of σ is given by n(ϕ) � 0, and the functions Nϕ and Nσ

are the partial derivatives of the chemical free energy density N(ϕ, σ) with respect to ϕ

and σ, respectively. In the analysis below, we will take N(ϕ, σ) as

N(ϕ, σ) =
1

2
|σ|2 + χσ(1 − ϕ) =⇒ Nϕ = −χσ, Nσ = σ + χ(1 − ϕ), (1.2)

for a non-negative constant χ (see, e.g., [32]).

Equations (1.1a) and (1.1c) are the mass and momentum balance for the fluid mixture,

respectively, while (1.1b) relates the divergence of the volume-averaged velocity to the

mass transfer terms. Equations (1.1d) and (1.1e) constitute a convective Cahn–Hilliard

system for the order parameter ϕ, and equation (1.1f) is a convection–reaction–diffusion

equation for the chemical density σ. Under suitable boundary conditions, the above model

satisfies an energy identity of the form:

d

dt

∫
Ω

e dx +

∫
Ω

(
m(ϕ) |∇μ|2 + n(ϕ) |∇Nσ|2 + 2η(ϕ) |Dv|2

)
dx

= −
∫
Ω

Uv

(
ϕμ + σNσ +

ρ2 + ρ1

2

|v|2

2
− p− AΨ (ϕ) − B

2
|∇ϕ|2 −N(ϕ, σ)

)
dx

+

∫
Ω

[(
μ− ρ2 − ρ1

2

|v|2

2

)
Uϕ + NσS

]
dx, (1.3)

where the total energy density

e =
ρ

2
|v|2 + AΨ (ϕ) +

B

2
|∇ϕ|2 + N(ϕ, σ)

is the sum of the kinetic energy density ρ
2
|v|2, the chemical free energy density N(ϕ, σ)

and the Ginzburg–Landau energy density AΨ (ϕ) + B
2
|∇ϕ|2, and

Uv :=
Γ1

ρ1

+
Γ2

ρ2

, Uϕ :=
Γ2

ρ2

− Γ1

ρ1

.

System (1.1) is a generalization of the model derived by Abels et al. [5] for two-phase

flow with unmatched densities, where we account for mass transfer between the fluids

and coupling to the dynamics of a chemical species. Furthermore, (1.1) can also be seen

as the Navier–Stokes analogue of the general Cahn–Hilliard–Darcy model derived in

Garcke et al. [32]. In Section 2.5.5, we briefly discuss how to obtain Darcy’s law from the

momentum equation by an averaging procedure (see [18] for a simpler situation), which

allows us to formally recover Cahn–Hilliard–Darcy models from (1.1). To the authors’ best

knowledge, a similar Navier–Stokes–Cahn–Hilliard system was first derived by Sitka [53]

for modelling tumour growth with chemotaxis, which can be obtained from the more
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general model (1.1)–(1.2) with the following specific choice of mass transfer terms:

Γ2 = −Γ1, (1.4)

so that

Uv = αΓ2, Uϕ = ρSΓ2 with α :=
1

ρ2

− 1

ρ1

, ρS :=
1

ρ2

+
1

ρ1

. (1.5)

The choice Γ2 = −Γ1 stands for the case of zero excess of total mass, as any mass

loss by fluid 1 is equal to the mass gained by fluid 2, and vice versa. Furthermore, by

integrating (1.1a) over the physical domain Ω and under suitable boundary conditions,

the total mass
∫
Ω
ρ dx is conserved. For the modelling of tumour growth, Sitka [53], and

also [16, 17, 23, 32, 50, 63], considered the following biologically relevant choices:

Γ2 =
1

2
(Gσ −A) (ϕ + 1), S = −1

2
Cσ(ϕ + 1),

where the non-negative constants G, A and C correspond to the constant proliferation,

apoptosis and nutrient consumption rates, respectively. These mass transfer terms model

the evolution of a tumour at its early stage, whose growth is proportional to the local

chemical density, and experiences cell death at a constant rate. The prefactor (ϕ+1) in Γ2

and S ensure that these source terms only affect the tumour, which is given as the region

{ϕ = 1}, and not the healthy tissues {ϕ = −1}. Next, let us mention that for the choice

(1.2) of the chemical free energy density N, the fluxes for ϕ and σ are given by

qϕ := −m(ϕ)∇μ = m(ϕ)χ∇σ − m(ϕ)∇
(
AΨ ′(ϕ) − BΔϕ

)
,

qσ := −n(ϕ)∇Nσ = n(ϕ)χ∇ϕ− n(ϕ)∇σ.

As pointed out in [32], the parameter χ is related to transport mechanisms such as chemo-

taxis (movement of fluid 2 towards high regions of σ) and active transport (establishing

a persistent concentration difference between the different fluid components even against

the chemical concentration gradient). The former is due to the fact that the term m(ϕ)χ∇σ

in the flux qϕ points in the direction of increasing σ, and the latter is due to the fact

that the term n(ϕ)χ∇ϕ in the flux qσ points in the direction of increasing ϕ. Note that

∇ϕ is only non-zero in the vicinity of the interface between the two fluids, as the order

parameter takes distinct constant values in the fluid regions, and hence we expect that the

term div (n(ϕ)χ∇ϕ) in (1.1f), with the choice (1.2) for N, attempts to drive the chemical

species towards fluid 2, i.e., the region {ϕ = 1}, leading to a higher chemical density in

fluid 2 than in fluid 1 near the interface. We refer the reader to [32, Section 5, Figs. 9 and

10] for numerical simulations investigating this mechanism, and to [31,32] for a discussion

on how to decouple the chemotaxis and active transport mechanisms as at present they

are both related to the parameter χ.

As a first step toward the mathematical analysis of system (1.1), we will study the

special case of matched densities ρ1 = ρ2 = 1 and zero excess of total mass Γ1 = −Γ2,
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for which the system (1.1) reduces to

∂tv + (v · ∇)v = −∇p + div (2η(ϕ)Dv − B∇ϕ⊗∇ϕ), (1.6a)

div v = 0, (1.6b)

∂tϕ + v · ∇ϕ = div (m(ϕ)∇μ) + 2Γ2, (1.6c)

μ = AΨ ′(ϕ) − BΔϕ− χσ, (1.6d )

∂tσ + v · ∇σ = div (n(ϕ)∇(σ − χϕ)) + S. (1.6e)

We remark that obtaining useful a priori estimates from the energy identity (1.3) for the

general model (1.1) turns out to be rather complicated due to the source terms Uv |v|2,
Uϕ |v|2 involving the velocity and Uvp involving the pressure. Unlike in the analytical

treatment of the Cahn–Hilliard–Darcy variant with source terms performed in [28,29,40],

useful estimates for the pressure p involving the left-hand side of (1.3) seem not available

a priori in the case with the Navier–Stokes equations. Hence, as a first contribution to the

mathematical treatment of Navier–Stokes–Cahn–Hilliard systems with mass transfer and

chemotaxis, we focus on the case of zero excess of total mass (1.4) and matched densities,

so that α = 0 and Uv = 0 in (1.5). We leave the analysis of the general model for future

research.

The above approach to model chemotaxis bears both similarities and differences to the

classical approach of Keller and Segel [41]. In the context of coupling Navier–Stokes flow

with chemical chemotaxis, the mathematical model by Tuval et al. [56] for oxygen-driven

bacteria swimming in viscous incompressible fluids has been intensively studied by many

authors, see for example [13, 14, 19, 20, 39, 44, 46, 60–62, 64, 65]. For the oxygen density c,

bacteria density n, fluid velocity u and pressure p, the model in [56] reads as

∂tu + (u · ∇)u = −∇p + ηΔu + g,

div u = 0,

∂tc + u · ∇c = DcΔc− nf(c),

∂tn + u · ∇n = DnΔn− div (r(c)n∇c),

(1.7)

where Dc and Dn are the diffusivities of c and n, respectively, r(c) denotes the chemotactic

sensitivity, f(c) is a consumption rate of the chemical by the cells and g accounts for

external forces such as gravity or buoyancy forces.

Writing (1.1d), (1.1e) and (1.1f) (with the specific choice (1.2)) as

∂tϕ + div (ϕv) = div (m(ϕ)∇(AΨ ′(ϕ) − BΔϕ)) − div (m(ϕ)χ∇σ) + Uϕ,

∂tσ + div (σv) = div (n(ϕ)∇σ) − div (n(ϕ)χ∇ϕ) + S,
(1.8)

then, we have a correspondence between σ and c as the chemoattractant, between ϕ and n

as the variable exhibiting the chemotactic movement, between v and u as the fluid velocity

and between the terms div (m(ϕ)χ∇σ) and div (r(c)n∇c) as the mechanism for chemotaxis.

The main differences between (1.6) (with the choice (1.2)) and (1.7) are the appearance of

a cross-diffusion type term −div (n(ϕ)χ∇ϕ) in the equation of σ accounting for the active

transport mechanism, and the fact that ϕ is subject to a fourth-order diffusion operator.

Besides, (1.6) is essentially a two-phase model.
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Last, let us mention that the models derived here, and also in [5,32], utilizes a volume-

averaged velocity, which is in contrast to the models of [16,17,23,42,48,50,63] that employ

a mass-averaged velocity. In the two-phase model of Lowengrub and Truskinovsky [48],

the mass-averaged velocity is not solenoidal (with mismatched densities), whereas in

the two-phase model of Abels, Garcke and Grün [5], the volume-averaged velocity is

divergence-free, which seems to be an advantageous property in the analytical treatment

as the pressure variable can be eliminated. In the present setting with mass transfer

between the two components in the Navier–Stokes flow, the velocity is not divergence-

free in general. However, as we will present in Section 2.8 below, the corresponding

model derived with a mass-averaged velocity has a much more complicated expression

than (1.1b) for the divergence equation. Another feature of the model with a mass-

averaged velocity is that the pressure appears explicitly in the equation for the chemical

potential μ.

The outline and contributions of the present work are as follows:

• In Section 2, we derive the general model (1.1) from balance laws. Under specific choices

of the source terms and free energy we obtain the Navier–Stokes analogue of the models

in Garcke et al. [32]. The sharp interface limit ε → 0 of (1.1) with the choice A = β
ε
,

B = βε is also stated, which can be deduced following the formally matched asymptotic

analysis presented in [5, 18, 32].

• In Section 3, we study the simplified model variant (1.6) and introduce preliminary

results that will be used in our analysis, as well as a summary of our main mathematical

results.

• In Section 4, we establish the global existence of weak solutions in two and three

dimensions under general assumptions on the source terms Γ and S , the potential Ψ ,

the viscosity η and the mobilities m and n. The assertion is given in Theorem 1.

• In Section 5, under additional assumptions on the initial conditions, the source term

Γ , the mobilities m and n and the viscosity η, we prove the global existence of strong

solutions to (1.6) in two dimensions. The assertion is given in Theorem 2.

• In Section 6, we show the continuous dependence of strong solutions to (1.6) in two

dimensions on the initial data and source terms. This is stated in Theorem 3, and

the proof is based on a similar procedure used in [30, 31], which allow us to deduce

continuous dependence for the chemical potential μ in L2(0, T ;L2(Ω)) and for the order

parameter ϕ in L2(0, T ;H2(Ω)) as well. In particular, thanks to the regularities of the

strong solutions, the continuous dependence result is valid for variable fluid viscosity

and mobilities.

2 Model derivation

2.1 Balance laws

We begin with the following modelling assumption: in a bounded domain Ω ⊂ �d,

d = 2, 3, there is a two-component mixture of immiscible fluids and a chemical species.

Let ρi, i = 1, 2, denote the constant mass density of a pure component i, while ρi denote

the actual mass of the component i per volume in the mixture. We define the volume
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fraction ui := ρi/ρi for i = 1, 2, which lies in the physical interval [0, 1]. Assuming the

excess volume of mixing is zero, i.e., the fluids behave like a simple mixture, it holds that

u1 + u2 = 1. (2.1)

We define the mass density ρ of the mixture as ρ = ρ1 + ρ2, and introduce the volume-

averaged velocity:

v := u1v1 + u2v2, (2.2)

where vi, i = 1, 2, is the individual velocity for component i.

The balance laws for mass and linear momentum are given as

∂tρi + div (ρivi) − Γi = 0, (2.3a)

∂t(ρv) + div (ρv ⊗ v) − div (S − pI) = 0, (2.3b)

where Γi denotes a source term for component i, S is a tensor yet to be identified, p

denotes the pressure, I is the identity tensor, and for two vectors a, b ∈ �d, the tensor

product a ⊗ b is defined as a ⊗ b = (aibj)1�i,j�d. Furthermore, the divergence of a tensor

A is taken row-wise. Note that upon dividing (2.3a) by ρi and using (2.1) and (2.2), we

obtain

div v =
Γ1

ρ1

+
Γ2

ρ2

=: Uv. (2.4)

Introducing the fluxes

Ji := ρi(vi − v), J := J1 + J2, Jϕ :=
J2

ρ2

− J1

ρ1

, K :=
J1

ρ1

+
J2

ρ2

. (2.5)

Then, by the definition of K , Ji and the volume-averaged velocity v, it holds that

K = u1(v1 − v) + u2(v2 − v) = v − (u1 + u2)v = 0, (2.6)

which implies

J = J1 + J2 =
ρ2 − ρ1

2
Jϕ +

ρ2 + ρ1

2
K =

ρ2 − ρ1

2
Jϕ.

From (2.3a), we deduce that

∂tui + div (uiv) +
1

ρi
div Ji =

Γi

ρi
. (2.7)

Defining the order parameter ϕ as the difference in volume fractions

ϕ := u2 − u1, (2.8)

so that fluid 2 is represented by the region {ϕ = 1} and fluid 1 is represented by the

region {ϕ = −1}, we can deduce from subtracting (2.7) for i = 1 from (2.7) for i = 2
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that

∂tϕ + div (ϕv) + div Jϕ =
Γ2

ρ2

− Γ1

ρ1

=: Uϕ. (2.9)

Furthermore, on the one hand, the mass density ρ can be expressed as an affine function

of ϕ:

ρ(ϕ) = ρ1u1 + ρ2u2 =
ρ2 − ρ1

2
ϕ +

ρ2 + ρ1

2
, (2.10)

and on the other hand, by adding (2.3a) for i = 1, 2 and using (2.5), we obtain a balance

law for ρ:

∂tρ + div (ρv) + div J = Γ1 + Γ2 =: Θ with J =
ρ2 − ρ1

2
Jϕ. (2.11)

Remark 2.1 It is straightforward to verify that (2.11) is equivalent to (2.9) under the rela-

tion (2.10). Thus, in the sequel we will solve the order parameter ϕ and determine the mass

density ρ using the relation (2.10), instead of considering the balance law (2.11) for ρ itself.

Besides, the density of the chemical species present in Ω, denoted by σ, satisfies the

following balance law:

∂tσ + div (σv) + div Jσ = S, (2.12)

for some source term S and flux Jσ that we will determine later.

The prototype model consists of equations (2.3b), (2.4), (2.9) and (2.12), and we will

employ the Lagrange multiplier method of Müller and Liu (see [43, Chapter 7] and [5,

Section 2.2]) to determine the constitutive assumptions on S , Jϕ and Jσ so that the

resulting model is thermodynamically consistent.

2.2 Energy inequality

We postulate a general energy density of the form

e =
ρ

2
|v|2 + AΨ (ϕ) +

B

2
|∇ϕ|2 + N(ϕ, σ), (2.13)

where A,B are positive constants and Ψ is a potential with equal minima at ±1. The

first term of e is the kinetic energy, and the second and third terms of e form the so-

called Ginzburg–Landau energy, which accounts for the interfacial energy and unmixing

tendencies. The last term of e is the free energy of the chemical species, in which we

incorporate possible interactions with the fluids by introducing a dependence on ϕ. In

contrast to [32], here we include the effects of inertia that leads to the appearance of the

kinetic energy density in (2.13). We mention that this effect has also been considered in

the thesis [53], but below we will derive a more general model.

We now derive the model based on a dissipation inequality for balance laws with source

terms that has been used in [32, 34, 35, 51], see also [36, Chapter 62]. The second law of
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thermodynamics in the isothermal situation can be formulated as a free energy inequality,

which states that for all volumes V (t) ⊂ Ω transported by the fluid velocity, the following

inequality has to hold:

d

dt

∫
V (t)

e dx +

∫
∂V (t)

Je · ν dHd−1 −
∫
V (t)

cϕUϕ + cvUv + cSS dx � 0,

where ν is the outer unit normal on ∂V (t) and Je is an energy flux yet to be determined. In

the above, dx and dHd−1 denote integration with respect to the d dimensional Lebesgue

measure and (d − 1) dimensional Hausdorff measure, respectively. The source terms Uϕ,

Uv and S carry with them an energy contribution of the form∫
V (t)

cϕUϕ + cvUv + cSS dx,

where the prefactors cϕ, cv , cS will be determined below.
By the Reynold transport theorem and divergence theorem [36], this leads to the

following local inequality:

∂te + div (ev) + div Je − cϕUϕ − cvUv − cSS � 0. (2.14)

Instead of asking (2.14) to hold only for variables (ϕ, σ, v, Uϕ,Uv , S) that satisfy the

prototype model equations (2.3b), (2.4), (2.9) and (2.12), the Lagrange multiplier method

of Müller and Liu relaxes the constraint on the model equations by introducing Lagrange

multipliers (see, e.g., [43, Chapter 7]), in our case λϕ and λσ for (2.9) and (2.12), and

instead it asks that the following inequality

−D := ∂te + div (ev) + div Je − cϕUϕ − cvUv − cSS

− λϕ
(
∂tϕ + div (ϕv) + div Jϕ −Uϕ

)
− λσ (∂tσ + div (σv) + div Jσ − S) � 0

(2.15)

holds for arbitrary (ϕ, σ, v, Uϕ,Uv , S , ∂
•
t ϕ, ∂

•
t σ), where the material derivative ∂•

t f of a

function f is defined as

∂•
t f := ∂tf + v · ∇f.

We introduce the notations

Nϕ :=
∂N

∂ϕ
, Nσ :=

∂N

∂σ
, μ := AΨ ′(ϕ) − BΔϕ + Nϕ,

and recall the identities

∂•
t ϕ∇ϕ = ∂tϕ∇ϕ + (∇ϕ⊗∇ϕ)v, (2.16)

∇ϕ · ∂•
t (∇ϕ) = div (∂•

t ϕ∇ϕ) − ∂•
t ϕΔϕ−∇v : (∇ϕ⊗∇ϕ), (2.17)

where for vectors a, b ∈ �d, ∇a : ∇b :=
∑d

i,j=1 ∂iaj∂ibj . Then, using (2.3b), (2.4) and

(2.11), we compute that
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∂•
t

(ρ

2
|v|2

)
= (∂t(ρv) + div (ρv ⊗ v) − ρ(div v)v) · v − 1

2
|v|2 ∂•

t ρ

= div (S − pI) · v +
1

2
|v|2 (div J −Θ − ρUv)

= div

(
(S� − pI)v +

1

2
|v|2 J

)
−∇v : (S + v ⊗ J )

− 1

2
|v|2 (Θ + ρUv) + pUv .

(2.18)

Furthermore, using the relations

Γ1 =
ρ1

2
(Uv −Uϕ), Γ2 =

ρ2

2
(Uv + Uϕ) so that Θ =

ρ2 + ρ1

2
Uv +

ρ2 − ρ1

2
Uϕ,

we can express (2.18) as

∂•
t

(ρ

2
|v|2

)
= div

(
(S − pI)�v +

1

2
|v|2 J

)
−∇v : (S + v ⊗ J )

−
((

ρ +
ρ2 + ρ1

2

)
1

2
|v|2 − p

)
Uv −

1

2
|v|2 ρ2 − ρ1

2
Uϕ.

Then, after a long but straightforward calculation, we obtain from (2.15) that

−D = div

(
Je − λϕJϕ − λσJσ + (S� − pI)v +

1

2
|v|2 J + B∂•

t ϕ∇ϕ

)
+ Jϕ · ∇λϕ

+ Jσ · ∇λσ +
(
μ− λϕ

)
∂•
t ϕ + (Nσ − λσ) ∂•

t σ + (λσ − cS )S

+

(
λϕ − cϕ − ρ2 − ρ1

2

1

2
|v|2

)
Uϕ −∇v : (S + v ⊗ J + B∇ϕ⊗∇ϕ)

+ Uv

(
f(ϕ,∇ϕ, σ) − cv − λϕϕ− λσσ − ρ2 + ρ1

2

1

2
|v|2 + p

)
,

(2.19)

where we recall that f(ϕ,∇ϕ, σ) = AΨ (ϕ) + B
2
|∇ϕ|2 + N(ϕ, σ) denotes the free energy.

2.3 Constitutive assumptions and the general model

In order for −D � 0 to hold for arbitrary (ϕ, σ, v, Uϕ,Uv, S , ∂
•
t ϕ, ∂

•
t σ), where −D is given

in (2.19), we make the following constitutive assumptions:

λϕ = μ, λσ = Nσ, (2.20a)

Je = μJϕ + NσJσ − S�v + pv − 1

2
|v|2 ρ2 − ρ1

2
Jϕ − B∂•

t ϕ∇ϕ, (2.20b)

S = 2η(ϕ)Dv − v ⊗ J − B∇ϕ⊗∇ϕ, (2.20c)

Jϕ = −m(ϕ)∇μ, Jσ = −n(ϕ)∇Nσ, (2.20d )

cS = Nσ, cϕ = μ− ρ2 − ρ1

2

1

2
|v|2 , (2.20e)

cv = AΨ (ϕ) +
B

2
|∇ϕ|2 + N(ϕ, σ) − μϕ−Nσσ − ρ2 + ρ1

2

1

2
|v|2 + p, (2.20f )
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where Dv := 1
2
(∇v+(∇v)�) is the rate of deformation tensor, η(ϕ) is the mixture viscosity

and m(ϕ), n(ϕ) are positive mobilities. Equations (2.20a)–(2.20f) yield that the right-hand

side of (2.19) is non-positive, namely,

−D = −m(ϕ) |∇μ|2 − n(ϕ) |∇Nσ|2 − 2η(ϕ) |Dv|2 � 0.

We remark that the constitutive assumption (2.20b) for the energy flux Je is chosen so

that the divergence term in (2.19) vanishes. The term (pI − S�)v accounts for energy

change due to work done by macroscopic stresses (see [5]), while energy flux due to mass

diffusion are described by the terms μJϕ and NσJσ . Changes of kinetic energy due to mass

diffusion is given by 1
2
ρ2−ρ1

2
|v|2 Jϕ = 1

2
|v|2 J , and the term ∂•

t ϕ∇ϕ arises from the moving

phase boundaries.

The above constitutive assumptions lead to the following Navier–Stokes–Cahn–Hilliard

model with mass transfer and chemical coupling:

div v = Uv =
Γ1

ρ1

+
Γ2

ρ2

, (2.21a)

ρ(ϕ) =
ρ2 − ρ1

2
ϕ +

ρ2 + ρ1

2
, (2.21b)

∂t(ρv) + div

(
ρv ⊗ v − ρ2 − ρ1

2
m(ϕ)v ⊗∇μ

)
= −∇p + div (2η(ϕ)Dv) (2.21c)

− div (B∇ϕ⊗∇ϕ) ,

∂tϕ + div (ϕv − m(ϕ)∇μ) = Uϕ =
Γ2

ρ2

− Γ1

ρ1

, (2.21d )

μ = AΨ ′(ϕ) − BΔϕ + Nϕ, (2.21e)

∂tσ + div (σv − n(ϕ)∇Nσ) = S. (2.21f )

Formally, by integrating (2.19) over Ω, where we recall (2.15), the constitutive assumptions

(2.20a)–(2.20f), and now ϕ and σ satisfy (2.9) and (2.12), we can obtain an energy identity

that is given by

d

dt

∫
Ω

ρ

2
|v|2 + AΨ (ϕ) +

B

2
|∇ϕ|2 + N(ϕ, σ) dx

+

∫
Ω

m(ϕ) |∇μ|2 + n(ϕ) |∇Nσ|2 + 2η(ϕ) |Dv|2 dx

+

∫
Ω

Uv

(
ϕμ + σNσ +

ρ2 + ρ1

2

1

2
|v|2 − p− AΨ (ϕ) − B

2
|∇ϕ|2 −N(ϕ, σ)

)
dx

−
∫
Ω

(
μ− ρ2 − ρ1

2

1

2
|v|2

)
Uϕ + NσS dx

+

∫
∂Ω

(
p +

ρ

2
|v|2 + AΨ (ϕ) +

B

2
|∇ϕ|2 + N(ϕ, σ)

)
v · ν − n(ϕ)Nσ∂νNσ dHd−1

−
∫

∂Ω

m(ϕ)

(
μ +

1

2
|v|2 ρ2 − ρ1

2

)
∂νμ + 2η(ϕ)(Dv)v · ν + B∂tϕ∂νϕdHd−1 = 0,

(2.22)

where ∂νf := ∇f · ν is the normal derivative of f on ∂Ω.
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2.4 Modified pressure and reformulation of the momentum equation

We now present three reformulations of the pressure and the corresponding momentum

equation (2.21c). Associated to each reformulation is the prefactor λv := −cv that is

multiplied with Uv in the energy identity (2.22). We consider, as in [32, Remark 2.1],

(1) q := p + AΨ (ϕ) +
B

2
|∇ϕ|2,

(2) r := p + AΨ (ϕ) +
B

2
|∇ϕ|2 + N(ϕ, σ),

(3) s := p + AΨ (ϕ) +
B

2
|∇ϕ|2 + N(ϕ, σ) − ϕμ−Nσσ,

leading to the corresponding momentum equations

∂t(ρv) + div

(
ρv ⊗ v − ρ2 − ρ1

2
m(ϕ)v ⊗∇μ− 2η(ϕ)Dv

)

=

⎧⎪⎪⎨
⎪⎪⎩
−∇q + (μ−Nϕ)∇ϕ,

−∇r + μ∇ϕ + Nσ∇σ,

−∇s− ϕ∇μ− σ∇Nσ,

as well as the prefactors

λv =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕμ + σNσ +
ρ2 + ρ1

2

1

2
|v|2 −N(ϕ, σ) − q,

ϕμ + σNσ +
ρ2 + ρ1

2

1

2
|v|2 − r,

ρ2 + ρ1

2

1

2
|v|2 − s.

(2.23)

2.5 Reduction to special models

2.5.1 Absence of the chemical substance

In the absence of chemical substances, by setting σ = 0, N(ϕ, σ) = 0 and S = 0, we

obtain a Navier–Stokes–Cahn–Hilliard system with source terms that is composed of

(2.21a)–(2.21d) and

μ = AΨ ′(ϕ) − BΔϕ,

which can be seen as the Navier–Stokes analogue of [32, (2.35)]. Furthermore, if Γ1 =

Γ2 = 0, then we obtain the Navier–Stokes–Cahn–Hilliard model of Abels, Garcke and

Grün [5]. For the existence of global weak solutions to the Navier–Stokes–Cahn–Hilliard

models, we refer to, for instance, [2–4, 6, 11, 26, 27, 59, 66], where the reformulation of the

momentum equation with the modified pressure variable r has been used.

2.5.2 Zero excess of total mass

We consider the case

Γ2 = −Γ1 =: Γ .
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Define

α =
1

ρ2

− 1

ρ1

, ρS :=
1

ρ2

+
1

ρ1

=⇒ Θ = 0, Uv = αΓ , Uϕ = ρSΓ .

This leads to the Navier–Stokes analogue of [32, (2.33)] that consists of equations (2.21b),

(2.21c), (2.21e), (2.21f) and

div v = αΓ , (2.24a)

∂tϕ + div (ϕv − m(ϕ)∇μ) = ρSΓ . (2.24b)

Furthermore, in the case of equal densities ρ1 = ρ2 = ρ∗ so that ρ = ρ∗ is constant, then

α = 0, ρS =
2

ρ∗
,

and the resulting system becomes

div v = 0, (2.25a)

ρ∗ (∂tv + (v · ∇)v) = −∇p + div (2η(ϕ)Dv − B∇ϕ⊗∇ϕ), (2.25b)

∂tϕ + v · ∇ϕ = div (m(ϕ)∇μ) +
2

ρ∗
Γ , (2.25c)

μ = AΨ ′(ϕ) − BΔϕ + Nϕ, (2.25d )

∂tσ + v · ∇σ = div (n(ϕ)∇Nσ) + S, (2.25e)

which is the Navier–Stokes analogue of [32, (2.34)]. If in addition, we set v = 0, then

neglecting the first two equations of (2.25) leads to [32, (2.36)].

2.5.3 Scaled zero excess of total mass

Alternatively, we consider the case

Γ2

ρ2

= −Γ1

ρ1

,

then it holds that

Uv = 0, Uϕ =
2

ρ2

Γ2, Θ =

(
1 − ρ1

ρ2

)
Γ2,

which leads to the model consisting of (2.21b), (2.21c), (2.21e), (2.21f) and

div v = 0, (2.26a)

∂tϕ + div (ϕv − m(ϕ)∇μ) =
2

ρ2

Γ2. (2.26b)

An interesting feature of this model is that the densities are allowed to be different, i.e.,

ρ1 �= ρ2 while we retain a solenoidal velocity field.
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2.5.4 No mass exchange for fluid 1

Setting

Γ1 = 0, Γ :=
Γ2

ρ2

leads to the model consisting of (2.21b), (2.21c), (2.21e), (2.21f) and

div v = Γ , (2.27a)

∂tϕ + div (ϕv − m(ϕ)∇μ) = Γ . (2.27b)

Neglecting σ, the resulting model is the Navier–Stokes analogue of [32, (2.43)]. Note that

the source terms for the divergence equation (2.27a) and the equation (2.27b) are equal,

and this feature has also appeared in the work of [40] (see [47,57,58] for the case Γ = 0).

2.5.5 Recovering Darcy’s law

Darcy’s law can be obtained from the momentum equation (2.21c) by performing a

proper averaging procedure in a Hele–Shaw geometry, that is, the domain Ω is given as

Ω = U × [0, δ] for some positive constant δ 	 1 and a bounded domain U ⊂ �d−1.

Rescaling the pressure p and the constant B appropriately with δ, and employing formal

asymptotic expansions of the variables (ρ, v, ϕ, μ, σ, Γi) in δ, by examining the equations

order by order in δ, one can derive the Cahn–Hilliard–Darcy model of [32] from the

Navier–Stokes–Cahn–Hilliard system (2.21). For further details, we refer to the recent

work [18], in which a Hele–Shaw–Cahn–Hilliard model is derived from the Navier–

Stokes–Cahn–Hilliard model of [5], see also [49, Chapter 4].

2.6 Some analytical issues

2.6.1 Restriction of the order parameter to physical values

One of the main mathematical issues with the analysis of the general model (2.21) is to

ensure that the order parameter ϕ stays in a physically reasonable interval, say ϕ ∈ [−1, 1].

This is due to the fact that the averaged mass density ρ(ϕ), defined via the relation (2.10),

can become negative if ϕ is outside the interval [−1, 1], which in turn causes difficulties

in the analysis of the momentum equation (2.21c). One possible approach is to consider

the class of singular free energies, where the potential Ψ is non-smooth and finiteness of

the integral
∫
Ω
Ψ (ϕ) dx implies that ϕ is indeed confined to a bounded interval. We point

out that the logarithmic potential

Ψlog(s) =
θ

2
((1 + s) log(1 + s) + (1 − s) log(1 − s)) − θc

2
s2

for constants 0 < θc < θ, and the obstacle potential

Ψob(s) =

⎧⎨
⎩

1

2
(1 − s2) if s ∈ [−1, 1],

+∞ otherwise,

https://doi.org/10.1017/S0956792517000298 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000298


Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models 609

would ensure ϕ stays in (−1, 1) for the former and in [−1, 1] for the latter. However,

other technical issues arise with the use of a non-smooth free energy, e.g., the regularity

of solutions [2, 11, 33]. Besides, a further detailed analysis is required when mass transfer

terms are also included. We believe that the weak existence theory for the model (2.26)

with scaled zero excess of total mass, which can be viewed as the model of [5] but

including source terms for the Cahn–Hilliard system and a coupling to a convection–

reaction–diffusion equation, can be treated with the techniques used in [3] by employing

the logarithmic potential Ψlog.

2.6.2 Boundary conditions for the velocity

We now examine the boundary term involving the velocity v in the energy identity (2.22),

which reads∫
∂Ω

(
ρ

2
|v|2 + p + AΨ (ϕ) +

B

2
|∇ϕ|2 + N(ϕ, σ)

)
v · ν − 2η(ϕ)(Dv)v · ν dHd−1. (2.28)

Natural boundary conditions for the velocity are

no-slip b.c. v = 0 on ∂Ω,

or free-slip b.c. v · ν = 0 and ∇× (v × ν) = 0 on ∂Ω,

so that (2.28) would vanish in both cases. However, integrating (2.21a) and applying the

divergence theorem yields that

0 =

∫
∂Ω

v · ν dHd−1 =

∫
Ω

div v dx =

∫
Ω

Uv dx, (2.29)

which implies that Uv necessarily has to have zero mean over Ω. This is not an issue for

the models (2.25) and (2.26), but for non-zero Uv , analysis of the corresponding Cahn–

Hilliard–Darcy model has utilized this compatibility condition, see for instance [28, 40].

In the case that the source term Uv is a function of the variables ϕ and σ, condition

(2.29) may not hold in general, and thus alternative boundary conditions for the velocity

have to be considered, see for example [29] for a Cahn–Hilliard–Darcy model with Uv

depending on ϕ and σ, along with a Dirichlet (or Robin) boundary condition prescribed

for the pressure.

2.6.3 Remarks on the source terms

To obtain useful a priori estimates from the energy identity (2.22), which are essential for

the proof of existence of solutions, it suffices to control the source terms (neglecting the

boundary term for the moment)∫
Ω

Uv

(
ϕμ + σNσ +

ρ2 + ρ1

2

1

2
|v|2 − p− AΨ (ϕ) − B

2
|∇ϕ|2 −N(ϕ, σ)

)
dx

−
∫
Ω

(
μ− ρ2 − ρ1

2

1

2
|v|2

)
Uϕ + NσS dx

(2.30)
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with the “good” part

d

dt

∫
Ω

ρ

2
|v|2 + AΨ (ϕ) +

B

2
|∇ϕ|2 + N(ϕ, σ) dx

+

∫
Ω

m(ϕ) |∇μ|2 + n(ϕ) |∇Nσ|2 + 2η(ϕ) |Dv|2 dx.

The fundamental difference between the source terms encountered in the previous works

[15, 25, 28, 30, 31, 40] for Cahn–Hilliard/Cahn–Hilliard–Darcy systems and (2.30) is the

appearance of |v|2 multiplied with Uv and Uϕ. Suitable assumptions on the integrability

of Uv and Uϕ are required to control their products with the kinetic energy. Moreover,

estimating (2.30) is further complicated by the presence of the term Uv p involving the

pressure. In contrast to Cahn–Hilliard–Darcy models, for which an estimate of the L2-

norm of the pressure can be obtained by studying Darcy’s law as a second-order elliptic

equation for the pressure (see [28, 29, 40]), in the present setting involving the Navier–

Stokes equations, such estimates seem not available at first glance. However, we mention

the work of Abels [1] for some results in this direction.

We also point out that the pressure reformulations in Section 2.4 do not entirely remove

the above technical issues, as from (2.23), the source term Uv will always be multiplied with

a nonlinear term containing |v|2 and the pressure. Furthermore, additional nonlinearities

may appear in the boundary term (2.28) instead. For instance, consider the reformulation

s = p + AΨ (ϕ) + B
2
|∇ϕ|2 + N(ϕ, σ) − ϕμ−Nσσ, so that (2.30) becomes

∫
Ω

Uv

(
ρ2 + ρ1

2

1

2
|v|2 − s

)
−

(
μ− ρ2 − ρ1

2

1

2
|v|2

)
Uϕ −NσS dx,

but, in exchange, the boundary term (2.28) becomes∫
∂Ω

(ρ

2
|v|2 + s + ϕμ + Nσσ

)
v · ν − 2η(ϕ)(Dv)v · ν dHd−1.

In particular, if one considers non-standard boundary conditions for the velocity (so that

Uv need not have mean zero), controlling terms such as ϕμ and Nσσ become harder when

they appear as part of the boundary terms. Hence, to allow for interesting effects (e.g., Uv

does not have mean zero), there will be a delicate balance between choosing appropriate

reformulations and boundary conditions to arrive at a tractable description of the model

for which can be further analysed.

2.7 Sharp interface limit

Let us consider the general model (2.21) with the following choices:

A =
β

ε
, B = βε, N(ϕ, σ) =

1

2
|σ|2 + χσ(1 − ϕ), (2.31)

where β > 0 denotes the surface tension, ε > 0 is related to the thickness of the diffuse

interface and χ � 0 is the chemotaxis parameter. Furthermore, we allow the source terms

S = S(ϕ, μ, σ), Γ1 = Γ1(ϕ, μ, σ) and Γ2 = Γ2(ϕ, μ, σ) to depend on ϕ, μ, σ but not on any
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derivative. The motivation for considering a dependence on μ for the source terms comes

from the works [37, 38]. Besides, we take a non-degenerate mobility 0 < n0 � n(s) for all

s ∈ �.

From the formally matched asymptotic analysis performed in [5], different sharp

interface models in the limit ε → 0 can be derived from the Navier–Stokes–Cahn–

Hilliard system for different choices of the mobility function m(ϕ). To compare with the

results in [32] we confine ourselves to the constant mobility m(ϕ) = 1. Furthermore, we

rescale the potential Ψ such that

∫ 1

−1

√
2Ψ (s) ds = 1,

and then the constant γ in [32, (3.17)] becomes 1.

Let Ω1(t) denote the region for fluid 1 and Ω2(t) denote the region for fluid 2, which

are separated by a hypersurface Σ(t). We denote the variables defined over Ω1 with the

subscript 1, and similarly for variables defined over Ω2 with the subscript 2. For the sake

of convenience, we use the following notations:

ρ =

{
ρ1 in Ω1,

ρ2 in Ω2,
η =

{
η(−1) in Ω1,

η(+1) in Ω2,
n =

{
n(−1) in Ω1,

n(+1) in Ω2,

Γi =

{
Γi(−1, μ1, σ1) in Ω1,

Γi(1, μ2, σ2) in Ω2,
S =

{
S(−1, μ1, σ1) in Ω1,

S(1, μ2, σ2) in Ω2,

when writing equations over the union Ω1 ∪Ω2. Furthermore, let ν and V denote the unit

normal (pointing into Ω2) and the normal velocity of Σ(t), respectively. We define the

jump of a quantity f along Σ as

[f]21 (x) := lim
δ↘0

(f2(x + δν(x)) − f1(x − δν(x)))

for a point x ∈ Σ such that x + δν(x) ∈ Ω2 and x − δν(x) ∈ Ω1. Then, following the

procedure outlined in [5, Section 4, Case I] and [32, Section 3], while considering a similar

treatment for the pressure variable as in [18, Section 3], i.e., the pressure variable has a

term scaling with 1
ε

in its asymptotic expansion, we obtain the following sharp interface

model:

div v = ρ1Γ1 + ρ1Γ2 in Ω1 ∪ Ω2, (2.32a)

ρ(∂tv + div (v ⊗ v)) − ρ2 − ρ1

2
div (v ⊗∇μ) = −∇p + 2η div (Dv) in Ω1 ∪ Ω2, (2.32b)

∂tσ + div (σv) = nΔσ + S in Ω1 ∪ Ω2, (2.32c)

−Δμ2 = −2ρ−1
1 Γ1 in Ω2, (2.32d )

−Δμ1 = 2ρ−1
2 Γ2 in Ω1, (2.32e)
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along with the free boundary conditions:

[μ]21 = 0, [σ]21 = 2χ on Σ, (2.33a)

2μ = βκ− 1
2

[
|σ|2

]2

1
, 2χ(v · ν − V) = [n∂νσ]21 on Σ, (2.33b)

[v]21 = 0, v · ν − V = 1
2
[∂νμ]21 , [pI − 2ηDv]21 ν = κβν on Σ, (2.33c)

where κ is the mean curvature of the hypersurface Σ. We remark that equations (2.32a),

(2.32c)–(2.33b) also appear in the sharp interface model [32, (3.49)–(3.50)], while (2.32b),

(2.33c) are present in the sharp interface limit of [5, Section 4, Case I].

Remark 2.2 We point out that it is also possible to consider mobilities scaling with ε, i.e.,

m1(ϕ) = ε, or a two-sided degenerate mobility m2(ϕ) = (1−ϕ2)+ := max(1−ϕ2, 0). In these

two cases, the analysis of [5, Cases II and IV] will yield a sharp interface model consisting

of (2.32a), (2.32c) along with

ρ(∂tv + div (v ⊗ v)) = −∇p + 2η div (Dv) in Ω1 ∪ Ω2,

2ρ−1
1 Γ1(1, μ, σ2) = 0 in Ω2,

2ρ−1
2 Γ2(−1, μ, σ1) = 0 in Ω1,

2μ = βκ− 1

2

[
|σ|2

]2

1
, [n∂νσ]21 = 0, [σ]21 = 2χ on Σ,

[v]21 = 0, [pI − 2ηDv]21 ν = κβν , V = v · ν on Σ.

In particular, the choices of m1 and m2 lead to the relation V = v · ν , which means that

the interface is passively transported by the fluid velocity. Note that there are no differential

operators acting on the variable μ, and the source terms Γ1, Γ2 must be chosen such that

Γ1 = 0 in Ω2 and Γ2 = 0 in Ω1 in order for the above sharp interface model to be well

defined.

2.8 A model with a mass-averaged velocity

In the modelling, a mass averaged velocity could also be used (see for instance, [17,42,48]

and the references cited therein). In this section, we will sketch the derivation of a

model using a mass-averaged velocity that includes mass transfer between the two fluid

components, which serves to compare with our model (2.21) with a volume-averaged

velocity.

Our starting point is the balance law (2.3a) for ρi, i = 1, 2. Let ui = ρi
ρi

be the volume

fraction of component i, and ρ = ρ1 + ρ2 as the mass density of the fluid mixture. We

now consider the mass concentration ci := ρi
ρ

= ρi
ρ1+ρ2

∈ [0, 1], i = 1, 2, which satisfies the

relation:

ci
ρ

ρi
= ui.

The assumption on zero excess volume of mixing (2.1) then implies that the mass density

ρ as a function of the order parameter c := c2 − c1 ∈ [−1, 1] is
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1

ρ(c)
=

c1

ρ1

+
c2

ρ2

=
1 − c

2ρ1

+
1 + c

2ρ2

, (2.34)

due to the relation c1 + c2 = 1. Let vi, i = 1, 2, denote the individual velocity of fluid i,

then the mass-averaged velocity w is defined as

ρ(c)w = ρ1v1 + ρ2v2. (2.35)

Adding (2.3a) for i = 1, 2 and employing the relation (2.35) yields the mass balance

∂tρ + div (ρw) = Γ1 + Γ2 = Θ =⇒ div w =
1

ρ
(Θ − ∂•

t ρ), (2.36)

where ∂•
t f = ∂tf+w ·∇f now denotes the material derivative with respect to w. To obtain

an equation for the order parameter c, interpreted as the difference in mass concentrations,

we introduce the fluxes:

Li := ρi(vi − w) =⇒ ∂t(ρci) + div (ρciw) + div Li = Γi. (2.37)

Furthermore, using (2.35) and the relation ρ = ρ1 + ρ2, it is easy to see that L1 = −L2.

Setting L := L2 − L1, we then obtain from (2.36) and (2.37) that

∂t(ρc) + div (ρcw) + div L = Γ2 − Γ1,

which implies

ρ∂•
t c + div L = Γ2(1 − c) − Γ1(1 + c) =: Υ . (2.38)

For the linear momentum, we consider a balance law of the following form:

∂t(ρw) + div (ρw ⊗ w) = ρ(∂tw + (w · ∇)w) + Θw = div (T − p̂I ), (2.39)

for a symmetric tensor T and a pressure function p̂, while for the nutrient density σ we

have analogously

∂tσ + div (σw) + div Jσ = S. (2.40)

To derive the constitutive assumptions for T , Jσ and L so that the resulting model is

thermodynamically consistent, we postulate a general energy density of the form

ew =
ρ(c)

2
|w|2 + Aρ(c)Ψ (c) + ρ(c)

B

2
|∇c|2 + N(σ, c), (2.41)

where, as before, A and B are positive constants and Ψ is a potential with equal

minima at ±1. We note that the difference between (2.41) and (2.13) is that the
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Ginzburg–Landau energy density is now multiplied with ρ(c) (cf. [48, (3.36)]). Similar

to Section 2.2, we use the Lagrange multiplier method of Müller and Liu to investigate

the local inequality

−D := ∂tew + div (eww) + div Je − cΥ Υ − cΘΘ − cSS

− λc
(
ρ∂•

t c + div L − Υ
)
− λσ

(
∂•
t σ + σdiv w + div Jσ − S

)
� 0

holding for arbitrary (c, σ,w, ∂•
t c, ∂

•
t σ, Υ ,Θ, S) with an energy flux Je and prefactors cΥ ,

cΘ and cS yet to be determined. Denoting E := 1
2
|w|2 + AΨ (c) + B

2
|∇c|2, and the partial

derivatives of N(σ, c) with respect to σ and c as Nσ and Nc, respectively, then a long

computation shows that

−D = div (Je − λcL − λσJσ + (T − p̂I )w + Bρ∂•
t c∇c) + (λc − cΥ )Υ

+ S(λσ − cS ) + L · ∇λc + Jσ · ∇λσ −∇w : (T + Bρ∇c⊗∇c)

+ ∂•
t c

(
ρ′(c)E + AρΨ ′(c) − div (Bρ∇c) − ρλc + Nc

)
+ ∂•

t σ(Nσ − λσ)

+ (p̂ + ρE − λσσ) div w − (cΘ + |w|2)Θ.

Using the expression in (2.36) for div w leads to a simplification of the above equation:

−D = div (Je − λcL − λσJσ + (T − p̂I )w + Bρ∂•
t c∇c) + (λc − cΥ )Υ

+ S(λσ − cS ) + L · ∇λc + Jσ · ∇λσ −∇w : (T + Bρ∇c⊗∇c)

+ ∂•
t c

(
AρΨ ′(c) − div (Bρ∇c) + Nc − ρλc −

ρ′

ρ
(p̂− λσσ)

)
+ ∂•

t σ(Nσ − λσ)

−
(
cΘ + |w|2 − 1

ρ
p̂− E +

1

ρ
λσσ

)
Θ.

In choosing the constitutive assumptions

λσ = Nσ, cS = λσ,

λc = μ := AΨ ′(c) − B

ρ(c)
div (ρ(c)∇c) +

1

ρ(c)
Nc(σ, c) −

ρ′(c)

ρ2(c)
(p̂−Nσ(σ, c)σ) ,

cΥ = λc, L = −m(c)∇μ, Jσ = −n(c)∇Nσ,

T = 2η(c)Dw + θ(c)div wI − Bρ(c)∇c⊗∇c,

Je = λcL + λσJσ − (T − p̂I )w − Bρ(c)∂•
t c∇c,

cΘ =
1

ρ(c)
(p̂−Nσσ) − 1

2
|w|2 + AΨ (c) +

B

2
|∇c|2 ,

for non-negative functions η(c), θ(c), m(c) and n(c), we obtain the analogue of system

(2.21) with a mass-averaged velocity w:
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div w =
1

ρ(c)
(Γ1 + Γ2) −

ρ′(c)

ρ2(c)
(Γ2(1 − c) − Γ1(1 + c) + div (m(c)∇μ)) , (2.42a)

1

ρ(c)
=

1 − c

2ρ1

+
1 + c

2ρ2

, (2.42b)

∂t(ρw) + div (ρw ⊗ w) + ∇p̂ = div (2η(c)Dw + θ(c)div wI − Bρ(c)∇c⊗∇c), (2.42c)

ρ(c)∂•
t c = div (m(c)∇μ) + Γ2(1 − c) − Γ1(1 + c), (2.42d )

μ = AΨ ′(c) − 1

ρ(c)
Bdiv (ρ(c)∇c) +

1

ρ(c)
Nc(σ, c) −

ρ′(c)

ρ2(c)
(p̂−Nσ(σ, c)σ) , (2.42e)

∂•
t σ = div (n(c)∇Nσ(σ, c)) − σdiv w + S. (2.42f )

Let us point out that (2.42) can be seen as a generalization of the quasi-incompressible

model of Lowengrub and Truskinovsky [48, (4.14)] to include mass transfer and chemotaxis

effects. In particular, by setting Γ1 = Γ2 = σ = N(σ, c) = 0, we recover [48, (4.14)].

Furthermore, in comparison with the volume-averaged variant (2.21) obtained above,

we observe that the equation for the divergence of the volume-averaged velocity (2.21a)

is considerably simpler than the corresponding equation (2.42a) for the mass-averaged

velocity, and the pressure does not explicitly appear in the equation for the chemical

potential (2.21e), unlike in (2.42e).

3 Analysis of the simplified model with zero excess of total mass and equal densities

3.1 Problem setting

For the rest of the paper, we analyse the model (2.25) with zero excess of total mass and

equal densities, and consider the following typical form of the chemical free energy N:

N(ϕ, σ) =
1

2
|σ|2 + χσ(1 − ϕ) for χ � 0, (3.1)

which has also been considered in [28–31]. Then, we have

Nϕ = −χσ, Nσ = σ + χ(1 − ϕ). (3.2)

For any given T ∈ (0,+∞), we set ρ∗ = 1 and absorb the prefactor 2 into the source

term Γ , leading to the system

div v = 0 in Ω × (0, T ), (3.3a)

∂tv + (v · ∇)v = −∇q + div (2η(ϕ)Dv) + (μ + χσ)∇ϕ in Ω × (0, T ), (3.3b)

∂tϕ + v · ∇ϕ = div (m(ϕ)∇μ) + Γ in Ω × (0, T ), (3.3c)

μ = AΨ ′(ϕ) − BΔϕ− χσ in Ω × (0, T ), (3.3d )

∂tσ + v · ∇σ = div (n(ϕ)∇(σ + χ(1 − ϕ))) + S in Ω × (0, T ), (3.3e)

where we have also reformulated the momentum equation with the modified pressure

variable q. We now prescribe the following initial-boundary conditions:
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v(0) = v0, ϕ(0) = ϕ0, σ(0) = σ0 in Ω, (3.4a)

v = 0, m(ϕ)∂νμ = ∂νϕ = n(ϕ)∂νNσ = 0 on ∂Ω × (0, T ), (3.4b)

so that the energy identity (2.22) reduces to

d

dt

∫
Ω

[
1

2
|v|2 + AΨ (ϕ) +

B

2
|∇ϕ|2 +

1

2
|σ|2 + χσ(1 − ϕ)

]
dx

+

∫
Ω

[
m(ϕ) |∇μ|2 + n(ϕ) |∇(σ + χ(1 − ϕ))|2 + 2η(ϕ) |Dv|2

]
dx

−
∫
Ω

[(σ + χ(1 − ϕ))S + μΓ ] dx = 0.

(3.5)

3.2 Preliminaries

Assume that Ω ⊂ �d, d = 2, 3, is a bounded domain with smooth boundary ∂Ω. We

denote by Q = Ω× (0, T ) the space–time cylinder with Σ := ∂Ω× (0, T ). For the standard

Lebesgue and Sobolev spaces, we use the notations Lp := Lp(Ω) and Wk,p := Wk,p(Ω) for

any p ∈ [1,+∞], k > 0 equipped with the norms ‖ · ‖Lp and ‖ · ‖Wk,p . In the case p = 2,

we use Hk := Wk,2 and the norm ‖ · ‖Hk . The L2-scalar product between two functions f

and g is denoted by (f, g). The dual space of a Banach space X is denoted by X′, and the

duality pairing between X and its dual will be denoted by 〈·, ·〉X .

We express �d-valued functions and function spaces consisting of vector-valued/tensor-

valued functions in boldface. The matrix of second derivatives of a scalar function f is

denoted by ∇2f, and similarly the tensor of second derivatives of a vector f is denoted

by ∇2f. For Bochner spaces, we will often use the isometric isomorphism between

Lp(0, T ;Lp(Ω)) and Lp(Q) for 1 � p < ∞. Similarly, we reuse the notation Lp(Q) for

Lp(0, T ; Lp(Ω)) for 1 � p < ∞. Since the pressure is determined up to a time-dependent

constant, we ask that the pressure q belongs to the space L2
0 := {f ∈ L2(Ω) : f = 0},

where f := 1
|Ω|

∫
Ω
f dx denotes the mean of f. Furthermore, we set

H2
N := {f ∈ H2 : ∂νf = 0 on ∂Ω}.

We now introduce the classical function spaces for the Navier–Stokes equations [54].

For a vector-valued/tensor-valued Banach space X , we define X0,σ as the completion of

C∞
0,σ := {f ∈ (C∞

0 (Ω))d : div f = 0} with respect to the X -norm. In the case X = L2, we

use the notation L2
σ := L2

0,σ . The space H1
0,σ is endowed with the scalar product

(u, v)H1
0,σ

:= (∇u,∇v) ∀u, v ∈ H1
0,σ ,

and we denote its topological dual as H−1. It is well known that L2 can be decomposed

into the sum L2
σ ⊕ G(Ω), where G(Ω) := {f ∈ L2 : ∃ z ∈ L2 with f = ∇z}, i.e., the space

G(Ω) is the orthogonal complement of L2
σ . Then, for every f ∈ L2, we have the unique

decomposition (up to an additive constant for z)

f = f0 + ∇z, where f0 ∈ L2
σ, ∇z ∈ G(Ω),
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and as a consequence, we obtain a bounded linear operator PH : L2 → L2
σ defined by

PH (f) = f0, which is more commonly known as the Leray projection onto the space of

divergence-free functions. We recall the Stokes operator � : D(�) → L2
σ defined as

(�u, ζ) = (∇u,∇ζ) ∀ ζ ∈ H1
0,σ

with domain D(�) = H2 ∩ H1
0,σ . Then, the following estimates hold (see [45, Lemma 3.4]

and [54]):

Lemma 3.1 For any u ∈ D(�), consider the Helmholtz decomposition �u = −Δu + ∇π

where the pressure-like function π is taken such that
∫
Ω

π dx = 0. Then, for any ν > 0, there

exists a positive constant Cν independent of u such that

‖π‖L2\� � ν‖�u‖L2 + Cν‖∇u‖L2 . (3.6)

Moreover, there exists a positive constant c = c(d, Ω) such that

‖u‖H2 + ‖π‖H1\� � c‖�u‖L2 . (3.7)

Furthermore, we state some inequalities that will be useful in the subsequent analysis:

• Poincaré’s inequality: There exists a positive constant C depending only on Ω such that,

for all f ∈ W 1,p, p ∈ [1,∞],

∥∥f − f
∥∥
Lp � C‖∇f‖Lp . (3.8)

• The Gagliardo–Nirenberg interpolation inequality in dimension d: Let Ω be a bounded

domain with Lipschitz boundary, and f ∈ Wm,r ∩ Lq , 1 � q, r � ∞. For any integer j,

0 � j < m, suppose there is α ∈ � such that

1

p
=

j

d
+

(
1

r
− m

d

)
α +

1 − α

q
,

j

m
� α � 1. (3.9)

If r ∈ (1,∞) and m − j − d
r

is a non-negative integer, we additionally assume α �= 1.

Under these assumptions, there exists a positive constant C depending only on Ω, m, j,

q, r and α such that

‖Djf‖Lp � C‖f‖αWm,r‖f‖1−α
Lq , (3.10)

where Djf denotes the jth weak partial derivatives of f. An alternate variant of the

Gagliardo–Nirenberg inequality we will use is

‖Djf‖Lp � C‖Dmf‖αLr‖f‖1−α
Lq + C‖f‖Ls ,

where p, j, m, r, q and α satisfy (3.9), and s > 0 is arbitrary.
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• Korn’s inequality: For any u ∈ H1
0 , there exists a positive constant C , depending only

on Ω such that

‖∇u‖L2 � C‖Du‖L2 , where Du :=
1

2
(∇u + (∇u)�). (3.11)

• The Brézis–Gallouet interpolation inequality for d = 2 (cf. [12,21]): There exists a positive

constant C depending only on Ω such that

‖g‖L∞ � C‖g‖H1

√
ln(1 + ‖g‖H2 ) + C‖g‖H1 ∀ g ∈ H2(Ω). (3.12)

• Elliptic estimates: If f ∈ H2(Ω) satisfies ∂νf = 0 on ∂Ω, then there exists a positive

constant C depending only on Ω such that

‖f‖H2 � C
(
‖Δf‖L2 + ‖f‖L2

)
. (3.13)

If f ∈ H4(Ω) satisfies ∂νf = ∂ν(Δf) = 0 on ∂Ω, then there exists a positive constant C

depending only on Ω such that

‖f‖H4 � C
(
‖Δ2f‖L2 + ‖f‖L2

)
. (3.14)

3.3 Main results

Our first result concerns the existence of global weak solutions to the system (3.3)–(3.4)

in both two and three dimensions.

Theorem 1 (Global weak solutions in 2D and 3D) We assume that

(1) m, n, η ∈ C0(�) and satisfy

m0 � m(s) � m1, n0 � n(s) � n1, η0 � η(s) � η1 ∀s ∈ �,

where m0, m1, n0, n1, η0 and η1 are given positive constants.

(2) The external source terms S ∈ L2(Q) and Γ ∈ L2(0, T ;L∞(Ω)) are prescribed func-

tions.

(3) The potential Ψ ∈ C2(�) is non-negative and satisfies

|Ψ ′′(s)| � C0(1 + |s|r), |Ψ ′(s)| � C1Ψ (s) + C2, Ψ (s) � C3 |s|2 − C4, (3.15)

for all s ∈ � with positive constants C0, C1, C2, C3 and C4 that are independent of s.

If d = 3, r ∈ [0, 4); if d = 2, r ∈ [0,+∞).

(4) The coefficients A > 0, B > 0 and χ � 0 are given constants and the following

condition holds:

A >
2χ2

C3
. (3.16)
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Let T ∈ (0,+∞) be an arbitrary but fixed terminal time. Then, for any initial data ϕ0 ∈
H1(Ω), σ0 ∈ L2(Ω) and v0 ∈ L2(Ω), there exists at least one global weak solution (ϕ, μ, σ, v)

to problem (3.3)–(3.4) on [0, T ] such that

ϕ ∈ L∞(0, T ;H1) ∩ L2(0, T ;H3) ∩H1(0, T ; (H1)′), μ ∈ L2(0, T ;H1),

σ ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1) ∩W 1,y(0, T ; (H1)′),

v ∈ L∞(0, T ; L2
σ) ∩ L2(0, T ; H1

0,σ) ∩W 1,y(0, T ; H−1),

where y = 2 if d = 2, y = 4
3

if d = 3. Moreover, the quadruple (ϕ, μ, σ, v) satisfies for a.e.

t ∈ (0, T )

0 = 〈∂tϕ, ζ〉H1 + (v · ∇ϕ, ζ) + (m(ϕ)∇μ,∇ζ) − (Γ , ζ), (3.17a)

0 = (μ− AΨ ′(ϕ) + χσ, ζ) − (B∇ϕ,∇ζ), (3.17b)

0 = 〈∂tσ + v · ∇σ, ζ〉H1 + (n(ϕ)∇(σ + χ(1 − ϕ)),∇ζ) − (S, ζ), (3.17c)

0 = 〈∂tv + (v · ∇)v, ξ〉H1 + (2η(ϕ)Dv,Dξ) − ((μ + χσ)∇ϕ, ξ), (3.17d )

and

ϕ(0) = ϕ0, 〈σ(0), ζ〉H1 = 〈σ0, ζ〉H1 , 〈v(0), ξ〉H1 = 〈v0, ξ〉H1 ,

for all ζ ∈ H1(Ω) and ξ ∈ H1
0,σ .

Remark 3.1 (1). The initial value for ϕ is attained precisely due to the (compact) em-

bedding L∞(0, T ;H1) ∩H1(0, T ; (H1)′) ⊂⊂ C0([0, T ];L2). Meanwhile, for σ and v, in two

dimensions we use the continuous embedding L2(0, T ;H1)∩H1(0, T ; (H1)′) ⊂ C0([0, T ];L2)

to deduce that σ(0) = σ0 and v(0) = v0. In three dimensions, we use the continuous embed-

ding W 1, 43 (0, T ; (H1)′) ⊂ C0([0, T ]; (H1)′) to deduce that the initial conditions for σ and v

are attained.

(2). To recover the pressure, we argue as follows. The distribution Fv defined as

Fv := ∂tv + (v · ∇)v − div (2η(ϕ)Dv) − (μ + χσ)∇ϕ

belongs to Ly(0, T ; H−1) and vanishes on the subspace C∞
0 ([0, T ];C∞

0,σ) by (3.17d). Applying

[54, Lemma IV.1.4.1] allows us to deduce that there exists a function q ∈ Ly(0, T ;L2
0) such

that Fv = −∇q holds as an equality in the sense of distributions for a.e. t ∈ (0, T ).

Our next result yields the existence of global strong solutions to problem (3.3)–(3.4)

when the spatial dimension is two.

Theorem 2 (Global strong solutions in 2D) In addition to the assumptions of Theorem 1,

we assume that

(1) m ∈ C2
b (�), n ∈ C1

b (�), η ∈ C1
b (�) with bounded derivatives.

(2) The potential Ψ ∈ C3(�) satisfies

|Ψ ′′′(s)| � C0(1 + |s|r−1
) for r ∈ [1,+∞), (3.18)

instead of the first assumption in (3.15).
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(3) The source term Γ belongs to L2(0, T ;H1(Ω) ∩ L∞(Ω)).

Then, for any T > 0 and arbitrary initial data v0 ∈ H1(Ω), σ0 ∈ H1(Ω) and ϕ0 ∈ H3(Ω) ∩
H2

N(Ω), there exists at least one global strong solution (ϕ, μ, σ, v) to problem (3.3)–(3.4) such

that

ϕ ∈ L∞(0, T ;H3 ∩H2
N) ∩ L2(0, T ;H4) ∩H1(0, T ;H1) ∩ C0([0, T ];C1,δ(Ω)),

μ ∈ L∞(0, T ;H1) ∩ L2(0, T ;H3 ∩H2
N),

σ ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2
N) ∩H1(0, T ;L2),

v ∈ L∞(0, T ; H1
0 ) ∩ L2(0, T ; H2) ∩H1(0, T ; L2

σ),

q ∈ L2(0, T ;H1 ∩ L2
0),

for some 0 < δ < 1. For a.e. (x, t) ∈ Q, the quadruple (ϕ, μ, σ, v) satisfies

0 = ∂tϕ + v · ∇ϕ− div (m(ϕ)∇μ) − Γ , (3.19a)

0 = μ− AΨ ′(ϕ) + BΔϕ + χσ, (3.19b)

0 = ∂tσ + v · ∇σ − div (n(ϕ)∇(σ + χ(1 − ϕ))) − S, (3.19c)

0 = ∂tv + (v · ∇)v − div (2(η(ϕ)Dv) + ∇q − (μ + χσ)∇ϕ. (3.19d )

Furthermore, it holds

ϕ(0) = ϕ0, σ(0) = σ0, v(0) = v0, a.e. in Ω.

Remark 3.2

(1) We used the compact embedding L∞(0, T ;H3)∩H1(0, T ;H1) ⊂⊂ C0([0, T ];C1,δ(Ω))

to deduce the Hölder spatial regularity for ϕ.

(2) The assumption ϕ0 ∈ H2
N(Ω) implies that μ0 := AΨ ′(ϕ0)−BΔϕ0 − χσ0 ∈ L2(Ω), and

if ϕ0 ∈ H3(Ω), then μ0 ∈ H1(Ω).

(3) We point out that one can weaken the assumptions to m ∈ C1
b (�) with bounded

derivatives and ϕ0 ∈ H2
N(Ω) to derive a strong solution with less regularities:

ϕ ∈ L∞(0, T ;H3 ∩H2
N) ∩ L2(0, T ;H4) ∩H1(0, T ;L2),

μ ∈ L∞(0, T ;L2) ∩ L2(0, T ;H2
N).

In essence, we neglect the fourth a priori estimate in Section 5.

The last theorem gives a continuous dependence on the initial data and source terms

for global strong solutions in two dimensions.

Theorem 3 (Continuous dependence in 2D) Let {ϕi, μi, σi, vi, qi}i=1,2 denote two global

strong solutions to problem (3.3)–(3.4) corresponding to initial data {ϕ0,i, σ0,i, v0,i}i=1,2 and

source terms {Γi, Si}i=1,2 obtained in Theorem 2. Besides, we assume that m(·), η(·) and n(·)
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are Lipschitz continuous, and Ψ satisfies

|Ψ ′(s1) −Ψ ′(s2)| � C5

(
1 + |s1|r + |s2|r

)
|s1 − s2| ∀ s1, s2 ∈ �, (3.20)

for some r > 0 and constant C5 > 0. Then, there exists a positive constant C , depending on

T , Ω, χ, η0, n0, m0, ‖η′‖L∞(�), ‖n′‖L∞(�), ‖m′‖L∞(�), A, B, Ci (i = 1, . . . , 5), ‖∇σi‖L2(0,T ;L4),

‖ϕi‖L2r(0,T ;L∞), ‖μi + χσi‖L2(0,T ;L∞), ‖∇ϕi‖L∞(0,T ;L∞), ‖μi‖L2(0,T ;H3), ‖∇(σi − χϕi)‖L4(Q) and

‖Dvi‖L4(Q) such that

sup
t∈(0,T ]

(
‖(ϕ1 − ϕ2)(t)‖2

L2 + ‖(v1 − v2)(t)‖2
L2 + ‖(σ1 − σ2)(t)‖2

L2

)
+ ‖μ1 − μ2‖2

L2(Q)

+ ‖∇(σ1 − σ2)‖2
L2(Q) + ‖∇(v1 − v2)‖2

L2(Q) + ‖ϕ1 − ϕ2‖2
L2(0,T ;H2)

� C
(
‖σ0,1 − σ0,2‖2

L2 + ‖v0,1 − v0,2‖2
L2 + ‖ϕ0,1 − ϕ0,2‖2

L2

)
+ C

(
‖Γ1 − Γ2‖2

L2(Q) + ‖S1 − S2‖2
L2(Q)

)
.

(3.21)

In particular, the global strong solution to problem (3.3)–(3.4) is unique under the above

assumptions.

Remark 3.3 It is worth mentioning that the above results concerning global weak existence

and strong well-posedness also hold when the mass transfer terms Γ and S are functions of

ϕ and σ. For example, one may consider the typical choice

Γ = h(ϕ)P (σ), S = −h(ϕ)Cσ,

where h(s) is a non-negative, bounded, Lipschitz function such that h(−1) = 0 and h(1) = 1,

C � 0 can be seen as a constant consumption rate, and P is a non-negative, bounded,

Lipschitz function modelling growth by consuming the chemical species. Similar types of

mass transfer terms have been studied in [30, 31] for the Cahn–Hilliard system modelling

tumour growth.

4 Proof of Theorem 1: global weak solutions

Theorem 1 can be proved by using a suitable Galerkin approximation scheme based on

the energy identity (3.5).

4.1 Galerkin approximation

We recall that the set of eigenfunctions {wj}j∈� of the Neumann–Laplacian forms an

orthonormal basis of L2 and is also an orthogonal basis of H2
N . Furthermore, we can

choose w1 = 1. Meanwhile, by the Lax–Milgram theorem, for every f ∈ L2
σ there exists a

unique v ∈ H1
0,σ satisfying

(∇v,∇ζ) = (f, ζ) ∀ ζ ∈ H1
0,σ . (4.1)

Defining the operator � : L2
σ → H1

0,σ by �(f) = v, where v solves (4.1) with data f. The

operator � can also be identified as the inverse to the Stokes operator �. It is clear that �

https://doi.org/10.1017/S0956792517000298 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000298


622 K.F. Lam and H. Wu

is a linear, continuous and self-adjoint operator. Furthermore, by the compact embedding

H1
0,σ ⊂⊂ L2

σ it holds that � is a compact operator, and thus by spectral theory there exists

an increasing sequence {λj}j∈� of positive real numbers and a family {yj}j∈� ⊂ H2∩H1
0,σ

of eigenfunctions that forms an orthonormal basis of L2
σ and an orthogonal basis of H1

0,σ .

We define the finite-dimensional subspaces

Wn := span{w1, . . . , wn} and Yn := span{y1, . . . , yn}

with corresponding orthogonal projections �Wn
and �Yn

, and look for functions of the

form

ϕn(x, t) :=

n∑
i=1

αn,i(t)wi(x), μn(x, t) :=

n∑
i=1

βn,i(t)wi(x),

σn(x, t) :=

n∑
i=1

γn,i(t)wi(x), vn(x, t) :=

n∑
i=1

δn,i(t)yi(x)

that solve the following approximating problem:

0 = ∂tϕn + �Wn
(vn · ∇ϕn) − �Wn

(div (m(ϕn)∇μn)) − �Wn
(Γ ), (4.2a)

0 = ∂tσn + �Wn
(vn · ∇σn) − �Wn

(div (n(ϕn)∇(σn + χ(1 − ϕn)))) − �Wn
(S), (4.2b)

0 = ∂tvn + �Yn
((vn · ∇)vn) − �Yn

(div (2η(ϕn)Dvn)) − �Yn
((μn + χσn)∇ϕn), (4.2c)

0 = μn − A�Wn
(Ψ ′(ϕn)) + BΔϕn + χσn, (4.2d )

subject to the initial data

ϕn(0) = �Wn
(ϕ0), σn(0) = �Wn

(σ0), vn(0) = �Yn
(v0).

It is easy to see that (4.2) is equivalent to

0 = (∂tϕn, wi) + (vn · ∇ϕn, wi) + (m(ϕn)∇μn,∇wi) − (Γ ,wi), (4.3a)

0 = (∂tσn, wi) + (vn · ∇σn, wi) + (n(ϕn)∇(σn + χ(1 − ϕn)),∇wi) − (S, wi), (4.3b)

0 = (∂tvn, yi) + ((vn · ∇)vn, yi) + (2η(ϕn)Dvn,Dyi) − ((μn + χσn)∇ϕn, yi), (4.3c)

0 = (μn, wi) − (AΨ ′(ϕn), wi) − (B∇ϕn,∇wi) + (χσn, wi), (4.3d )

for all i ∈ �.

The approximating problem (4.2) is equivalent to solving a system of nonlinear ordinary

differential equations in the 4n unknowns {αn,i, βn,i, γn,i, δn,i}ni=1. The continuity of Ψ ′(·),
m(·), n(·), η(·) and the Cauchy–Peano theorem allow us to deduce the existence of a local

solution (α, β, γ, δ) ∈ C1([0, tn),�4n) for some tn ∈ (0, T ].

4.2 A priori estimates and passage to the limit as n → +∞

We now derive a priori estimates to show that tn = T for all n ∈ � and the approximate

solutions (ϕn, μn, σn, vn) are uniformly bounded with respect to n in suitable function

spaces. Below the symbol C denotes a generic positive constant that is independent of the

parameter n and may vary from line to line.
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First estimate: We obtain from testing (4.2a) with μn, testing (4.2b) with σn + χ(1−ϕn),

testing (4.2c) with vn and testing (4.2d) with ∂tϕn an analogous energy identity to (3.5):

d

dt

∫
Ω

1

2
|vn|2 + AΨ (ϕn) +

B

2
|∇ϕn|2 +

1

2
|σn|2 + χσn(1 − ϕn) dx

+

∫
Ω

m(ϕn) |∇μn|2 + n(ϕn) |∇(σn + χ(1 − ϕn))|2 + 2η(ϕn) |Dvn|2 dx

=

∫
Ω

(σn + χ(1 − ϕn))S + μnΓ dx.

(4.4)

Here, we use the fact ∂tϕn ∈ Wn so that

(�Wn
(Ψ ′(ϕn)), ∂tϕn) = (Ψ ′(ϕn),�Wn

(∂tϕn)) = (Ψ ′(ϕn), ∂tϕn).

Similarly, during the testing procedure, we shift the projection operators from the nonlin-

earities onto μn, σn + χ(1 − ϕn) and vn, and this leads to (4.4).

Besides, by the Sobolev embedding theorem H1 ⊂ Ls for s ∈ [1,+∞) if d = 2 and for

s ∈ [1, 6] if d = 3, and assumption (3.15), we see that the initial approximating energy

satisfies∫
Ω

1

2
|vn(0)|2 + AΨ (ϕn(0)) +

B

2
|∇ϕn(0)|2 +

1

2
|σn(0)|2 + χσn(0)(1 − ϕn(0)) dx

� C
(
1 + ‖v0‖2

L2 + ‖ϕ0‖r+2
H1 + ‖σ0‖2

L2

)
with a constant C that is independent of n due to the fact that

‖�Wn
(f)‖X � C‖f‖X for any X ⊇ H2

N, ‖�Yn
(f)‖Z � C‖f‖Z for Z = L2

σ or H1
0,σ .

By the assumptions on Γ and S , we see that the right-hand side of (4.4) can be

estimated as

|RHS| � ‖S‖L2

(
‖σn‖L2 + χ‖ϕn‖L2 + C

)
+ ‖μn‖L1‖Γ‖L∞

� C
(
1 + ‖ϕn‖L2 + ‖σn‖L2

)
‖S‖L2 + ‖Γ‖L∞‖μn − μn‖L1 + |μn| ‖Γ‖L∞ .

(4.5)

Note that by assumption (3.15) it holds that

|μn| � C
(
‖Ψ ′(ϕn)‖L1 + ‖σn‖L1

)
� C

(
1 + ‖Ψ (ϕn)‖L1 + ‖σn‖L1

)
. (4.6)

Then, applying Poincaré’s inequality in L1, Hölder’s inequality and Young’s inequality to

(4.5), we have

|RHS| � C
(
1 + ‖ϕn‖2

L2 + ‖σn‖2
L2

)
+ ‖S‖2

L2 + C‖Γ‖2
L∞ +

m0

2
‖∇μn‖2

L2

+ C‖Γ‖L∞ (1 + ‖Ψ (ϕn)‖L1 + ‖σn‖L1 ).
(4.7)

Employing the lower bounds of η, m and n, the inequality

1

2
‖∇σn‖2

L2 � ‖∇(σn − ϕn)‖2
L2 + ‖∇ϕn‖2

L2
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and the quadratic lower bound of Ψ in (3.15), we obtain from (4.4) the inequality

d

dt

∫
Ω

1

2
|vn|2 + AΨ (ϕn) +

B

2
|∇ϕn|2 +

1

2
|σn|2 + χσn(1 − ϕn) dx

+

∫
Ω

m0

2
|∇μn|2 +

n0

2
|∇σn|2 + 2η0 |Dvn|2 dx

� ‖S‖2
L2 + C

(
1 + ‖Γ‖2

L∞
) (

1 + ‖Ψ (ϕn)‖L1 + ‖∇ϕn‖2
L2 + ‖σn‖2

L2

)
.

(4.8)

Applying Young’s inequality and (3.15), we see that (cf. [28, (4.37)] or [31])

∫
Ω

AΨ (ϕn) +
1

2
|σn|2 + χσn(1 − ϕn) dx

�

(
A− 2χ2

C3

)
‖Ψ (ϕn)‖L1 +

1

4
‖σn‖2

L2 − C.

(4.9)

Then, integrating (4.8) in time from 0 to arbitrary s ∈ (0, T ], by assumption (3.16) and

estimate (4.9), we find that

(
‖vn(s)‖2

L2 + ‖Ψ (ϕn(s))‖L1 + ‖∇ϕn(s)‖2
L2 + ‖σn(s)‖2

L2

)
+ ‖∇μn‖2

L2(0,s;L2) + ‖∇σn‖2
L2(0,s;L2) + ‖Dvn‖2

L2(0,s;L2)

� ‖S‖2
L2(0,T ;L2) + C

∫ s

0

(
1 + ‖Γ‖2

L∞
) (

1 + ‖Ψ (ϕn)‖L1 + ‖∇ϕn‖2
L2 + ‖σn‖2

L2

)
dt + C.

Applying Gronwall’s lemma in integral form (see e.g., [31, Lemma 3.1]) leads to

sup
t∈[0,T ]

(
‖vn(t)‖2

L2 + ‖Ψ (ϕn(t))‖L1 + ‖∇ϕn(t)‖2
L2 + ‖σn(t)‖2

L2

)
+ ‖∇μn‖2

L2(Q) + ‖∇σn‖2
L2(Q) + ‖Dvn‖2

L2(Q) � C.

Using Korn’s inequality, Poincaré’s inequality, (3.15) and (4.6), we see that

‖vn‖L∞(0,T ;L2)∩L2(0,T ;H1) + ‖ϕn‖L∞(0,T ;H1) + ‖Ψ (ϕn)‖L∞(0,T ;L1)

+ ‖σn‖L∞(0,T ;L2)∩L2(0,T ;H1) + ‖μn‖L2(0,T ;H1) � C.
(4.10)

In particular, the uniform estimate (4.10) ensures that we can extend (ϕn, μn, σn, vn) to the

full time interval [0, T ], and so tn = T for all n ∈ �.

Second estimate: In order to obtain higher order estimates for ϕn, we view (4.2d) as

an elliptic equation for ϕn subject to a homogeneous Neumann boundary condition. For

d = 2, we see that

‖�Wn
(Ψ ′(ϕn))‖H1 � C

(
‖∇(Ψ ′(ϕn))‖L2 + ‖Ψ ′(ϕn)‖L2

)
� C‖Ψ ′′(ϕn)‖L4‖∇ϕn‖L4 + C‖Ψ ′(ϕn)‖L2

� C
(
1 + ‖ϕn‖rL4r

)
‖ϕn‖

1
2

H2‖∇ϕn‖
1
2

L2 + C
(
1 + ‖ϕn‖r+1

L2(r+1)

)
� C‖ϕn‖

1
2

H2 + C,
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where we have used (3.15), the Gagliardo–Nirenberg inequality ‖f‖L4 � C‖f‖
1
2

H1‖f‖
1
2

L2 for

two dimensions, and the fact that (4.10) implies ϕn ∈ L∞(0, T ;Ls) for all s ∈ [1,+∞).

Then, by the elliptic estimate for (4.2d) and Young’s inequality, we get

‖ϕn‖H3 � C
(
‖μn‖H1 + A‖�Wn

(Ψ ′(ϕn))‖H1 + χ‖σn‖H1 + ‖ϕn‖L2

)
�

1

2
‖ϕn‖H2 + C

(
‖μn‖H1 + ‖σn‖H1 + 1

)
, (4.11)

which together with (4.10) yields the higher order estimate

‖ϕn‖L2(0,T ;H3) + ‖Ψ ′(ϕn)‖L2(0,T ;H1) � C. (4.12)

In the case d = 3, since the potential Ψ has at most polynomial growth of order 6, we

can appeal to the bootstrapping argument used in [28, Section 4.2] and [30, Section 3.3]

to obtain the higher order estimate (4.12).

Third estimate: Using the facts that ∇ϕn ∈ L2(0, T ; H2) ⊂ L2(0, T ; L∞) and vn ∈
L∞(0, T ; L2), we have

‖vn · ∇ϕn‖L2(Q) � C. (4.13)

Then, by testing (4.2a) with an arbitrary test function ζ ∈ L2(0, T ;H1), we easily see from

(4.10) and (4.13) that

‖∂tϕn‖L2(0,T ;(H1)′) � C. (4.14)

Fourth estimate: We now estimate the convection term for σ. In two dimensions, we

recall the following Gagliardo–Nirenberg inequalities

‖f‖L2s � C‖f‖
s−1
s

H1 ‖f‖
1
s

L2 , ‖f‖
L

2s
s−1

� C‖f‖
1
s

H1‖f‖
s−1
s

L2 ,

for any s > 1. Using boundedness of vn and σn in L∞(0, T ;L2)∩L2(0, T ;H1), for arbitrary

ζ ∈ L2(0, T ;H1), we see that

∣∣∣∣∣
∫ T

0

∫
Ω

σnvn · ∇ζ dx dt

∣∣∣∣∣
�

∫ T

0

‖σn‖L2s‖vn‖
L

2s
s−1

‖∇ζ‖L2 dt

� C‖σn‖
1
s

L∞(0,T ;L2)
‖vn‖

s−1
s

L∞(0,T ;L2)
‖σn‖

s−1
s

L2(0,T ;H1)
‖vn‖

1
s

L2(0,T ;H1)
‖∇ζ‖L2(Q)

for any s > 1. This implies that vn · ∇σn is uniformly bounded in L2(0, T ; (H1)′). Then,

from equation (4.2b), we find that

‖∂tσn‖L2(0,T ;(H1)′) + ‖vn · ∇σn‖L2(0,T ;(H1)′) � C. (4.15)
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In three dimensions, the Gagliardo–Nirenberg inequality ‖f‖L3 � C‖f‖
1
2

H1‖f‖
1
2

L2 yields that

for arbitrary ζ ∈ L4(0, T ;H1),

∣∣∣∣∣
∫ T

0

∫
Ω

(vn · ∇σn)ζ dx dt

∣∣∣∣∣
�

∫ T

0

‖vn‖L3‖∇σn‖L2‖ζ‖L6 dt

� C‖vn‖
1
2

L∞(0,T ;L2)
‖σn‖L2(0,T ;H1)‖vn‖

1
2

L2(0,T ;H1)
‖ζ‖L4(0,T ;H1),

which implies

‖∂tσn‖
L

4
3 (0,T ;(H1)′)

+ ‖vn · ∇σn‖
L

4
3 (0,T ;(H1)′)

� C. (4.16)

Fifth estimate: We proceed to estimate the convection term in the momentum equation.

Note that, by the boundedness of μn + χσn in L2(0, T ;H1) and ∇ϕn in L∞(0, T ; L2), it

holds

‖(μn + χσn)∇ϕn‖
L2(0,T ;L

3
2 )

� ‖∇ϕn‖L∞(0,T ;L2)‖μn + χσn‖L2(0,T ;L6),

and so we find that (μn + χσn)∇ϕn is bounded in L2(0, T ; L
3
2 ) ⊂ L2(0, T ; H−1). In

two dimensions, thanks to the boundedness of vn in L∞(0, T ; L2) ∩ L2(0, T ; H1) and

the Gagliardo–Nirenberg inequality ‖f‖L4 � C‖f‖
1
2

L2‖f‖
1
2

H1 , we see that for arbitrary

ζ ∈ L2(0, T ; H1),

∣∣∣∣∣
∫ T

0

∫
Ω

(vn ⊗ vn) : ∇ζ dx dt

∣∣∣∣∣ �

∫ T

0

‖vn‖2
L4‖∇ζ‖L2 dt

� C‖vn‖L∞(0,T ;L2)‖vn‖L2(0,T ;H1)‖ζ‖L2(0,T ;H1).

This implies

‖∂tvn‖L2(0,T ;H−1) + ‖(vn · ∇)vn‖L2(0,T ;H−1) � C. (4.17)

In three dimensions, the Gagliardo–Nirenberg inequality ‖f‖L4 � C‖f‖
1
4

L2‖f‖
3
4

H1 yields for

arbitrary ζ ∈ L4(0, T ; H1),

∣∣∣∣∣
∫ T

0

∫
Ω

(vn ⊗ vn) : ∇ζ dx dt

∣∣∣∣∣ �

∫ T

0

‖vn‖2
L4‖∇ζ‖L2 dx

� C‖vn‖
1
2

L∞(0,T ;L2)
‖vn‖

3
2

L2(0,T ;H1)
‖ζ‖L4(0,T ;H1).

Hence, we obtain

‖∂tvn‖
L

4
3 (0,T ;H−1)

+ ‖(vn · ∇)vn‖
L

4
3 (0,T ;H−1)

� C. (4.18)
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Passage to the limit as n → +∞: The above a priori estimates (4.10)–(4.18) are suffi-

cient to obtain compactness results that allow us to obtain a convergent subsequence

of the approximate solutions (ϕn, μn, σn, vn), whose limit denoted by (ϕ, μ, σ, v) satis-

fies the weak formulation (3.17) as well as the initial conditions. Since this procedure

is standard (see, e.g., [11] for the Navier–Stokes–Cahn–Hilliard system), we omit the

details.

5 Proof of Theorem 2: global strong solutions in two dimensions

Keeping the a priori estimates (4.10)–(4.14) in mind, we proceed to derive further higher

order estimates for the approximate solutions (ϕn, μn, σn, vn) obtained via the Galerkin

scheme.

First estimate: Testing (4.2a) by Δ2ϕn ∈ Wn and using (4.2d), we get

d

dt

∫
Ω

1

2
|Δϕn|2 dx + B

∫
Ω

m(ϕn)
∣∣Δ2ϕn

∣∣2 dx

= −
∫
Ω

(vn · ∇ϕn)Δ
2ϕn dx + A

∫
Ω

m(ϕn)Δ(�Wn
(Ψ ′(ϕn)))Δ

2ϕn dx

+

∫
Ω

m′(ϕn)(∇ϕn · ∇μn)Δ
2ϕn dx− χ

∫
Ω

m(ϕn)ΔσnΔ
2ϕn dx

+

∫
Ω

ΓΔ2ϕn dx

=: R1 + R2 + R3 + R4 + R5.

(5.1)

The terms on the right-hand side of (5.1) can be estimated as follows. Using Hölder’s

inequality, Young’s inequality and the Gagliardo–Nirenberg inequality (for d = 2)

‖∇ϕn‖L∞ � C‖∇ϕn‖
1
3

H3‖∇ϕn‖
2
3

L2 , (5.2)

the boundedness of vn in L∞(0, T ; L2) and ϕn in L∞(0, T ;H1), and the elliptic estimate

(3.14), we have

R1 � ‖vn‖L2‖∇ϕn‖L∞‖Δ2ϕn‖L2

� C‖∇ϕn‖
1
3

H3‖∇ϕn‖
2
3

L2‖Δ2ϕn‖L2

� C
(
‖Δ2ϕn‖L2 + ‖ϕn‖L2

) 1
3 ‖ϕn‖

2
3

H1‖Δ2ϕn‖L2

� ε‖Δ2ϕn‖2
L2 + C,

for some positive constant ε yet to be determined. Next, noticing that from integration

by parts and using ∂νϕn = ∂ν(Δϕn) = 0 on ∂Ω, it holds that

‖Δϕn‖2
L2 =

∫
Ω

ϕnΔ
2ϕn dx � ‖Δ2ϕn‖L2‖ϕn‖L2 .
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Then, together with estimates (4.10) and (3.14), Young’s inequality and the Gagliardo–

Nirenberg inequality ‖∇ϕn‖L4 � C‖ϕn‖
1
6

H4‖∇ϕn‖
5
6

L2 , we have

‖Δ(�Wn
(Ψ ′(ϕn)))‖L2

� C
(
‖Δ(Ψ ′(ϕn))‖L2 + ‖Ψ ′(ϕn)‖L2

)
� C‖Ψ ′′′(ϕn)‖L∞‖∇ϕn‖2

L4 + C‖Ψ ′′(ϕn)‖L∞‖Δϕn‖L2 + C‖Ψ ′(ϕn)‖L2

� C
(
1 + ‖ϕn‖r−1

L∞
)
‖ϕn‖

1
3

H4‖∇ϕn‖
5
3

L2 + C
(
1 + ‖ϕn‖rL∞

)
‖Δ2ϕn‖

1
2

L2‖ϕ‖
1
2

L2

+ C
(
1 + ‖ϕn‖r+1

L∞
)

� C
(
1 + ‖ϕn‖r−1

L∞
)
‖Δ2ϕn‖

1
3

L2 + C
(
1 + ‖ϕn‖rL∞

)
‖Δ2ϕn‖

1
2

L2 + C
(
1 + ‖ϕn‖r+1

L∞
)

� C
(
1 + ‖ϕn‖3r

L∞
)
‖Δ2ϕn‖

1
2

L2 + C
(
1 + ‖ϕn‖r+1

L∞
)
.

Applying the Brézis–Gallouet inequality (3.12) for ϕn, using estimates (3.13) and (4.10)

and Young’s inequality, we deduce that

‖Δ(�Wn
(Ψ ′(ϕn)))‖L2

� C
[
1 + (ln(1 + ‖Δϕn‖L2 ))

3r
2

]
‖Δ2ϕn‖

1
2

L2 + C
[
1 + (ln(1 + ‖Δϕn‖L2 ))

r+1
2

]
� C

(
1 + ‖Δϕn‖

1
2

L2

)
‖Δ2ϕn‖

1
2

L2 + C‖Δϕn‖L2 + C.

(5.3)

For the second inequality in (5.3), we used the fact that for any k � 1,

z(x) :=
(ln(1 + x))k

x
1
2

→ 0 as x → +∞,

as its derivative z′(x) = (ln(1+x))k−1

x
1
2

(
k

1+x
− ln(1+x)

2x

)
becomes negative for sufficiently large

x. As a consequence,

R2 � Am1‖Δ(�Wn
(Ψ ′(ϕn)))‖L2‖Δ2ϕn‖L2

� ε‖Δ2ϕn‖2
L2 + C‖Δϕn‖2

L2 + C. (5.4)

Next, using the following estimate

‖Δμn‖L2 � A‖Δ(�Wn
(Ψ ′(ϕn)))‖L2 + B‖Δ2ϕn‖L2 + χ‖Δσn‖L2

� B‖Δ2ϕn‖L2 + χ‖Δσn‖L2 + C‖Δϕn‖
1
2

L2‖Δ2ϕn‖
1
2

L2 + C‖Δϕn‖L2 + C

� C
(
1 + ‖Δ2ϕn‖L2 + ‖Δϕn‖L2 + ‖Δσn‖L2

)
,
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we obtain from (3.13) and Young’s inequality that R3 can be controlled as follows:

R3 � ‖m′(ϕn)‖L∞‖∇ϕn‖L4‖∇μn‖L4‖Δ2ϕn‖L2

� C‖ϕn‖
1
2

H1‖ϕn‖
1
2

H2‖μn‖
1
2

H1‖μn‖
1
2

H2‖Δ2ϕn‖L2

� C
(
1 + ‖Δϕn‖

1
2

L2

)
‖μn‖

1
2

H1

(
‖μn‖

1
2

H1 + ‖Δμn‖
1
2

L2

)
‖Δ2ϕn‖L2

� C
(
1 + ‖Δϕn‖

1
2

L2

)
‖μn‖H1‖Δ2ϕn‖L2

+ C‖μn‖
1
2

H1

(
1 + ‖Δ2ϕn‖L2 + ‖Δϕn‖L2 + ‖Δσn‖L2

) 1
2 ‖Δ2ϕn‖L2

+ C‖μn‖
1
2

H1‖Δϕn‖
1
2

L2

(
1 + ‖Δ2ϕn‖L2 + ‖Δϕn‖L2 + ‖Δσn‖L2

) 1
2 ‖Δ2ϕn‖L2

� ε‖Δ2ϕn‖2
L2 + ε‖Δσn‖2

L2 + C
(
1 + ‖μn‖2

H1

)
‖Δϕn‖2

L2 + C‖μn‖2
H1 + C.

(5.5)

By Young’s inequality, we easily have

R4 � χm1‖Δσn‖L2‖Δ2ϕn‖L2 � ε‖Δ2ϕn‖2
L2 +

χ2m2
1

4ε
‖Δσn‖2

L2 (5.6)

and

R5 � ‖Γ‖L2‖Δ2ϕn‖L2 � ε‖Δ2ϕn‖2
L2 + C‖Γ‖2

L2 . (5.7)

Now testing (4.2b) by −Δσn ∈ Wn, we get

d

dt

∫
Ω

1

2
|∇σn|2 dx +

∫
Ω

n(ϕn) |Δσn|2 dx

=

∫
Ω

(vn · ∇σn)Δσn dx + χ

∫
Ω

n(ϕn)ΔϕnΔσn dx

−
∫
Ω

n′(ϕn) (∇ϕn · ∇ (σn − χϕn))Δσn dx−
∫
Ω

SΔσn dx

:= R6 + R7 + R8 + R9.

(5.8)

The terms on the right-hand side of (5.8) can be estimated as follows. By the Gagliardo–

Nirenberg inequality ‖f‖L4 � C‖f‖
1
2

H1‖f‖
1
2

L2 , (3.13) and the estimate (4.10), it holds

R6 � C‖vn‖L4‖∇σn‖L4‖Δσn‖L2

� C‖vn‖
1
2

L2‖∇vn‖
1
2

L2‖∇σn‖
1
2

L2‖σn‖
1
2

H2‖Δσn‖L2

� C‖∇vn‖
1
2

L2‖∇σn‖
1
2

L2

(
‖σn‖

1
2

L2 + ‖Δσn‖
1
2

L2

)
‖Δσn‖L2

� ε‖Δσn‖2
L2 + C

(
1 + ‖∇vn‖2

L2

)
‖∇σn‖2

L2 .

By Young’s inequality, we easily have

R7 � ε‖Δσn‖2
L2 + C‖Δϕn‖2

L2 , R9 � ε‖Δσn‖2
L2 + C‖S‖2

L2 . (5.9)
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Meanwhile, for R8, we have by applying estimates (4.10) and (3.13),

R8 � ‖n′(ϕn)‖L∞‖∇ϕn‖L4‖∇σn‖L4‖Δσn‖L2 + χ‖n′(ϕn)‖L∞‖∇ϕn‖2
L4‖Δσn‖L2

� C‖ϕn‖
1
2

H2‖∇ϕn‖
1
2

L2‖σn‖
1
2

H2‖∇σn‖
1
2

L2‖Δσn‖L2 + C‖ϕn‖H2‖∇ϕn‖L2‖Δσn‖L2

� C
(
‖ϕn‖

1
2

L2 + ‖Δϕn‖
1
2

L2

)
‖∇ϕn‖

1
2

L2

(
‖σn‖

1
2

L2 + ‖Δσn‖
1
2

L2

)
‖∇σn‖

1
2

L2‖Δσn‖L2

+ C
(
‖ϕn‖L2 + ‖Δϕn‖L2

)
‖∇ϕn‖L2‖Δσn‖L2

� C
(
1 + ‖Δϕn‖

1
2

L2

) (
1 + ‖Δσn‖

1
2

L2

)
‖∇σn‖

1
2

L2‖Δσn‖L2

+ C
(
1 + ‖Δϕn‖L2

)
‖Δσn‖L2

� ε‖Δσn‖2
L2 + C

(
1 + ‖∇σn‖2

L2

)
‖Δϕn‖2

L2 + C‖∇σn‖2
L2 + C.

(5.10)

Then, multiplying (5.8) by ε−2, adding the resultant with (5.1), we deduce from the above

estimates (5.3)–(5.7) and (5.9)–(5.10) that

1

2

d

dt

(
‖Δϕn‖2

L2 + ε−2‖∇σn‖2
L2

)
+ (Bm0 − 5ε)‖Δ2ϕn‖2

L2

+

(
n0

ε2
− ε− 4

ε
− χ2m2

1

4ε

)
‖Δσn‖2

L2

� C
(
1 + ‖μn‖2

H1 + ‖∇vn‖2
L2 + ‖∇σn‖2

L2

) (
‖Δϕn‖2

L2 + ‖∇σn‖2
L2

)
+ C

(
1 + ‖μn‖2

H1 + ‖∇σn‖2
L2 + ‖Γ‖2

L2 + ‖S‖2
L2

)
.

(5.11)

We can choose

ε = min

{
1,

Bm0

10
,

2n0

20 + χ2m2
1

}
,

then, by Gronwall’s lemma, (5.11) and the lower order estimate (4.10), we obtain

sup
t∈[0,T ]

(
‖Δϕn(t)‖2

L2 + ‖∇σn(t)‖2
L2

)
+ ‖Δ2ϕn‖2

L2(Q) + ‖Δσn‖2
L2(Q) � C,

which further implies

‖ϕn‖L∞(0,T ;H2)∩L2(0,T ;H4) + ‖σn‖L∞(0,T ;H1)∩L2(0,T ;H2) � C. (5.12)

Besides, we infer from (4.2d), (5.3) and (5.12) that

‖μn‖L2(0,T ;H2) � C. (5.13)

Second estimate: By definition of the Stokes operator �, we can write �vn = −Δvn+∇πn,

which implies that (cf. [11, (3.30)])

−
∫
Ω

η(ϕn)Δvn · �vn dx =

∫
Ω

η(ϕn) |�vn|2 dx−
∫
Ω

η(ϕn)∇πn · �vn dx.
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Then, testing (4.2c) by �vn ∈ Yn, using (4.2d) and the above fact, we get

d

dt

∫
Ω

1

2
|∇vn|2 dx +

∫
Ω

η(ϕn) |�vn|2 dx

= −
∫
Ω

[(vn · ∇)vn] · �vn dx +

∫
Ω

2η′(ϕn)∇ϕn · (Dvn�vn) dx

+

∫
Ω

η(ϕn)∇πn · �vn dx− B

∫
Ω

Δϕn∇ϕn · �vn dx

+ A

∫
Ω

�Wn
(Ψ ′(ϕn))∇ϕn · �vn dx

=: R10 + R11 + R12 + R13 + R14.

(5.14)

Keeping in mind the estimate (5.12), the reminder terms on the right-hand side of (5.14)

can be estimated as follows. Using (3.7), we have

R10 � ‖vn‖L4‖∇vn‖L4‖�vn‖L2

� C‖vn‖
1
2

L2‖∇vn‖L2‖∇vn‖
1
2

H1‖�vn‖L2

� C‖vn‖
1
2

L2‖∇vn‖L2‖�vn‖
3
2

L2

� ε‖�vn‖2
L2 + C‖∇vn‖4

L2 .

Using (5.2) and Young’s inequality, it holds

R11 � 2‖η′(ϕn)‖L∞‖∇ϕn‖L∞‖Dvn‖L2‖�vn‖L2

� C‖∇ϕn‖
1
3

H3‖∇ϕn‖
2
3

L2‖∇vn‖L2‖�vn‖L2

� C
(
‖Δ2ϕn‖L2 + ‖ϕn‖L2

) 1
3 ‖∇vn‖L2‖�vn‖L2

� ε‖�vn‖2
L2 + C‖∇vn‖3

L2 + C‖Δ2ϕn‖2
L2 + C.

Applying integration by parts and the estimate for the Stokes problem (see Lemma 3.1),

and the facts that div (�vn) = 0 as well as �vn · ν = 0 on ∂Ω, we infer from the higher

order estimate (5.12) that

R12 = −
∫
Ω

η′(ϕn)πn∇ϕn · �vn dx

� ‖η′(ϕn)‖L∞‖πn‖L4‖∇ϕn‖L4‖�vn‖L2

� C‖πn‖
1
2

L2‖πn‖
1
2

H1‖∇ϕn‖
1
2

L2‖ϕn‖
1
2

H2‖�vn‖L2

� C∗
(
ν‖�vn‖

1
2

L2 + Cν‖∇vn‖
1
2

L2

)
‖�vn‖

3
2

L2

� C∗ν‖�vn‖2
L2 + ε‖�vn‖2

L2 +
C2
∗C

2
ν

4ε
‖∇vn‖2

L2 ,

where the constant C∗ is independent of ε and ν. Next, for R13, we deduce from (5.2) and

(5.12) that
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R13 � B‖Δϕn‖L2‖∇ϕn‖L∞‖�vn‖L2

� ‖Δϕn‖L2‖∇ϕn‖
1
3

H3‖∇ϕn‖
2
3

L2‖�vn‖L2

� ε‖�vn‖2
L2 + C‖Δ2ϕn‖2

L2 + C.

Finally, thanks to the fact that ϕn ∈ L∞(0, T ;H2), we observe

R14 � A‖�Wn
(Ψ ′(ϕn))‖L2‖∇ϕn‖L∞‖�vn‖L2

� C
(
1 + ‖ϕn‖r+1

L2r+2

)
‖∇ϕn‖

1
3

H3‖∇ϕn‖
2
3

L2‖�vn‖L2

� ε‖�vn‖2
L2 + C‖Δ2ϕn‖2

L2 + C.

Collecting the above estimates, we infer from (5.14) that

1

2

d

dt
‖∇vn‖2

L2 + (η0 − 5ε− C∗ν) ‖�vn‖2
L2

�

(
C‖∇vn‖2

L2 +
C2
∗C

2
ν

4ε

)
‖∇vn‖2

L2 + C‖Δ2ϕn‖2
L2 + C.

In the above inequality, choosing

ε =
η0

20
and ν =

η0

4C∗
,

then, by Gronwall’s lemma and (5.12), we get

sup
t∈[0,T ]

‖∇vn(t)‖2
L2 + ‖�vn‖2

L2(0,T ;L2) � C,

which together with Lemma 3.1 yields that

‖vn‖L∞(0,T ;H1)∩L2(0,T ;H2) � C. (5.15)

Third estimate: We now obtain further estimates for the time derivatives ∂tϕn, ∂tσn and

∂tvn. Thanks to the estimates

‖�Wn
(vn · ∇ϕn)‖L2 � ‖vn · ∇ϕn‖L2 � ‖vn‖L4‖∇ϕn‖L4

and

‖�Wn
(div (m(ϕn)∇μn))‖L2 � ‖div (m(ϕn)∇μn)‖L2

� ‖m′(ϕn)‖L∞‖∇ϕn‖L4‖∇μn‖L4 + ‖m(ϕn)‖L∞‖Δμn‖L2 ,

we infer from equation (4.2a) and estimates (5.12), (5.13) and (5.15) that

‖∂tϕn‖L2(0,T ;L2) � C. (5.16)

In a similar manner, from the estimates

‖�Wn
(vn · ∇σn)‖L2 � ‖vn · ∇σn‖L2 � ‖vn‖L4‖∇σn‖L4
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and

‖�Wn
(div (n(ϕn)∇(σn − χϕn)))‖L2

� ‖div (n(ϕn)∇(σn − χϕn))‖L2

� ‖n′(ϕn)‖L∞‖∇ϕn‖L4

(
‖∇σn‖L4 + χ‖∇ϕn‖L4

)
+ ‖n(ϕn)‖L∞

(
‖Δσn‖L2 + χ‖Δϕn‖L2

)

as well as (4.2b), we conclude

‖∂tσn‖L2(0,T ;L2) � C. (5.17)

Finally, testing (4.2c) with ∂tvn (again ∂tvn ∈ Yn and thus the projection operator �Yn
can

be shifted to ∂tvn) and using (5.12) and (5.15), we get

‖∂tvn‖2
L2

=

∫
Ω

div (2η(ϕn)Dvn) · ∂tvn − (vn · ∇)vn · ∂tvn + (μn + χσn)∇ϕn · ∂tvn dx

� 2‖η(ϕn)‖L∞‖Δvn‖L2‖∂tvn‖L2 + 2‖η′(ϕn)‖L∞‖∇ϕn‖L∞‖∇vn‖L2‖∂tvn‖L2

+ ‖vn‖L4‖∇vn‖L4‖∂tvn‖L2 + ‖(μn + χσn)∇ϕn‖L2‖∂tvn‖L2

�
1

2
‖∂tvn‖2

L2 + C‖Δvn‖2
L2 + C‖∇ϕn‖2

L∞‖∇vn‖2
L2 + C‖vn‖2

L4‖∇vn‖2
L4

+ C‖(μn + χσn)‖2
L2‖∇ϕn‖2

L∞ .

(5.18)

Using the facts that μn + χσn ∈ L∞(0, T ;L2) and ∇ϕ ∈ L2(0, T ; H2) ⊂ L2(0, T ; L∞),

the last term on the right-hand side of (5.18) belongs to L1(0, T ). Furthermore, by the

Gagliardo–Nirenberg inequality

‖vn‖2
L4‖∇vn‖2

L4 � C‖vn‖L2‖∇vn‖2
L2‖∇vn‖H1

and estimate (5.15), we can conclude that

‖∂tvn‖L2(0,T ;L2) � C. (5.19)

Fourth estimate: Taking the time derivative of (4.2d) leads to

∂tμn = A�Wn
(Ψ ′′(ϕn)∂tϕn) − BΔ∂tϕn − χ∂tσn. (5.20)
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Then, testing (5.20) with −Δμn and using integration by parts and (4.2a) yields that

d

dt

∫
Ω

1

2
|∇μn|2 dx + B

∫
Ω

m(ϕn) |∇Δμn|2 dx

= −A

∫
Ω

Ψ ′′(ϕn)∂tϕnΔμn dx + χ

∫
Ω

∂tσnΔμn dx− B

∫
Ω

∇Γ · ∇Δμn dx

− B

∫
Ω

m′(ϕn)Δμn∇ϕn · ∇Δμn dx− B

∫
Ω

∇
(
m′(ϕn)∇μn · ∇ϕn

)
· ∇Δμn dx

+ B

∫
Ω

∇ (vn · ∇ϕn) · ∇Δμn dx

=: R15 + R16 + R17 + R18 + R19 + R20, (5.21)

where we have used the fact that Δμn ∈ Wn and thus

(�Wn
(Ψ ′′(ϕn)∂tϕn), Δμn) = (Ψ ′′(ϕn)∂tϕn,�Wn

(Δμn)) = (Ψ ′′(ϕn)∂tϕn, Δμn).

Here, we point out that the assumption m ∈ C2
b (�) is used for this estimate. It follows

from (5.12) and Young’s inequality that

R15 � A‖Ψ ′′(ϕn)‖L∞‖∂tϕn‖L2‖Δμn‖L2

� C
(
1 + ‖ϕn‖rL∞

)
‖∂tϕn‖L2‖∇μn‖

1
2

L2‖∇Δμn‖
1
2

L2

� ε‖∇Δμn‖2
L2 + C‖∂tϕn‖2

L2 + C‖∇μn‖2
L2 ,

R16 � χ‖∂tσn‖L2‖Δμn‖L2

� ε‖∇Δμn‖2
L2 + C‖∂tσn‖2

L2 + C‖∇μn‖2
L2 ,

R17 � B‖∇Γ‖L2‖∇Δμn‖L2 � ε‖∇Δμn‖2
L2 + C‖∇Γ‖2

L2 ,

where we use the fact that ∂ν(Δμn) = 0 on ∂Ω and integration by parts to deduce that

‖Δμn‖2
L2 =

∫
Ω

∇Δμn · ∇μn dx � ‖∇Δμn‖L2‖∇μn‖L2 .

By Agmon’s inequality ‖f‖L∞ � C‖f‖
1
2

H2‖f‖
1
2

L2 , we see that

R18 � B‖m′(ϕn)‖L∞‖Δμn‖L2‖∇ϕn‖L∞‖∇Δμn‖L2

� C‖∇ϕn‖
1
2

L2‖ϕn‖
1
2

H3‖∇μn‖
1
2

L2‖∇Δμn‖
3
2

L2

� ε‖∇Δμn‖2
L2 + C‖ϕn‖2

H3‖∇μn‖2
L2 .
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In a similar manner, expanding the gradient term in R19 leads to

R19 � B‖m′′(ϕn)‖L∞‖∇ϕn‖2
L∞‖∇μn‖L2‖∇Δμn‖L2

+ B‖m′(ϕn)‖L∞‖∇2ϕn‖L∞‖∇μn‖L2‖∇Δμn‖L2

+ B‖m′(ϕn)‖L∞‖∇ϕn‖L∞‖∇2μn‖L2‖∇Δμn‖L2

� C‖∇ϕn‖L2‖ϕn‖H3‖∇μn‖L2‖∇Δμn‖L2

+ C‖ϕn‖
1
2

H2‖ϕn‖
1
2

H4‖∇μn‖L2‖∇Δμn‖L2

+ C‖∇ϕn‖
1
2

L2‖ϕn‖
1
2

H3‖∇μn‖
1
2

L2‖∇μn‖
1
2

H2‖∇Δμn‖L2

� ε‖∇Δμn‖2
L2 + C

(
1 + ‖ϕn‖2

H4

)
‖∇μn‖2

L2 .

Last, for R20, we have

R20 � C‖∇vn‖L2‖∇ϕn‖L∞‖∇Δμn‖L2 + C‖vn‖L4‖∇2ϕn‖L4‖∇Δμn‖L2

� C‖∇vn‖L2‖ϕn‖H3‖∇Δμn‖L2

+ C‖vn‖
1
2

L2‖vn‖
1
2

H1‖ϕn‖
1
2

H2‖ϕn‖
1
2

H3‖∇Δμn‖L2

� ε‖∇Δμn‖2
L2 + C‖vn‖2

H1 + C‖ϕn‖2
H3 .

Collecting the above estimates together, we infer from (5.21) that

1

2

d

dt
‖∇μn‖2

L2 + (Bm0 − 6ε) ‖∇Δμn‖2
L2

� C
(
1 + ‖ϕn‖2

H4

)
‖∇μn‖2

L2 + C‖∂tϕn‖2
L2 + C‖∂tσn‖2

L2

+ C‖vn‖2
H1 + C‖ϕn‖2

H3 + C‖∇Γ‖2
L2 .

Taking ε = Bm0

12
, then it follows from (5.12), (5.15) and Gronwall’s lemma that

sup
t∈[0,T ]

‖∇μn(t)‖2
L2 + ‖∇Δμn‖2

L2(0,T ;L2) � C.

The above estimate combined with (4.6) and Poincaré’s inequality yields

‖μn‖L∞(0,T ;H1)∩L2(0,T ;H3) � C. (5.22)

Going back to (4.2a), we further deduce that

‖∂tϕn‖L2(0,T ;H1) � C (5.23)

and by (5.12), it follows

‖ϕn‖L∞(0,T ;H3) � C. (5.24)

Passing to the limit as n → +∞: By the above higher order a priori estimates, there

exists a quadruple of functions (ϕ, μ, σ, v) that satisfies the regularities stated in Theorem
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2 and

0 = ∂tϕ + v · ∇ϕ− div (m(ϕ)∇μ) − Γ , (5.25a)

0 = μ− AΨ ′(ϕ) + BΔϕ + χσ, (5.25b)

0 = ∂tσ + v · ∇σ − div (n(ϕ)∇(σ + χ(1 − ϕ))) − S, (5.25c)

0 = ∂tv + (v · ∇)v − div (2η(ϕ)Dv) − (μ + χσ)∇ϕ, (5.25d )

hold a.e in Q. Thus, it remains to derive estimates for the pressure. From (5.25d), there

exists a function q ∈ L2(0, T ;L2
0) such that

∂tv(t) + (v(t) · ∇)v(t) − div (2η(ϕ(t))Dv(t)) − (μ(t) + χσ(t))∇ϕ(t) = −∇q(t)

holds as an equality in the sense of distribution for a.e. t ∈ (0, T ). Since the left-hand side

belongs to L2 for a.e. t ∈ (0, T ), we obtain that ∇q ∈ L2(0, T ; L2).

The proof is complete. �

Remark 5.1 (Further Hölder regularity for σ) In the case χ = 0 and S = 0, equation

(5.25c) reduces to

∂tσ + v · ∇σ − div (n(ϕ)∇σ) = 0. (5.26)

If in addition, σ0 ∈ L∞(Ω), then by a weak comparison principle, i.e., testing (5.26) with

(σ− l)− = max(l−σ, 0), l = infx∈Ω σ0(x), and testing (5.26) with (σ−m)+ = max(σ−m, 0),

m = supx∈Ω σ0(x), it follows that σ ∈ L∞(0, T ;L∞) and ‖σ‖L∞(0,T ;L∞) � ‖σ0‖L∞ . For more

details, see for instance [29, 45]. We just remark that the convection term can be handled

as follows:

(v · ∇(σ − l), (σ − l)−) = −1

2
(v,∇|(σ − l)−|2) =

1

2
(div v, |(σ − l)−|2) = 0.

Then, the divergence-free property of v and the fact that v ∈ L4(Q) allow us to deduce the

existence of constants C > 0 and α ∈ (0, 1), depending on ‖σ‖L∞(0,T ;L∞) and ‖v‖L4(Q) such

that

|σ(x, t) − σ(y, s)| � C
(
|x− y|α + |t− s|

α
2

)
∀ (x, t), (y, s) ∈ Q, x �= y, s �= t.

The above estimate follows from similar arguments to the proof of [55, Lemma 3.2] (see

also [24, Lemma 2]).

6 Proof of Theorem 3: continuous dependence in two dimensions

Let {ϕi, μi, σi, vi, qi}i=1,2 denote two global strong solutions to problem (3.3)–(3.4) cor-

responding to initial data {ϕ0,i, σ0,i, v0,i}i=1,2 and source terms {Γi, Si}i=1,2. Denoting the

differences as f̂ for f ∈ {ϕ, μ, σ, v, q, ϕ0, σ0, v0, Γ , S}, we obtain the system satisfied by the
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difference of solutions

0 = ∂tϕ̂ + v̂ · ∇ϕ1 + v2 · ∇ϕ̂− div ((m(ϕ1) − m(ϕ2))∇μ1 + m(ϕ2)∇μ̂) − Γ̂ , (6.1a)

0 = μ̂− A(Ψ ′(ϕ1) −Ψ ′(ϕ2)) + BΔϕ̂ + χσ̂, (6.1b)

0 = ∂tσ̂ + v̂ · ∇σ1 + v2 · ∇σ̂ − Ŝ (6.1c)

− div (n(ϕ1)∇(σ̂ − χϕ̂) + (n(ϕ1) − n(ϕ2))∇(σ2 + χ(1 − ϕ2))),

0 = ∂tv̂ + (v̂ · ∇)v1 + (v2 · ∇)v̂ + ∇q̂ − (μ̂ + χσ̂)∇ϕ1 − (μ2 + χσ2)∇ϕ̂ (6.1d )

− 2div (η(ϕ1)Dv̂ + (η(ϕ1) − η(ϕ2))Dv2),

with

ϕ̂(0) = ϕ̂0, σ̂(0) = σ̂0, v̂(0) = v̂0.

Testing (6.1a) with Bϕ̂, (6.1b) with m(ϕ2)μ̂, (6.1c) with σ̂, (6.1d) with v̂ and (6.1b) with

Kϕ̂ for some positive constant K yet to be determined, after integration by parts and

summing the resultants, we obtain

1

2

d

dt

(
B‖ϕ̂‖2

L2 + ‖v̂‖2
L2 + ‖σ̂‖2

L2

)
+ ‖m 1

2 (ϕ2)μ̂‖2
L2 + 2‖η 1

2 (ϕ1)Dv̂‖2
L2 + ‖n 1

2 (ϕ1)∇σ̂‖2
L2 + BK‖∇ϕ̂‖2

L2

=

∫
Ω

−Bϕ̂v̂ · ∇ϕ1 + BΓ̂ ϕ̂ + m(ϕ2) (A(Ψ (ϕ1) −Ψ (ϕ2))μ̂− χσ̂μ̂) dx

+

∫
Ω

Bm′(ϕ2)μ̂∇ϕ2 · ∇ϕ̂ dx +

∫
Ω

(μ̂ + χσ̂)∇ϕ1 · v̂ + (μ2 + χσ2)∇ϕ̂ · v̂ dx

+

∫
Ω

2(η(ϕ2) − η(ϕ1))Dv2 · Dv̂ − (v̂ · ∇)v1 · v̂ dx

+

∫
Ω

Ŝ σ̂ + (n(ϕ2) − n(ϕ1))∇(σ2 − χϕ2) · ∇σ̂ dx

−
∫
Ω

χn(ϕ1)∇ϕ̂ · ∇σ̂ + σ̂v̂ · ∇σ1 dx−
∫
Ω

B(m(ϕ1) − m(ϕ2))∇μ1 · ∇ϕ̂ dx

+ K

∫
Ω

(μ̂ + χσ̂)ϕ̂− A
(
Ψ ′(ϕ1) −Ψ ′(ϕ2)

)
ϕ̂ dx

=:

8∑
j=1

Ij , (6.2)

where we have used the following facts:

(ϕ̂, v2 · ∇ϕ̂) =
1

2
(v2,∇|ϕ̂|2) = −1

2
(div v2, |ϕ̂|2) = 0,

((v2 · ∇)v̂, v̂) = −1

2
(div v2, |v̂|2) = 0,

(∇q̂, v̂) = −(div v̂, q) = 0, (v2 · ∇σ̂, σ̂) = 0.
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We now proceed to estimate the right-hand side of (6.2) term by term. First, assumption

(3.20) yields that

I1 + I2 � B‖ϕ̂‖L2‖v̂‖L2‖∇ϕ1‖L∞ + B‖Γ̂‖L2‖ϕ̂‖L2 + m1χ‖σ̂‖L2‖μ̂‖L2

+ m1A
(
1 + ‖ϕ1‖rL∞ + ‖ϕ2‖rL∞

)
‖ϕ̂‖L2‖μ̂‖L2

+ B‖m′‖L∞‖∇ϕ2‖L∞‖μ̂‖L2‖∇ϕ̂‖L2

� δ‖μ̂‖2
L2 + Cδ‖σ̂‖2

L2 + C‖Γ̂‖2
L2 + ‖v̂‖2

L2 + C‖∇ϕ2‖2
L∞‖∇ϕ̂‖2

L2

+ C
(
1 + ‖ϕ1‖2r

L∞ + ‖ϕ2‖2r
L∞ + ‖∇ϕ1‖2

L∞
)
‖ϕ̂‖2

L2 ,

for some δ > 0 yet to be determined. Similarly, we have

I8 � K
(
‖μ̂‖L2 + χ‖σ̂‖L2

)
‖ϕ̂‖L2 + KA

(
1 + ‖ϕ1‖rL∞ + ‖ϕ2‖rL∞

)
‖ϕ̂‖2

L2

� δ‖μ̂‖2
L2 + ‖σ̂‖2

L2 +
(
CK2 + CK

(
1 + ‖ϕ1‖rL∞ + ‖ϕ2‖rL∞

))
‖ϕ̂‖2

L2 .

Next, thanks to the Lipschitz continuity of m, we have

I7 � C‖∇μ1‖L∞‖ϕ̂‖L2‖∇ϕ̂‖L2 � ‖∇ϕ̂‖2
L2 + C‖μ1‖2

H3‖ϕ̂‖2
L2 .

Similarly, the Lipschitz continuity of n, Young’s inequality and Korn’s inequality allow us

to deduce that

I5 + I6 � ‖Ŝ‖L2‖σ̂‖L2 + C‖∇(σ2 − χϕ2)‖L4‖ϕ̂‖L4‖∇σ̂‖L2

+ C‖∇ϕ̂‖L2‖∇σ̂‖L2 + ‖v̂‖L4‖σ̂‖L2‖∇σ1‖L4

� ‖σ̂‖2
L2 + C‖Ŝ‖2

L2 + ε‖∇σ̂‖2
L2 + Cε

(
‖∇(σ2 − χϕ2)‖2

L4‖ϕ̂‖2
L4 + ‖∇ϕ̂‖2

L2

)
+ θ‖Dv̂‖2

L2 + Cθ‖v̂‖2
L2 + Cθ‖∇σ1‖2

L4‖σ̂‖2
L2 ,

for some positive constants ε, θ yet to be determined. By the Gagliardo–Nirenberg in-

equality ‖f‖L4 � C‖f‖
1
2

L2‖∇f‖
1
2

L2 + C‖f‖L2 in two dimensions, we have

‖∇(σ2 − χϕ2)‖2
L4‖ϕ̂‖2

L4 � C‖∇(σ2 − χϕ2)‖2
L4

(
‖ϕ̂‖L2‖∇ϕ̂‖L2 + ‖ϕ̂‖2

L2

)
� ‖∇ϕ̂‖2

L2 + C
(
1 + ‖∇(σ2 − χϕ2)‖4

L4

)
‖ϕ̂‖2

L2 .

Then, it follows that

I5 + I6 � ε‖∇σ̂‖2
L2 + Cε‖∇ϕ̂‖2

L2 + θ‖Dv̂‖2
L2 +

(
1 + Cθ‖∇σ1‖2

L4

)
‖σ̂‖2

L2

+ Cε

(
1 + ‖∇(σ2 − χϕ2)‖4

L4

)
‖ϕ̂‖2

L2 + Cθ‖v̂‖2
L2 + C‖Ŝ‖2

L2 .

Last, thanks to the Lipschitz continuity of η, it holds that

I3 + I4 � ‖∇ϕ1‖L∞ (‖μ̂‖L2 + χ‖σ̂‖L2 )‖v̂‖L2 + ‖μ2 + χσ2‖L∞‖v̂‖L2‖∇ϕ̂‖L2

+ C‖Dv2‖L4‖Dv̂‖L2‖ϕ̂‖L4 + ‖∇v1‖L2‖v̂‖2
L4

� δ‖μ̂‖2
L2 + ‖σ̂‖2

L2 + ‖∇ϕ̂‖2
L2 +

(
Cδ‖∇ϕ1‖2

L∞ + C‖μ2 + χσ2‖2
L∞

)
‖v̂‖2

L2

+ θ‖Dv̂‖2
L2 + Cθ‖Dv2‖2

L4‖ϕ̂‖2
L4 + ‖∇v1‖L2‖v̂‖2

L4 .
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By the Gagliardo–Nirenberg inequality ‖f‖L4 � C‖f‖
1
2

L2‖∇f‖
1
2

L2 + C‖f‖L2 in two dimen-

sions and Korn’s inequality, we have

‖∇v1‖L2‖v̂‖2
L4 � C‖∇v1‖L2

(
‖v̂‖L2‖Dv̂‖L2 + ‖v̂‖2

L2

)
� θ‖Dv̂‖2

L2 + (Cθ‖∇v1‖2
L2 + C‖∇v1‖L2 )‖v̂‖2

L2 ,

Cθ‖Dv2‖2
L4‖ϕ̂‖2

L4 � Cθ‖Dv2‖2
L4 (‖ϕ̂‖L2‖∇ϕ̂‖L2 + ‖ϕ̂‖2

L2 )

� ‖∇ϕ̂‖2
L2 + Cθ(1 + ‖Dv2‖4

L4 )‖ϕ̂‖2
L2 .

As a consequence,

I3 + I4 � 2θ‖Dv̂‖2
L2 + δ‖μ̂‖2

L2 + 2‖∇ϕ̂‖2
L2 + ‖σ̂‖2

L2 + Cθ

(
1 + ‖Dv2‖4

L4

)
‖ϕ̂‖2

L2

+
(
Cδ‖∇ϕ1‖2

L∞ + C‖μ2 + χσ2‖2
L∞ + Cθ‖∇v1‖2

L2 + C
)
‖v̂‖2

L2 .

In summary, we infer from (6.2) and the above estimates that

1

2

d

dt

(
B‖ϕ̂‖2

L2 + ‖v̂‖L2 + ‖σ̂‖2
L2

)
+ (m0 − 3δ) ‖μ̂‖2

L2 + (n0 − ε)‖∇σ̂‖2
L2 + (2η0 − 3θ) ‖Dv̂‖2

L2

+
(
BK − 3 − Cε − Cδ‖∇ϕ2‖2

L∞(0,T ;L∞)

)
‖∇ϕ̂‖2

L2

� C
(
‖Γ̂‖2

L2 + ‖Ŝ‖2
L2

)
+ h0(t)‖σ̂‖2

L2 + h1(t)‖v̂‖2
L2 + h2(t)‖ϕ̂‖2

L2 ,

(6.3)

where

h0(t) := C
(
1 + ‖∇σ1‖2

L4

)
,

h1(t) := C
(
1 + ‖∇ϕ1‖2

L∞ + ‖μ2 + χσ2‖2
L∞ + ‖∇v1‖2

L2

)
,

h2(t) := C
(
1 + ‖ϕ1‖2r

L∞ + ‖ϕ2‖2r
L∞ + ‖∇ϕ1‖2

L∞
)

+ C
(
‖∇(σ2 − χϕ2)‖4

L4 + ‖Dv2‖4
L4 + ‖μ1‖2

H3

)
.

In the expression of h0, h1 and h2, the constant C may depend on the parameters δ, θ, ε

and K .

Since ‖ϕ2‖L∞(0,T ;H3) is bounded (see (5.24)), so is ‖∇ϕ2‖L∞(0,T ;L∞) by the Sobolev

embedding theorem. Then, in (6.3), we can choose

δ =
m0

6
, ε =

n0

2
, θ =

η0

3
, K =

1

B

(
4 + Cε + Cδ‖∇ϕ2‖2

L∞(0,T ;L∞)

)
.

On the other hand, by regularities of the global strong solutions {ϕi, μi, σi, vi}i=1,2 stated

in Theorem 2 and the continuous embedding L∞(0, T ;L2) ∩ L2(0, T ;H1) ⊂ L4(Q) in two

dimensions, it holds that h0, h1, h2 ∈ L1(0, T ). Then, applying Gronwall’s lemma to the
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differential inequality (6.3), and then using Korn’s inequality, we have

sup
t∈(0,T ]

(
‖ϕ̂(t)‖2

L2 + ‖v̂(t)‖2
L2 + ‖σ̂(t)‖2

L2

)

+

∫ T

0

‖μ̂‖2
L2 + ‖∇σ̂‖2

L2 + ‖∇v̂‖2
L2 + ‖∇ϕ̂‖2

L2 dt

� C
(
‖Γ̂‖2

L2(Q) + ‖Ŝ‖2
L2(Q) + ‖σ̂0‖2

L2 + ‖v̂0‖2
L2 + ‖ϕ̂0‖2

L2

)
=: CY .

To obtain continuous dependence of ϕ̂ in the L2(0, T ;H2)-norm, first we see that by (3.20)

‖Ψ ′(ϕ1) −Ψ ′(ϕ2)‖2
L2(Q) � C

(
1 + ‖ϕ1‖2r

L∞(Q) + ‖ϕ2‖2r
L∞(Q)

)
‖ϕ̂‖2

L2(Q) � CY ,

then viewing (6.1b) as an elliptic problem for ϕ̂ and applying the elliptic regularity theory

we obtain

‖ϕ̂‖L2(0,T ;H2) � C
(
‖μ̂‖L2(Q) + ‖Ψ ′(ϕ1) −Ψ ′(ϕ2)‖L2(Q) + ‖σ̂‖L2(Q)

)
� CY .

The proof of Theorem 3 is complete. �

7 Conclusions

In this work, we derive a class of thermodynamically consistent Navier–Stokes–Cahn–

Hilliard system for two-phase fluid flows with density contrast, based on a volume-

averaged velocity in the spirit of [5], which also allows for mass transfer between the

fluids and chemotactic response to a chemical species present in the physical domain.

The presence of mass transfer leads to a non-solenoidal velocity field, and while models

derived with a mass-averaged velocity also involve non-solenoidal velocity fields, it turns

out that the model equations in the volume-averaged variant are considerably simpler

than the mass-averaged variant. Besides, we state the sharp interface limit and present

various simplified versions of the general volume-averaged velocity model. As far as

the mathematical analysis is concerned, for the general model some difficulties will be

encountered in deriving a priori estimates due to the mass transfer terms, especially when

the volume-averaged velocity is not divergence-free. Hence, we consider the simplest model

variant as a starting point, which has a divergence-free velocity and matched densities,

but allows the fluid viscosity and mobility to be dependent on the order parameter ϕ.

By a suitable Galerkin approximation, we establish global weak existence in both two

and three dimensions for prescribed mass transfer terms, and then under additional

assumptions we show global strong well-posedness as well as continuous dependence in

two dimensions. We believe that the a priori estimates derived here will also be useful

to study long-time behaviour of the system. Furthermore, we expect that global weak

existence to the more general model variant (2.21c), (2.21e), (2.21f) and (2.26) that has

a solenoidal velocity but allows for density contrast can be shown by employing the

approach of [3].
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