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Vibration-induced droplet ejection is a novel way to create a spray. In this method,
a liquid drop is placed on a vertically vibrating solid surface. The vibration leads to
the formation of waves on the free surface. Secondary droplets break off from the
wave crests when the forcing amplitude is above a critical value. When the forcing
frequency is small, only low-order axisymmetric wave modes are excited, and a single
secondary droplet is ejected from the tip of the primary drop. When the forcing
frequency is high, many high-order non-axisymmetric modes are excited, the motion
is chaotic, and numerous small secondary droplets are ejected simultaneously from
across the surface of the primary drop. In both frequency regimes a crater may
form that collapses to create a liquid spike from which droplet ejection occurs. An
axisymmetric, incompressible, Navier–Stokes solver was developed to simulate the
low-frequency ejection process. A volume-of-fluid method was used to track the free
surface, with surface tension incorporated using the continuum-surface-force method.
A time sequence of the simulated interface shape compared favourably with an
experimental sequence. The dynamics of the droplet ejection process was investigated,
and the conditions under which ejection occurs and the effect of the system parameters
on the process were determined.

1. Introduction
The atomization of liquids is important in a number of industrial processes, some

of which are outlined by Frohn & Roth (2000). These include spray cooling, spray
coating, mixing, material processing, and humidification. Other important uses span a
wide range from aerospace applications, including atomization and injection for engine
combustors, to biomedical applications, such as emulsification and encapsulation. A
heat transfer cell for high-power microelectronic cooling is our current focus. In order
to exploit the droplet atomization phenomenon in such processes it is important
to understand how the phenomenon works and to be able to characterize it. This
information is needed to optimize the design of devices such as the heat transfer cell.
The goal of the present work is to help provide the required understanding of droplet
ejection.

Vibration-induced droplet ejection is a novel method to create a liquid spray. In
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Figure 1. A time sequence of experimental video stills showing the drop shape. The slider bar to
the left of each image indicates the displacement of the base. The fluid is water with a volume of
30 µl. The forcing parameters are a frequency of 61 Hz and an acceleration amplitude of 66 m s−2.
Images courtesy of Dr Kai Range.

this process, a liquid drop is placed on a vertically vibrating, horizontal, solid surface.
The vibration causes waves to form on the surface of the drop. When the forcing
amplitude is above a threshold, secondary droplets break off from the wave crests.

The value of the forcing frequency has a dramatic effect on the process. As reported
by Range, Glezer & Smith (2001), when the forcing frequency is small, only low-order,
axisymmetric wave modes are excited. When the forcing amplitude is also small, the
primary drop oscillates without ejection occurring. When the forcing amplitude is
high enough, the upward motion of the base causes the primary drop to flatten,
which leads to the formation of a crater or depression in the centre of the drop.
Then, as the base moves downward, surface tension forces cause the crater to collapse
towards the centre. The liquid flowing into the centre forms a high-pressure region.
This forces the liquid upward, creating a high-momentum liquid spike in the centre
of the drop. One or more secondary droplets may then pinch off from the end of the
spike.

An example of this behaviour is shown in the time sequence of experimental images
in figure 1. The liquid was water, the drop volume was 30 µl, and the forcing frequency
was 61 Hz. A corresponding simulation sequence, produced using the model described
in this paper, is shown in figure 2. The simulation parameters were chosen to match
the experimental conditions of figure 1. The displacement of the solid base is indicated
by slider bars in figure 1, and by horizontal lines in figure 2. The motion of the drop
in the experiment and the simulation are slightly out of phase from one another. This
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Figure 2. The computed drop-shape time sequence. The horizontal lines indicate the minimum and
maximum displacement of the base. Time is in units of forcing periods. The problem parameters
(defined in the text) are Re = 475, Bo = 1.30, A = 8.74, Ω = 1.24, θ = 0, α = 0.0012, and β = 0.018.

is due to the differing initial conditions. The forcing amplitude was ramped up in the
experiment and stepped up in the simulation. In other respects the simulation and
the experiment are strikingly similar. In both cases a crater formed, as seen at t = 1.2
in figure 2 and in images (b)–(d ) in figure 1. The crater then collapsed to form a spike
in the centre of the drop, as seen at t = 1.4 in figure 2 and figures 1( f ) and 1(g).
Finally, a secondary droplet pinched off from the end of the spike. The secondary
droplet is seen at t = 1.6 in figure 2 and in figures 1(h) and 1(i ). Later, in figure 1(k ),
another droplet pinched off as the spike collapsed, but this droplet immediately fell
back into the primary drop, as seen in figure 1(l ).

The parameter values of the simulation of figure 2 are close to the limits of
applicability of the numerical method, which is best suited to low-surface-tension,
high-viscosity fluids. Given this limitation the agreement between figures 1 and 2 is
quite good, although the computed shape of the ejected drop is clearly erroneous.
Quantitative experimental data are not available for comparison. More rigorous
verification of the numerical method, including determination of the applicability
limits, is presented in § 2.

Under certain conditions, when the forcing amplitude is moderate, a crater may
form and collapse to enclose a bubble, as presented in § 3 below. When the walls of
the crater are steep the rim of the crater collapses more quickly than the bottom of
the crater, so a bubble is enclosed. As in the case without a bubble, a spike is formed.
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The liquid that flows inward during the crater collapse can move downward into the
bubble, as well as upward to form a spike, so the momentum of the spike is smaller
than if there were no bubble. Droplet ejection may or may not occur. Increasing the
forcing amplitude further leads to droplet ejection without the formation of a crater.
In this case the initial upward momentum of the primary drop is sufficient for droplet
ejection to occur before a crater forms.

The behaviour is quite different when the forcing frequency is high. The vibratory
mode observed first is generally a set of axisymmetric waves that appear as concentric
circles. Other modes become active as the driving amplitude is increased, including
azimuthal modes, and the response becomes chaotic. When the forcing amplitude is
high enough, many secondary droplets are ejected simultaneously from across the
surface of the drop. At a single ejection location on the surface of the drop, a small
crater may form and then collapse to create a spike from which ejection occurs. The
process of ejection from a crater is similar in the low- and high-frequency regimes.
Because of this similarity, we hope that studying the low-frequency response will help
elucidate the high-frequency behaviour. James et al. (2003) discuss the high-frequency
behaviour in detail, present visualizations of the high-frequency response, including
close-ups of crater formation, and describe an interesting interaction between the
high-frequency ejection dynamics and the dynamics of the transducer. These authors
present experimental results and a simplified model of this dynamic coupling.

The first stage of the vibration-induced atomization process, that of surface wave
formation, was first reported by Faraday (1831) for a layer of liquid. Miles & Hender-
son (1990) have reviewed the Faraday-wave literature. The linear stability of Faraday
waves was first presented by Benjamin & Ursell (1954) for inviscid fluids, and more
recently, for viscous fluids, by Kumar & Tuckerman (1994), Kumar (1996), Besson,
Edwards & Tuckerman (1996), and Lioubashevski, Fineberg & Tuckerman (1997).
For most parameter values, the least stable mode is subharmonic. The nonlinear
dynamics of Faraday waves have been studied analytically by Miles (1993), Zhang
& Vinals (1997), Nayfeh & Nayfeh (1990), and Decent & Craik (1995). Giavedoni
(1995) presented a nonlinear numerical simulation of Faraday waves using a finite
element method. Edwards & Fauve (1994), Ciliberto & Gollub (1984, 1985), Ciliberto,
Douady & Fauve (1991), Jiang et al. (1996), and Virnig, Berman & Sethna (1988)
have performed experimental studies. Pattern formation, mode interactions, chaotic
response, and hysteresis have all been investigated.

Several experimental studies of attached drop oscillations have been performed.
Rodot, Bisch & Lasek (1979) reported the amplitude of the response as a function
of the system parameters. Chiba & Wakamatsu (1997) determined the effect of the
contact angle on the response. DePaoli, Scott & Basaran (1992) determined the first
few mode shapes and the dependence of the natural frequency on the drop size.
Numerical work has been done, as well. Siekmann & Schilling (1989), Gañán &
Barrero (1990), and Basaran & DePaoli (1994) simulated the free oscillations of an
attached drop. The resonant frequencies and mode shapes were determined. Wilkes
& Basaran (1997, 1999) studied the forced oscillations of a drop hanging from a solid
surface.

A few researchers have investigated the ejection of droplets due to vertical vibration.
Sorokin (1957) observed droplet ejection experimentally. Goodridge, Shi & Lathrop
(1996) performed experiments in which a layer of liquid was oscillated vertically and
droplets were ejected from the liquid surface. The forcing amplitude threshold for
droplet ejection was measured. For low-frequency forcing a smooth surface with a
single liquid spike was seen. A droplet was ejected from the tip of the spike. For
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high-frequency forcing a turbulent state was observed with numerous liquid spikes
ejecting many droplets. In the latter case, edge effects are small because the excited
wavelengths are much smaller than the size of the container. For this case, a scaling
law was found for the dependence of the ejection threshold on the forcing frequency
and fluid properties. Goodridge et al. (1997) extended the scaling law to include
viscous effects. Shi, Goodridge & Lathrop (1997) studied bifurcations in the response
to low-frequency forcing. They found that as the forcing amplitude was increased, the
response went from stationary, to periodic, to modulated, to periodic with a response
period seven times the forcing period, to ejecting, to periodic with a response period
six times the forcing period, to ejecting. The ejecting states were characterized by
the presence of singular fluid spikes from which droplets were ejected. Hogrefe
et al. (1998) examined this singularity in more detail. To determine its structure,
they developed a local model that predicted a power-law scaling of the interfacial
shape. This scaling was confirmed by the experimental data. The spike is created
by the collapse of a crater, which was studied theoretically and experimentally by
Zeff et al. (2000). They found a similarity solution for the shape of the crater during
its collapse. Yule & Al-Suleimani (2000) describe various droplet formation modes
observed in their experiments on the high-frequency vibration of a liquid layer. They
also present a model to explain the apparent randomness in ejection from multiple
sites on the liquid surface.

The breakup of a liquid surface occurs in a number of other flows, and sometimes
looks very similar to vibration-induced ejection. Examples include droplet impact, jet
break-up, dripping, and cavity filling. Droplet impact is of particular interest because
it can lead to splashing that has a striking resemblance to vibration-induced ejection.
In both a crater may form and then collapse to create a jet from which a droplet
breaks off. The impact of a drop on a solid surface was studied numerically by Fukai
et al. (1993, 1995) and experimentally by Yarin & Weiss (1995). The impact of a
drop on a liquid layer was studied numerically by Pumphrey & Crum (1988) and
Pumphrey, Crum & Bjørnø (1989), and experimentally by Oguz & Prosperetti (1990).
The transient interface shape was computed or visualized in each of these studies.

Jet break-up is also relevant to the present work, and has been studied extensively.
The literature is reviewed by Eggers (1997). His focus is on theory, including stability,
one-dimensional approximations, and similarity solutions, although computational
and experimental work is also discussed. Numerical simulations of the full Navier–
Stokes equations have been performed by Wilkes, Phillips & Basaran (1999) and
Wilkes & Basaran (2001) using a finite element method and by Beris, Richards &
Lenhoff (1996) using a volume-of-fluid method. Vibration has been used to regulate
jet break-up, for example by Webster & Longmire (2001) and Chen & Basaran (2002).

In the present work, computations were performed using a volume-of-fluid (VOF)
method to simulate the low-frequency droplet ejection process. This method has been
used to study various processes such as jet break-up (Zhang 1999a, b), two-layer
Couette flow (Coward et al. 1997), and the break-up of a drop in a shear flow (Li,
Renardy & Renardy 2000). Additional simulations are presented in various papers
concerning the development of, and improvements to, the numerical method, including
Gueyffier et al. (1999), Puckett et al. (1997), Rudman (1997, 1998), and Renardy &
Renardy (2002). The VOF method is reviewed by Scardovelli & Zaleski (1999).

The remainder of the paper is organized as follows. The computational method
is described in § 2, including references to the literature. The detailed dynamics of
the droplet ejection process is discussed in § 3. Low-frequency droplet ejection was
simulated over a range of the parameters. The effects of the physical parameters on
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the volume of the ejected droplet, the velocity of the ejected droplet, and the time at
which ejection occurred are presented in § 4. The threshold forcing amplitude, above
which ejection occurs, is discussed in § 5. Conclusions are presented in § 6.

2. Computational method
An axisymmetric, Navier–Stokes solver, based on a projection method, was designed

to simulate the transient fluid mechanics of low-frequency, vibration-induced, droplet
ejection. In the volume-of-fluid method, a volume fraction, F , is defined in each cell as
the fraction of the cell volume that contains liquid. The volume fraction is convected
with the flow to track the interface. The equations are solved in both the liquid drop
and the surrounding gas. Surface tension is incorporated using the continuum-surface-
force (CSF) method. In this method, surface-tension forces are included directly in
the momentum equation. The majority of previous work using the VOF and CSF
methods is in Cartesian geometry, but Beris et al. (1996) successfully used these
methods in an axisymmetric geometry to study jet break-up.

The axisymmetric governing equations are written in a reference frame that oscil-
lates with the solid base. The equations are non-dimensionalized using a length scale

that is the cube root of the drop volume, V. The velocity scale is
√
σ/ρLV1/3, the

time scale is
√
ρLV/σ, and the pressure scale is σ/V1/3. The dimensionless density,

ρ, and viscosity, µ, are scaled on the liquid properties, denoted by a subscript L. Gas
properties are denoted by a subscript G. The surface tension coefficient is σ. After
non-dimensionalization, the governing equations are

∇ · V = 0, (1)

ρ

[
∂V

∂t
+ (V · ∇)V

]
= −∇p+

1

Re
∇ · (2µD) + ρ[A sin(2πΩt+ θ)− Bo]k̂ + κ∇F. (2)

The velocity is V , the pressure is p, and the rate of deformation tensor is D . The last
term in equation (2) is from the continuum-surface-force method. It is the interfacial
curvature, κ, times the gradient of the volume fraction. The CSF method is discussed
further below. The vibratory forcing is the sine term in equation (2). The density
and viscosity were assumed to be constant in each fluid, but in order to apply the
same equations in every cell they were retained as variables in the equations. Thus,
the density and viscosity are both linear functions of the volume fraction across the
interface. The dimensionless groups are defined as follows: the Reynolds number

Re =
√
ρLσV1/3/µL, the Bond number Bo = ρLgV2/3/σ, the dimensionless forcing

amplitude A = ρLaV2/3/σ, the dimensionless forcing frequency Ω = ω
√
ρLV/σ, the

density ratio α = ρG/ρL, and the viscosity ratio β = µG/µL. The dimensional forcing
acceleration amplitude is a and the dimensional forcing frequency is ω. The phase of
the forcing is θ.

The equations were discretized on a uniform, staggered grid, in a rectangular
domain, using a finite-volume method. Central differencing was used on all terms,
except for the convective terms, for which the hybrid differencing of Nichols, Hirt &
Hotchkiss (1980) was used. The marker-and-cell (MAC) method of Harlow & Welch
(1965) was used to compute the velocity and pressure fields. In this projection method,
the explicitly discretized Navier–Stokes equations were advanced in time to calculate
an intermediate velocity field. The divergence of the intermediate velocity was used
as the source term in a Poisson equation for the pressure change. The solution of this
equation was used to update the pressure to the next time step. The pressure was then
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used to update the intermediate velocity to the divergence-free velocity at the next
time step. The discrete Poisson equation was solved using an incomplete-Cholesky
conjugate-gradient (ICCG) method. This is an iterative method with preconditioning
and is presented by Golub & Van Loan (1989), Meijerink & van der Vorst (1977,
1981), and Kershaw (1978).

The initial velocity was zero in the moving reference frame, so the drop was
initially translating as a rigid body with the base. The initial liquid drop shape was
hemispherical and the pressure was hydrostatic. Although the drop would not be
exactly hemispherical with this pressure distribution (unless there was no gravity),
the hydrostatic pressure change was small compared to the capillary pressure for the
parameters considered, so the gravitational modification of the drop shape would
be small. The left (r = 0) boundary was a symmetry line. The bottom and right
boundaries were no-slip walls. The position of the contact line on the bottom boundary
was held fixed to match the experiments of Range et al. (2001). In that work the solid
surface was a small piston and the drop volume was chosen so that the drop filled
the top of the piston, pinning the contact line at the sharp edge. Possible motion of
the contact line when the contact angle is very large or very small was neglected. The
top boundary was an exit plane. Liquid that left the domain through the exit plane
was not allowed to re-enter.

Adaptive time stepping was used to ensure that the computation remained stable.
The time step was limited by convective, diffusive, and capillary criteria as defined by
Nichols et al. (1980):

∆t = min

[
C1

∆r

umax

, C1

∆z

vmax

, C2

Re∆r2∆z2

2(∆r2 + ∆z2)
min

(
1,
α

β

)
, C3

√
α

8
min(∆r,∆z)3

]
. (3)

The Courant number, C1, the von Neumann number, C2, and the capillary time-step
limiter, C3, were each chosen to be less than one for numerical stability. The radial and
vertical components of velocity are u and v, respectively. At every step, equation (3)
was used to compute the time step, ∆t.

The volume-of-fluid method was developed by Nichols et al. (1980) and Hirt &
Nichols (1981). The main advantages of the method are that the free-surface shape
is not constrained in any way and changes in topology are handled automatically.
The interface location is tracked as it moves through the fixed, structured, Eulerian
grid. In each cell the volume fraction is defined as the fraction of the cell volume
that is occupied by liquid. The volume fraction is 1 in cells that contain only liquid,
zero in cells that contain only gas, and between zero and 1 in cells that contain
an interface. The evolution of the volume fraction is governed by the following
convection equation:

∂F

∂t
+ (V · ∇)F = 0. (4)

This equation is solved in every cell, but is non-trivial only near the interface. The
volume fraction is discontinuous at the interface. To maintain the discontinuous
nature of F care was taken not to introduce numerical diffusion when solving
equation (4). Diffusion would cause smoothing of the discontinuity and the interface
would become smeared normal to itself. The approach used to avoid this was to
calculate the volume fraction flux across each cell face using a linear approximation
of the interface position. The fluxes were then used to update the volume fraction to
the next time step.

Following the methodology of Puckett et al. (1997), equation (4) was split into
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radial and vertical directions using an intermediate volume fraction. The fluxes were
calculated in one direction and used to update the volume fraction to the intermediate
level. Then, using the intermediate volume fraction, the fluxes were calculated in the
other direction and used to update the intermediate volume fraction to the next
time level. The direction computed first was switched at each time step. The volume
fraction flux is the amount of liquid that passes through the cell face during the
time step. This is equal to the amount of liquid in the domain of dependence at
the beginning of the time step. The domain of dependence was approximated by the
region bounded by the face of interest, the two adjacent perpendicular grid lines, and
a line parallel to the face of interest that was a distance of U∆t away from the face
in the direction opposite the direction of motion. U was the velocity normal to the
face. Note that the sign of U determined which cell the domain of dependence was in
and the sign of the flux. The flux was the intersection of the domain of dependence
and the portion of the cell volume that contained liquid, as defined by a straight-line
approximation of the interface. The line segments were defined independently in each
cell, so the approximate interface need not be continuous from one cell to the next.
In each partially full cell, a slope and an intercept represented the line segment. The
slope of the interface was calculated from the normal vector, which is defined below.
Additionally, the liquid was flagged to be above or below the line segment; this was
also determined from the normal vector. The intercept was calculated iteratively to
ensure that the line segment defined the correct volume fraction.

The continuum-surface-force method was introduced by Kothe, Mjolsness & Torrey
(1991). It was developed for use with the volume-of-fluid method and has similar
advantages: ‘The continuum method eliminates the need for interface reconstruction,
simplifies the calculation of surface tension, enables accurate modeling of two- and
three-dimensional fluid flows driven by surface forces, and does not impose any
modeling restrictions on the number, complexity, or dynamic evolution of fluid
interfaces having surface tension’ (Brackbill, Kothe & Zemach 1992). In the CSF
method the surface-tension force is distributed over a thin layer near the interface to
become a volume force. As the thickness of the layer approaches zero the volume
force approaches the proper surface force. The continuum surface force is included in
the momentum equation, so the surface-tension force is calculated in every cell, but
it is non-zero only near the interface.

The interfacial curvature is computed from the volume fraction, and since the
volume fraction is discontinuous at the interface the computation must be done
carefully. Additionally, since the gradient of the volume fraction is non-zero only
near the interface, the curvature is only defined near the interface. The volume
fraction used to calculate the curvature is smoothed, also following the methodology
of Brackbill et al. (1992). Smoothing is needed because the interfacial region is very
thin. The smoothed volume fraction is only used in the curvature calculation. Once
the volume fraction has been smoothed, the normal vector, n, and the curvature, κ,
are calculated from the following equations using finite-difference techniques:

n = ∇F, (5)

κ =
1

|n|
[(

n

|n| · ∇
)
|n| − (∇ · n)

]
. (6)

This form of the curvature was found by Brackbill et al. (1992) to favour contributions
from the centre of the interfacial region when discretized, yielding more accurate
results.
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Using the volume-of-fluid and continuum-surface-force methods makes it unnecess-
ary to apply boundary conditions at the interface. The volume-of-fluid method satisfies
the kinematic condition. The momentum equation satisfies the stress-balance bound-
ary condition when the continuum surface force is included. Because of this the
governing equations are the same in every cell.

Changes in topology occur naturally in this method, so there is no rupture criterion.
The method tracks volumes of fluid, not the interface itself. The interface is recon-
structed at each time step, but connectivity is not determined. An interface segment
in a grid cell is independent of the rest of the interface. Because of this structure,
the method does not pick up whether or not the interface is singly connected, or
which fluid volumes are connected to one another. This is determined as part of the
interpretation of the data during post-processing. In the post-processing an F = 1/2
contour is drawn to represent the interface. If this contour has transitioned from
being singly connected to multiply connected from one time step to the next rupture
is considered to have occurred.

Consider a drop that is stretched to form a neck along the axis of symmetry. At
some time the neck thins to the point where it occupies a single grid cell along the
axis. Liquid is convected out of this cell through both the top and bottom cell faces,
further thinning the neck. When all the liquid in the cell has been convected out of
the cell rupture has occurred. Rupture generally occurs before the cell is completely
emptied because the F = 1/2 contour becomes disconnected.

Just before rupture the neck radius is on the order of the size of a grid cell. The
details of pinch-off do not strongly affect the overall dynamics of the process, so
the results we present are nevertheless valid. However, improvement of the resolution
would be necessary to accurately simulate the formation of satellites, which we will
consider in future work.

Extensive validation studies of our numerical algorithm were performed. The
important points will be discussed presently, and the details (in addition to further
details of the computational method) are given by James (2000). The pressure solver,
flow solver, and volume fraction evolution routine were tested separately and together.
The effects of grid resolution and all other computational parameters were evaluated
for various test problems and for the vibration-induced droplet ejection problem. The
effect of grid spacing on the ejected-drop velocity, ejected-drop volume, and time of
ejection is shown in figure 3. It was found that the grid spacing affects the ejected-drop
volume and the time of ejection weakly. The computations presented in §§ 3–5 all use
a grid spacing of 0.05, which can be seen from figure 3 to be adequate.

Tests were performed to evaluate the effect of parasitic errors, which are a known
limitation of the VOF/CSF method (Brackbill et al. 1992). An unsupported spherical
drop in zero gravity is in static equilibrium. However, truncation error in the numerical
method leads to motion. Under some conditions the computation becomes unstable
and the drop fragments. The effect of the numerical and physical parameters on
this numerical instability was quantified via the kinetic energy and an L1 measure
of the error in the interface shape. Refining the grid decreased the kinetic energy
and the error. Smoothing in the curvature computation was required for stability,
but too much smoothing re-introduced instability. The simulation became unstable if
the Reynolds number was high. For a Weber number (We = ρLUV1/3/σ) of 0.01,
simulations for Re = 1 and Re = 10 were stable, and for Re = 100 were unstable. For
the two stable cases, the pressure jump across the interface was 2.4% higher than the
theoretical value at the end of the simulation. A case was run with water–air properties
and was found to be unstable. These results provide a guideline of parameter ranges
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Figure 3. Effect of grid resolution on the response. Re = 10, A = 25, Bo = 0, Ω = 1, θ = 0,
α = 0.001, and β = 0.001.

Grid cells per Density Pdrop/Ptheory L2

direction ratio Kothe Present Kothe Present

16 0.5 0.70 1.004 3.904 2.827
32 0.5 0.71 0.994 1.588 1.085
16 0.1 0.84 1.010 2.255 1.487
32 0.1 0.82 0.987 1.014 1.436
16 0.001 1.32 1.008 4.130 1.580
32 0.001 1.88 0.984 4.703 1.549

Table 1. Comparison of static drop pressure to the results of Kothe et al. (1996).

for which parasitic errors may be an issue. However, the pressure errors that cause
parasitic currents are small and should be less important in a situation with large
physical variations in the pressure, which is the case in the droplet ejection problem.

Additional cases of the static drop problem were run to compare to the data of
Kothe et al. (1996). They computed the pressure in a static drop and an L2 norm of
the pressure distribution error for three density ratios and two grid resolutions. The
L2 norm is a measure of the deviation of the computed pressure distribution from
the theoretical distribution. A comparison of the present axisymmetric data to their
three-dimensional data is given in table 1. All parameter values were the same. The
present results are uniformly better.

Computations were performed for comparison with the computations of Wilkes &
Basaran (2001). They simulated vibration-induced motion of a drop, up to the moment
of break-up, using a finite element method. When the minimum radius reached 0.002
they stopped their computations and assumed break-up was imminent. The present
computations were also stopped at break-up for this comparison. The only physical
difference between the two simulations is that the surrounding medium is neglected
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t = 0 t = 0.57 t = 0.79 t = 0.95

t = 1.12 t =1.69 t =1.89 t =1.96

Figure 4. Drop shape profile evolution. Time in periods. Re = 22.6, Bo = 0, Ω = 0.81, A = 5.61,
α = 0.001, β = 0. Solid line: present work; dashed line: Wilkes & Basaran (2001).

by Wilkes & Basaran, but included in the present work. For this comparison the
surrounding fluid viscosity was set to zero, and its density was set to 0.001 times
that of the drop fluid. In figure 4 the computed interface shape from both Wilkes
& Basaran and the present work are shown at several times for a forcing amplitude
of A = 5.61. The length of the drop is plotted as a function of time in figure 5 for
the same parameters. The two computations predict time of ejection within 0.7%,
and maximum elongation within 1.3%, of one another. Another comparison was
with a forcing amplitude of A = 5.5. All other parameter values remained the same.
Although the forcing amplitude was decreased by only a small amount, the ejection
time increased substantially, changing from the end of the second cycle to the end
of the fifth cycle. This jump in ejection time is typical of the system behaviour as
the amplitude is decreased. It is predicted by both the present computations and by
Wilkes & Basaran, with a difference in ejection time of only 0.3%. The maximum
elongation in the second cycle differs by 0.8%, and the maximum just before pinch-
off differs by 3.7%, between the two computations. Overall, the results of the two
computations agree very well and both predict the same large change in time of
ejection for a small change in forcing amplitude.

3. Ejection dynamics
In order to understand the dynamics of the ejection process it is instructive to

study the flow field in the drop. Two cases are considered. In both cases the Reynolds
number was 10, the dimensionless driving frequency was 1, the driving phase was
zero, and there was no gravity. In the first case, the driving amplitude was 25 and
ejection occurred without a crater forming. In the second case, the driving amplitude
was decreased to 18 and a crater formed that led to ejection. For the water–glycerin
mixture used in some of our experiments these parameters correspond to a 1.24 cm
drop diameter, a 10.4 Hz forcing frequency, and a 2.20 or 1.58 g forcing amplitude.

In figures 6 and 9 time sequences of the drop shape and velocity vectors are shown
for the two cases with A = 25 and A = 18, respectively. The horizontal lines show the
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Figure 5. Droplet height on centreline as a function of time. Re = 22.6, Bo = 0, Ω = 0.81,
A = 5.61, α = 0.001, β = 0.

minimum and maximum displacements of the base. The rectangle shows the extent
of the domain. The velocities, which were computed in the reference frame of the
moving domain, have been transformed into a stationary reference frame. Therefore,
the vectors on the bottom of the domain indicate the velocity of the solid base. The
radial velocity is defined half a cell away from the bottom boundary, so in the figures
it appears to be non-zero at the base even though the no-slip condition is applied
there. The scales of the velocity vectors in the two figures are the same. Velocity
vectors are shown only in every third computational cell for clarity. Close-ups of the
neck near the time of ejection are shown in figures 7 and 10. Pressure contours are
shown in figures 8 and 11 for the same cases.

First consider the case illustrated in figures 6–8. When the simulation begins, the
solid base is at its midpoint and is moving upward. The drop is moving upward as
a rigid body with the base velocity. During the first part of the cycle, until t = 0.25,
the base is moving up, but is decelerating. The bottom of the drop must maintain the
same velocity as the base, but since the drop has upward inertia the upper portion
moves faster and the drop becomes elongated. A pressure maximum forms at the tip
of the drop due to surface tension forces. At t = 0.25 the base velocity is zero, so a
stagnation point forms in the flow on the centreline.

During the next part of the cycle, until t = 0.75, the base is moving downward,
and the bottom portion of the drop moves down with the base. The upper portion
has enough inertia to continue to move upward, but it slows down since the bottom
portion is pulling downward on it. The stagnation point separates the two regions.
The stagnation point is formed at the base at t = 0.25, it moves up the axis of the
drop until about t = 0.5, and then it moves down the axis of the drop. The liquid
flows radially inward and vertically away from this stagnation point. Because of this
flow structure the drop continues to elongate and a neck forms. There is still a local
maximum in pressure at the tip, and a second local maximum forms at the neck, also
due to surface tension forces. Note that although the pressure maximum occurs at
the thinnest part of the neck, the stagnation point does not. A third local maximum
in pressure forms at the base during this interval. At t = 0.75 the base velocity is
again zero, so a second stagnation point forms.
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5 velocity units

t = 0

t = 0.2
t = 0.4

t = 0.6
t = 0.8

t =1.0

t =1.2
t =1.4 t =1.45

t =1.6

t =1.46

Figure 6. The droplet ejection process without the formation of a crater. Time is in periods. Velocity
vectors are shown in every third cell. The horizontal lines indicate the minimum and maximum
displacement of the base. Stagnation points are indicated by ×. Re = 10, Bo = 0, A = 25, Ω = 1,
θ = 0, α = 0.001, and β = 0.001. The arrow at top left shows the velocity scale in dimensionless
units. 30× 80 grid cells in half of the domain shown.
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2 velocity units

t =1.2 t =1.4 t =1.45

Figure 7. Close-up of pinch-off. Time is in periods. Velocity vectors are shown in every cell.
Stagnation points are indicated by ×. Re = 10, Bo = 0, A = 25, Ω = 1, θ = 0, α = 0.001, and
β = 0.001. 30× 80 grid cells.

During the next stage, from t = 0.75 to t = 1.25, the base moves upward. The
uppermost tip of the drop continues to move upward, then slows to a stop and reverses
direction. This causes the formation of a stagnation point in the upper portion of
the drop. During this interval the tip is hardly moving, but liquid is still flowing in
from below. This flow, in conjunction with surface-tension forces, causes the upper
region to become more spherical. The first stagnation point moves downward, and
then moves upward. The lower stagnation point quickly moves up to approach the
first one. The flow in the neck moves radially outward and vertically toward the lower
stagnation point. This causes the liquid region near the base to thicken. All the local
pressure maxima are maintained. At t = 1.25 the base velocity is zero and a fourth
stagnation point forms at the base of the drop.

Droplet ejection occurs during the next stage (between t = 1.25 and t = 1.5) while
the base is moving down. The upper portion of the drop is nearly spherical at pinch-
off. The two middle stagnation points merge just below the neck. These stagnation
points are very close together for some time, as seen in figure 7, so it is difficult to
resolve exactly when they merge. The pressure is high at the neck, due to surface
tension. This forces liquid to flow up out of the neck, so the neck thins and pinch-off
occurs. After pinch-off the lower portion of the drop quickly recoils as the base and
surface tension pull it downward. The ejected droplet becomes rounder and continues
to slowly move upward.

Next consider the case illustrated in figures 9–11, in which the forcing amplitude
is smaller than before. The initial motion is similar to the previous case. The drop
moves upward as a rigid body with the velocity of the base. As the base slows, from
t = 0 to t = 0.25, the inertia of the drop causes it to elongate. When the velocity of the
base is zero, a stagnation point forms. As the base moves downward, from t = 0.25 to
t = 0.75, the upper portion of the drop moves upward and the lower portion moves
downward. This causes the further elongation of the drop and the formation of a
neck. The lower portion pulls on the upper portion, causing the upper portion to slow.
Unlike the previous case, the upper portion slows to a stop and reverses direction.
This is because the forcing amplitude is lower, so the upper portion of the drop does
not have as much inertia.

The next stage of the motion, from t = 0.75 to t = 1.25, is quite different from the
previous case. The base is moving upward in this interval and the upper portion of
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Figure 8. Pressure contours in the droplet ejection process without the formation of a crater. Time
is in periods. Re = 10, Bo = 0, A = 25, Ω = 1, θ = 0, α = 0.001, and β = 0.001. 30× 80 grid cells in
half of domain shown.

the drop is moving downward. This causes the neck to fill in. Next, from t = 1.25
to t = 1.75 the base moves downward. The entire drop also moves downward during
this phase.

Next, from t = 1.75 to t = 2.25, the base moves upward. The drop initially has
momentum downward, but is restrained by the upward motion of the base. This
causes the downward momentum to be transferred into outward, radial momentum.
This is seen as flattening of the drop. The centre of the drop thins to form a
crater.

As the base slows down after t = 2, and then reverses direction at t = 2.25, the
crater begins to collapse. Large surface tension forces due to the negative curvature of
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5 velocity units
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Figure 9. For caption see facing page.
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t =2.4

t =2.6 t =2.8

t =3.0
t =3.2 t =3.4

t =3.44 t =3.45
t =3.6

t = 4.0
t =3.8

Figure 9. The droplet ejection process with the formation of a crater. Time is in periods. Velocity
vectors are shown in every third cell. The horizontal lines indicate the minimum and maximum
displacement of the base. Stagnation points are indicated by ×. Re = 10, Bo = 0, A = 18, Ω = 1,
θ = 0, α = 0.001, and β = 0.001. 30× 80 grid cells in half of the domain shown.
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2 velocity units
t =3.2 t =3.4 t =3.44

Figure 10. Close-up of pinch-off. Time is in periods. Velocity vectors are shown in every cell.
Stagnation points are indicated by ×. Re = 10, Bo = 0, A = 18, Ω = 1, θ = 0, α = 0.001, and
β = 0.001. 30× 80 grid cells.

the interface produce a negative pressure that causes flow toward the centre. Liquid
approaching the axis cannot flow down into the base, so it flows upward, creating a
spike with high inertia. This portion of the drop moves upward and the base moves
downward (until t = 2.75) and so the drop quickly becomes very elongated.

After this point the motion regains its similarity to the previous case. The dynamics
between t = 2.75 and ejection are similar to the dynamics between t = 0.75 and
ejection in the previous case. A neck forms and the uppermost portion of the drop
becomes spherical. After a second stagnation point forms at the bottom, the lower
portion of the drop widens. A third stagnation point forms in the upper portion when
the tip of the drop reverses direction, then a fourth stagnation point forms when the
base reverses direction at t = 3.25. Ejection occurs between t = 3.25 and t = 3.5.
Interestingly, ejection occurs in the same part of the cycle in these two cases and
is exactly two cycles later in this second case. Unlike the previous case, the ejected
droplet has downward momentum and eventually falls back into the lower portion
of liquid.

In both cases the liquid remaining attached to the base after ejection continues to
oscillate. In each case a crater forms, but the upward momentum of the resulting
spike is insufficient for another droplet to be ejected.

In summary, when the forcing amplitude is high the initial inertia of the drop leads
to the formation of a liquid spike that ejects a droplet. When the forcing amplitude is
smaller this inertia is insufficient and the spike impacts the base to form a crater. The
collapse of the crater leads to the formation of a second spike with enough inertia
for droplet ejection to occur. When the amplitude is even smaller the inertia of the
spike is not enough to lead to ejection. For the smallest forcing amplitudes a crater
and spike do not form.

In some cases, when the forcing amplitude has an intermediate value, a crater may
form and collapse to enclose a bubble. This is illustrated in figure 12 for A = 20. A
segment of the time sequence is shown in which the crater collapses and a bubble
is formed. Bubble entrapment happens when the rim of the crater collapses more
quickly than the bottom of the crater. As the liquid rim closes over the bubble and
approaches the axis of symmetry its radial momentum becomes vertical momentum.
This momentum is directed both upward, to create a spike, and downward, into the
bubble, thus deforming the bubble. The spike may or may not have sufficient inertia
for droplet ejection to occur. In the numerical method compressibility is neglected.
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Figure 11. For caption see page 49.

Compressibility effects should be negligible except perhaps in the entrained bubble,
where it would provide an additional mode of energy storage. Such energy transfer
to the bubble could affect the process dynamics.

4. Effect of parameter variations
The case presented in figures 6–8 was used as a basis from which the system

parameters were varied in order to determine the effect of the parameters on the
response. This effect was quantified via the volume of the ejected droplet, the velocity
of the ejected droplet, and the time at which ejection occurred. Note that with the
scaling used the ejected-droplet volume presented below is a fraction of the total
liquid volume. The time of ejection is presented in units of forcing periods.
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Figure 11. For caption see facing page.

The shape of the drop just prior to ejection was roughly the same for all parameter
values. An example of this is in figure 9 at t = 3.2. The upper portion of the
drop was approximately spherical, the central portion was cylindrical, and there
was a wide region at the base. Although the shape of the drop was only qual-
itatively similar for other values of the parameters, this description of the drop
shape is useful in understanding how changing the parameters alters the details of
the ejection process. For different parameter values the relative sizes of the three
regions are different. For example, the spherical region was significantly larger
for the larger forcing amplitude in the case of figure 6 (see t = 1.2). In both of
those cases the cylindrical neck disappeared by the time of pinch-off, as the lower
region became larger. In other cases the neck became very elongated and pinch-
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Figure 11. Pressure contours in the droplet ejection process with the formation of a crater. Time is
in periods. Re = 10, Bo = 0, A = 18, Ω = 1, θ = 0, α = 0.001, and β = 0.001. 30× 80 grid cells in
half of domain shown.

t =2.3 t =2.35 t =2.4

t =2.45 t =2.5
5 velocity units

Figure 12. The bubble entrapment process. Time is in periods. Velocity vectors are shown in every
third cell. The horizontal lines indicate the minimum and maximum displacement of the base.
Re = 10, Bo = 0, A = 20, Ω = 1, θ = 0, α = 0.001, and β = 0.001. 30 × 80 grid cells in half of
domain shown.

off could occur at either the bottom or the top of the cylindrical region. When
pinch-off occurred at the bottom the cylindrical region recoiled into the spherical
region to form the secondary droplet. When pinch-off occurred at the top the cylin-
drical region recoiled towards the base and the spherical region alone constituted
the secondary droplet. Under some conditions pinch-off occurred at both locations
to form a satellite droplet, but only the first pinch-off event is considered in the
present work. These findings are in qualitative agreement with those of Wilkes
& Basaran (2001), but the results presented in this section go beyond what they
present.
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Figure 13. The effect of the forcing amplitude on the response. Re = 10, Bo = 0, Ω = 1, θ = 0,
α = 0.001, and β = 0.001. Ejection does not occur in the amplitude range delineated by the
grey bar.

Figure 13 shows the effect of the forcing amplitude on ejection. Recall that this is
the amplitude of the base acceleration, not of the base displacement. For low values
of the forcing amplitude ejection did not occur, but a crater formed in the centre
of the drop. As the forcing amplitude increased, the crater wall became steeper. For
A = 16, a case in which ejection did not occur, the crater wall was at an angle of
22◦ with the horizontal when the drop radius reached a maximum. After this time
the drop rebounded towards the centre. The angle later reached a maximum value
of 28◦ as the crater was collapsing. Since the crater angle was small the resulting
spike did not have enough energy for droplet ejection to occur. For the amplitude
range 17 6 A 6 18, ejection occurred from a spike that was produced by a crater. For
A = 18 the crater angle was 34◦ when the drop radius was maximized and it reached
a maximum of 46◦.

For 19 6 A 6 21, ejection did not occur. A crater formed, but it collapsed to enclose
a bubble. As the crater collapsed the liquid had large inward radial momentum. As the
liquid approached the centreline this was transferred to vertical momentum. When the
crater collapsed along the base, as for 17 6 A 6 18, all this momentum was upward.
However in this amplitude range, the rim of the crater collapsed to enclose a bubble,
so the radial momentum was transferred into both upward momentum (which led
to the formation of a spike) and downward momentum (into the bubble). Therefore,
although a spike was formed it did not have as much inertia, so ejection did not
occur. For A = 20 the crater angle was 46◦ when the drop radius was maximized. The
angle was 112◦ just before the rim of the crater reached the centre to enclose a bubble.
In their study of crater collapse, Zeff et al. (2000) also found that a high-momentum
spike was not created when a bubble was enclosed.

When the amplitude was increased to above A = 21, ejection occurred without the
formation of a crater. This change in the type of ejection caused a sharp increase in
the droplet volume and a decrease in the time of ejection. Increasing the amplitude
from this point caused the ejected-droplet volume to decrease and the ejected-drop
velocity to increase, while the ejection time remained fairly constant. The neck formed
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Figure 14. The effect of the Bond number on the response. Re = 10, A = 25, Ω = 1, θ = 0,
α = 0.001, and β = 0.001. Ejection does not occur in the amplitude range delineated by the
grey bar.

in the first forcing cycle thinned until the upward motion of the base caused it to be
filled. Subsequent downward motion of the base in the second cycle caused the neck to
thin once again, and pinch off. At approximately A = 25 a transition occurred. Above
the transition the neck did not fill and re-thin during the second cycle, but thinned
continuously. Therefore ejection occurred sooner and at the transition amplitude there
was a decrease in the ejection time. Above the transition amplitude the ejection time
remained constant and the ejected-droplet volume and velocity increased. Increasing
the amplitude caused the primary drop to become more elongated, particularly the
central cylindrical region. This region pinched off at the bottom, so as it became
bigger the secondary droplet became bigger.

Next, the effect of the Bond number is considered. Recall that gravity acts down-
ward when the Bond number is positive. As a point of reference, the Bond number
was 1.30 for experiments in normal gravity, using a 30 µl water drop. As shown in
figure 14, the ejected-droplet volume and velocity decreased, and the ejection time
weakly increased, as the Bond number increased from Bo = −7 to 0. This is simply
because an upward gravitational force aides ejection. As Bo increased, the length
of the cylindrical portion of the drop decreased, so the secondary droplet volume
decreased since the drop pinched off near the bottom. Between Bond numbers of 0
and about 0.8 the upward motion of the base caused the neck to fill before it could
break, so ejection occurred slightly later. Additionally, the ejected-droplet volume
increased as the Bond number increased in this range. For the highest Bond numbers
on these curves, Bo > 1.9, droplet ejection occurred after a crater and a spike had
formed. There was no crater in the other Bond number cases. This accounts for the
large difference between the droplet volume and ejection time of the highest Bond
number case compared to the other cases. Ejection did not occur for Bond numbers
greater than 2. Additionally, ejection did not occur for 0.9 6 Bo 6 1.8. Instead, a
crater formed and collapsed to enclose a bubble. A spike formed, but it did not have
enough inertia to lead to ejection. Notice that this graph is qualitatively a mirror
image of figure 13. Increasing the forcing amplitude and decreasing gravity have the
same effect on the process.
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Figure 15. The effect of the Reynolds number on the response. Bo = 0, A = 20, Ω = 1, θ = 0,
α = 0.001, and β = 0.001.
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Figure 16. The effect of the forcing frequency on the response. The vertical lines indicate
transition points. Re = 10, Bo = 0, A = 25, θ = 0, α = 0.001, and β = 0.001.

The effect of the Reynolds number on the response is shown in figure 15. When
the Reynolds number was low, viscous forces inhibited droplet ejection. When the
Reynolds number was high, parasitic errors due to the CSF method were not suffi-
ciently damped and the computation failed. There was a jump in the ejected-droplet
volume and velocity as the Reynolds number was increased from 30 to 35. This
jump occurred because the secondary droplet pinched off at the top of the central
cylindrical region when the Reynolds number was low and at the bottom when the
Reynolds number was high. Otherwise, the Reynolds number affected the ejected-
droplet volume and the time of ejection only weakly. The ejected-droplet velocity
increased as the Reynolds number increased because the damping decreased.

The effect of the forcing frequency on ejection is shown in figure 16. Although
the acceleration amplitude of the base was fixed, the velocity amplitude and the
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Figure 17. The effect of the phase of the base oscillations on droplet ejection. Re = 10, Bo = 0,
A = 25, Ω = 1, α = 0.001, and β = 0.001.

displacement amplitude of the base decreased as the forcing frequency increased.
When the forcing frequency was small the primary drop became very elongated,
ejection occurred during the first cycle, pinch-off was near the base of the drop,
and the ejected-droplet velocity was large. As the forcing frequency was increased,
the elongation of the drop decreased and so the ejected-droplet volume and velocity
decreased and the ejection time increased slightly. Above Ω = 0.6 the initial inertia
of the drop was not sufficient for ejection to occur during the first forcing cycle.
This led to a jump in the ejection time. Since ejection occurred later, the drop inertia
had time to decrease, so there was a sharp decrease in the ejected-droplet velocity.
There was also a decrease in the ejected-droplet volume because the main drop was
not as elongated. As the frequency was increased from this point the volume and
velocity continued to decrease and the ejection time continued to increase. Like lowest
frequencies, the elongation of the drop, particularly the central cylindrical portion,
decreased as the frequency increased, leading to the decrease in ejected-droplet volume.
This trend continued until the cylindrical region disappeared at Ω = 1. Above this
frequency the central cylindrical region filled before ejection could occur, but another
cylindrical neck formed later in the cycle. A secondary droplet then pinched off from
the top of the neck. Because of this there was another jump in the ejection time and
a corresponding drop in the ejection velocity. For Ω > 1, as for lower frequencies,
the elongation of the second cylindrical region decreased as the frequency increased.
However, more liquid flowed into the upper spherical portion of the drop than for
the lower frequencies, leading to a larger ejected-droplet volume. Above Ω = 1.2 this
second neck disappeared and ejection did not occur. For Ω = 1.3 a crater formed in
the fourth forcing cycle, but it collapsed to enclose a bubble and ejection did not
occur.

The initial phase of the forcing had a substantial effect on ejection as illustrated
in figure 17. The dynamics when θ = 0 were discussed in the previous section. A
phase of θ = 2π is equivalent. The dynamics for three other values of the phase are
discussed now.

When the phase was π/2 the motion began with the base at its maximum displace-
ment. The initial velocity was zero, so the drop had no inertia. As the base moved
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Figure 18. The effect of the density ratio on the response. Re = 10, Bo = 0, A = 25, Ω = 1, θ = 0,
and β = 0.001.

down it pulled the drop down and imparted downward momentum to it. Then as
the base moved upward this downward momentum was transferred into outward
radial momentum. The drop flattened and a crater formed. Then as the base moved
down again the crater collapsed to enclose a bubble and create a spike. Eventually, a
secondary droplet pinched off the end of the spike. The ejected-droplet velocity was
negative, so it quickly fell back into the primary drop.

When the initial phase was π the computation started with the base at its midpoint
and initially moving downward, so the drop had downward inertia. When it then
started moving upward the downward momentum of the drop became radial momen-
tum and a crater formed. The crater then collapsed, without enclosing a bubble, to
create a spike with even greater momentum than in the θ = π/2 case, so the secondary
droplet that subsequently formed had a larger velocity.

Finally, when the initial phase was 3π/2 the simulation began with the base at its
minimum location. The drop had no inertia. As the base moved up the drop flattened
and gained upward momentum. Then as the base moved down the drop became
elongated. The base then moved upward again and the upper portion of the drop
filled to become more spherical. A droplet pinched off during the next stage as the
base moved downward.

Of these values of the phase, π is the optimum because the ejected-droplet velocity
is maximized. A crater will always form for this value of the phase, unless the forcing
amplitude is very small. The collapse of the crater will then lead to the formation of
a liquid spike with high momentum. Therefore, using this phase is an effective way
to ensure that the momentum of the liquid spike is high. Because of this, droplet
ejection can be achieved with a lower forcing amplitude.

The effect of the density and viscosity ratios on ejection is given in figures 18 and
19, respectively. Recall that the density ratio is the density of the gas surrounding the
drop divided by the density of the drop. Likewise, the viscosity ratio is the viscosity
of the gas surrounding the drop divided by the viscosity of the drop. Increasing either
the density ratio or the viscosity ratio causes the ejected-droplet volume to increase,
the ejected-droplet velocity to decrease, and the time of ejection to increase. When
the density ratio was increased, the density, and hence the inertia, of the medium
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Figure 19. The effect of the viscosity ratio on the response. Re = 10, Bo = 0, A = 25, Ω = 1,
θ = 0, and α = 0.001.

surrounding the drop increased. Thus, the medium surrounding the drop offered
more resistance to the motion of the drop. When the viscosity ratio was increased, the
viscosity of the medium surrounding the drop increased. Thus, there was more viscous
damping in the surrounding medium to resist the motion of the drop. This is why
ejection occurred later and with lower velocity when either α or β was increased. Also,
the elongation of the drop decreased as either α or β was increased. The effects of
the other parameters showed that less elongation of the primary drop means that the
central cylindrical region of the drop becomes shorter and the volume of the ejected
droplet becomes smaller. The effect of the density and viscosity ratios is different.
Although the tip of the drop is inhibited from moving upward, fluid moving upward
within the neck of the drop is not inhibited. Therefore, the spherical region at the top
of the drop is larger. In this way, increasing the density or viscosity ratio causes the
ejected-droplet volume to increase.

5. Ejection threshold
The forcing amplitude above which droplet ejection occurs has been studied ex-

perimentally by Goodridge et al. (1996, 1997) and by Range et al. (2001). Range
et al. consider ejection from a drop, while Goodridge et al. studied ejection from a
layer. In both sets of experiments several liquids were used to determine the effect of
the fluid properties on the ejection threshold.

In the experiments of Goodridge et al. the lateral extent of the layer was much
larger than the capillary wavelengths excited, so edge effects were not important. This
also led to a different scaling than is used in the present work, since no external length
scale was important. They defined a dimensionless frequency, ω∗, and a dimensionless
amplitude, a∗, that are related to the present scaling and to the dimensional variables
as follows:

ω∗ =
Ω

Re3
=
ωµ3

L

ρLσ2
, (7)

a∗ =
A

Re4
=

aµ4
L

ρLσ3
. (8)
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Figure 20. The droplet ejection threshold. Filled symbols: present simulations. Open symbols:
experimental data of Range et al. Dotted line: low-viscosity correlation of Goodridge et al. Dashed
line: high-viscosity correlation of Goodridge et al.

This viscous scaling may not be appropriate over the entire Reynolds number range
considered, but it is convenient for comparison of the data. The threshold value of
a∗ above which ejection occurs was determined. The following correlations of the
threshold of a∗ as a function of ω∗ were determined for high- and low-viscosity fluids
by Goodridge et al. (1997):

a∗ = 0.261(2ω∗)4/3 for low µL, (9)

a∗ = 1.306(2ω∗)3/2 for high µL. (10)

The response of a liquid layer to the forcing is subharmonic, whereas the response
of a drop is harmonic. Because of this difference the correlations above have been
modified by multiplying the forcing frequency by a factor of two. This makes them
more directly comparable with the results of the present simulations, and of Range
et al., for the vibration of a drop.

Range et al. also found the threshold value of a∗ as a function of ω∗, but for
ejection from a drop instead of from a layer. In that work, the capillary wavelength
may be on the order of the drop diameter. They used more than one drop size in
order to determine the effect of the size on the ejection threshold, but this parameter
did not seem to affect the results.

Simulations were run to duplicate several of the experiments of Range et al. Their
drop sizes, fluid properties, and driving frequencies were used to determine the values
of the system parameters. The dimensionless driving amplitude was then varied to find
the ejection threshold. The forcing amplitude was deemed to be below the threshold
if ejection did not occur within five forcing periods and above the threshold if it did
occur within five periods.

Figure 20 shows the droplet ejection threshold in terms of the variables a∗ and
ω∗. The experimental data of Range et al., the correlations of Goodridge et al., and
the results of the present simulations are shown. The threshold amplitude increases
monotonically with frequency. The large range of ω∗ that is covered by the experiments
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cannot all be simulated with the present method. At low values of ω∗ the viscosity
is low, so parasitic errors are not damped and non-physical features of the interface
grow in time. For this reason values of ω∗ less than about 10−6 were not considered.
At high values of ω∗, annular regions of liquid break off from the outer edge of
the primary drop in the simulations. Such behaviour is clearly unstable to azimuthal
modes that cannot be captured in these axisymmetric simulations. The highest two
values of ω∗ considered are in this regime, so the relevance and accuracy of these
points are uncertain.

In general, the computed threshold points are lower than the threshold correlations
of Goodridge et al., which are lower than the data of Range et al. The main difference
between the present computations and the experiments of Range et al. is the initial
conditions. In the computations, the forcing was applied as a step function, whereas it
was ramped up in the experiments. It was not practical to ramp up the forcing in the
computations for two reasons. First, the simulations required a substantial amount of
time to run. All the simulations were limited to five forcing cycles, at most, to ensure
that a reasonable number of cases could be completed. Second, parasitic errors grew
as the computation progressed and eventually became unacceptably large. Limiting
the computations to five forcing cycles ensured that the parasitic errors were small in
most of the cases considered. The difference in the initial conditions most probably
accounts for the difference between the threshold of the present computations and
the threshold of the experiments of Range et al. Since the forcing was stepped in the
numerical simulations and ejection occurred within the first five cycles the system
had not yet attained periodic motion. Thus, transient overshoot was present in the
response of the simulations and could most likely account for the differences that are
seen.

The initial conditions of the experiments of Range et al. and the experiments of
Goodridge et al. were more closely comparable since the forcing was ramped in
both cases. However, they were not the same. Goodridge et al. first set the forcing
amplitude high enough that ejection occurred and then decreased it slowly until
ejection stopped. This approach was feasible because the depth of the layer was
unimportant. Therefore, it did not matter if some of the ejected droplets did not fall
back into the liquid layer. Range et al. found the ejection threshold by increasing the
forcing amplitude slowly until droplet ejection was observed.

A much more important difference in the two sets of experiments was the liquid
configuration. The curvature of the interface of the liquid drop influenced the response,
and the capillary wavelength that was excited was on the order of the drop size. Also,
the contact line was pinned in the drop experiments of Range et al. These edge effects
tend to stabilize the system by limiting the available wave modes. This is why the
threshold of Range et al. is above that of Goodridge et al.

Regardless of the differences, figure 20 shows that the two sets of experiments and
the present computations result in the same basic trend for the ejection threshold.
The experimental data of Range et al. are greater than the correlations of Goodridge
et al. by a factor of 1.5 on average. The results of the simulations are less than the
correlations by an average factor of 1.4. To further quantify the comparison, curve fits
in the form of equations (9) and (10) were computed for the simulation results and for
the data of Range et al. In the low-frequency regime, the exponent was 1.40 for the
simulations and 1.37 for the data of Range et al. These values compare well with the
exponent of 1.33 in the correlation of Goodridge et al. In the high-frequency regime,
the exponent was 1.74 for the simulations, 1.27 for the data of Range et al. and 1.50 in
the correlation of Goodridge et al. However, only three simulations were performed
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in this regime. One of these is very near the transition from low to high frequency, and
the accuracy of the other two is questionable, as mentioned above, so the accuracy
of the power-law exponent is uncertain.

6. Conclusion
The forcing frequency has a great effect on the response of a liquid drop to

vertical, oscillatory forcing. When the frequency is low, the motion is axisymmetric.
Only low-order modes are excited. When droplet ejection occurs, a single secondary
droplet pinches-off from a spike or wave crest at the centre of the drop. When
the forcing frequency is high, high-order, azimuthal modes are excited and the free-
surface response is very chaotic. When droplet ejection occurs, numerous secondary
droplets are ejected simultaneously from the entire surface of the primary drop to
create a spray of fairly uniform droplets. Sprays of this kind may be used in many
applications, several of which are the subject of current research. This type of forcing
may also be used for applications that do not involve a spray, such as emulsification.

Interestingly, although the response appears to be quite different in the low- and
high-frequency regimes, there is an important similarity. In both cases a crater may
form on the free surface of the drop. When the crater collapses a liquid spike with
large, upward momentum is created. Droplet ejection occurs when a droplet pinches
off from the end of the spike. In the low-frequency regime, the crater and spike
always occur in the centre and they dominate the evolution of the entire drop. In the
high-frequency regime, waves occur at multiple locations on the surface of the drop
simultaneously. A crater may form at a single wave site, at just a few wave sites, or at
many of them, depending on the forcing conditions. Thus, crater formation is a local
event and can occur anywhere on the drop free surface. It does not seem to affect the
motion of the rest of the drop. Because the cratering aspect of the droplet-ejection
phenomenon occurs at all frequencies, parallels can be drawn between the low- and
high-frequency regimes.

In this paper, low-frequency droplet ejection was studied using numerical simu-
lations. The transient, axisymmetric governing equations were solved using a finite-
volume projection method. A qualitative comparison between the computed shape of
the interface (figure 2) and related experimental images (figure 1) for ejection from a
30 µl water drop being vibrated at 61 Hz with an amplitude of 66 m s−2 showed that
the numerical method is able to display realistic flow dynamics. In the remainder of
the computations the Reynolds number was smaller to minimize parasitic errors. The
forcing amplitude was correspondingly higher. In the majority of the simulations the
Bond number was zero and the dimensionless forcing frequency 1.

The details of the flow fields of two cases, one in which ejection occurred after a
crater had been formed and one without a crater, were studied. The only difference
between the two cases was the forcing amplitude. During the second forcing period,
ejection occurred from a liquid spike for the high-amplitude case, but the spike in the
low-amplitude case did not have sufficient inertia to cause ejection. After this point
the crater formed in the low-amplitude case. The crater collapsed to form a smaller
diameter spike, but one that had greater inertia than the initial spike, so ejection
occurred. The dynamics of the two cases were very similar near the time of ejection.
Ejection occurred later for the case with a crater, but at the same phase of the forcing
cycle.

The effect of the physical parameters on droplet ejection was quantified via the
volume of the ejected droplet, the velocity of the ejected droplet, and the time at
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which ejection occurred. Increasing the forcing amplitude caused the volume and
velocity to increase and the ejection time to slightly decrease. Increasing the Bond
number (increasing gravity) had the opposite effect. Increasing the Reynolds number
caused the velocity to increase considerably, but affected the volume and ejection time
only weakly. Increasing the forcing frequency, while holding the amplitude constant,
caused the ejected-droplet volume and velocity to decrease and the ejection time to
increase. If the velocity amplitude was held constant, increasing the forcing frequency
caused the ejected-droplet velocity and the ejection time to increase, but did not effect
the ejected-droplet volume. Setting the forcing phase to π, which is equivalent to
beginning with the base located at its midpoint and moving downward, maximized
the ejection velocity.

Vibration-induced droplet ejection is interesting because it is a novel method to form
a spray, and may have many industrial applications. The low- and high-frequency
regimes are related in that ejection occurs similarly in both cases, but the overall
motion appears quite different. Only in the regime where a crater forms and collapses
is the dynamics of droplet ejection similar in both cases. Further study is warranted
because both regimes contain interesting and important problems with rich dynamics.

Investigation of various aspects of the vibration-induced flow is continuing, in-
cluding the following components. The effect of contact line motion on the ejection
dynamics will be studied. It is of particular interest that the crater formation is
significantly altered if the contact line is permitted to move. Three-dimensional com-
putations will be performed, in a frequency range in which azimuthal wave modes are
excited, to examine the coupling of wave modes and the effect of azimuthal motion
on ejection. The formation of satellite droplets will be investigated. Ejection from a
liquid layer will be simulated to evaluate the effect of the free-surface configuration on
the ejection process. Additionally, the relationship between vibration-induced droplet
ejection, bubble entrapment, and the Rayleigh–Taylor instability will be analysed.

This work was supported by the NASA Microgravity Research Division under
contract NAG3-1945 and the Hoechst Celanese Corporation. The experimental con-
tributions of Kai Range and Bojan Vukasinovic are greatly appreciated. The authors
are grateful to the referees for their valuable suggestions. Additionally, we would like
to thank Ed Wilkes and Osman Basaran for providing us with their data.
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