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Abstract The relative trace formula is a tool in the theory of automorphic forms which was invented by
Jacquet in order to study period integrals and relate them to Langlands functoriality. In this paper we
give an analogue of Arthur’s spectral expansion of the trace formula to the relative setup in the context
of GLn. This is an important step toward application of the relative trace formula and it extends
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1. Introduction

Let G be a reductive group over a number field F and let A = AF be the ring of adeles
of F . Let H be a subgroup of G defined over F . A cuspidal automorphic representation
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264 E. M. Lapid

π of G is called distinguished by H if the period integral

ΠH(ϕ) =
∫

H(F )\H(A)1
ϕ(h) dh

is non-zero (assuming it converges, which is often the case) on the space of π. This notion
is of interest only for special classes of pairs H ⊂ G. A typical example is when H is
obtained from G as the fixed points of an involution defined over F . The distinguished
representations (by one or more period subgroups) are expected to be characterized as
the functorial image from a third group G′ (which is either linear reductive, or a cover
thereof). Roughly speaking, the conjugacy classes of G′ should correspond to the double
cosets of H in G. The period integrals themselves are often related to special values of
L-functions.

For example, let E/F be a quadratic extension and let G be the restriction of scalars
of GLn from E to F . It was conjectured by Flicker and Rallis [12] that the distin-
guished representations by H = GLn /F are obtained as the functorial transfer from
the quasi-split unitary group. This conjecture is motivated by analysing the poles of the
Asai L-function. Dually, following the work of Jacquet and Ye, the distinguished repre-
sentations by unitary groups are expected to be characterized as the base change from
G′ = GLn /F . These cases are the main focus of this paper.

Recall that in order to prove the conjectures above, Jacquet has introduced the relative
trace formula (cf. [38]). It is the expression (or the sum of the expressions) of the form∫

H(F )\H(A)1

∫
U0(F )\U0(A)

Kf (h, u)ψ−1(u) dhdu, (1.1)

where f ∈ C∞
c (G(A)1), Kf (· , ·) is the automorphic kernel on G and ψ is a non-degenerate

character of the maximal unipotent subgroup U0 of G. The idea is to compare (1.1) with
the so-called Kuznetsov trace formula∫

U0′(F )\U0′(A)
Kf ′(u1, u2)ψ′(u1u

−1
2 ) du1 du2 (1.2)

on G′ where ψ is related to ψ′ in a simple way and f and f ′ ∈ C∞
c (G′(A)1) are matching

in the sense that they satisfy certain local compatibility conditions. On the spectral side
the contribution of a cuspidal representation π′ to the Kuznetsov trace formula is the
so-called ‘Bessel distribution’

B′
π′(f ′) =

∑
ϕ′

Wψ′
(π′(f ′)ϕ′)Wψ′(ϕ′),

where ϕ′ ranges over an orthonormal basis of the space of π′ and Wψ′
denotes the ψ′th

Fourier coefficient. Similarly, the cuspidal contribution of (1.1) is the sum over π of the
‘relative Bessel distribution’

Bπ(f) =
∑
H

∑
ϕ

ΠH(π(f)ϕ)Wψ(ϕ),
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Relative trace formula 265

which is non-zero exactly when π is distinguished. The precise form of Jacquet’s conjec-
ture is the spectral identity

Bπ(f) = B′
π′(f ′) (1.3)

when π is the functorial image of π′. (We may need to sum over several π′ in general.)
To obtain the spectral identity (1.3) from the equality of (1.1) and (1.2) one pro-

ceeds as in other trace formula comparisons. Roughly speaking, one expands each kernel
geometrically, compares the resulting terms individually, and then infers (1.3) from the
spectral expansions of the kernels. In this paper we consider the spectral expansion of
(1.1). Namely, we will express the contribution of any cuspidal data in terms of integrals
of relative Bessel distributions. The precise statement is Theorems 10.1 and 10.4 of § 9.
It extends earlier work by several authors to higher rank (see [12, 19, 29, 36, 39, 65]).
The spectral expansion obtained is an analogue of Arthur’s fine spectral expansion for
the usual trace formula [5]. It relies on earlier work by Rogawski and the author on reg-
ularized periods of Eisenstein series [48,49] which had been first introduced in [29] and
were also considered in [42]. A key feature of the expansion is its absolute convergence.

The results of this paper are used in recent work by Jacquet to prove that if π is a
cuspidal representation of GLn(AE) which is obtained as a base change from a cuspidal
representation π′ of GLn(AF ) where E/F is a quadratic extension, then π is distin-
guished by a unitary group with respect to E. (The converse direction follows from the
argument of [22] and the work of Arthur and Clozel [9].) This was done by resolving the
geometric issues arising from the relative trace formula, namely, the existence of smooth
matching, and the so-called ‘fundamental lemma’ [32,33,35]. (In the function field case,
the fundamental lemma had been proved earlier by Ngô in [57] and [58].)

The paper is organized as follows. Following a suggestion of Jacquet we first explain
the method in the case of GL2, for which our approach is already new (although the
result is not). This can be viewed as a second, more technical, introduction to the paper.
In § 3 we give a simple-minded definition of ‘principal value’ integrals for a certain class
of functions in several variables. These integrals admit a ‘residue calculus’ with repeated
residues. They are used in § 9, the most important section of the paper, to derive the
spectral expansion.

The main technical step is the majorization of Eisenstein series (§ 6, Proposition 6.1).
To that end we apply the combinatorics of (G,M)-families (§ 4) to reduce the prob-
lem to lower bounds of Rankin–Selberg L-functions (which appear in the normaliza-
tion of the intertwining operators) at the edge of the critical strip (§ 5). Such bounds
were recently established by Brumley [11]. His proof exploits the analytic properties
of the Rankin–Selberg L-function and a positivity argument. A second analytic ingre-
dient needed for uniform majorization (and hence, for the absolute convergence of the
relative trace formula) is a uniform bound toward the Ramanujan hypothesis on the non-
tempered parameters of cuspidal representations, which is given in [50]. The connection
between this condition and the absolute convergence of the usual Arthur–Selberg trace
formula was discovered by Müller (see [54], cf. [56]).

At this stage, we move on to set up the relative trace formula at hand (§ 7). We review
the definition and the main properties of the regularized periods in the setting of quasi-
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split Galois pairs [48]. We analyse in detail the two symmetric spaces of Galois type
pertaining to GLn (§ 8). Finally, we are ready to carry out the spectral expansion in § 9.
Our method is somewhat novel and differs from that of Arthur [4,5] in that instead of
using Fourier analysis on Euclidean space, we use residue calculus (i.e. complex analysis).
In particular, it avoids the use of a Paley–Wiener theorem and the somewhat roundabout
argument of [4]. The combinatorics of the residue calculus is rather intricate. The analysis
of § 9 culminates in Claim 9.2, which is expected to hold for any G. In the case of GLn

we explicate the result in Theorems 10.1 and 10.4 of § 10, arriving at our main result.
We mention that part of the analytic complication stems from the fact that while the

right-hand side of (1.3) is of positive type, in the sense that it is non-negative for f ′ of
the form f ′

1 � f
′∨
1 , the same is not clear, a priori, for the left-hand side.

From the point of view of the spectral expansion the two cases pertaining to
G = GLn /E are very similar. However, they differ in other respects. The case
(GLn /E,GLn /F ) is a Gelfand pair and the period integral is related to the residue
of the Asai L-function at s = 1 through the integral representation of the latter [12].
There is also an explicit ‘backward’ map from GLn /E to U(n). On the other hand,
(GLn /E,U(n)) is not a Gelfand pair, but nevertheless, the period is expected to be fac-
torizable and its value related to special values of L-functions. In fact, these expectations
are intimately related to the relative trace formula and do not seem to follow from other
methods. Thus, the relative trace formula is more interesting in this case.

As pointed out before, the relative trace formula had been worked out in detail for GL2

and GL3. An approach for the case H = GLn /F is attempted in [13]. Other interesting
cases and variants of the relative trace formulae are treated in [14,25,26,28,37,41,43,
44,51], to mention a few. A more laid back discussion can be found in [16,30,34].

As already mentioned, a possible application of the relative trace formula is to the
factorization of the functional ΠH(ϕ) into local H-invariant functionals [31]. It is also
used (in another setting) to give a formula for certain special values of L-functions [10,
27]. In [19] the relative trace formula is applied to prove the existence of a generic
representation in any tempered L-packet of U(3). The relative trace formula has also
applications to the recent L∞-norm conjectures of Sarnak (cf. [46,62]). Finally, let us
mention that the relative trace formula is not the only available tool to study period
integrals, or even the spectral identity (1.3). This is especially true when the functoriality
π′ �→ π can be constructed by other means, e.g. theta-correspondence (cf. [18,34]).

2. The GL2-example

Let E/F be a quadratic extension of number fields and let G be the restriction of scalars
of GL2 from E to F . Thus, the F -points of G (which will also be denoted by G) are
GL2(E). Denote by x �→ x̄ the Galois conjugation of E/F . Let B ⊂ G be the Borel
subgroup of upper triangular matrices with its Levi decomposition B = TU where T is
the group of diagonal matrices.

Let H̃ denote the group GL2 /F considered as as a subgroup of G, and set B̃ = B∩ H̃,
T̃ = T ∩ H̃.
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Let f ∈ C∞
c (G(A)1) (with G(A)1 = {g ∈ G(A) : |det(g)| = 1}) and let

Kf (x, y) =
∑
γ∈G

f(x−1γy)

be the kernel of the right regular representation of G(A)1 on L2(G\G(A)1). Our goal is
to give the fine spectral expansion for the expression∫

H̃\H̃(A)1

∫
U\U(A)

Kf (h, u)ψ(u) du.

In this section, we will only attempt to illustrate the method and not worry about rigorous
justification of the argument, which will be given below in a much more general context.

Recall that the continuous spectrum of L2(G\G(A)1) is spanned by Eisenstein series.
These are defined for any ϕ : U(A)R+T (F )\G(A)1 → C by (the meromorphic continua-
tion of)

E(x, ϕ, λ) =
∑

γ∈B\G

e(λ+1)H(γx)ϕ(γx).

Here R+ is imbedded in T (A) by x �→ ( x 0
0 x−1 ) (at the Archimedean places) and H is

defined using the Iwasawa decomposition by

H

((
t1 ∗
0 t2

)
k

)
= 1

2 log
∣∣∣∣ t1t2

∣∣∣∣, t1, t2 ∈ IE , k ∈ K,

where K is the standard maximal compact.

2.1. The regularized period (see [42])

We first recall the definition of mixed truncation—a ‘relative’ version of Arthur’s trun-
cation. For any automorphic form ϕ on G(A) and T � 0 it is defined by

ΛT
mϕ(h) = ϕ(h) −

∑
γ∈B̃\H̃

ϕU (γh)χ�T (H(γh)), (2.1)

where ϕU (h) =
∫

U\U(A) ϕ(uh) du is the constant term of ϕ along U . The function ΛT
mϕ

is rapidly decreasing on H̃\H̃(A)1.
To define the regularized period we first define for any polynomial exponential

f(x) =
n∑

i=1

Pi(x)eλi·x

with λi �= 0 the regularized integral
∫ #

x�T
f(x) dx to be the value at λ = 0 of the

meromorphic continuation of ∫
x�T

f(x)eλ·x dx

(convergent for Re(λ) 	 0). This is well defined since λi �= 0.
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We then define
∫ ∗

H̃\H̃(A)1 ϕ(h) dh to be the expression∫
H̃\H̃(A)1

ΛT
mϕ(h) dh+

∫
K̃

∫
T̃\T̃ (A)1

∫ #

x�T

e−xϕU

((
ex/d 0
0 e−x/d

)
tk

)
dxdtdk,

where d = [E : Q]. By [42], this will be well defined, and independent of T , on the space
of automorphic forms which do not admit 0 as an exponent along B. Moreover,∫ ∗

H̃\H̃(A)1
ϕ(h) dh

is an H̃(A)1-invariant functional on this space which agrees with the usual integral in
the case where ϕ is integrable over H̃\H̃(A)1.

In particular, since

EU (g, ϕ, λ) = ϕ(g)e(λ+1)·H(g) +M(λ)ϕ(g)e(−λ+1)·H(g), (2.2)

where M(λ) is the usual intertwining operator, we have∫ ∗

H̃\H̃(A)1
E(h, ϕ, λ) dh =

∫
H̃\H̃(A)1

ΛT
mE(h, ϕ, λ) dh− eλT

λ

∫
K̃

∫
T̃\T̃ (A)1

ϕ(tk) dtdk

+
e−λT

λ

∫
K̃

∫
T̃\T̃ (A)1

M(λ)ϕ(tk) dtdk (2.3)

and the left-hand side is well defined whenever E(· , ϕ, λ) is holomorphic and λ �= 0 (by
the condition on the exponents).

Lemma 2.1. There are three mutually disjoint possibilities.

Case 1: χ2 �= χ1
−1. Then

∫ ∗
H̃\H̃(A)1 E(h, ϕ, λ) dh is 0 whenever defined. Moreover,∫

K̃

∫
T̃\T̃ (A)1

ϕ(tk) dtdk =
∫

K̃

∫
T̃\T̃ (A)1

M(0)ϕ(tk) dtdk.

Case 2: χ2 = χ1
−1 but χ1|IF = χ−1

2 |IF �≡ 1. Then∫ ∗

H̃\H̃(A)1
E(h, ϕ, λ) dh =

∫
H̃\H̃(A)1

ΛT
mE(h, ϕ, λ) dh

is holomorphic for λ ∈ iR.

Case 3: χ2 = χ1 and χ1|IF
≡ 1. Then

∫ ∗
H̃\H̃(A)1 E(h, ϕ, λ) dh is holomorphic for λ ∈

iR except for a simple pole at 0. On the other hand, E(· , ϕ, 0) ≡ 0 and M(0) = −1.

In all cases, for any x ∈ G(A),

E(x, ϕ,−λ̄) ·
∫ ∗

H̃\H̃(A)1
E(h, ϕ, λ) dh

is holomorphic for λ ∈ iR.
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Proof. The vanishing of
∫ ∗

H̃\H̃(A)1 in the first case follows from [42]. The vanishing of
E(· , ϕ, 0) in the last case is well known. The rest of the assertions follow from the relation
(2.3) and the holomorphy of the Eisenstein series and the intertwining operators on the
unitary axis. �

Going back to the spectral expansion, we write

Kf (x, y) = Kcusp
f (x, y) +Kres

f (x, y) +Kcont
f (x, y),

where
Kcusp

f (x, y) =
∑
ϕ

R(f)ϕ(x) · ϕ(y),

the sum ranging over an orthonormal basis of the cuspidal spectrum,

Kres
f (x, y) = vol(G\G(A)1)−1

∑
χ

∫
G(A)1

f(x)χ(detx) dx · χ(y),

where χ ranges over Hecke characters of IF trivial on R+ and

Kcont
f (x, y) = 1

2

∑
χ=(χ1,χ2)

∫
iR

∑
ϕ∈B(χ)

E(x, I(f, λ)ϕ, λ)E(y, ϕ, λ) dλ,

where B(χ) is an orthonormal basis of the space of functions ϕ : U(A)R+T (F )\G(A)1 →
C satisfying

ϕ

((
t1 ∗
0 t2

)
g

)
= χ1(t1)χ2(t2)ϕ(g) for all t1, t2 ∈ IF ,

with respect to the inner product

(ϕ1, ϕ2) = vol(T\T (A)1)
∫

K

ϕ1(k)ϕ2(k) dk.

Also, the measure on iR is the Haar-measure dual to the Lebesgue measure on R

(i.e. under the identification t �→ it it becomes (2π)−1 times the Lebesgue measure).
Performing the integration over U\U(A) first, the residual contribution vanishes and

we remain with the sum of ∑
ϕ

∫
H̃\H̃(A)1

R(f)ϕ(h) dh · ϕψ, (2.4)

where ϕψ is the ψth Fourier coefficient
∫

U\U(A) ϕ(u)ψ(u) du, and

1
2

∑
χ=(χ1,χ2)

∫
H̃\H̃(A)1

∫
iR

∑
ϕ∈B(χ)

E(h, I(f, λ)ϕ, λ)W(ϕ, λ) dλ dh, (2.5)

where W(ϕ, λ) = Eψ(· , ϕ, λ). The expression (2.4) is the Bessel distribution (on the cus-
pidal spectrum) with respect to the linear forms

∫
H̃\H̃(A)1 and the ψth Fourier coefficient.
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270 E. M. Lapid

We will denote it by BG
cusp(f). We have a canonical decomposition BG

cusp(f) =
∑

π BG
π (f)

according to cuspidal distinguished representations of G(A).
Unfortunately, we cannot interchange the two integrals in (2.5) because the Eisenstein

series are not integrable over H̃\H̃(A)1. Instead we express E(· , ϕ, λ) in terms of its
mixed truncation (2.1) and use (2.2), to write each summand of (2.5) as the sum of∫

H̃\H̃(A)1

∫
iR

∑
ϕ∈B(χ)

ΛT
mE(h, I(f, λ)ϕ, λ)W(ϕ, λ) dλ dh

and∫
B̃\H̃(A)1

∫
iR

∑
ϕ∈B(χ)

[I(f, λ)ϕ(h)e(λ+1)·H(h) +M(λ)I(f, λ)ϕ(h)e(−λ+1)·H(h)]

× χ�T (H(h))W(ϕ, λ) dλ dh.

(This step deviates from the approach taken in [19] and [36].) In the first summand
we can interchange the order of integration. For the second sum we use the Iwasawa
decomposition for H̃(A) (noting that the modulus function of B̃(A) is eH(•)) to write it
as the sum of∫

K̃

∫
T̃\T̃ (A)1

∫
R

∫
iR

∑
ϕ∈B(χ)

I(f, λ)ϕ(tk)eλXχ�T (X)W(ϕ,−λ̄) dλ dX dtdk (2.6)

and∫
K̃

∫
T̃\T̃ (A)1

∫
R

∫
iR

∑
ϕ∈B(χ)

I(f,−λ)M(λ)ϕ(tk)e−λXχ�T (X)W(ϕ,−λ̄) dλ dX dtdk. (2.7)

Clearly, we cannot interchange the integrals over X and λ—the integral only converges
as an iterated integral. However, up to a factor of 2πi we may view the inner integral of
(2.6) as a complex integration and shift the contour to Re(λ) = λ0 where λ0 is negative.
This is legitimate since W(ϕ, λ) is holomorphic for Reλ � 0. Now the double integral
becomes absolutely convergent and integrating first over X we obtain

−
∫

K̃

∫
T̃\T̃ (A)1

∫
Re(λ)=λ0

eλT

λ

∑
ϕ∈B(χ)

I(f, λ)ϕ(tk)W(ϕ,−λ̄) dtdλ dk.

Using a simple variant of the residue theorem we now shift the contour of integration
back to the unitary axis to obtain

− PV
∫

iR

eλT

λ

∫
K̃

∫
T̃\T̃ (A)1

∑
ϕ∈B(χ)

I(f, λ)ϕ(tk)W(ϕ,−λ̄) dtdk dλ

+ 1
2

∫
K̃

∫
T̃\T̃ (A)1

∑
ϕ∈B(χ)

I(f, 0)ϕ(tk)W(ϕ, 0) dtdk,
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where PV denotes the principal value of the integral (à la Cauchy) and the usual factor
of 2πi does not show up because of the measure taken. Similarly, we want to shift the
contour of the inner integral of (2.7) to Re(λ) = λ0 for λ0 positive (but small). At first
glance it seems that the poles of W(ϕ, λ) for Re(λ) < 0 may interfere, unless we assume
a weak version of the Riemann hypothesis for L-functions of Hecke characters. However,
by the functional equation of the Eisenstein series we have W(M(λ)ϕ,−λ) = W(ϕ, λ),
and then performing the unitary change of basis ϕ �→ M(λ)ϕ for λ unitary, the integrand
in (2.7) becomes ∑

ϕ∈B(χ)

I(f,−λ)ϕ(tk)e−λXχ�T (X)W(ϕ, λ̄),

which is holomorphic for Re(λ) small and positive.
Thus, by a similar reasoning as before we obtain∫

K̃

∫
Re(λ)=λ0

e−λT

λ

∫
T̃\T̃ (A)1

∑
ϕ∈B(χ)

M(λ)I(f, λ)ϕ(tk)W(ϕ,−λ̄) dtdλ dk,

and then by shifting back the contour as above we get

PV
∫

iR

e−λT

λ

∫
K̃

∫
T̃\T̃ (A)1

∑
ϕ∈B(χ)

M(λ)I(f, λ)ϕ(tk)W(ϕ,−λ̄) dtdk dλ

+ 1
2

∫
K̃

∫
T̃\T̃ (A)1

∑
ϕ∈B(χ)

I(f, 0)M(0)ϕ(tk)W(ϕ, 0) dtdk.

All in all, the contribution from χ = (χ1, χ2) becomes

PV
∫

iR

∑
ϕ∈B(χ)

W(ϕ,−λ̄)
(∫

H̃\H̃(A)1
ΛT

mE(h, I(f, λ)ϕ, λ) dh

+
∫

K̃

∫
T̃\T̃ (A)1

[
−I(f, λ)ϕ(tk)

eλT

λ
+M(λ)I(f, λ)ϕ(tk)

e−λT

λ

]
dtdk

)
dλ

+ 1
2

∫
K̃

∫
T̃\T̃ (A)1

∑
ϕ∈B(χ)

[I(f, 0)ϕ(tk) + I(f, 0)M(0)ϕ(tk)]W(ϕ, 0) dtdk.

We finally get (using (2.3))

PV
∫

iR

∑
ϕ∈B(χ)

W(ϕ,−λ̄) ·
∫ ∗

H̃\H̃(A)1
E(h, I(f, λ)ϕ, λ) dhdλ

+ 1
2

∑
ϕ∈B(χ)

W(ϕ, 0)
∫

K̃

∫
T̃\T̃ (A)1

I(f, 0)ϕ(tk) dtdk

+ 1
2

∑
ϕ∈B(χ)

W(ϕ, 0)
∫

K̃

∫
T̃\T̃ (A)1

I(f, 0)M(0)ϕ(tk) dtdk.
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The integrand in the first summand is the Bessel distribution with respect to
∫ ∗

H̃\H̃(A)1

and W(λ), which will be denoted by BG
χ (f, λ). The second summand is the Bessel distri-

bution with respect to
∫

K̃

∫
T̃\T̃ (A)1 and W(· , 0), which we denote by BT

χ (f). Lemma 2.1
implies that BG

χ (f, λ) is holomorphic on iR and the last two terms cancel each other if
χ1 = χ2 and are equal otherwise.

Thus, we recover, insomuch as the argument can be made rigorous, the following
spectral expansion (cf. [36,65]).

Scholium. The spectral expansion for GL2 is∑
π cuspidal

BG
π (f) + 1

2

∑
χ

∫
iR

BG
χ (f, λ) dλ+ 1

2

∑
χ1|IF =χ2|IF =1

χ1 �=χ2

BT
χ (f).

In the rest of the paper we will explain how to extend the result and the argument
to GLn.

3. Improper integrals

We first define and study a rather naive notion of an improper integral for a certain class
of functions in several complex variables. In particular, we obtain a ‘residue calculus’ for
these integrals. The arguments are completely elementary.

Let V be a Euclidean space and let F be a complex-valued function on VC = V ⊗ C.
We say that F is tame if there exist c, k > 0 such that in the region

‖Reu‖ < c(1 + ‖Imu‖)−k

F is holomorphic and satisfies

|F (u)| � d(1 + ‖Imu‖)−N (3.1)

for any N > 0 (with d depending of course on N).
We note that if F (u) is tame then by Cauchy’s formula the same will be true for any

partial derivative of F (with c replaced by 1
2c say).

Fix a finite set Λ of non-zero linear forms of V . Consider the class F of functions on
VC = V ⊗ C obtained as finite linear combinations of functions of the form

F (v)∏
λ∈Λ′ λ(v)

where F is tame and Λ′ is a linearly independent subset of Λ. We fix a Haar measure on
V and translate it to v0 + iV for any v0 ∈ V . On iV ∗ we take the dual Haar measure.
We say that a vector v ∈ V is in general position if λ(v) �= 0 for all λ ∈ Λ.

Proposition 3.1. Let F ′ ∈ F and v ∈ V in general position. Then for k sufficiently
large, the limit ∫ V

↗v

F ′(u) du = lim
ε→0

∫
‖Im u‖�1/ε:Re u=εk·v

F ′(u) du (3.2)

exists and is independent of k.
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Definition 3.2. The left-hand side of (3.2) will be called the improper integral of F ′

with base point v.

Proof. It suffices to check this for

F ′(u) =
F (u)∏

λ∈Λ′ λ(u)

and F tame. We first observe that for ε sufficiently small and k sufficiently large the
inequalities (3.1) are satisfied on the domain of integration of (3.2). Set m = |Λ′|, and let
v1, . . . , vn be a basis of V such that v1, . . . , vm forms a dual basis of Λ′ and λ(vj) = 0 for
all λ ∈ Λ′ and j > m. Let ξi be the coordinates of v in this basis, and note that ξi �= 0
for i = 1, . . . ,m. Let κ be i−n times the co-volume of the lattice L spanned by v1, . . . , vn.
Then κ = (2πi)−n covol(L̂)−1, where L̂ ⊃ Λ′ is the lattice dual to L. We first claim that
the limit above is equal to

κ× lim
ε→0

∫
Re zi=εkξi, |Im zi|�1/ε

F (
∑

zivi)
z1 · · · zm

dz1 · · · dzn (3.3)

provided that the latter exists. Indeed, for any u′ in the symmetric difference

D = {Reu = εk · v : ‖Imu‖ � 1/ε} �
{∑

zivi : Re zi = εkξi, |Im zi| � 1/ε
}

we have c1ε−1 � ‖Imu′‖ � c2ε
−1 for some c1, c2 > 0 and |λ(u′)| � |λ(v)|εk for any λ ∈ Λ′.

Since F is tame, it is smaller than any power of ε on D, and hence, the difference between
the expressions in (3.2) and (3.3) tends to zero as ε → 0.

To prove that the limit (3.3) exists we will prove that for 0 < ε′ < ε the difference
between the integrals in (3.3) for ε and ε′ tends to 0 as ε → 0 uniformly in ε′. Applying
the usual residue theorem repeatedly we write this difference as∫

T∪T ′

F (
∑

zivi)
z1 · · · zm

dz1 · · · dzn, (3.4)

where T is the union over ∅ �= I ⊂ {1, . . . , n} of{
(z1, . . . , zn) :

{
Im zi = ±1/ε, Re zi ∈ [ε′k, εk]ξi i ∈ I

|Im zi| � 1/ε, Re zi = εkξi i /∈ I

}

and T ′ is the complement of the box

{(z1, . . . , zn) : Re zi = ε′kξi, |Im zi| � 1/ε for all i}

in

{(z1, . . . , zn) : Re zi = ε′kξi, |Im zi| � 1/ε′ for all i}.

As before, the integrand in (3.4) is smaller than any power of ε as ε → 0 uniformly on
T . So the integral over T is uniformly small as ε, ε′ → 0. To bound the integral over T ′,
we write T ′ as the disjoint union over I ⊂ {1, . . . ,m} of

T ′
I = T ′ ∩ {(z1, . . . , zn) : |Im zi| > 1 for i ∈ I, |Im zi| � 1 for i ∈ {1, . . . ,m} \ I}.
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On T ′
I we write the integrand as

1∏
i∈I zi

∑
J⊂{1,...,m}\I

1∏
i∈1,...,m\(I∪J) zi

DJF

( ∑
i∈I∪J∪{m+1,...,n}

zivi

)
,

where

DJF

( ∑
i∈I∪J∪{m+1,...,n}

zivi

)
=

1∏
i∈J zi

∑
J′⊂J

(−1)|J\J′|F

( ∑
i∈I∪J′∪{m+1,...,n}

zivi

)
.

We write the integral over T ′
I as the sum over J of∫

1∏
i∈I zi

1∏
i∈1,...,m\(I∪J) zi

DJF
(∑

zivi

)
dz1 · · · dzn, (3.5)

where the integral is taken over (z1, . . . , zn) such that Re zi = ε′kξi for all i, |Im zi| � 1 for
i ∈ {1, . . . ,m} \ I, |Im zi| > 1 for i ∈ I and (Im zi)i∈I∪{m+1,...,n} lies in the complement
C of the box with side 2/ε inside the box with side 2/ε′. The integral in (3.5) is then the
product of ∏

j∈{1,...,m}\(I∪J)

∫
dzj

zj

and ∫
1∏

i∈I zi
DJF

(∑
zivi

)
⊗ dzi (i ∈ I ∪ J ∪ {m+ 1, . . . , n}).

The first integral is bounded independently of k, ε, ε′ because of the formula∫ 1

−1

dy
a+ iy

= 2 arctan(1/a).

In the second integral, |1/zj | � 1 for j ∈ I. Thus it suffices to prove that the integral∫ ∣∣∣DJF
(∑

zivi

)∣∣∣ ⊗ dzi (i ∈ I ∪ J ∪ {m+ 1, . . . , n})

over the domain Re(zi) = ε′kξi for all i, |Im(zi)| � 1 for i ∈ J and Im(zi)i∈I∪{m+1,...,n} ∈
C tends to 0 with ε. Now we can write

DJF =
∫ 1

0
· · ·

∫ 1

0

∂|J|F∏
j∈J ∂zj

(∑
j∈J

tjzjvj +
∑

i∈I∪{m+1,...,n}
zivi

)
⊗j∈J dtj .

Since the derivatives of F satisfy estimates similar to the ones for F , we see that the
integral is majorized by∫

· · ·
∫

(1 + ‖((tjyj), (yi))‖)−N ⊗ dtj ⊗ dyi,

where
|tj | � 1, |yj | � 1, j ∈ J, (yi)i∈I∪{m+1,...,n} ∈ C.
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Since I ∪ {m+ 1, . . . , n} is not empty, in the integral, |yi| > 1/ε for at least one i. Thus
the integral tends to 0 with ε.

The independence on k is proved in a similar vein. �

We remark that if F is actually holomorphic and rapidly decreasing for Reu ∈ [0, v]
then a similar argument shows that∫ V

↗v

F (u)∏
λ∈Λ′ λ(u)

du =
∫

Re u=v

F (u)∏
λ∈Λ′ λ(u)

du. (3.6)

Let now F be tame and Λ′ as before. We want to analyse the effect of the base point
on the improper integral. For any S ⊂ Λ′ let V S = {v ∈ V : λ(v) = 0 for all λ ∈ S}.
Choose a dual basis {λ∨} of Λ′ in V . Denote by prS the projection of V onto V S defined
by

prS(v) = v −
∑
λ∈S

λ(v)λ∨.

Note that this projection depends on the choice of the λ∨, and in particular it is not
necessarily an orthogonal projection. However, we have λ(prS v) = λ(v) for all λ ∈ Λ′ \S.
We claim the following lemma.

Lemma 3.3. Suppose that v, v′ ∈ V are in general position. Then∫ V

↗v

F (u)∏
λ∈Λ′ λ(u)

du =
∑
S

sgn
(∏

λ∈S

λ(v)
)

vol−1
S

∫ V S

↗prS v′

F (u)∏
λ∈Λ′\S l(u)

du, (3.7)

where S ranges over the subsets of S0 = {λ ∈ Λ′ : λ(v)λ(v′) < 0} and volS is the
co-volume of the lattice spanned by S. In particular,∫ V

↗v

F (u)∏
λ∈Λ′ l(u)

du

depends only on the signs of λ(v), λ ∈ Λ′.

Note that by the remark above, the terms on the right-hand side of (3.7) are indepen-
dent of the choice of basis.

Proof. We choose a basis v1, . . . , vn containing λ∨, λ ∈ Λ′ as in the proof of Proposi-
tion 3.1. Using the formula (3.3) we will prove (3.7) by induction on #{i : ξi �= ξ′

i} where
ξ′
i are the coordinates of v′. The case v = v′ is trivial. Let l be the last index so that
ξl �= ξ′

l. We shift the integral in (3.3) from Re zl = εkξl to Re zl = εkξ′
l without changing

the other variables. By the residue theorem the difference between the two integrals is∫
Re zi=εkξi, |Im zi|�1/ε, i �=l

Im zl=±1/ε, Re zl∈[ξl,ξ
′
l]ε

k

F (
∑

zivi)
z1 · · · zm

dz1 · · · dzn (3.8)

plus an additional term

2πi sgn(ξl) ·
∫

Re zi=εkξi, |Im zi|�1/ε, i �=l

F (
∑

i �=l zivi)∏m
i=1, i �=l zi

∏
i �=l

dzi (3.9)
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if l � m and ξlξ
′
l < 0. The integrand, and hence the integral, of (3.8) is smaller than any

power of ε as ε → 0. We now apply the induction hypothesis to the shifted integral and
to (3.9). �

In particular, we note that if F is tame, then for any v∫ V

↗v

F (u) du =
∫

Re u=0
F (u) du. (3.10)

4. (G, M)-families

Let G be a reductive group over F . We recall the setup of (G,M)-families [3]. We fix
a maximal split torus T 0 of G. Denote by W = WG the Weyl group NG(T 0)/M0 of G
where M0 is the centralizer of T 0 in G (which is a minimal Levi subgroup). A parabolic
subgroup P containing T 0 admits a unique Levi part M containing T 0 (and even M0).
Such P and M are called semi-standard. Henceforth, all parabolic and Levi subgroups
will always be assumed to be semi-standard. We denote by TM the split part of the centre
of M and by WM the Weyl group of M .

We will use the notation of [5]. In particular, a∗
M denotes the vector space

X∗(M) ⊗Z R � X∗(TM ) ⊗Z R

where X∗(·) denotes the lattice of rational characters over F . Set a∗
M,C = a∗

M ⊗R C. If
P has Levi subgroup M , we denote by ΣP ⊂ a∗

M the set of reduced roots of TM in
the radical U = UP of P and by ∆P ⊂ ΣP the subset of simple roots. The dual space
aM of a∗

M contains the co-roots α∨, α ∈ ΣP . The set of Levi subgroups containing M

will be denoted by L(M) and the set of parabolic subgroups whose Levi part equals
(respectively, contains) M will be denoted by P(M) (respectively, F(M)). The parabolic
subgroup opposite to P containing M is denoted by P̄ . Occasionally, we set aP = aM for
any P ∈ L(M). We set a0 = aM0 and fix a positive definite W -invariant scalar product
on a0. This defines a measure on any subspace of a0.

Recall that a (G,M)-family [3] is a family of smooth functions cP (Λ) on ia∗
M , one for

each P ∈ P(M), satisfying the compatibility relations

cP (Λ) = cP ′(Λ)

on ia∗
L whenever P , P ′ are adjacent along the root α, i.e. when ΣP̄ ∩ΣP ′ = {α}, and

where L is the Levi subgroup of P · P ′. For such a (G,M)-family one defines

cM (Λ) =
∑

P∈P(M)

cP (Λ)
θP (Λ)

,

where

θP (Λ) = v−1
M

∏
α∈∆P

Λ(α∨)
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and vM is the co-volume of the lattice spanned by the co-roots in aM . The basic result
is that the function cM is smooth on ia∗

M .
Suppose that L ∈ L(M) and Q ∈ P(L). For any R ∈ FL(M) we denote by Q(R) =

R · rad(Q) the unique parabolic subgroup of G contained in Q such that Q(R) ∩ L = R.
We have MQ(R) = MR.

If cQ(Λ) is a (G,M)-family and S ∈ F(M) we may consider the (MS ,M)-family

cSR(Λ) = cS(R)(Λ).

Similarly, if L ∈ L(M) we may consider the (G,L)-family

cQ(Λ) = cQ1(Λ),

where Q1 ⊂ Q and Q1 ∈ P(M). (Since Λ ∈ ia∗
L, cQ(Λ) is independent of the choice

of Q1.)
Suppose that cP (Λ) and dQ(Λ) are two (G,M)-families. Then we have a product

formula [7, Corollary 7.4]∗

(cd)M =
∑

Q1,Q2∈F(M)

αQ1,Q2c
Q1
M dQ2

M , (4.1)

where αQ1,Q2 are certain constants, which are non-zero only if

a
G
M = a

L1
M ⊕ a

L2
M = a

G
L1

⊕ a
G
L2
.

The constants αQ1,Q2 depend on a certain choice. Their exact value will be immaterial
to us.

We consider now (G,M)-families of a special form. Let c be a meromorphic function
on C, holomorphic on the imaginary axis such that c(0) = 1. Fix a reduced root β of
(TM , G) and consider the (G,M)-family

cQ(Λ) =

{
c(〈Λ, β∨〉) if β ∈ ΣQ,

1 otherwise.

Lemma 4.1. We have

cM (Λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if M = G,

c(〈Λ, β∨〉) − 1
〈Λ, β∨〉 if M is of co-rank one in G,

0 otherwise.

Proof. The first two cases are clear. For the last case, observe that

cM (Λ) = c(〈Λ, β∨〉)
∑

P∈P(M):β∈ΣP

θP (Λ)−1 +
∑

P∈P(M):β /∈ΣP

θP (Λ)−1.

∗ Strictly speaking this is stated only for Λ = 0 but the proof carries over verbatim for any Λ (cf. [7,
Proposition 7.1]).
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Since ∑
P∈P(M)

θP (Λ)−1 = 0,

it remains to prove that ∑
P∈P(M):β∈ΣP

θP (Λ)−1 = 0.

Observe that the function

A(Λ) = 〈Λ, β∨〉 ·
∑

P∈P(M):β∈ΣP

θP (Λ)−1

has no singularities. Indeed, let α ∈ Σ(TM , G) and consider the hyperplane Lα = {Λ :
〈Λ,α∨〉 = 0}. If α = ±β then the singularity along Lα is cancelled by the factor 〈Λ, β∨〉.
If α �= ±β then whenever P, P ′ ∈ P(M) are adjacent with ΣP̄ ∩ΣP ′ = {α} we have
θP (Λ) = −θP ′(Λ) on Lα. Hence, there is no singularity along Lα since β ∈ ΣP if and
only if β ∈ ΣP ′ .

It follows that A(λ) is a polynomial. However, since dim aG
M > 1, it is easy to see that

limt→∞ A(t�v) → 0 for any �v in general position. Hence A = 0. �

Let S ∈ P(L) with L ⊃ M . The lemma immediately extends to the (L,M)-family cSR.
We get

cSM (Λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c(〈Λ, β∨〉) − 1
〈Λ, β∨〉 if M is of co-rank one in L and β ∈ Σ(TM , L),

c(〈Λ, β∨〉) if M = L and β ∈ Σ(TM , rad(S)),

1 if M = L and β ∈ Σ(TM , rad(S̄)),

0 otherwise.

(4.2)

Consider now a more general family (G,M)-family of the form

cQ(Λ) =
∏

β∈ΣQ

cβ(〈Λ, β∨〉) (4.3)

as in [5, § 7]. Here, for any reduced root β of (TM , G) cβ is a meromorphic functions on C

holomorphic in a neighbourhood of iR such that cβ(0) = 1. We can write cQ as a product
of (G,M)-families of the previous type. Applying the product formula (4.1) and using
induction we get

cM (Λ) =
∑

B1,B2

αB1,B2

∏
β∈B1

cβ(〈Λ, β∨〉) − 1
〈Λ, β∨〉

∏
β∈B2

cβ(〈Λ, β∨〉),

where B1, B2 range over pairs of subsets of Σ(TM , G) such that B1 forms a basis of (aG
M )∗

and B2 is contained in the complement of B1, and αB1,B2 are certain explicit constants
whose exact value is unimportant for us.
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Let now L ∈ L(M), S ∈ P(L) and cQ(Λ) as before. The (L,M)-family cSR(Λ) is the
product of ∏

β∈Σ(TM ,rad(S))

cβ(〈Λ, β∨〉)

with an (L,M)-family of the same type (using the cβ for β ∈ Σ(TM , L)). It follows that

cQM (Λ) =
∑

B1,B2

αB1,B2

∏
β∈B1

cβ(〈Λ, β∨〉) − 1
〈Λ, β∨〉

∏
β∈B2

cβ(〈Λ, β∨〉), (4.4)

where now B1, B2 ranges over the pairs of subset of Σ(TM , G) such that B1 forms a basis
for (aL

M )∗ and B2 ⊃ Σ(radQ) satisfies B2 ∩ (Σ(rad Q̄) ∪ B1) = ∅.

5. Eisenstein series and intertwining operators

By our convention, whenever X is a variety over F , we denote its F -points by X as well.
For any (semi-standard) M choose an isomorphism TM � Gl

m and let AM be the image
of Rl

+ in TM (F∞) where R ↪→ F∞ = F ⊗Q R by x �→ 1 ⊗ x. We set M(A)1 = ∩ ker |χ|
where χ ranges over all characters of M over F . We have M(A) = M(A)1 ×AM .

We choose a maximal compact K of G(A) which is admissible relative to M0 (see [3,
§ 1]) and define a height function HP : G(A) → aM which is right-K-invariant, left-
U(A)M(A)1-invariant and gives isomorphisms of AM with aM . It would be harmless to
assume that representatives of the Weyl group W can be chosen to lie in K (as in the
case of GLn). Otherwise, the distinguished point T0 ∈ a0 of [3, Lemma 1.1] has to be
taken into account. Let δP be the modulus function of P (A) and let ρP ∈ a∗

M be the
weight corresponding to δ

1/2
P .

Let π be an automorphic representation of M(A) (which will always be assumed to
be trivial on AM ). We define AP (respectively, A2

P , Ac
P , Aπ

P , Ar
P ) to be the space of

automorphic forms on U(A)M\G(A) such that ϕ(ag) = e〈ρP ,HP (a)〉ϕ(g) for any a ∈ AM ,
g ∈ G(A) (and for any k ∈ K the functionm → ϕ(mk) onM\M(A)1 is square-integrable,
cuspidal, belongs to the space of π, or is residual, respectively). The unitary structure
on A2

P is given by integration over AMU(A)M\G(A). For any λ ∈ a∗
M,C define

IP (g, λ)ϕ(x) = e−〈λ,HP (x)〉e〈λ,HP (xg)〉ϕ(xg)

for any g, x ∈ G(A) and ϕ ∈ AP . If Q ⊃ P , and ϕ ∈ AP the Eisenstein series is defined
by

EQ(g, ϕ, λ) =
∑

γ∈P\Q

e〈λ,HP (γg)〉ϕ(γg)

for λ ∈ a∗
M,C with Reλ sufficiently positive. If Q = G we set E(g, ϕ, λ) = EG(g, ϕ, λ)

We may identify Aπ
P with the K-finite part of the induced representation IP (π, λ).

Whenever regular, the Eisenstein series defines a morphism from the K-finite part of
IP (π, λ) to the space of automorphic forms of G. By the ‘automatic continuity theorem’
of Casselman–Wallach [64, Theorem 11.6.7] this extends to a continuous map from the
smooth part of IP (π, λ) to the space of smooth functions of moderate growth on G\G(A)
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(which are eigenfunctions for the centre of the universal enveloping algebra of the com-
plexified Lie algebra gC of G(F ⊗Q R) with the appropriate character). This means that
there exists N � 0 such that for any X ∈ U(gC) we have

|ρ(X)E(g, ϕ, λ)| � ‖g‖Nν(ϕ) (5.1)

for some continuous semi-norm ν on the space of smooth vectors. We will still use
E(g, ϕ, λ) to denote the resulting extension.

Recall the intertwining operators MQ|P (λ) defined in [5, § 1]. They extend to contin-
uous maps between the appropriate spaces of smooth vectors. We normalize the inter-
twining operators as in [5, § 6] (cf. [8, Theorem 2.1]). Thus, we write

MQ|P (λ) = nQ|P (π, λ)NQ|P (π, λ)

on Aπ
P where NQ|P are the normalized intertwining operators satisfying the properties [5,

(6.3)–(6.6)] and nQ|P are the normalizing factors which are given by∏
β∈ΣQ∩ΣP̄

nβ(π, 〈λ, β∨〉) =
∏

β∈ΣQ̄∩ΣP

nβ(π, 〈λ, β∨〉)−1.

We will only consider the case where π is cuspidal. The functions nβ(π, z) are meromor-
phic on C, holomorphic on the imaginary axis. They are also holomorphic on the left
half-plane Re(z) < 0 except for finitely many simple poles, all of them on the real line.
We have the functional equations

n−β(π, z)nβ(π,−z) = 1,

nβ(π, z) = n−β(π, z̄).

Thus, nβ(π, z)−1 = nβ(π,−z̄) so that |nβ(π, it)| = 1 for t ∈ R.
Suppose that G = GLn and π = π1 ⊗ π2 is a cuspidal representation of the Levi part

of a maximal parabolic P of G. Then

nβ(π,−z) =
L(z, π1 × π̃2)

ε(z, π1 × π̃2)L(z + 1, π1 × π̃2)
=

L(z, π1 × π̃2)
L(−z, π̃1 × π2)

,

where ΣP̄ = {β} and L(z, π1 × π̃2), ε(z, π1 × π̃2) are the Rankin–Selberg L-functions and
epsilon factors defined in [40] and we are using the functional equation

L(z, π1 × π̃2) = ε(z, π1 × π̃2)L(1 − z̄, π1 × π̃2).

Also, we recall that
ε(z, π1 × π̃2) = ε0q

(1/2)−z, (5.2)

where q is the conductor (a positive integer) and |ε0| = 1. The function

[z(z − 1)]δπ1,π2L(z, π1 × π̃2)
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is an entire function of order 1 where δπ1,π2 = 1 if π2 = π1 and 0 otherwise (see, for
example, [61]). We set ξ(z) = nβ(π,−z). The function

ξ(z)
[
z − 1
z + 1

]δπ1,π2

is holomorphic for Re(z) � 0.
For a cuspidal representation of GLn(A) we denote by c(π) the analytic conductor of

π which combines the conductor appearing in the functional equation for L(s, π) and
the ‘Archimedean size’ of π (cf. [24]). Actually, if we fix a compact open subgroup Kfin

of G(Afin) and assume that π has a Kfin-fixed vector, then the analytic conductor is
bounded by the Archimedean size of π up to a constant which depends only on Kfin

(see [56, § 2]). More generally, if π = π1 ⊗ · · · ⊗ πr we set c(π) =
∏

i c(πi).

Notation

If Y is a quantity depending on X and π we will use the notation Y 	 Oπ(X) to mean
that there exist constants c, α > 0, depending only on n and F , such that

|Y | � c(c(π)(1 + |X|))α.

For example it is well known (e.g. [23]) that the conductor in (5.2) satisfies

q 	 Oπ(1),

where π = π1 ⊗ π2.
The known analytic properties of the Rankin–Selberg L-function and the Phragmen–

Lindelof principle yield the standard bound

(z − 1)δπ1,π2L∞(z, π1 × π̃2) 	 Oπ(Im z) (5.3)

uniformly in any (fixed) vertical strip a � Re(z) � b, where L∞ denotes the partial
L-function outside the Archimedean places (i.e. the corresponding Dirichlet series). A
similar estimate holds for the derivatives of L∞(z, π1 × π̃2).

We are now going to use the following result due to Brumley (cf. [11], where the
implied constants are made explicit):

[tδπ1,π2L∞(σ + it, π1 × π̃2)]−1 	 Oπ(t) (5.4)

for all t ∈ R and σ � 1. (It is enough to consider σ = 1 by Phragmen–Lindelof.) This
is closely related to a coarse zero-free region for L(s, π1 × π̃2). The simplest case of (5.4)
is the lower bound |L(1, χ)| � c/

√
q for a Dirichlet character χ of conductor q. (For odd

quadratic characters this amounts to the trivial inequality h(d) � 1 for the class number
of an imaginary quadratic field.)

We denote by I(π) a region in the complex plane of the form

{z ∈ C : −d(c(π)(1 + |Im z|))−β < Re(z) < 1
2},

where d, β > 0 depend only on n and F .
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Lemma 5.1. For an appropriate choice of I(π) (i.e. of d, β) we have

ξ(z) 	 Oπ(Im z) (5.5)

for all z ∈ I(π). In particular, ξ(z) is holomorphic on I(π).

Proof. The function ξ(z) differs from L∞(z, π1 × π̃2)/ε(z, π1 × π̃2)L∞(z + 1, π1 × π̃2)
by the factor L∞(z, π1,∞ × π̃2,∞)/L∞(z + 1, π1,∞ × π̃2,∞), where

L∞(z, π1,∞ × π̃2,∞) =
∏
v|∞

Lv(z, π1v × π̃2v)

can be written as
∏m

j=1ΓR(z − αj) for certain parameters {αj} where ΓR(z) =
π−z/2Γ (z/2) and m = dimU/Q. Thus, we have

L∞(z, π1,∞ × π̃2,∞) = P (z)−1L∞(z + 2, π1,∞ × π̃2,∞),

where
P (z) =

∏
j

z − αj

2π
.

Now, (z(z − 1))δπ1,π2P (z)−1L∞(z, π1 × π̃2) is entire and 	 Oπ(Im z) in any vertical
strip. On the other hand, by Jacquet–Shalika, L∞(z, π1,∞ × π̃2,∞) is holomorphic for
Re(z) � 1, and hence, Re(αj) < 1. By elementary properties of the Γ -function we have

|Γ (z + 1
2 )/Γ (z)| � 100(1 + |z|)5

for Re(z) � − 1
4 (see, for example, [6, p. 33]). It follows that

L∞(z + 2, π1,∞ × π̃2,∞)
L∞(z + 1, π1,∞ × π̃2,∞)

	 Oπ(|z|)

for − 1
2 < Re(z) < 1

2 . Finally, it easily follows from (5.4) and standard upper bounds on
the derivative that

[zδπ1,π2L∞(z + 1, π1 × π̃2)]−1 	 Oπ(|z|)
on I(π) for a certain choice of d, β > 0. All in all,

ξ(z) = (z − 1)−δπ1,π2 · ε0qz−(1/2) · (z(z − 1))δπ1,π2P (z)−1L∞(z, π1 × π̃2)

· L∞(z + 2, π1,∞ × π̃2,∞)
L∞(z + 1, π1,∞ × π̃2,∞)

· [zδπ1,π2L∞(z + 1, π1 × π̃2)]−1

and the lemma follows. �

Corollary 5.2.

(1) ξ′(z) 	 Oπ(Im z) on I(π).

(2)
ξ(z′) − ξ(z)

z′ − z
	 Oπ(|Im z| + |Im z′|) for z, z′ ∈ I(π).

(3)
ξ(−z)−1ξ(z′) − 1

z′ + z
	 Oπ(|Im z| + |Im z′|) for z, z′ ∈ I(π).
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Proof. The first part follows from Cauchy’s formula, while the second part follows from
the first by the mean value theorem. To see the last part we write, for Re(z) < 0 (respec-
tively, Re(z′) < 0),

ξ(−z)−1ξ(z′) − 1
z′ + z

= ξ(z̄)
ξ(z′) − ξ(−z)

z′ + z

(
respectively, ξ(z′)

ξ(z̄) − ξ(−z̄′)
z + z′

)
and use the previous bound. On the other hand, if Re(z),Re(z′) > 0 then we write (for
z̄ = σ + it)

ξ(−z)−1ξ(z′) − 1 = ξ(z̄)(ξ(z′) − ξ(z̄)) + ξ(z̄)(ξ(z̄) − ξ(it)) + ξ(it) · ξ(z̄) − ξ(it)

and observe that |z + z′| � |z′ − z̄|, σ. �

6. Majorization of Eisenstein series

Let M be a Levi subgroup of G and π a cuspidal representation of M(A)1. We fix a
large compact subset C of G(A) and a small compact open subgroup Kfin of G(Afin)
and consider the space of sufficiently differentiable bi-Kfin-invariant functions f on G(A)
which are supported in C. On this space we consider the semi-norms obtained as finite
sums of ‖Xi ∗ f ∗Yi‖∞, where Xi,Yi ∈ U(gC). Extending the notation of the last section,
we write Y 	 oπ,f (X,Z) if there exists a semi-norm µ and α > 0, depending only on n

and F such that for any N there exists a constant c′ so that for all f as above

|Y | � c′µ(f)(1 + |X|)α((1 + Λπ)(1 + Z))−N .

The invariant Λπ is defined in [54, p. 695]. We denote by IM (π) a region in a∗
M,C of the

form

{λ ∈ a
∗
M,C, ‖Reλ‖ < δ : either Reλ ∈ (a∗

M )+ or ‖Reλ‖ < d(c(π)(1 + ‖Imλ‖))−β},

where again d, β, δ > 0 depend only on n and F .
Assume now that G = GLn. It is shown in [55] that c(π) � Λπ. (In fact, the proof

carries over for general G.)

Proposition 6.1. With the above notation we have (for an appropriate choice of IM (π))( ∑
ϕ∈BP (π)

|E(g, I(f, λ)ϕ, λ)|2
)1/2

	 oπ,f (‖g‖, ‖λ‖) (6.1)

for all g ∈ G(A)1 and λ ∈ IM (π).

The proof of Proposition 6.1 occupies the rest of this section. We will fix a minimal
parabolic P 0, with Levi part M0, and assume, as we may, that P ⊃ P 0. We set H0 = HP 0

and similarly for other notation. Recall the definition of a Siegel set S [53, I.2] and
Arthur’s truncation operator ΛT [2]. Let ∆̂0 be the dual basis of the co-roots in a∗

0 = a∗
P 0 .

More generally, if P ⊃ P0, denote by ∆̂P the dual basis of ∆∨
P = {α∨ : α ∈ ∆P } in a∗

M .
We first prove the following lemma (which is valid for any G).
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Lemma 6.2. There exists a constant c < 0 depending only on G such that

ΛTϕ(g) = ϕ(g)

for any automorphic form ϕ and any g ∈ S with 〈�,H0(g) − T 〉 < c for all � ∈ ∆̂0.

Proof. We have to show all the terms in ΛT coming from proper parabolic subgroups
vanish. Thus, we will show that τ̂P (HP (γg) − T ) = 0 for all P ⊃ P 0 and γ ∈ G where, as
in [1], τ̂P is the characteristic function of the obtuse cone in aP spanned by the co-roots.

Suppose on the contrary that τ̂P (HP (γg) − T ) = 1 and write γ = pwu with p ∈ P ,
w ∈ W and u ∈ U0 (Bruhat decomposition). Also write g = p0ak with p0 ∈ P 0(A)1,
a ∈ A0 and k ∈ K using the Iwasawa decomposition. Then

HP (γg) = HP (wug) = (wH0(g) +H0(wu′))P

with u′ ∈ U0(A). Thus,

〈�,T 〉 � 〈�,H0(γg)〉
= 〈�,wH0(g)〉 + 〈�,H0(wu′)〉
= 〈�,H0(g)〉 + 〈w−1� −�,H0(g)〉 + 〈�,H0(wu′)〉

for any � ∈ ∆̂P . It follows that

〈�,H0(g) − T 〉 > 〈� − w−1�,H0(g)〉 − 〈�,H0(wu′)〉.

However, �−w−1� is a linear combination of roots with non-negative coefficients, while
〈�,H0(wu′)〉 is bounded above uniformly in u′ ∈ U0(A). The lemma follows. �

We remark that at the cost of changing T , the lemma and its proof still hold if we
replace g by gx where x is confined to a fixed compact subset of G(A). Let now g ∈ S.
It follows that for T which is a fixed translate T of H0(g) (depending on the support of
f) we have

E(g, I(f, λ)ϕ, λ) =
∫

G(A)1
f(x)E(gx, ϕ, λ) dx

=
∫

G(A)1
f(x)ΛTE(gx, ϕ, λ) dx

=
∫

G(A)1
f(g−1x)ΛTE(x, ϕ, λ) dx

=
∫

G\G(A)1
Kf (g, x)ΛTE(x, ϕ, λ) dx.

By [53, I.2.4], |Kf (g, x)| � c|f |∞‖g‖N uniformly in x for some c,N > 0 (depending only
on the support of f). Hence, the Cauchy–Schwarz inequality gives

|E(g, I(f, λ)ϕ, λ)|2 � c′‖g‖2N‖f‖2
∞

∫
G\G(A)1

|ΛTE(x, ϕ, λ)|2 dx. (6.2)
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As in [4] let ΩT
P (λ) be the operator on AP which is given by

〈ΩT
P (λ)ϕ,ϕ′〉U(A)MAM \G(A)1 = 〈ΛTE(ϕ, λ), E(ϕ, λ)〉G\G(A)1 .

By [1, § 4] we may write f = g1 � f1 + g2 � f2, where f1 = f , f2 = Z � f , Z ∈ U(gC), g1
is smooth and of compact support and g2 is compactly supported of class Cm (m is as
large as we please). The gi and Z are independent of f . For the proof of Proposition 6.1
we can assume that g ∈ S. Applying (6.2) we obtain

∑
ϕ

|E(g, I(f, λ)ϕ, λ)|2 �
2∑

j=1

c′‖g‖2N‖gj‖2
∞‖IP (fj , λ)∗ΩT (λ)IP (fj , λ)‖π,1

�
2∑

j=1

c′′‖g‖2N‖fj‖∞‖ΩT (λ)IP (fj , λ)‖π,1, (6.3)

where ‖ · ‖π,1 denotes the trace norm on Aπ
P . Here we use the fact that ‖IP (fj , λ)‖A2

P
is

bounded by a constant multiple of ‖fj‖∞ in every vertical strip.
Next, we bound the right-hand side of (6.3). For simplicity of notation we replace fj

by f .
By [5, pp. 1295, 1296] the operator ΩT (λ) is given by the sum over the representatives

s ∈ W/WM such that sMs−1 = M of the value at λ′ = λ of∑
Q∈P(MP )

MQ|P (−λ̄)−1MQ|P (sλ′)MP |P (s, λ′)e〈sλ′+λ̄,YQ(T )〉θQ(sλ′ + λ̄)−1,

where YQ(T ) is the projection of t−1T to aM and t is such that tQ is standard. (YQ(T )
depends only on Q since t is uniquely determined up to right multiplication by WM .)
Unlike in [5], we do not assume that λ ∈ ia∗

M . We also recall that in the notation of [5]
T0 = 0 because we are working with GLn. Recall [5, p. 1310] the (G,M)-families (in Λ)

MQ(P, λ, Λ) = MQ|P (λ)−1MQ|P (λ+ Λ),

cQ(T,Λ) = e〈Λ,YQ(T )〉,

MT
Q(P, λ, Λ) = cQ(T,Λ)MQ(P, λ, Λ).

Then ΩT (λ) is the sum over s of the value at λ′ = λ of∑
Q∈P(MP )

MQ(P,−λ̄, sλ′ + λ̄)cQ(T, sλ′ + λ̄)MP |P (s, λ′)θQ(sλ′ + λ̄)−1

which is MT
M (P,−λ̄, sλ+ λ̄)MP |P (s, λ). We now use the product formula (4.1). For any

Q the function cQM (T,Λ) is the Fourier transform of a characteristic function of a compact
domain determined by the points YQ(T ) [5, (3.1)]. Hence, it is bounded by a fixed power
of e‖T‖, and hence, by a fixed power of ‖g‖. It remains to bound

‖MQ
M (P,−λ̄, sλ+ λ̄)πMP |P (s, λ)IP (f, λ)‖π,1
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for any Q. Using the normalization of the intertwining operators we may write

MQ(P, λ, Λ)π = νQ(P, π, λ, Λ)NQ(P, π, λ, Λ),

where νQ(P, π, λ, Λ) and NQ(P, π, λ, Λ) are the (G,M)-families given by

νQ(P, π, λ, Λ) = nQ|P (π, λ)−1nQ|P (π, λ+ Λ),

NQ(P, π, λ, Λ) = NQ|P (π, λ)−1NQ|P (π, λ+ Λ).

Also, using [5, (1.4)] we may write

MP |P (s, λ) = MP |sP (sλ)s = nP |sP (sλ)NP |sP (sλ)s,

where s denotes the unitary intertwining operator AP → AsP obtained by conjugation
by s. We apply the product formula (4.1) once again to

MQ
R(P, λ, Λ) = νQ

R (P, π, λ, Λ)NQ
R(P, π, λ, Λ).

We first estimate

νR
M (P, π,−λ̄, sλ+λ̄)nP |sP (sλ) = νR

M (P, π,−λ̄, sλ+λ̄)·
∏

β∈ΣP̄ ∩sΣP

nβ(π, 〈sλ, β∨〉)−1 (6.4)

for any R. The family νQ(P, π, λ, Λ) is of the type (4.3) where

cβ(z) =

{
nβ(π, 〈λ, β∨〉)−1nβ(π, 〈λ, β∨〉 + z) if β ∈ ΣP̄ ,

1 otherwise.

Using (4.4), (6.4) can be expressed in terms of

nβ(π, 〈sλ, β∨〉)−1,

nβ(π,−〈λ̄, β∨〉)−1,

nβ(π,−〈λ̄, β∨〉)−1 − nβ(π, 〈sλ, β∨〉)−1

〈sλ+ λ̄, β∨〉
,

nβ(π, 〈sλ, β∨〉)nβ(π,−〈λ̄, β∨〉)−1,

nβ(π, 〈sλ, β∨〉)nβ(π,−〈λ̄, β∨〉)−1 − 1
〈sλ+ λ̄, β∨〉

,

where β ∈ ΣP̄ and in addition, s−1β ∈ ΣP in the first three cases, while s−1β ∈ ΣP̄ in
the last two cases. We may use Corollary 5.2 to bound each of these functions by Oπ(‖λ‖)
on IM (π).

Finally, to complete the proof of Proposition 6.1 we will prove that

‖N
S
M (P, π, λ, Λ)NP |sP (sλ)IP (f, λ)‖π,1 	 oπ,f (1, ‖λ‖) (6.5)

for ‖Reλ‖, ‖ReΛ‖ < δ (δ depending only on n). Indeed, the proof of [54, Lemma 6.2]
(the rapid decay of ‖IP (f, λ)‖ on each K∞-type) applies word by word, except that in
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the inequality (6.16) of [54] we have to multiply the right-hand side by a constant, since
λ is not assumed to be unitary. At any rate, the argument reduces (6.5) to the following
estimate: there exists a constant c such that for any cuspidal π and σ ∈ K̂∞

‖N
S
M (P, π, λ, Λ)NP |sP (sλ)‖π,σ,Kf

� c(1 + ‖σ‖)k.

This statement is proved in § 4 of [56] using bounds toward the Ramanujan hypothesis
proved by Luo, Rudnick and Sarnak [50]. This finishes the proof of Proposition 6.1.

Remark 6.3. Majorization for Eisenstein series on GLn induced from the Borel subgroup
was obtained in [66]. We expect that Proposition 6.1 remains true for any G. There are
two stumbling blocks. The first one is lower bounds for the L-functions appearing in
Langlands’s formula for the constant term of Eisenstein series. In the case where π is
generic this is established in [17,20]. However, the bounds obtained are not known to be
uniform in the Archimedean size of π. The other subtle point is the analysis of the local
intertwining operators (cf. [56]) which in the GLn case requires uniform bounds toward
the Ramanujan hypothesis.

Change of setup

Fix a minimal parabolic P 0 as before and consider standard parabolic subgroups,
i.e. those containing P0. The Levi part containing M0 of a standard parabolic is called
a standard Levi. A standard parabolic is determined by its Levi part. Henceforth, all
parabolic and Levi subgroups are implicitly assumed to be standard. We set ∆M = ∆P ,
and ∆0 = ΣP 0 .

We also denote by ∆M
0 the set of simple roots of T 0 inM with respect to P 0∩M . Denote

by (a∗
M )+ the positive Weyl chamber defined by {X ∈ a∗

M : 〈X,α∨〉 > 0 for all α ∈ ∆M}.
It is the open cone spanned by the weights ∆̂P . Set W (M) = {w ∈ W : w∆M

0 ⊂ ∆0};
it is in natural one-to-one correspondence with P(M). This correspondence, which we
write as w �→ w(P ), is defined by the property that if P ′ is the standard parabolic with
Levi wMw−1 then w(P ) = w−1P ′w. For example, w(P0) = w−1P0w, but in general
w−1Pw may not belong to P(M). To each w ∈ W (M) and P ′ as above we denote by
M(w, λ) : AP → AP ′ the intertwining operator wMw(P )|P (λ).

More generally, the sets WL(M) = W (M)∩WL are defined for any L ⊃ M . We denote
by wL

M the longest element in WL(M). If M , L are two standard Levi subgroups we
define

W (M ;L) = {w ∈ W : w−1α > 0 for all α ∈ ∆L
0 , wMw−1 ⊂ L}.

It is a subset of W (M). We will need the following lemma.

Lemma 6.4. Let M , L and L′ be Levi subgroups of G with L′ ⊂ L. Then any element
w′ ∈ W (M ;L′) can be expressed uniquely as w1w where w1 ∈ WL(M1;L′), w ∈ W (M ;L)
and M1 = wMw−1.

Proof. The uniqueness is clear since the conditions imply that w is the element of min-
imal length in WLw

′. With this choice of w and with w1 so that w′ = w1w, Lemma I.1.9
of [53] (applied to w′−1) shows that w ∈ W (M) and w1 ∈ WL(M1) with M1 = wMw−1.
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By the choice of w we infer that w ∈ W (M ;L). Moreover, since w′ = w1w is a
reduced decomposition and w′ is left-WL′ -reduced, w1 is also left-WL′ reduced. Hence,
w1 ∈ WL(M1;L′). �

If ϕ ∈ Ac
P then the constant term of E(· , ϕ, λ) along the (standard) parabolic Q = LV

is given by
EQ(· , ϕ, λ) =

∑
w∈W (M ;L)

EQ(· ,M(w, λ)ϕ,wλ). (6.6)

7. Galois pairs and regularized periods

In this section we will summarize the main results of [48]. For a thorough discussion and
proofs the reader should consult [49].

The setup consists of a quasi-split group H0 over F and G which is obtained from
H0 by restrictions of scalars from a quadratic extension E/F . Thus, G is quasi-split
and (G, θ) is a relatively quasi-split Galois pair in the sense of [48] where θ denotes the
Galois involution. We choose P 0, as well as K, to be θ-invariant. The symmetric space
C′ = {ε ∈ G : εθ(ε) = 1} has a natural action of G denoted by �. Given a G-orbit C
we choose a representative ε0 ∈ C to lie in the defect M00 of C (cf. [49, § 4.5]). We take
H̃ to be the stabilizer of ε0. Then H̃ is an inner form of H0 and it is the fixed point
subgroup of the Galois involution θ̃ = Ad(ε0) ◦ θ. The map P → P̃ = P ∩ H̃ defines a
bijection between θ̃-stable parabolic subgroups of G and parabolic subgroups of H̃. The
θ̃-stable parabolic subgroups of G are the θ-stable parabolic subgroups containing P 00.
The notation pertaining to H̃ will always be appended by a tilde. We have

δP̃ = δ
1/2
P |P̃ (A) (7.1)

for any parabolic P̃ of H̃.

Definition 7.1.

(1) A Levi subgroup M of G is called θ-elliptic, if wMMw−1
M = θ(M) and wMα = −θα

for all α ∈ ∆M .

(2) Let π be a cuspidal representation of M(A). We say that (π,M) is θ̃-elliptic with
respect toG ifM is θ-elliptic inG and π is distinguished with respect toMx for some
x ∈ C ∩Mw−1

M , where Mx is the stabilizer of the Galois involution θx = Ad(x) ◦ θ
of M .

In [49, § 8] we defined the regularized H̃-period of (certain) automorphic forms on G

and we denoted it by ∫ ∗

H̃\H̃(A)1
ϕ(h) dh.

It is an H̃(A)1-invariant functional defined by a certain regularization procedure and
agrees with the usual integral if ϕ is integrable over H̃\H̃(A)1.
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Let π be a cuspidal representation of M(A). By the main result (Theorem 9.1.1) of [49]∫ ∗
H̃\H̃(A)1 E(h, ϕ, λ) = 0 unless (π,M) is θ̃-elliptic, in which case∫ ∗

H̃\H̃(A)1
E(h, ϕ, λ) dh = J(wθM , ϕ, λ),

where the right-hand side is the intertwining period defined by the sum over the M -orbits
O in C ∩Mw−1

M of∫
H̃η\H̃(A)1

e〈λ,HP (ηh)〉ϕ(ηh) dh =
∫

H̃η(A)\H̃(A)1

∫
Mx\Mx(A)1

ϕ(mηh) dmdh,

where x = η � ε0 is a representative of O and H̃η = H̃ ∩ η−1Pη.
Also defined in [49, § 8] was a relative variant of Arthur’s truncation operator which

we called mixed truncation and denoted it ΛT
m. Here T is a sufficiently positive element

of ã0 which will be fixed throughout. The mixed truncation defines a map from the space
of smooth functions on G\G(A)1 which together with their derivatives have uniform
moderate growth, into the space of rapidly decreasing functions of H̃\H̃(A)1. This map
is in fact continuous in the usual topologies. (This is an adaptation of [2, Lemma 1.4],
which is proved in a similar vein (cf. [49, Lemma 8.2.1]).)

If L is θ̃-stable, then (L, θ̃|L) is also a quasi-split Galois pair and, in particular, the
regularized L̃(A)1-periods are defined for automorphic forms of L(A). The orbit of ε0
under L is CL = C ∩ L. If ϕ is an automorphic form on V (A)L\G(A) which satis-
fies ϕ(ag) = δ

1/2
Q (a)ϕ(g) for all a ∈ AQ then we can define its regularized integral over

AQ̃V (A)L̃\H̃(A)1 by∫ ∗

AQ̃V (A)L̃\H̃(A)1
ϕ(h) dh =

∫
KH

∫ ∗

L̃\L̃(A)1
ϕ(lk) dl dk.

Then ∫ ∗

AQ̃V (A)L̃\H̃(A)1
EQ(h, ϕ, λ) dh = 0

unless (M,π) is θ̃-elliptic in L, in which case∫ ∗

AQ̃V (A)L̃\H̃(A)1
EQ(h, ϕ, λ) dh = J(wL

θM , ϕ, λ). (7.2)

Similarly, there is a notion of a mixed truncation relative to Q, denoted by ΛT,Q
m , for

automorphic forms on V (A)L\G(A).
The regularized period is defined in general using mixed truncation (with respect to

θ̃-stable parabolic subgroups). In particular, for cuspidal Eisenstein series, the definition
and the formula (6.6) give that

∫ ∗
H̃\H̃(A)1 E(h, ϕ, λ) dh is equal to

∑
L̃<H̃

∑
w∈W (M ;L)

v̂L̃

e〈wλ,T 〉∏
�∈ ˜̂∆L̃

〈−wλ,�∨〉 ·
∫

AL̃L̃Ṽ (A)\H̃(A)
ΛT,Q

m EQ(h,M(w, λ)ϕ, (wλ)L) dh,
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where v̂L̃ is the co-volume of the lattice spanned by the weights ˜̂∆L̃ in ãL̃. (We could
have used the usual truncation ΛT instead [49, § 12].) It follows that for a generic value
of λ the form ∫ ∗

H̃\H̃(A)1
E(h, ϕ, λ) dh

lies in the topological dual of the smooth part of I(π, λ). Indeed, it follows from (5.1)
and the properties of the mixed truncation that ΛT

mE(h, ϕ, λ) is bounded by a semi-norm
of ϕ, uniformly in h ∈ H̃(A)1. Similarly for ΛT,Q

m EQ(h, ϕ′, λ′) for h ∈ L̃(A)1 · K̃. Since
M(w, λ) is continuous for smooth vectors, we obtain the required property.

More generally, it follows from the definition that∫ ∗

AQ̃V (A)L̃\H̃(A)1
EQ(h, ϕ, λ) dh

=
∑

L̃′<L̃

∑
w′∈WL(M ;L′)

v̂L̃
L̃′

e〈w′λ,T 〉∏
�∈ ˜̂∆L̃

L̃′
〈−w′λ,�∨〉

×
∫

AL̃′ L̃′Ṽ ′(A)\H̃(A)
ΛT,Q′

m EQ′
(h,M(w, λ)ϕ, (wλ)L′

) dh. (7.3)

We can also invert the process and express, under some mild restrictions on the expo-
nents, the periods of truncated automorphic forms in terms of regularized periods. In
particular, in the case of cuspidal Eisenstein we obtain an equality of meromorphic func-
tions∫

H̃\H̃(A)1
ΛT

mE(h, ϕ, λ) dh =
∑

(L̃,w)

vL̃ · e〈(wλ)L,T 〉∏
α̃∈∆̃L̃

〈wλ, α̃∨〉J(wL
θM ′ ,M(w, λ)ϕ, (wλ)L), (7.4)

where vL̃ is the co-volume of the lattice spanned by the co-roots (∆L̃)∨ in ãL̃ and (L̃, w)
ranges over pairs of Levi subgroup L̃ of H̃ and w ∈ W (M ;L) such that (wπ,M ′ =
wMw−1) is θ̃-elliptic in L.

We will often use the notation aL̃
M to denote the space aM ⊕ (aL)−

θ . Similarly for (aL̃
M )∗.

Suppose now that G is the restriction of scalars of GLn from E to F . This case will
be considered more thoroughly in the next section. Whenever (π,M) is θ̃-elliptic in L we
set

BL̃
(M,π)(f, λ) =

∑
ϕ∈BP (π)

J(wL
θM , I(f, λ)ϕ, λ)W(ϕ,−λ̄),

where BP (π) is an orthonormal basis of Aπ
P . For λ ∈ ia∗

M this is the ‘Bessel distribution’
with respect to the forms J(wL

θM , · , λ) and W(· , λ) (cf. [43]). Since both linear forms are
continuous (for J , see above; for W this follows from [64, Theorem 15.4.1]), the Bessel
distribution is defined and continuous in f (at least for generic λ). We will show in the
next section that BL̃

(M,π)(f, λ) is holomorphic for λ ∈ ia∗
M .

It will be useful to introduce the following auxiliary functions:

Ξ̂M,π(f, λ)(h) =
∑

ϕ∈BP (π)

E(h, I(f, λ)ϕ, λ) · W(ϕ,−λ̄),
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and

ΞT
M,π(f, λ) =

∫
H̃\H̃(A)

ΛT
m(Ξ̂M,π(f, λ))(h) dh

=
∑

ϕ∈BP (π)

W(ϕ,−λ̄) ×
∫

H̃\H̃(A)
ΛT

mE(h, I(f, λ)ϕ, λ) dh.

The majorization of Eisenstein series (§ 6) give the following estimates.

Lemma 7.2.

(1) Ξ̂M,π(f, λ)(h) 	 oπ,f (‖h‖, ‖λ‖) on I(π)

(2) ΞT
M,π(f, λ) 	 oπ,f (1, ‖λ‖) on I(π). In particular, ΞT

M,π(f, λ) is tame.

Proof. Writing f = f1 � g1 + f2 � g2 as in § 6, and using the Cauchy–Schwarz inequality,
Ξ̂M,π(f, λ)(h) is bounded by the sum of

2∑
j=1

( ∑
ϕ∈BP (π)

|E(h, I(fj , λ)ϕ, λ)|2
)1/2

and
2∑

j=1

sup
u∈U0\U0(A)

( ∑
ϕ∈BP (π)

|E(u, I(gj , λ)ϕ,−λ̄)|2
)1/2

.

We can apply Proposition 6.1 to conclude the first part of the lemma. Upon replacing
f by ρ(X)f with X ∈ U(gC) we get a similar estimate for the derivatives (in the group
variable) of Ξ̂M,π(f, λ). By the properties of the mixed truncation the second part of the
lemma follows. Note that by approximating f by bi-K∞-finite functions we can assure
that ΞT

M,π(f, λ) is analytic on I(π). �

More generally, for any θ̃-stable L we set

Ξ̂L̃
M,π(f, λ)(h) =

∑
ϕ∈BP (π)

EQ(h, I(f, λ)ϕ, λL) · W(ϕ,−λ̄),

and

ΞL̃,T
M,π(f, λ) =

∫
AL̃Ṽ (A)L̃\H̃(A)

ΛT,Q
m (Ξ̂L̃

M,π(f, λ))(h) dh

=
∑

ϕ∈BP (π)

W(ϕ,−λ̄) ×
∫

AL̃Ṽ (A)L̃\H̃(A)
ΛT,Q

m EQ(h, I(f, λ)ϕ, λL) dh.

The analogue of Lemma 7.2 for Ξ̂L̃
M,π and ΞL̃,T

M,π is still valid.

Remark 7.3. The proof shows in fact that∫
AL̃Ṽ (A)L̃\H̃(A)

|ΛT,Q
m (Ξ̂L̃

M,π(f, λ))(h)| dh 	 oπ,f (1, ‖λ‖)

on I(π).
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Lemma 7.4. BL̃
M (π, f, λ) 	 oπ,f (1, ‖λ‖) on I(π). In particular, BL̃

M (π, f, λ) is tame.

Proof. We write BL̃
M (π, f, λ) as∑

L̃′<L̃

∑
w∈WL(M ;L′)

v̂L̃
L̃′

e〈wλ,T 〉∏
�∈ ˜̂∆Q̃

Q̃′
〈−wλ,�∨〉Ξ

L̃′,T
M,π (f, λ, w) dλ.

Using a common denominator we have

BL̃
M (π, f, λ) =

FM,π,L(λ)∏
�∈ ˜̂∆Q̃, w∈WL

〈−λ,w�∨〉 , (7.5)

where FM,π,L(λ) is some linear combination of products of ΞL̃′,T
M,π (f, λ, w) with linear

forms. Thus, FM,π,L 	 oπ,f (1, ‖λ‖) on I(π), and the same is true for its derivatives.
Since BL̃

M (π, f, λ), and hence (7.5) is holomorphic on ia∗
M (see below) the lemma follows

from Cauchy’s formula. �

Remark 7.5. Even without assuming that BL̃
M (π, f, λ) is holomorphic on the unitary

axis, Lemma 7.2 and (7.5) already show that P (λ) · BL̃
M (π, f, λ) is holomorphic on I(π)

for some fixed polynomial P (λ). Moreover, if fn → f , then

P (λ)BL̃
M (π, f, λ) = lim

n
P (λ)BL̃

M (π, fn, λ)

uniformly on I(π).

8. The GLn cases

We are now going to examine the case G = GLn /E more carefully. There are two
possibilities for the Galois involution, corresponding to the two quasi-split forms of GLn.

8.1. The split case

Consider first the case where θ is the Galois action induced from H̃ = GLn /F . This
was the case considered in [42]. Note that there is only one G-orbit in the symmetric
space C′ by Hilbert 90, and hence θ̃ = θ. Also, θ acts trivially on the roots and there is
a one-to-one correspondence between parabolic subgroups of G and H̃.

If π is a cuspidal representation of G(A), we denote by π̄ the Galois conjugate of π
and by π∗ the contragredient of π̄. We recall that if π is distinguished by H̃, then the
Asai L-function has a pole at s = 1, and in particular π∗ � π [15].

If (π,M) is θ-elliptic, then n is even, M is maximal of type (1
2n,

1
2n) and π is of the

form σ ⊗ σ∗.
Finally, we recall that if π is a cuspidal representation of GLn(A) then the Eisenstein

series on GL2n(A) induced from π ⊗ π vanishes at 0, because the intertwining operator
is −1 there [45, Proposition 6.3].

We also note that if L is θ-stable then the Galois pair (L, θ|L) consists of a product of
smaller Galois pairs of split GLm-type.

The following lemma is a generalization of Lemma 2.1.
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Lemma 8.1. Consider the case where M is a maximal parabolic of G and π = π1 ⊗ π2.
There are three mutually disjoint possibilities.

Case 1: π2 �� π∗
1. Then

∫ ∗
H̃\H̃(A)1E(h, ϕ, λ) dh is 0 whenever defined. Moreover,

J(1, ϕ, 0) = J(1,M(wM , 0)ϕ, 0).

Case 2: π2 � π∗
1 but π1 (or, equivalently, π2) is not distinguished. Then∫ ∗

H̃\H̃(A)1
E(h, ϕ, λ) dh =

∫
H̃\H̃(A)1

ΛT
mE(h, ϕ, λ) dh

is holomorphic for λ ∈ ia∗
M .

Case 3: π2 = π1 and π1 is distinguished. Then
∫ ∗

H̃\H̃(A)1 E(h, ϕ, λ) dh is holomor-
phic for λ ∈ a∗

M except for a simple pole at 0. On the other hand, E(· , ϕ, 0) ≡ 0 and
M(wM , 0) = −1.

Proof. Applying (7.4) to this case we get

∫
H̃\H̃(A)1

ΛT
mE(h, ϕ, λ) dh =

∫ ∗

H̃\H̃(A)1
E(h, ϕ, λ) dh+ ‖α∨‖ e〈λ,T 〉

〈λ, α∨〉J(1, ϕ, 0)

− ‖α∨‖e〈wλ,T 〉

〈λ, α∨〉J(1,M(w, λ)ϕ, 0), (8.1)

where ∆M = {α} and w = wM . If the πi are not distinguished, then the last two
terms in (8.1) disappear. On the other hand,

∫ ∗
H̃\H̃(A)1 vanishes unless π2 � π∗

1 [42]. The
remaining assertions follow from the holomorphy of the left-hand side of (8.1) on the
unitary axis. �

Proposition 8.2. The distribution BL̃′

(M ′,π′)(f, λ
′) is holomorphic for λ′ ∈ i(aL′

M ′)∗. More-
over, if BL̃′

(M ′,π′)(f, λ
′) �≡ 0, then there exist Levi subgroups M ⊂ L, a cuspidal represen-

tation π of M(A) and an element w ∈ W such that

(1) M is of type (n1, n1, . . . , nk, nk,m1, . . . ,ml);

(2) L is the Levi of type (2n1, . . . , 2nk,m1, . . . ,ml);

(3) π is of the form

π = σ1 ⊗ σ∗
1 ⊗ · · · ⊗ σk ⊗ σ∗

k ⊗ τ1 ⊗ · · · ⊗ τl,

where the τj are distinguished and mutually inequivalent;

(4) w conjugates (M ′, L′, π′) to (M,L, π);

(5) BL̃′

(M ′,π′)(f, λ) = BL̃
(M,π)(f, wλ) for all λ ∈ (aL′

M ′)∗
C.
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Finally, if w1 conjugates (M,L, π) to (M1, L1, π1) in such a way that it permutes the σi

and the τj among themselves (or permutes σi with σ∗
i ), then

BL̃1
(M1,π1)

(f, w1λ) = BL̃
(M,π)(f, λ).

Proof. By Remark 7.5 it is enough to consider the case where f is bi-K∞-finite. Sup-
pose that the term BL̃′

(M ′,π′)(f, λ) �≡ 0 for some elliptic Levi M ′ of L′. Then, by [42, The-
orem 23], L′ is of type (N1, . . . , Nr) and π′ = Π1 ⊗ · · · ⊗ Πr where each Πi is either a
distinguished cuspidal representation of GLNi or Πi = σi ⊗ σ∗

i for a cuspidal represen-
tation σi of GLNi/2. Let us say that Πi is a singleton in the first case, or a pair in the
second case. By Lemma 2.1, the singularities of J(wL

M , ϕ, λ) on ia∗
M are (at most) simple

poles along the hyperplanes 〈λ, α∨〉 = 0 for the roots α ∈ ∆L′

M ′ pertaining to those σi

which are distinguished. On these hyperplanes, the Eisenstein series, hence also W(ϕ, λ),
vanishes. Thus, BL̃

(M,π)(f, λ) is holomorphic on ia∗
M . Moreover, if Πi � Πj for some i �= j

and Πi is a singleton, then once again, W(ϕ, λ) will vanish on the hyperplane 〈λ, β∨〉 = 0
for an appropriate root β which is orthogonal to aL. Hence BL̃

(M,π)(f, λ) ≡ 0 on i(aL
M )∗.

In order to complete the proof of the first part we need to show that we can interchange
Πi and Πj of different types (i.e. a singleton and a pair). We may assume that Reλ = 0.
Let w be the Weyl group element corresponding to such a permutation. Suppose that w
conjugates (π,M ′, L′) to (π1,M1, L1). By the functional equations of [42, Theorem 33]
we have

J(wL1
M1

,M(w, λ)ϕ,wλ) = J(wL′

M ′ , ϕ, λ).

By using a unitary change of basis ϕ �→ M(w, λ)ϕ and the functional equation for the
Eisenstein series we obtain

BL̃′

(M ′,π′)(f, λ) = BL̃1
(M1,π1)

(f, wλ).

To prove the last statement we need to show, by a similar reasoning, that

J(wL1
M1

,M(w1, λ)ϕ,w1λ) = J(wL
M , ϕ, λ),

where w corresponds to a permutation of two σi, σi with σ∗
i , or two τj . For the first two

cases the functional equations of [42, Theorem 33] still apply. The last case boils down
to the functional equation described in Case 1 of Lemma 2.1. �

8.2. The unitary case

Consider now the case where C′ is the symmetric space of Hermitian forms. Thus, θ̃ is
of the form Φ−1 tḡ−1Φ for some Hermitian form Φ of the form

Φ =

⎛
⎜⎝ D

Φ1
tD̄

⎞
⎟⎠ ,

where D is anti-diagonal of size t (the Whit index of Φ) and Φ1 is anisotropic of size
d = n− 2t.
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In this case θ acts as the principal involution on the root system and thus any M is
θ-elliptic. Moreover, P 00 is the parabolic subgroup of type

t︷ ︸︸ ︷
1, . . . , 1, d,

t︷ ︸︸ ︷
1, . . . , 1 .

Recall that by the argument of [22], if π is distinguished by H̃, then π̄ � π.
Let π = π1 ⊗ · · · ⊗ πr be a cuspidal representation of M(A) and identify a∗

M with Rr

in the usual way, writing λi, i = 1, . . . , r, for the coordinates of λ.
If (π,M) is θ̃-elliptic, then each πi is distinguished with respect to some unitary groups

of GLni
.

We note that if L is θ̃-stable, that is L is of the form (n1, . . . , nk,m, nk, . . . , n1) with
m � d, then the pair (L, θ̃|L) consists of the product of a non-split Galois pair of type
GLm with products of Galois pairs of the type (GLni × GLni) with θ acting by (x, y) �→
(θ′(y), θ′(x)) for an appropriate Galois action θ′. So in principle, we need also to consider
the case of (G, θ) where G = GLm × GLm and θ(x, y) = (θ′(y), θ′(x)). However, this case
is rather trivial since the only θ-elliptic Levi is G itself.

Next, we prove the following lemma.

Lemma 8.3. The singularities of
∫ ∗

H̃\H̃(A) E(h, ϕ, λ) dh on ia∗
M for ϕ ∈ Aπ

P are (at most)
simple poles along the hyperplanes λi = λj whenever πi � πj .

Proof. We may assume of course that
∫ ∗

H̃\H̃(A)1 E(h, ϕ, λ) dh does not vanish. In this
case, all the πi are distinguished. To prove the lemma we will use the formula (7.4) and
induction on n. Note that the left-hand side of (7.4) is holomorphic on ia∗

M . One of the
terms in the right-hand side is

∫ ∗
H̃\H̃(A) E(h, ϕ, λ) dh. The other terms are of the form

Ψw,L̃ = vL̃

e〈(wλ)L,T 〉∏
α̃∈∆̃L̃

〈wλ, α̃∨〉J(wL
θM ′ ,M(w, λ)ϕ, (wλ)L), (8.2)

where L̃ � H̃ and w ∈ W (M ;L) is such that M ′ = wMw−1 is θ-elliptic in L. Concretely,
if L̃ is of co-rank k in H̃ and M is of type (n1, . . . , nr), then identifying the set W (M)
with the set of permutations of {1, . . . , r} in the usual way, we have nw(i) = nw(r+1−i) for
i = 1, . . . , k and L is of type (nw(1), . . . , nw(k),m, nw(k), . . . , nw(1)) with m = nw(k+1) +
· · ·+nw(r−k) � d. If (8.2) is non-zero, then πw(i) = π̄w(r+1−i) = πw(r+1−i) for i = 1, . . . , k.
By the induction hypothesis, the singularities of J(wL

θM ′ ,M(w, λ)ϕ, (wλ)L) satisfy the
conclusion of the lemma. It thus remains to show that the singularities of the Ψw,L̃

along the hyperplanes Hw,α̃, α̃ ∈ ∆̃L̃ defined by 〈wλ, α̃∨〉 = 0 cancel. We write ∆̃L̃ =
{α̃1, . . . , α̃k} in the usual order. If α̃ = α̃k, then Hw,α̃ is given by λw(k) = λw(r+1−k)

and, by the above, πw(k) = πw(r+1−k). Suppose that α̃ �= α̃k. Then the element s̃α̃ ∈
WH̃ ⊂ W θ

G belongs to W (L). Moreover, if L̃1 = s̃α̃L̃s̃
−1
α̃ (or, equivalently, L1 = s̃α̃Ls̃

−1
α̃ ),

then w1 = s̃α̃w ∈ W (M ;L1), M ′′ = s̃α̃M
′s̃−1

α̃ is θ-elliptic in L1 and wL1
θM ′′ = s̃α̃ � w

L
θM ′ .

We may write s̃α̃ = sβsθβ for β ∈ ∆L with θ(β) �= β. Thus, wL
θM ′θβ = θβ �= β.

Let (wλ)L̃ denote the orthogonal projection of wλ on (aL̃
M ′)∗. Then on Hw,α̃ we have
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〈(wλ), β∨〉 = 〈(wλ)L̃, β∨〉 and similarly for θβ. By the properties of the intertwining
period, and, in particular, the functional equation [48, Theorem 5], we have

J(wL
θM ′ ,M(w, λ)ϕ, (wλ)L) = J(wL

θM ′ ,M(w, λ)ϕ, (wλ)L̃)

= J(s̃α̃ � w
L
θM ′ ,M(s̃α̃, (wλ)L̃)M(w, λ)ϕ, s̃α̃(wλ)L̃)

= J(wL1
θM ′′ ,M(s̃α̃, wλ)M(w, λ)ϕ, (w1λ)L̃1)

= J(wL1
θM ′′ ,M(w1, λ)ϕ, (w1λ)L1)

on Hw,α̃∨ . Thus, the singularity of the term Ψw,L̃ along Hw,α̃∨ cancels with that of Ψw1,L̃1

(along the identical hyperplane Hw1,−s̃α̃α̃∨). �

Proposition 8.4. The distribution BL̃′

(M ′,π′)(f, λ
′) is holomorphic for λ′ ∈ i(aL̃′

M ′)∗. More-
over, if BL̃′

(M ′,π′)(f, λ
′) �≡ 0 then there exist Levi subgroups M ⊂ L, a cuspidal represen-

tation π of M(A) and an element w ∈ W such that

(1) M is of type (n1, . . . , nk,m1, . . . ,ml, nk, . . . , n1);

(2) L is the Levi of type (n1, . . . , nk,m1 + · · ·+ml, nk, . . . , n1) with m1 + · · ·+ml � d;

(3) π = σ1 ⊗ · · ·σk ⊗ τ1 ⊗ · · · ⊗ τl ⊗ σk ⊗ · · · ⊗ σ1, where σi �� σi, i = 1, . . . , k, and τj
is distinguished by some unitary group for j = 1, . . . , l;

(4) w conjugates (M ′, L′, π′) to (M,L, π);

(5) BL̃′

(M ′,π′)(f, λ) = BL̃
(M,π)(f, wλ) for all λ ∈ (aL̃′

M ′)∗
C.

Finally, if w1 conjugates (M,L, π) to (M1, L1, π1) by permuting the σi and the τj among
themselves (or permuting σi with σi), then

BL̃1
(M1,π1)

(f, w1λ) = BL̃
(M,π)(f, λ).

Proof. As before, we may assume that f is bi-K∞-finite. By Lemma 8.3, BH̃
(M,π)(f, λ)

is holomorphic, since E(· , ϕ, λ), and hence, W(ϕ, λ) is zero along the hyperplane sin-
gularities of ΠH̃E(· , ϕ, λ). More generally, if M is θ-elliptic in L then BL̃

(M,π)(f, λ) is
holomorphic on (aL̃

M )∗. Suppose that M is of type (n1, . . . , nk,m1, . . . ,ml, nk, . . . , n1)
and L is of type (n1, . . . , nk,m1 + · · · + ml, nk, . . . , n1). If BL̃

(M,π)(f, λ) �≡ 0 on (aL̃
M )∗

C,
then π is necessarily of the form σ1 ⊗ · · ·σk ⊗ τ1 ⊗ · · · ⊗ τl ⊗ σk ⊗ · · · ⊗ σ1, where the τj
are distinguished by some unitary group. By our identification

(aL̃
M )∗ = {(λ1, . . . , λk, µ1, . . . , µl, λk, . . . , λ1)}.

Thus, if σi � σi for any i, then E(ϕ, λ) = 0 on (aL̃
M )∗

C as before, and again by Lemma 8.3
we have BL̃

(M,π)(f, λ) ≡ 0.
The last part follows from the functional equations of [48, Theorem 5] as in the previous

case. �

https://doi.org/10.1017/S1474748005000289 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748005000289


Relative trace formula 297

9. Spectral expansion

Let f ∈ C∞
c (G(A)1) and let Kf (x, y) =

∑
γ∈G f(x−1γy) be the kernel of the right regular

representation of G(A)1 on L2(G\G(A)1). Our goal is to give the fine spectral expansion
for the expression ∫

H̃\H̃(A)1

∫
U0\U0(A)

Kf (h, u)ψ(u) du dh. (9.1)

As in § 6 we will assume that f is bi-Kfin-invariant for a fixed compact subgroup Kfin of
G(Afin) and the support of f is contained in a fixed left and right K∞-invariant compact
set C. We will assume, to begin with, that f is bi-K∞-finite. More importantly, we assume
that G = GLn as before.

9.1. First step: vanishing of residual contribution (cf. [29])

Following [1, § 4] we write

K(x, y) =
∑

χ

Kχ(x, y),

where χ runs over the set of cuspidal data, and

Kχ(x, y) =
∑
M

|WM |
|W |

∑
π

∫
ia∗

M

∑
ϕ∈BP (π)

E(x, I(f, λ)ϕ, λ)E(y, ϕ, λ) dλ,

where π runs over the discrete spectrum of L2(M\M(A)1)χ (a finite sum) and BP (π) is
an orthonormal basis of Aπ

P . Here dλ is a Haar measure on ia∗
M dual to that of aM .

By Proposition 2.1 of [29], for any n there exists c such that∑
χ

|Kχ(x, y)| � c‖x‖−n

provided that y is in a fixed compact set. Thus, we can write (9.1) as the sum over χ of∫
H̃\H̃(A)1

∫
U0\U0(A)

Kχ(h, u)ψ(u) du dh.

Using Lemma 4.4 of [1] we can write the inner integral as the sum over π and ϕ of∫
ia∗

M

E(h, I(f, λ)ϕ, λ)W(ϕ, λ) dλ dh, (9.2)

where

W(ϕ, λ) =
∫

U0\U0(A)
E(u, ϕ, λ)ψ(u) du.

Lemma 9.1 (cf. p. 13 of [29]). If ϕ ∈ Ar
P , then W(ϕ, λ) = 0.
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Proof. It follows from the description of the discrete spectrum of GLn [52] that no
residual representation of GLn is generic. (This is expected to hold for any reductive
algebraic group.) Thus the lemma is true for P = G. To see the general case we may
write W(ϕ, λ) as

∑
w∈WM \W

∫
w−1U0w∩U0\U0(A)

ϕ(wu)e〈λ,HP (wu)〉ψ(u) du

in the range of absolute convergence of the Eisenstein series (cf. [63]). If w �= w−1
M then

the integral is zero since it factors through∫
w−1Uw∩U0\w−1U(A)w∩U0(A)

ψ(u) du.

If w = w−1
M the integral factors through a non-degenerate Fourier coefficient of ϕ which

is zero since ϕ ∈ Ar
P . �

It follows that only cuspidal π contribute to (9.2). All in all (9.1) is equal to the sum over
pairs (M0, π0), up to conjugation, of a Levi subgroup M0 and a cuspidal representation
π0 of M0(A)1, of a simple combinatorial constant times∫

H̃\H̃(A)1

∫
ia∗

M0

∑
ϕ∈BP0 (π0)

E(h, I(f, λ)ϕ, λ)W(ϕ, λ) dλ dh. (9.3)

9.2. Second step: dissecting the Eisenstein series and shifting contours

The heart of the matter is to appropriately interchange the two integrals in (9.3). This
is subtle because the Eisenstein series are not integrable over H̃\H̃(A)1. In principle,
one can, following Arthur, truncate the kernel and let the truncation parameter go to
infinity. This is the approach of [19]. We opt for a slightly different approach.

Fixing T we have the inversion formula

φ(h) =
∑

P̃⊃P̃ 00

∑
γ∈P̃\H̃

ΛT,P
m φP (γh)τP (HP (γh) − T ) (9.4)

valid for any automorphic form φ on G [49, Lemma 8.2.1].
Applying it to the Eisenstein series we can write (9.3) as the sum over Q̃′ of∫

Q̃′\H̃(A)1

(∫
ia∗

M0

∑
ϕ

ΛT,Q′

m E(h, I(f, λ)ϕ, λ
)
τQ′(HQ′(h) − T )W(ϕ, λ) dλ) dh (9.5)

provided that the latter converges. By the formula (6.6) for the constant term,

ΛT,Q′

m E(h, ϕ, λ) =
∑

w′∈W (M0;L′)

ΛT,Q′

m EQ′
(h,M(w′, λ)ϕ,w′λ).
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Using the Iwasawa decomposition together with (7.1) we get, assuming convergence, the
sum over w′ ∈ W (M0;L′) of∫

ãL̃′

∫
AL̃′ Ṽ ′(A)L̃′\H̃(A)

∫
ia∗

M0

∑
ϕ

ΛT,Q′

m EQ′
(h, I(f, w′λ)M(w′, λ)ϕ, (w′λ)L′

)

× e〈w′λ,X〉τQ′(X − T )W(ϕ, λ) dλ dhdX.

Interchanging the order of integration we can write this as∫
ãL̃′

∫
ia∗

M0

ΞL̃′,T
M0,π0

(f, λ, w′)e〈w′λ,X〉τQ′(X − T ) dλ dX, (9.6)

where for any M , a θ̃-stable L and w ∈ W (M ;L) we define ΞL̃,T
M,π(f, λ, w) to be the sum

over ϕ ∈ BP (π) of

W(ϕ,−λ̄) ×
∫

AL̃Ṽ (A)L̃\H̃(A)
ΛT,Q

m EQ(h, I(f, wλ)M(w, λ)ϕ, (wλ)L) dh.

By using the functional equation W(ϕ, λ) = W(M(w, λ)ϕ,wλ) and a unitary change of
basis ϕ �→ M(w, λ)ϕ we get

ΞL̃,T
M,π(f, λ, w) = ΞL̃,T

wMw−1,wπ(f, wλ)

for λ ∈ ia∗
M (and hence, for all λ), where the right-hand side is defined in § 7. Thus, using

the substitution λ′ = w′λ we can rewrite (9.6) as∫
ãL̃′

τQ′(X − T )
∫

ia∗
M′

e〈λ′,X〉ΞL̃′,T
M ′,π′(f, λ′) dλ′ dX, (9.7)

where M ′ = w′M0w
′−1, π′ = w′π.

The integral (9.7) does not converge as a double integral. However, by Lemma 7.2 we
may shift the inner integral to Reλ′ = −λ′

0 where λ′
0 ∈ (a∗

L′)+ is sufficiently close to 0.
For such λ′, ∫

ãL̃′

e〈λ′,X〉τQ′(X − T ) dX = v̂L̃′
e〈λ′,T 〉∏

�∈ ˜̂∆Q̃′
〈−λ′, �∨〉 (9.8)

and hence the double integral converges and gives

v̂L̃′

∫
Re λ′=−λ′

0

e〈λ′,T 〉∏
�∈ ˜̂∆Q̃′

〈−λ′, �∨〉Ξ
L̃′,T
M ′,π′(f, λ′) dλ′. (9.9)

To justify the above steps we note that once again by Lemma 7.2 it is possible to shift
the inner integral in∫

ãL̃

τQ(X − T )
∫

AL̃Ṽ (A)L̃\H̃(A)

∣∣∣∣
∫

ia∗
M′

ΛT,Q
m (Ξ̂L̃

M ′,π′(f, λ′))(h)e〈λ′,X〉 dλ′
∣∣∣∣ dhdX (9.10)
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to Reλ′ = −λ′
0 with λ′

0 ∈ (a∗
L′)+ sufficiently close to 0. After interchanging the order of

integration and using (9.8) we may bound the integral by a constant multiple of∫
Re λ′=−λ′

0

∫
AL̃Ṽ (A)L̃\H̃(A)

|ΛT,Q
m (Ξ̂L̃

M ′,π′(f, λ′))(h)| dλ′ dh,

which converges by Remark 7.3. The convergence of (9.10) justifies the derivation of
(9.5), (9.7) and (9.9).

We remark that up to now we did not really use the full power of (5.4). We could have
used an argument similar to that of [54].

To summarize, we expressed (9.3) as the sum over Q̃′ ⊃ P̃ 00 and over w′ ∈ W (M0;L′)
of (9.9). Since ΞL̃,T

M,π(f, λ) is holomorphic and rapidly decreasing for Reλ ∈ −(a∗
L)+ near

0 we may write (9.9) as an improper integral (cf. 3.6):

v̂L̃′

∫
↗−λ′

0

e〈λ′,T 〉∏
�∈ ˜̂∆Q̃′

〈−λ′, �∨〉Ξ
L̃′,T
M ′,π′(f, λ′) dλ′.

9.3. Third step: back to the unitary axis

The integrals (9.9) are obtained by a change of variable from integrals on the line
Reλ = −w′−1λ′

0. We want to shift the contour of integration to the unitary axis. However,
the integrands may have singularities there. Instead, we fix a base point λ0 ∈ (a∗

M0
)+

sufficiently close to 0 and in general position, and try to ‘align’ the integrals to Reλ = λ0.
Thus, we want to apply Lemma 3.3 with

V = a
∗
M ′ , Λ′ =

{
�∨ : � ∈ ˜̂∆Q̃′

}
, v = −λ′

0, v′ = −w′λ0

and the dual basis ∆̃Q̃′ . The subsets of ˜̂∆Q̃′ are the sets ˜̂∆L̃1
, where L̃1 ⊃ L̃. We will

denote by prL̃1 the corresponding projection from V to (aL̃1
M ′)∗ where the latter was

defined in § 7 (cf. § 3). The upshot of Lemma 3.3 is the equality

∫
↗−λ′

0

e〈λ′,T 〉∏
�∈ ˜̂∆Q̃′

〈−λ′, �∨〉Ξ
L̃′,T
M ′,π′(f, λ′) dλ′

=
∑

L̃1⊃L̃w′

v̂−1
L̃1

∫ (aL̃1
M′ )

∗

↗− prL̃1 (w′λ0)

e〈λ′,T 〉∏
�∈ ˜̂∆L̃1

L̃′
〈−λ′, �∨〉Ξ

L̃′,T
M ′,π′(f, λ′) dλ′,

where L̃w′ ⊃ L̃′ is the Levi subgroup of H̃ defined by

˜̂∆L̃w′ =
{
� ∈ ˜̂∆L̃′ : 〈w′λ0, �

∨〉 < 0
}
.

Note that the condition L̃1 ⊃ L̃w′ , i.e. that 〈w′λ0, �
∨〉 < 0 for all � ∈ ˜̂∆L̃1

, depends
only on the coset WL1w

′, since w�∨ = �∨ for all w ∈ WL1 , � ∈ ˜̂∆L̃1
. Summing over L̃′,

https://doi.org/10.1017/S1474748005000289 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748005000289


Relative trace formula 301

w′ ∈ W (M0;L′), multiplying by the factor v̂L̃′ and using Lemma 6.4 (with M = M0 and
L = L1) we get that (9.3) is equal to

∑
(L̃1,w1,L̃′,w′)

v̂L̃1

L̃′

∫ (aL̃1
M′ )

∗

↗− prL̃1 (w′w1λ0)

e〈λ′,T 〉∏
�∈ ˜̂∆L̃1

L̃′
〈−λ′, �∨〉Ξ

L̃′,T
M ′,π′(f, λ′) dλ′, (9.11)

where (L̃1, w1, L̃
′, w′) ranges over Levi subgroups L̃1 ⊃ L̃′ of H̃ and elements w1 ∈

W (M0;L1), w′ ∈ WL1(M1;L′) with M1 = w1M0w
−1
1 such that 〈w1λ0, �

∨〉 < 0 for all
�∨ ∈ ˜̂∆L̃1

. Here M ′ = w′M1w
′−1 and π′ = w′w1π.

More generally, we claim that, for any k = 1, 2, . . . , (9.3) equals

∑
M′

v̂L̃k

L̃′ εM′

∫ (aL̃k
M′ )

∗

↗−λ′
k

e〈λ′,T 〉∏
�∈ ˜̂∆L̃k

L̃′
〈−λ′, �∨〉Ξ

L̃′,T
M ′,π′(f, λ′) dλ′, (9.12)

where M′ ranges over all tuples (L1, w1, . . . , Lk, wk, L
′, w′) with the following properties.

(1) L̃1 ⊃ L̃2 ⊃ · · · ⊃ L̃k ⊃ L̃′.

(2) wj ∈ WLj−1(Mj−1;Lj) and (Mj , πj) = wj(Mj−1, πj−1)w−1
j , for all j = 1, . . . , k

(setting L0 = G). Also, w′ ∈ WLk
(Mk;L′) and (M ′, π′) = w′(Mk, πk)w′−1.

(3) The λj are defined inductively by

λj = prL̃j (wjλj−1).

We set λ′
k = prL̃k(w′wkλk−1).

(4) 〈w1λ0, �
∨〉 < 0 for all �∨ ∈ ˜̂∆L̃1

and for each j = 2, . . . , k we have

〈wjλj−1, �
∨〉〈wjwj−1λj−2, �

∨〉 < 0

for all �∨ ∈ ˜̂∆L̃j−1

L̃j
.

Finally,

εM′ =
k−1∏
i=0

∏
�∨∈ ˜̂∆L̃i

L̃i+1

sgn(〈λi, �
∨〉).

We prove (9.12) by induction on k, the case k = 1 being the expression (9.11) above. To
carry out the induction step, we use Lemma 3.3 to shift the base point of the improper
integral in (9.12) from −λ′

k to −w′λk. As before we obtain the sum over the Levi sub-
groups L̃k+1 of L̃k containing L̃′ such that

〈w′λk, �
∨〉〈w′wkλk−1, �

∨〉 < 0 for all �∨ ∈ ˜̂∆L̃k

L̃k+1
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of

(v̂L̃k

L̃k+1
)−1

∏
�∈ ˜̂∆L̃k

L̃k+1

sgn(〈λk, �
∨〉)

∫ (a
L̃k+1
M′ )∗

↗− prL̃k+1 (w′λk)

e〈λ′,T 〉∏
�∈ ˜̂∆

L̃k+1
L̃′

〈−λ′, �∨〉Ξ
L̃′,T
M ′,π′(f, λ′) dλ′.

Using Lemma 6.4 (with G = Lk, M = Mk, L = Lk+1) and observing that the condition
on L̃k+1 depends only on WLk+1w

′ we obtain the induction step as before.
We will use (9.12) with k = rank(G) + 1. Given M′ let m be the first index so that

Lm = Lm+1. (Obviously, m exists.) Then it is easy to see that wm+1 = · · · = wk = 1 and
Lm = Lm+1 = · · · = Lk. Therefore, we can write the sum over M′ as the sum over M of

εM

∑
L̃′⊂L̃M, w′∈WLM

(MM;L′)

v̂L̃M

L̃′

∫ (aL̃M

M′ )∗

↗−w′λM

e〈λ′,T 〉∏
�∈ ˜̂∆L̃M

L̃′
〈−λ′, �∨〉Ξ

L̃′,T
M ′,π′(f, λ′) dλ′,

where M ranges over (L1, w1, . . . , Lm = LM, wm) such that

• L̃1 � L̃2 � · · · � L̃m;

• wj ∈ WLj−1(Mj−1;Lj) and (Mj , πj) = wj(Mj−1, πj−1)w−1
j , for all j = 1, . . . ,m

(setting L0 = G);

• 〈w1λ0, �
∨〉 < 0 for all �∨ ∈ ˜̂∆L̃1

, and for each j = 2, . . . ,m we have

〈wjλj−1, �
∨〉〈wjwj−1λj−2, �

∨〉 < 0 for all �∨ ∈ ˜̂∆L̃j−1

L̃j
,

where the λj are defined by λj = prL̃j (wjλj−1) as before;

and where we set (M ′, π′) = w′(Mm, πm)w′−1, MM = Mm, λM = λm and

εM =
m−1∏
j=0

∏
�∨∈ ˜̂∆

L̃j

L̃j+1

sgn(〈λj , �
∨〉).

Using the substitution λ′ = w′λ, the contribution from M becomes εM times

∑
L̃′⊂L̃M

w′∈WLM
(MM;L′)

v̂L̃M

L̃′

∫ (aL̃M
MM

)∗

↗−λM

e〈w′λ,T 〉∏
�∈ ˜̂∆L̃M

L̃′
〈−w′λ,�∨〉Ξ

L̃′,T
MM,πM

(f, λ, w′) dλ.

By (7.3) this is the integral over λ of the sum over ϕ ∈ B(πM) of

W(ϕ,−λ̄) ×
∫ ∗

AQ̃M
ṼM(A)L̃M\H̃(A)

EQM(h, I(f, λ)ϕ, λLM) dh,

or, simply, of BL̃M

(MM,πM)(f, λ) by (7.2).
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Using the holomorphy of BL̃M

(MM,πM)(f, λ) on the unitary axis and Lemma 7.4 we finally
obtain (cf. (3.10)) ∑

M

εM

∫
i(aL̃M

MM
)∗

BL̃M

(MM,πM)(f, λ) dλ,

where the sum is over M such that MM is θ-elliptic in LM.
Summarizing, we have the following claim.

Claim 9.2. The expression (9.1) is equal to

∑
M,π,L

c(M,π,L)
∫

i(aL̃
M )∗

BL̃
(M,π)(f, λ) dλ (9.13)

for some constants c(M,π,L), where the sum is over all triplets (M,π,L) consisting of a
θ-elliptic Levi subgroup M of L and a cuspidal representation π of M(A).

The combinatorial constants c(M,π,L) (which could possibly be zero) can be computed
explicitly, at least in principle. However, since they are not so important for our immediate
applications we refrain from doing it. It suffices to note that c(M,π,L) takes only finitely
many values (given G) and that c(G, π,G) = 1.

We expect Claim 9.2 to hold for general quasi-split Galois pairs.

10. Conclusion

We specialize Claim 9.2 to the case where G = GLn(E) using the analysis of § 8.

Theorem 10.1. Let G = GLn /E and H̃ = GLn /F . Then (9.1) can be expressed as

∑
(M,π)

c(M,π)
∫

i(aL
M )∗

BL̃
(M,π)(f, λ) dλ (10.1)

for some constants c(M,π) (which are bounded independently of π). Here (M,π) range
over pairs consisting of a Levi subgroup M of type (n1, n1, . . . , nk, nk,m1, . . . ,ml) and a
cuspidal representation π of M(A) of the form

π = σ1 ⊗ σ∗
1 ⊗ · · · ⊗ σk ⊗ σ∗

k ⊗ τ1 ⊗ · · · ⊗ τl,

where the τj are distinguished (by GLmj
(F )) and mutually inequivalent; L is the Levi

subgroup of type (2n1, . . . , 2nk,m1, . . . ,ml).

Corollary 10.2. The discrete part of the relative trace formula is∑
(M,π)

c(M,π)BH̃
(M,π)(f, 0),

where (M,π) range over pairs consisting of a Levi subgroup M and a cuspidal represen-
tation π = τ1⊗· · ·⊗τl of M(A) where the τj are distinguished and mutually inequivalent.
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Remark 10.3. The relative trace formula for the pair (GLn /E, θ) is compared with
the Kuznetsov trace formula for the quasi-split U(n). On the spectral side the term
considered above should match the contribution from the cuspidal representation

σ1 ⊗ · · · ⊗ σk ⊗ τ ′

on the parabolic subgroup of U(n) whose Levi part is isomorphic to GLn1(E) × · · · ×
GLnk

(E)×U(m′). Herem′ =
∑

mj and τ ′ is the generic cuspidal representation on U(m′)
whose functorial transfer to GLm′(AE) is τ1 × · · · × τl. (The existence and uniqueness
of such τ ′ is analogous to the case of SO(2n + 1) which was considered in [21]. If l > 1
then τ ′ is endoscopic; cf. [60] for the case n = 3.) In particular, the discrete contribution
comes from the case k = 0.

Consider now the case where C′ is the symmetric space of Hermitian forms. Let d =
n− 2t where t is the Witt index of the Hermitian form defining H̃.

Theorem 10.4. The relative trace formula (9.1) can be expressed in this case as

∑
(M,π)

c
′(M,π)

∫
i(aL̃

M )∗
BL̃

(M,π)(f, λ) dλ,

where (M,π) range over the cuspidal representations of M(A) of the form

π = σ1 ⊗ · · ·σk ⊗ τ1 ⊗ · · · ⊗ τl ⊗ σk ⊗ · · · ⊗ σ1,

where σi �� σi, i = 1, . . . , k, and τj is distinguished by some unitary group for j = 1, . . . , l;
if M is of type (n1, . . . , nk,m1, . . . ,ml, nk, . . . , n1) then L is the Levi subgroup of type
(n1, . . . , nk,m1 + · · · +ml, nk, . . . , n1) and m1 + · · · +ml � d.

Corollary 10.5. For odd n, the discrete part of the relative trace formula is∑
π

Bπ(f),

where the sum is over distinguished cuspidal representations of G(A). For even n we
have in addition to that the sum over Gal(E/F )-orbits of size two {σ, σ̄} of cuspidal
representations of GLn/2(AE) of

BM̃
(M,σ⊗σ̄)(f, 0),

where M is of type (n/2, n/2).

Remark 10.6. The matching terms in the Kuznetsov trace formula for GLn come from
the cuspidal data

AIFE(σ1) ⊗ · · · ⊗ AIFE(σk) ⊗ π1 ⊗ · · · ⊗ πl,

where BCE
F (πj) = τj . Here AI and BC denote automorphic induction and base change,

respectively. In particular, the discrete part corresponds to the cases where either k = 0
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and l = 1, or (if n is even) k = 1 and l = 0. The fact that c′(M,π) = 1 in this case (if we
count σ ⊗ σ̄ and σ̄ ⊗ σ together) follows directly from the analysis of § 9 (cf. § 2).

Recall also that the base change is not one to one, and hence, it may be necessary to
sum over more than one cuspidal data in GLn /F to get the required contribution. This
corresponds to the fact that the intertwining periods are not Eulerian in this case and it
is necessary to stabilize them first. For the case M = T this was done in [47] and [59].

Absolute convergence

An important feature of the expansions described in Theorems 10.1 and 10.4 is their
absolute convergence, in the sense that∑

(M,π)

∫
i(aL̃

M )∗
|BL̃

(M,π)(f, λ)| dλ < ∞.

Indeed, taking into account Lemma 7.4, the absolute convergence follows from the fact
[54, § 6] that ∑

M,π

(1 + Λπ)−N < ∞ (10.2)

for sufficiently large N , where π ranges over the cuspidal representations of M with
non-zero Kfin-fixed vectors.

The statement of Theorems 10.1 and 10.4 is an equality between two continuous distri-
butions in f . Indeed, (9.1) is bounded by a constant multiple of ‖f‖∞, while for the sum
of Bessel distributions this follow from Lemma 7.4, (10.2) and Lebesgue’s dominated
convergence theorem. Thus, Theorems 10.1 and 10.4 hold without the K∞-finiteness
assumption on f .
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Norm. Sup. (4) 38(4) (2005), 609–669.

36. H. Jacquet, Truncation for the fourier trace formula: the GL(2) case, unpublished notes.
37. H. Jacquet and N. Chen, Positivity of quadratic base change L-functions, Bull. Soc.

Math. France 129(1) (2001), 33–90.
38. H. Jacquet and K. F. Lai, A relative trace formula, Compositio Math. 54(2) (1985),

243–310.
39. H. Jacquet and Y. Ye, Germs of Kloosterman integrals for GL(3), Trans. Am. Math.

Soc. 351(3) (1999), 1227–1255.
40. H. Jacquet, I. I. Piatetskii-Shapiro and J. A. Shalika, Rankin–Selberg convolu-

tions, Am. J. Math. 105(2) (1983), 367–464.
41. H. Jacquet, K. F. Lai and S. Rallis, A trace formula for symmetric spaces, Duke

Math. J. 70(2) (1993), 305–372.
42. H. Jacquet, E. Lapid and J. Rogawski, Periods of automorphic forms, J. Am. Math.

Soc. 12(1) (1999), 173–240.
43. H. Jacquet, E. Lapid and S. Rallis, A spectral identity for skew symmetric matrices,

in Contributions to automorphic forms, geometry, and number theory, pp. 421–455 (Johns
Hopkins University Press, Baltimore, MD, 2004).

44. D. Jiang, Z. Mao and S. Rallis, A relative Kuznietsov trace formula on G2, Manuscr.
Math. 99(3) (1999), 411–423.

45. C. D. Keys and F. Shahidi, Artin L-functions and normalization of intertwining oper-
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