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Abstract

In this paper we continue the study of right-angled Artin groups up to commensurabil-
ity initiated in [CKZ]. We show that RAAGs defined by different paths of length greater
than 3 are not commensurable. We also characterise which RAAGs defined by paths are
commensurable to RAAGs defined by trees of diameter 4. More precisely, we show that
a RAAG defined by a path of length n > 4 is commensurable to a RAAG defined by a
tree of diameter 4 if and only if n ≡ 2 (mod 4). These results follow from the connection
that we establish between the classification of RAAGs up to commensurability and linear
integer-programming.

2010 Mathematics Subject Classification: 20E06 (Primary); 20F10, 20F65, 20E99
(Secondary)

1. Introduction

1·1. Context of the problem

One of the basic problems on locally compact topological groups is to classify their lat-
tices up to commensurability. Recall that two lattices �1, �2 < G are commensurable if and
only if there exists g ∈ G such that �1 ∩ �

g
2 has finite index in both �1 and �

g
2 . In particular,

commensurable lattices have covolumes that are commensurable real numbers, that is, they
have a rational ratio.

The notion of commensurability was generalised to better suit topological and large-scale
geometric properties and to compare groups without requiring them to be subgroups of a
common group. More precisely, we say that two groups H and K are (abstractly) com-
mensurable if they have isomorphic finite index subgroups. In this paper, we will only
be concerned with the notion of abstract commensurability and we simply refer to it as
commensurability.
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As we mentioned, commensurability is closely related to the large-scale geometry of the
group. Indeed, any finitely generated group can be endowed with a natural word-metric
which is well-defined up to quasi-isometry and since any finitely generated group is quasi-
isometric to any of its finite index subgroups, it follows that commensurable groups are
quasi-isometric.

Gromov suggested to study groups from this geometric point of view and understand the
relation between these two concepts. More precisely, a basic problem in geometric group
theory is to classify commensurability and quasi-isometry classes (perhaps within a certain
class) of finitely generated groups and to understand whether or not these classes coincide.

The classification of groups up to commensurability (both in the abstract and classical
case) has a long history and a number of famous solutions for very diverse classes of groups
such as Lie groups, hyperbolic 3-manifold groups, pro-finite groups, Grigorchuk–Gupta–
Sidki groups, etc, see for instance [BJN09, DW93, Mar73, Sch95, Si43, GrW03, Ga16].

In this paper, we focus on the question of classification of right-angled Artin groups,
RAAGs for short, up to commensurability. Recall that a RAAG is a finitely presented group
G(�) which can be described by a finite simplicial graph �, the commutation graph, in the
following way: the vertices of � are in bijective correspondence with the generators of G(�)

and the set of defining relations of G(�) consists of commutation relations, one for each pair
of generators connected by an edge in �.

RAAGs have become central in group theory, their study interweaves geometric group
theory with other areas of mathematics. This class interpolates between two of the most
classical families of groups, free and free abelian groups, and its study provides uniform
approaches and proofs, as well as far reaching generalisations of the results for free and
free abelian groups. The study of this class from different perspectives has contributed to
the development of new, rich theories such as the theory of CAT(0) cube complexes and has
been an essential ingredient in Agol’s solution of the Virtually Fibered Conjecture.

The commensurability classification of RAAGs has been previously solved for the fol-
lowing classes of RAAGs: free groups [St68, Sch95, KPS73], [Gr93, 1·C]; free Abelian
groups, [Gr81, B72]; Fm ×Zn , [Wh10]; free products of free groups and free Abelian
groups, [BJN09]; Fm × Fn with m, n ≥ 2, [Wi96, BM00]; G(�), where � is connected,
triangle- and square-free graph without any degree one vertices, [KK14]; � is star-rigid and
does not have induced 4-cycles and the outer automorphism of G is finite, [H16]; and � is a
tree of diameter ≤ 3, [BN08] and of diameter 4, [CKZ].

In [CKZ], we characterise the commensurability classes of RAAGs defined by trees of
diameter 4. As a consequence, we deduce the existence of infinitely many different com-
mensurability classes, confirming a conjecture of Behrstock and Neumann, and provide first
examples of RAAGs that are quasi-isometric but not commensurable.

The proof of the aforementioned results was performed in three steps. In the first step, we
determine a commensurabality invariant for RAAGs defined by trees. More precisely, to a
given pair of trees � and � we associate a linear system of equations S(�, �) and show
that the existence of positive integer solutions is a commensurability invariant of G(�) and
G(�), i.e. we prove:

THEOREM 1·1 (see [CKZ]). Let � and � be trees. If G(�) and G(�) are commensu-
rable, then the system of equations S(�, �) has positive integer solutions.

The proof of this step uses methods from geometric group theory.
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In the second step, we center on RAAGs defined by trees of diameter 4 and characterise
the trees for which the associated linear system of equations does not have positive integer
solutions. This part is the most technical, although the methods required come from linear
algebra. The strategy is to locally simplify the structure of the linear system of equations,
that is, to determine some subsystems of equations and show that in order for them to have
positive integer solutions, they must have an “easy” form. This allows us to simplify the
entire system of linear equations enough to be able to determine whether or not it has positive
integer solutions. This step allows us to characterise RAAGs G(T ) and G(T ′) defined by
trees of diameter 4 for which the system of equations S(T, T ′) does not have positive integer
solutions and hence by step 1, deduce that these groups are not commensurable.

In the last step, we consider RAAGs G(T ) and G(T ′) defined by trees of diameter 4
for which the system of linear equations S(T, T ′) does have positive integer solutions.
From a minimal solution of the system S(T, T ′), we build explicit finite index subgroups
of G(T ) and G(T ′), show that they are isomorphic and conclude that G(T ) and G(T ′) are
commensurable. The methods used in this step come mainly from Bass-Serre theory.

1·2. Results and strategy of the proof

In this paper, we develop methods introduced in [CKZ] and study the commensurability
classes of RAAGs defined by paths. More precisely, let Pn , n ≥ 1, denote the path graph
with n edges and n + 1 vertices and let Tk,k+1, k ≥ 1, denote a tree of diameter 4, with the
central vertex of degree 2 and such that the two vertices adjacent to the central vertex have
degrees k + 1 and k + 2 correspondingly, so that Tk,k+1 has 2k + 1 leaves, see Figure 9.

We show that different paths of length more than 4 are not commensurable.

THEOREM 1·2. The groups G(Pn) and G(Pm), n > m ≥ 0, are commensurable if and
only if n = 4 and m = 3.

We also compare the commensurability classes between paths and trees of diameter 4 and
prove

THEOREM 1·3. Let n > 4. The group G(Pn) is commensurable to G(T ), where T is a tree
of diameter 4, if and only if n = 4k + 2, k ≥ 1, and G(T ) is commensurable to G(Tk,k+1).

Note that in [CKZ] we give a complete commensurability classification of RAAGs
defined by trees of diameter 4, in particular, it is described which of them are commensurable
to G(Tk,k+1).

The proof follows the same 3-step structure as in [CKZ]. Note, however, that instead of
considering systems of equations as in [CKZ], in this paper we work with linear systems
of equations and inequalities and instead of requiring that the linear system of equations
have a positive integer solution (as in [CKZ]), we require that our system of equations and
inequalities have an integer solution.

(i) In Section 2, we reduce commensurability between RAAGs defined by trees to the
existence of integer solutions of a (disjunction of) linear system of equations and
inequalities S, see Corollary 2·14.

(ii) In Sections 3, 4 and 6, we analyse the system S, characterise when it has no integer
solutions and deduce when two RAAGs from our class are not commensurable. In
Section 3, we study the system S defined by paths of length 3 and m ≥ 5 and show
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that it never has integer solutions. This is the simplest case and it introduces the
techniques and ideas for the other cases. In Section 4, we study the system S defined
by a path of length n > 4 and a tree of diameter 4 and show that if n 	≡ 2 (mod 4)

then the system does not have integer solutions. Finally in Section 6, we address the
system defined by paths of different length greater than 4 and again show that it never
has integer solutions.

(iii) In Section 5, we show that when the path is of length 4k + 2 and the tree of diameter
4 is Tk,k+1 we can exhibit isomorphic finite index subgroups and conclude that the
corresponding RAAGs are commensurable.

1·3. Related problems and further research

As we already mentioned in [CKZ], it is our belief that the general strategy of the
proof can be used to study commensurability classes of RAAGs defined by trees and more
generally all RAAGs.

Corollary 2·14 reduces commensurability between two RAAGs defined by trees to the
existence of integer solutions of a linear system of equations and inequalities. This brings
up a natural question of whether or not this necessary condition is also sufficient.

Question 1·4. Let G(�1) and G(�2) be RAAGs defined by trees. Is it true that G(�1) and
G(�2) are commensurable if and only if the system Si (�1, �2) defined by the product graph
(see Section 2·5) has integer solutions?

In all the cases we studied so far, solutions of the (linear) system (of equations and inequal-
ities) have guided the construction of the subgroups which witness commensurability. In
essence, Question 1·4 asks whether one can build a finite cover of the Salvetti complex of a
RAAG from local covers of the complexes associated to the centralisers of generators.

As pointed out to us by Henry Wilton, this question may be approached using techniques
introduced by Ian Agol in his solution of the virtual Haken conjecture. In [A13], the author
constructs a finite-sheeted cover which is modelled on some hierarchy. In order to do it, he
constructs a measure on the space of colorings of a wall graph and then refines the colors to
reflect how each wall is cut up by previous stages of the hierarchy. He then uses the measure
to find a solution to certain gluing equations on the colored cubical polyhedra defined by the
refined colorings, and uses solutions to these equations to get the base case of the hierarchy
and glue up successively each stage of the hierarchy using a gluing theorem to glue at each
stage after passing to a finite-sheeted cover.

Solutions of the linear system are, in some sense, values necessary for the consistent
gluing of the local covers. The goal would be to generalise Agol’s Gluing Theorem to build
the finite index cover from the local ones and so describe the finite index subgroup that
witnesses commensurability.

In the same way we speculate that trees and, more generally, 2-dimensional RAAGs could
play the role of the base of induction for a hierarchy. (Recall that a RAAG is 2-dimensional if
and only if its commutation graph is triangle-free.) Centralisers in 2-dimensional RAAGs are
of the form Z× Fn . If the answer to Question 1·4 is positive, then given a solution of the sys-
tem, one can build the finite index subgroup from local covers of free groups. In the general
case, commensurability of RAAGs would imply compatible commensurable centralisers of
certain elements and centralisers are again RAAGs of lower complexity. By induction, one
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then could build finite index subgroups for the centralisers and, using a gluing theorem,
extend them to a finite cover of the group. This brings us to the following question:

Question 1·5. Let G(�1) and G(�2) be RAAGs. Is it true that G(�1) and G(�2) are com-
mensurable if and only if the system Si (�1, �2) defined by the product graph (see Section
2·5) has integer solutions?

This is just a rough strategy to approach the general problem. A good starting point is to
understand whether or not the reduction from commensurability to integer solutions of a
linear system generalises from trees to 2-dimensional RAAGs. More precisely, we expect
that Corollary 2·14 can be generalised as follows

CONJECTURE 1·6. Let G(�1) and G(�2) be 2-dimensional RAAGs. If G(�1) and G(�2) are
commensurable, then the system Si(�1, �2) defined by the product graph (see Section 2·5)
has integer solutions.

The existence of integer solutions of a linear system of equations and inequalities can be
interpreted as a syntactic fragment of the Presburger arithmetic (with order) and so in partic-
ular, it is a decidable problem. The Presburger arithmetic has quantifier elimination if we add
predicates for division. Hence, the existence of integer solutions is equivalent to a boolean
combination of atomic formulas in the language (+, <, 0) and congruences of integers. This
justifies the classification we obtain for trees and paths, where it is required that the length
n of the path is congruent to 2 modulo 4.

The decidability of the existence of integer solutions of a linear system is a very
well-known and long-studied problem in Computer Science. It was intensively studied
in the field of mechanical theorem proving and it is most commonly known as (linear)
integer-programming. It is actually one of the most important models in management sci-
ence (capital budgeting, warehouse location, scheduling, etc) and there are many different
efficient algorithms to address it.

As a consequence, given two trees, one can describe the linear system associated to them
and use an algorithm to decide whether or not the system has an integer solution. If the
answer is negative, that is, there is no integer solutions, then we can conclude that the
corresponding groups are not commensurable. Furthermore if the answer to Question 1·4
(and Question 1·5) were positive, we could conclude that the commensurability problem
between tree (and general) RAAGs is decidable as well as have a good understanding of its
complexity, see [CH17] and references there.

2. Systems of equations associated to tree RAAGs

The main aim of this section is, given two RAAGs G(�1) and G(�2) defined by trees,
to construct a linear system of equations and inequalities S(�1, �2) such that if G(�1)

and G(�2) are commensurable, then the system S(�1, �2) has integer solutions, see
Corollary 2·14.

In order to construct the system of equations, one needs to introduce several commensu-
rability invariants, namely the (reduced) extension graph and the quotient graph. We assign
certain labels to the quotient graph, deduce a system of linear equations and show that if
two tree RAAGs are commensurable, then the exponents are positive integer solutions of
the system of equations.
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Since the quotient graph depends on the subgroup witnessing commensurability, so does
the system of equations. In order to overcome this dependence, we introduce a new graph,
the product graph, which only depends on the trees �1 and �2, we associate certain labels to
the vertices and edges, describe a linear system of equations and inequalities and show again
that if the groups are commensurable, the labels are integer solutions of the linear system.

This sections follows the ideas introduced in [CKZ]. For completeness, we recall the
definitions and results needed in this paper.

2·1. Reduced centraliser splitting

Observe that tree RAAGs split as fundamental groups of graphs of groups, whose vertex
groups are centralisers of vertex generators. We recall the notion of (reduced) centraliser
splitting, as in [CKZ], which we will use in Section 5.

Definition 2·1 ((Reduced) Centraliser splitting). Let � be a tree and let G(�) be the RAAG
with the underlying graph �. The centraliser splitting of G(�) is defined as follows. The
graph of the splitting is isomorphic to � and the vertex group at every vertex is defined to
be the centraliser of the corresponding vertex generator. Note that if v is some vertex of �,
and u1, . . . , us are all vertices of � adjacent to v, then C(v) = 〈v, u1, . . . , us〉 ∼=Z× Fs ,
where Fs is the free group of rank s, see [CKZ] for more details on centralizers in RAAGs.
In particular, C(v) is abelian if and only if v has degree 1, and in this case C(v) ∼=Z

2 is
contained in the centraliser of the vertex adjacent to v. For an edge e connecting vertices u
and v the edge group at e is C(u) ∩ C(v) = 〈u, v〉 ∼=Z

2.
Note that the centraliser splitting is neither reduced nor minimal, since for every vertex of

degree 1 in � the vertex group is equal to the incident edge group. Thus it makes sense to
consider the reduced centraliser splitting of G(�) (for a tree �), which is obtained from the
centraliser splitting by removing all vertices of degree 1. In this splitting all the vertex groups
are non-abelian, and all the edge groups are isomorphic to Z

2, in particular, this splitting is
already minimal and reduced.

2·2. Reduced extension graph and quotient graph

In this section, we recall the notions of (reduced) extension and quotient graphs, see
[CKZ] for further details.

Definition 2·2 (Extension graph, see [KK13]). Let G(�) be a RAAG with the underlying
commutation graph �, then the extension graph �e is defined as follows. The vertex set of �e

is the set of all elements of G(�) which are conjugate to the canonical generators (vertices
of �). Two vertices are joined by an edge if and only if the corresponding group elements
commute. The group G(�) acts on �e by conjugation.

Definition 2·3 (Reduced extension graph). For a tree �, we define the reduced extension
graph of �, and denote it by �̃e, to be the full subgraph of the extension graph �e, whose
vertex set is the set of all elements of G(�) which are conjugate to the canonical generators
corresponding to vertices of � of degree more than 1 (which are exactly those which have
non-abelian centralisers).

Suppose that � is a finite tree of diameter at least 3 and let G =G(�). Let �̃ be the tree
obtained from � by deleting all degree 1 vertices together with the incident edges. Then G
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acts on �e and on �̃e by conjugation, so that G\�e ∼= � and G\�̃e ∼= �̃; these actions can be
thought of as the natural actions on the Bass–Serre trees of the centraliser splitting and the
reduced centralizer splitting of G respectively, see [CKZ, lemma 3·4].

Suppose that H is a finite index subgroup of G. Let �(H) = H\�̃e, then �(H)

is a finite graph, and there are natural graph morphisms γ = γH : �̃e → �(H) and
δ = δH : �(H) → �. Note that the image of δ lies in �̃, so we can also think of δ as a
morphism δ : �(H) → �̃.

2·3. Labels in the reduced extension graph and the quotient graph

Suppose H is a finite index subgroup of G =G(�). We can then associate some labels to
the quotient graph as follows.

Definition 2·4 (Label of a vertex/edge). Let w be a vertex of �̃e, thus w is also an element
of G. Define the label of the vertex w, denoted by L(w), to be the minimal positive integer
k such that wk ∈ H . Such number exists, since H has finite index in G.

For an edge f of �̃e connecting vertices w1 and w2 define the label of the edge f at the
vertex w1, denoted by lw1( f ), to be the minimal positive integer k such that there exists
an integer l such that wk

1w
l
2 ∈ H . Without loss of generality, we can assume that l is non-

negative. The label of f at w2 is defined analogously. Note that, by definition, L(w1) ≥
lw1( f ), for all edges f .

Observe that the labels of vertices and edges are invariant under the action of H on
�̃e (by conjugation). Indeed, for h ∈ H we have wk ∈ H iff (wh)k ∈ H , and wk

1w
l
2 ∈ H iff

(wh
1 )

k(wh
2 )

l ∈ H . This means that we can define labels for the quotient graph �(H). If v is a
vertex of �(H), then define the label of the vertex v, denoted by L(v), to be the label L(w),
where w is some vertex of �̃e such that γ (w) = v. Analogously, if p is an edge of �(H)

connecting vertices v1 and v2, then define the label of the edge p at the vertex v1, denoted
by lv1(p), to be the label lw1( f ), where f is some edge of �̃e such that γ ( f ) = p, and w1 is
the end of p such that γ (w1) = v1. It follows that these labels are well-defined. Note that the
labels of vertices and edges of �(H) are positive integers.

2·4. System of equations for the quotient graph

Suppose now that �1 and �2 are two finite trees of diameters at least 3 such that G(�1) and
G(�2) are commensurable, and H1 ≤ G1, H2 ≤ G2 are finite index isomorphic subgroups,
and ϕ : H1 → H2 is the isomorphism. All the definitions above apply to both H1 in G1 and
H2 in G2. In [CKZ] we show that ϕ induces graph isomorphisms ϕ: �̃e

1 → �̃e
2 and ϕ∗ :

�(H1) → �(H2), see [CKZ, lemma 3·6].
We associate a system of equations to the quotient graph and show that the edge and

vertex labels of �(H1) and �(H2) are positive integer solutions of the system.
As above, we have surjective graph morphisms

γ1 : �̃e
1 −→ �(H1), γ2 : �̃e

2 −→ �(H2), δ1 : �(H1) −→ �̃1, δ2 : �(H2) −→ �̃2.

As in [CKZ], for an edge e of �(H1) beginning in a vertex u we denote by L(u) the vertex
label of u in �(H1), by L ′(u) the vertex label of ϕ∗(u) in �(H2), by lu(e) the edge label of
e at the vertex u in �(H1), and by l ′

u(e) the edge label of ϕ∗(e) at the vertex ϕ∗(u) in �(H2).
All these labels are positive integers by definition.

We summarise the equations obtained in [CKZ] in the following two lemmas.
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LEMMA 2·5 (see [CKZ, lemma 3·16]). Let e be an edge of �(H1) connecting vertices
v1 and v2. Then the following equations hold:

L(v1)

lv1(e)
= L ′(v1)

l ′
v1
(e)

= L(v2)

lv2(e)
= L ′(v2)

l ′
v2
(e)

= q, (2·1)

where q is some positive integer.

Let v be a vertex of �(H1), and u1 = δ1(v) ∈ V (�̃1), u2 = δ2(ϕ∗(v)) ∈ V (�̃2). Let
p1, . . . , pm be all vertices of �̃1 adjacent to u1, and q1, . . . , qn be all vertices of
�̃2 adjacent to u2. Suppose that the edge ei connects u1 with pi , i = 1, . . . , m, and
the edge f j connects u2 with q j , j = 1, . . . , n. Let e1

i , . . . , eri
i be all the edges of

�(H1) beginning in v which project into ei under δ1, for each i = 1, . . . , m; note that
e1

1, . . . , er1
1 , e1

2, . . . , er2
2 , . . . , e1

m, e2
m, . . . , erm

m are all the edges of �(H1) beginning in v.
Analogously, let f 1

j , . . . , f
s j

j be all the edges of �(H2) beginning in ϕ∗(v) which project
into f j under δ2, for each j = 1, . . . , n; note that f 1

1 , . . . , f s1
1 , f 1

2 , . . . , f s2
2 , . . . , f 1

n ,

f 2
n , . . . , f sn

n are all the edges of �(H2) beginning in ϕ∗(v), in particular, ϕ∗ induces a
bijection between them and the above edges in �(H1) beginning in v.

Let also D1 be the degree of u1 in �1 minus 1, and D2 be the degree of u2 in �2 minus 1.
Note that we take degrees in �1, �2, not in �̃1, �̃2. Below all the edge labels are taken at the
end vertices, i.e., at the vertices which are not u1 or u2; we omit the lower index notation.

LEMMA 2·6. For every vertex v of �(H1), in the above notation the following equations
hold:

D1

r1∑
i=1

l(ei
1) = D1

r2∑
i=1

l(ei
2) = · · · = D1

rm∑
i=1

l(ei
m)

= D2

s1∑
j=1

l ′( f j
1 ) = D2

s2∑
j=1

l ′( f j
2 ) = · · · = D2

sn∑
j=1

l ′( f j
n ).

(2·2)

Proof. The statement follows immediately from [CKZ, lemmas 3·12 and 3·13].

2·5. Product graph

In this section, we introduce the product graph, which only depends on the graphs �1 and
�2, and describe its relation with the quotient graph.

Recall that for two graphs �1, �2 their direct product (also called tensor product) is the
graph �1 × �2 defined as follows. The vertex set of �1 × �2 is the (Cartesian) product of
the vertex sets of �1 and �2. If u1, v1 are vertices of �1, and u2, v2 are vertices of �2, then
we define two vertices (u1, u2) and (v1, v2) to be adjacent in �1 × �2 if and only if u1 is
adjacent to v1 in �1 and u2 is adjacent to v2 in �2. Note that this is a category-theoretic
product, which means that there exist naturally defined projection morphisms

π0
1 : �1 × �2 −→ �1, π0

1 ((u, v)) = u; π0
2 : �1 × �2 −→ �2, π0

2 ((u, v)) = v,

such that if � is a graph and δ0
1 : � → �1, δ0

2 : � → �2 are graph morphisms, then there
exists a unique graph morphism δ0 : � → �1 × �2 such that δ0

1 = π0
1 δ0 and δ0

2 = π0
2 δ0.

Namely, δ0(x) = (δ0
1(x), δ0

2(x)) for every vertex x of �, and it is extended to the edges
of � in a natural way.
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Fig. 1. Commutative diagram for the reduced extension graphs and quotient graphs of
commensurable tree RAAGs

Definition 2·7 (Product graph and type morphism). Recall �̃1 is the subgraph obtained
from �1 by deleting all degree 1 vertices and incident edges, and similar for �2. We define
the product graph to be the direct product D= �̃1 × �̃2 of the subgraphs �̃1 and �̃2.

To abbreviate the notation, we will denote �(H1) by �. Let δ : � →D be the graph mor-
phism defined by δ(x) = (δ1(x), δ2(ϕ∗(x))) for every vertex x of �, extended to the edges in
a natural way. Let π1 :D→ �̃1, π2 :D→ �̃2 be the projection morphisms as above. We call
δ the type morphism. Recall that in [CKZ] we defined the pair of vertices (δ1(u), δ2(ϕ∗(u)))

to be the type of a vertex u of �(H1). Thus, the type of a vertex u is now just δ(u), which is
a vertex of D, see Figure 1.

We denote the image of � in D under δ by C. Thus the vertex set of C is the set of all
possible types of vertices of �.

LEMMA 2·8. In the above notation the following statements hold:

(i) the product graph D has two connected components D1 and D2, and the graph C
is a connected subgraph of one of these components;

(ii) the restrictions of the projections π1 :D→ �̃1 and π2 :D→ �̃2 to C are surjective;
(iii) moreover, the restrictions of π1 and π2 to C are locally surjective, i.e. if v ∈ V (C),

and π1(v) ∈ V (�̃1) is adjacent to some vertex u ∈ V (�̃1), then there exists a vertex
w ∈ V (C) adjacent to v in C such that π1(w) = u; the same is true for π2.

Proof. The first claim follows from the general graph-theoretic fact that the direct product of
two connected graphs without cycles of odd length has two connected components [We62],
in particular this is true for trees. Obviously, C is connected, so it should lie inside one of the
two connected components.

The second claim follows immediately from the fact that δ1 = π1δ and δ2 = π2δϕ
−1
∗ are

surjective.
Note that δ1γ1 is locally surjective in the sense above, so δ1 is locally surjective as well,

and then π1 restricted to C is also locally surjective; the same holds for π2 restricted to C.

2·6. Edge labels for the product graph

As we did with the quotient graph, in this section we define certain labels and assign them
to edges of the product graph.
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We assume that all our graphs are directed, so that each edge e has initial vertex α(e),
terminal vertex ω(e) and inverse edge e−1. Note that the edge labels on � defined above are
defined for unoriented edges, i.e. they are the same for e and e−1 (but depend on the choice
of the endpoint). We now define edge labels for the product graph D. Each oriented edge e
will have 4 labels, denoted by M11(e), M12(e), M21(e) and M22(e).

Let e be an edge of D. If e /∈ E(C), define M11(e) = M12(e) = M21(e) = M22(e) = 0.
Otherwise, if e ∈ E(C), let δ−1(e) = { f1, . . . , fk} be the edges of � which project into e
under δ, k ≥ 1. Let α(e) = u, ω(e) = v, and α(ei) = ui , ω(ei ) = vi , for i = 1, . . . , k, so that
δ(ui) = u, δ(vi) = v, i = 1, . . . , k. Now define the edge labels of e as follows:

M11(e) =
k∑

i=1

L(ui)lvi (ei); M12(e) =
k∑

i=1

L(ui)l
′
vi
(ei);

M21(e) =
k∑

i=1

L ′(ui)lvi (ei); M22(e) =
k∑

i=1

L ′(ui)l
′
vi
(ei).

(2·3)

LEMMA 2·9. For every e ∈ E(D), all the labels of e are non-negative integers, and

e ∈ E(C) ⇐⇒ M11(e) > 0 ⇐⇒ M12(e) > 0 ⇐⇒ M21(e) > 0 ⇐⇒ M22(e) > 0. (2·4)

Proof. Follows immediately from the definition of labels in D and the fact that all edge and
vertex labels of � are positive integers.

Remark 2·10. Note that the conditions on (local) surjectivity from Lemma 2·8 can be
expressed as a union of linear equations and inequalities. Indeed, if e′ ∈ E(�̃ j ) and
e1, . . . , ek ∈ E(D) is the preimage π−1

j (e′) in D, then, by Lemma 2·9, π j is surjective on
the edge e′ if and only if

k∑
i=1

Mlm(ei ) > 0, j, l, m ∈ {1, 2}.

Similarly, if v ∈ V (C), π j (v) ∈ V (�̃ j ) is adjacent to some vertex u ∈ V (�̃ j ), e′ =
(π j (v), u) ∈ E(�̃ j ) and e1, . . . , ek ∈ E(D) are all the edges in the preimage π−1

j (e′) in D

which begin in v, then
k∑

i=1
Mlm(ei) > 0, j, l, m ∈ {1, 2}.

2·7. Linear system for the product graph

In this section, we define a linear system of equations and inequalities associated to the
product graph and show that the labels of the edges are positive integer solutions of the
system.

We first show that the following equations are satisfied for each edge.

LEMMA 2·11. For every edge e ∈ E(D) the following holds:

M11(e) = M11(e
−1), M12(e) = M21(e

−1), M21(e) = M12(e
−1), M22(e) = M22(e

−1). (2·5)

Proof. If e /∈ E(C), then all the labels of e and e−1 are 0, and so the claim holds automati-
cally. Suppose now e ∈ E(C). Note that, in the above notation, by Lemma 2·5, we have that
L(vi)lui (ei) = L(ui)lvi (ei), for all i = 1, . . . , k, hence
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M11(e
−1) =

k∑
i=1

L(vi)lui (ei) =
k∑

i=1

L(ui)lvi (ei) = M11(e).

Analogously, by Lemma 2·5, we have that L(vi)l ′
ui
(ei) = L ′(ui)lvi (ei), for all i = 1, . . . , k

and so

M12(e
−1) =

k∑
i=1

L(vi)l
′
ui
(ei) =

k∑
i=1

L ′(ui)lvi (ei) = M21(e).

The proof of other two equalities in (2·5) is analogous.

We now describe the equations that we associate to each vertex of D. Let w = (w1, w2) ∈
V (D), where w1 = π1(w) ∈ V (�̃1), w2 = π2(w) ∈ V (�̃2). Let p1, . . . , pm be all vertices of
�̃1 adjacent to w1, and q1, . . . , qn be all vertices of �̃2 adjacent to w2. Suppose that the edge
ei connects w1 with pi , i = 1, . . . , m, and the edge f j connects w2 with q j , j = 1, . . . , n.
Then wi j = (pi , q j ), i = 1, . . . , m, j = 1, . . . , n, are all the vertices of D adjacent to w.
Let ei j be the (oriented) edge of D beginning in w and ending in wi j , i = 1, . . . , m, j =
1, . . . , n. Thus, the edges ei1, ei2, . . . , ein are all the edges of D beginning in w which
project into ei under π1, for 1 ≤ i ≤ m and the edges e1 j , e2 j , . . . , emj are all the edges of D
beginning in w which project into f j under π2, for 1 ≤ j ≤ n.

Recall that D1 is the degree of the vertex w1 considered as a vertex of �1 minus 1, and
D2 is the degree of the vertex w2 considered as a vertex of �2 minus 1. Note that we take
degrees in �1, �2, not in �̃1, �̃2.

LEMMA 2·12. For every vertex w ∈ V (D), in the above notation the following equations
hold:

D1

n∑
j=1

M11(e1 j ) = D1

n∑
j=1

M11(e2 j ) = · · · = D1

n∑
j=1

M11(emj )

= D2

m∑
i=1

M12(ei1) = D2

m∑
i=1

M12(ei2) = · · · = D2

m∑
i=1

M12(ein)

(2·6)

and

D1

n∑
j=1

M21(e1 j ) = D1

n∑
j=1

M21(e2 j ) = · · · = D1

n∑
j=1

M21(emj )

= D2

m∑
i=1

M22(ei1) = D2

m∑
i=1

M22(ei2) = · · · = D2

m∑
i=1

M22(ein).

(2·7)

Proof. If w /∈ V (C), then the claim follows since in this case Mi j ’s are all equal to 0. Hence,
we can assume that w ∈ V (C). Let δ−1(w) = {w1, . . . , wN } be all the vertices of �(H1)

which project to w under δ. Now for each vertex wk , k = 1, . . . , N , write the equations
(2·2) from Lemma 2·6, multiply each side by L(wk) and sum over k = 1, . . . , N . Equation
(2·6) follows now from the definitions of the labels on D. Analogously, for each vertex wk ,
k = 1, . . . , N , write the equations (2·2) from Lemma 2·6, multiply each side by L ′(wk) and
sum over k = 1, . . . , N . Hence Equation (2·7).
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In the above notation, for every vertex w ∈ V (D), define two labels:

R1(w) = D1

n∑
j=1

M11(e1 j ), R2(w) = D2

m∑
i=1

M22(ein). (2·8)

By Lemma 2·12, we can rewrite these labels in several different ways.

Definition 2·13 (Linear system S(�1, �2)). Let G(�1) and G(�2) be two RAAGs defined by
trees �1 and �2 and let �̃i be the induced subgraph of �i defined by all non-leaf vertices, i =
1, 2. We denote by Si (�1, �2) the system of linear equations defined by the i-th connected
component Di of the product graph D of �̃1 and �̃2 in variables Mkl(e), k, l = 1, 2, e ∈
E(Di), that is Si (�1, �2) is the union of Equations (2·5), (2·6) and (2·7) from Lemmas 2·11
and 2·12, for all edges and vertices of the i th connected component Di .

Let P be the set of inequalities Mkl(e) ≥ 0, for all e ∈ E(D). Let E be the following
disjunction of equations and inequalities encoding surjectivity:

k∑
i=1

Mlm(ei) > 0,

for all e′ ∈ E(�̃ j ), where e1, . . . , ek ∈ E(D) is the preimage π−1
j (e′) in D, and j, l, m ∈

{1, 2}; and local surjectivity:

Mkl(e) > 0 =⇒
k∑

i=1

Mlm(ei) > 0,

or, equivalently,

Mkl(e) = 0 ∨
k∑

i=1

Mlm(ei) > 0,

for all v ∈ V (D), for all e = (v, v′) ∈ E(D), for all vertices u ∈ V (�̃ j ) adjacent to π j (v) ∈
V (�̃ j ), e′ = (π j (v), u) ∈ E(�̃ j ), where e1, . . . , ek ∈ E(D) are all the edges in the preimage
π−1

j (e′) in D which begin in v, and j, l, m ∈ {1, 2}.
Note that

(S1(�1, �2) ∨ S2(�1, �2)) ∧ P ∧ E

is a disjunction of linear system of equations and inequalities in variables Mkl(e), which we
denote by S(�1, �2).

COROLLARY 2·14. In the above notation, if G(�1) and G(�2) are commensurable, then
the (disjunction of) linear system of equations and inequalities S(�1, �2) has an integer
solution.

Proof. It follows from Lemmas 2·11 and 2·12 that the labels assigned to vertices and edges
of �(H) give rise to a solution of the linear system of equations Si for some i = 1, 2. By
Lemma 2·9 the solutions are non-negative and so satisfy the inequalities of the system P .
Furthermore, by Lemma 2·8, the labels satisfy the disjunctions of inequalities encoding local
surjectivity and so are a solution of the system E .
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Fig. 2. Graph D in the proof of Theorem 3·1 for m = 8. Edges of D1 are thin and edges of D2 are thick.

3. The RAAGs G(P3) and G(Pm) are not commensurable for m ≥ 5

In this section, we prove a special case of Theorem 1·2, namely we show that G(P3) is
not commensurable to G(Pn), for all n > 4. As we already mentioned, G(P3) and G(P4) are
commensurable, see [CKZ] for more details on that.

The proof in this special case is easier and introduces the reader to the techniques and
ideas behind the proof of Theorem 1·2. The proof of Theorem 1·2 is the most technically
demanding in this paper and we will address it in the final section, Section 6.

THEOREM 3·1. G(P3) is not commensurable to G(Pm) for m ≥ 5.

Proof. Let a0, a1, . . . , am be the vertices of Pm , considered as canonical generators of
G(Pm), and b0, b1, b2, b3 be the vertices of P3, considered as canonical generators of G(P3).
Then, in the above notation, �1 = Pm , �2 = P3, and �̃1 = Pm−2, with vertices a1, . . . , am−1,
�̃2 = P1, with vertices b1, b2.

Suppose that G(Pm) and G(P3) are commensurable. Note that in our case D= �̃1 × �̃2 =
Pm−2 × P1 is the following graph: its set of vertices is {(ai , b j ), i = 1, . . . , m − 1; j =
1, . . . , 2}, and two vertices (ai1, b j1) and (ai2, b j2) are connected by an edge in D if and only
if |i1 − i2| = 1 and | j1 − j2| = 1, for i1, i2 = 1, . . . , m − 1; j1, j2 = 1, 2. To abbreviate the
notation, we will denote the vertex (ai , b j ) of D by (i, j), where i = 1, . . . , m − 1; j = 1, 2,
see Figure 2.

Note that, as in Lemma 2·8, D has two connected components, one of them, denoted by
D1, consisting of vertices (i, j), where i + j is even, and the other one, denoted by D2,
where i + j is odd, and C lies in one of them. The automorphism of P3 which reverses
the order of its vertices (this also induces an automorphism of G(P3)) switches these com-
ponents, which are isomorphic graphs, so, after applying this automorphism of G(P3) if
necessary, without loss of generality, we assume that C lies in a particular component of D.

So we assume that C lies in the component D1 containing the vertex (1, 1). Then D1

contains vertices (1, 1), (2, 2), (3, 1), (4, 2), . . . , (m − 1, n0), where n0 = 1 if m is even,
and n0 = 2 if m is odd, and all the connecting edges (as a graph, D1 is isomorphic to the
path of length m − 2). Note also that, by Lemma 2·8, C should project surjectively on �̃1, so
in fact C=D1 in this case.

Denote by e1 the (oriented) edge of D beginning in (1, 1) and ending in (2, 2), by e2 the
edge beginning in (2, 2) and ending in (3, 1), and by e3 the edge beginning in (3, 1) and
ending in (4, 2) (note that such edges always exist, since m ≥ 5, so m − 1 ≥ 4), see Figure 2.
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Note that we have the following equations on the labels of e1, e2, e3: edge equations as
in Lemma 2·11, and vertex equations which follow from Lemma 2·12 applied to the case
under consideration.

From the (1, 1) vertex we get

M11(e1) = M12(e1), M21(e1) = M22(e1);
from the (2, 2) vertex we get

M11(e
−1
1 ) = M11(e2) = M12(e

−1
1 ) + M12(e2), M21(e

−1
1 ) = M21(e2) = M22(e

−1
1 ) + M22(e2);

and from the (3, 1) vertex we get

M11(e
−1
2 ) = M11(e3) = M12(e

−1
2 ) + M12(e3), M21(e

−1
2 ) = M21(e3) = M22(e

−1
2 ) + M22(e3).

Using these equations, on the one hand we can write

M11(e1) = M12(e1) = M21(e
−1
1 ) = M22(e

−1
1 ) + M22(e2) = M22(e1) + M22(e

−1
2 ), (3·1)

and on the other hand

M11(e1) = M11(e
−1
1 ) = M12(e

−1
1 ) + M12(e2) = M21(e1) + M21(e

−1
2 ) =

= M22(e1) + M21(e
−1
2 ) = M22(e1) + M22(e

−1
2 ) + M22(e3).

(3·2)

Comparing (3·1) and (3·2), we see that M22(e3) = 0, so by (2·4) we have e3 /∈ C,
which is a contradiction, since C=D1 as mentioned above. This shows that G(P3) is not
commensurable to G(Pm) for m ≥ 5.

COROLLARY 3·2. G(P4) is not commensurable to G(Pm) for m ≥ 5.

Proof. Follows immediately from Theorem 3·1 and the fact that G(P3) and G(P4) are
commensurable, see [CKZ, proposition 4·4].

4. Non-commensurability of RAAGs defined by paths and trees of diameter 4

In this section, we address the commensurability relations between the classes of RAAGs
defined by paths and trees of diameter 4. More precisely, we show that if n > 5 is not con-
gruent to 2 modulo 4, then G(Pn) is not commensurable to any RAAG defined by a tree of
diameter 4.

The general strategy to prove that two RAAGs defined by trees are not commensurable
is common. First, we specialise the linear system of equations and inequalities given in
Corollary 2·14 to the case under consideration. We then find a (local) pattern in the product
graph and prove that the absence of certain set of edges S at a vertex implies the absence of
other edges, see Lemma 4·3 and Figure 6. We then determine a vertex v for which the set
of edges S is missing, see Lemma 4·5. This allows us to recursively remove edges using the
identified local pattern and starting at v until we remove enough edges to contradict the local
surjectivity at a vertex (assured by Lemma 2·8). This allows us to conclude that the system
S does not have integer solutions and hence the RAAGs are not commensurable.

For our purposes, it will be convenient to encode finite trees of diameter four as follows.
Let T be any finite tree of diameter four. Let f be a path (without backtracking) of length
four from one leaf of T to another. By definition f contains 5 vertices and let c f ∈ V (T ) be
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Fig. 3. Tree T ((mk , 1), (mk−1, 1), . . . , (m1, 1); 0) for m1 > m2 > · · · > mk−1 > mk > 0.

the middle vertex in f . It is immediate to see that the choice of the vertex c = c f does not
depend on the choice of the path f of length four. We call c the center of T .

Any leaf of T connected to c by an edge is called a hair vertex. Vertices connected to c
by an edge which are not hair are called pivots. Any finite tree T of diameter 4 is uniquely
defined by the number q of hair vertices and by the number ki of pivots of a given degree
di + 1. Hence we encode any finite tree of diameter 4 as T ((d1, k1), . . . , (dl, kl); q). Here
all di and ki and l are positive integers, d1 < d2 < · · · < dl , and q is a non-negative integer;
moreover, either l ≥ 2 or l = 1 and k1 ≥ 2, so that T indeed has diameter 4. See [CKZ] for
more details.

THEOREM 4·1. Let m ≥ 5 and suppose that m is not 2 modulo 4. Then G(Pm) is not
commensurable to any RAAG defined by a tree of diameter 4.

Proof. Let T be a tree of diameter 4, and m ≥ 5, m is not 2 modulo 4. We need
to prove that G(Pm) is not commensurable to G(T ). If T = P4, then the claim fol-
lows from Corollary 3·2. Hence, without loss of generality, we can assume that G(T )

is not commensurable to G(P4). By [CKZ], this implies that G(T ) is commensu-
rable to G(T ((mk, 1), (mk−1, 1), . . . , (m1, 1); 0)) for some m1 > m2 > · · · > mk ≥ 1. Here
T ((mk, 1), (mk−1, 1), . . . , (m1, 1); 0) is the tree with central vertex c of degree k, connected
to pivot vertices b1, . . . , bk , and each bi has degree mi + 1 and is connected to mi degree
one vertices, see Figure 3.

Thus we can assume that T = T ((mk, 1), (mk−1, 1), . . . , (m1, 1); 0) for some m1 > m2 >

· · · > mk ≥ 1, k ≥ 2. So, in the above notation, we have that �1 = Pm , m ≥ 5, with the
vertices a0, a1, . . . , am−1, am , and �2 = T . It follows that �̃1 = Pm−2, with the vertices
a1, . . . , am−1, and �̃2 = �, where � is a tree of diameter 2 with central vertex c of degree
k, connected to the degree one (in �) vertices b1, . . . , bk . So a1, . . . , am−1 are those canon-
ical generators of G(Pm) which have non-abelian centralisers, and c, b1, . . . , bk are those
canonical generators of G(T ) which have non-abelian centralisers.
We have that D= Pm−2 × � is a graph with vertices of the form (ai , c) and (ai , b j ), where
i = 1, . . . , m − 1, j = 1, . . . , k, and the following edges: for i = 1, . . . , m − 2 the vertex
(ai , c) is connected to the vertices (ai+1, b j ), for all j = 1, . . . , k, and for i = 2, . . . , m − 1
the vertex (ai , c) is connected to the vertices (ai−1, b j ), for all j = 1, . . . , k. We will denote
the vertex (ai , c) by (i, c), and the vertex (ai , b j ) by (i, j) for shortness, for i = 1, . . . , m −
1, j = 1, . . . , k, see Figure 4.

By Lemma 2·8, the graph D has two connected components, and C is a connected
subgraph of one of them. Denote the one which contains the vertex (1, c) by D1 and the other
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Fig. 4. Graph D in the proof of Theorem 4·1 for m = 8 (on the left) and m = 7 (on the right). Edges of D1
are solid and edges of D2 are dashed.

one by D2. Then D1 contains all the vertices of the form (i, c), where i is odd, 1 ≤ i ≤ m − 1,
and (i ′, j), where i ′ is even, 1 ≤ i ′ ≤ m − 1, j = 1, . . . , k, as well as all the incident edges,
and D2 contains all the vertices of the form (i, c), where i is even, 1 ≤ i ≤ m − 1, and (i ′, j),
where i ′ is odd, 1 ≤ i ′ ≤ m − 1, j = 1, . . . , k, as well as all the incident edges.

Remark 4·2. Note that if m is odd, then the automorphism of Pm which reverses the order
of its vertices (it also induces an automorphism of G(Pm)) switches the components D1 and
D2, which are in this case isomorphic graphs, so, after applying this automorphism of G(Pm)

if necessary, without loss of generality, we can assume that C lies in a particular component
of D. However, if m is even (i.e., m is 0 modulo 4 in our case), then D1 and D2 are not
isomorphic graphs, and we should consider two cases, depending on whether C lies in D1 or
D2, see Figure 4.

Denote by ei, j
l,c the (oriented) edge of D beginning in the vertex (l, c) and ending in the vertex

(i, j), for all i, l = 1, . . . , m, such that |i − l| = 1, and j = 1, . . . , k. This is an edge of D1

if l is odd and i is even, and of D2 if l is even and i is odd. Denote also by el,c
i, j = (ei, j

l,c )
−1 the

inverse edge, beginning in (i, j) and ending in (l, c).
Note that, in the notation of Lemma 2·12, we have D1 = 1 for all vertices of D, and

D2 = k − 1 for the vertices (i, c) of D, i = 1, . . . , m − 1, and D2 = m j − 1 for the vertices
(i, j) of D, i = 1, . . . , m − 1, j = 1, . . . , k.

In our case the equations of Lemma 2·12 and Equation (2·8) have the following form. For
a vertex w = (1, j), where j = 1, . . . , k, which has degree 1, we have

R1(w) = M11(e
2,c
1, j ) = m j M12(e

2,c
1, j ), R2(w) = M21(e

2,c
1, j ) = m j M22(e

2,c
1, j ).
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Fig. 5. Vertex stars of the graph D in the proof of Theorem 4·1.

For a vertex w = (i, j) of D, where 1 < i < m − 1, j = 1, . . . , k, which has degree 2, we
have

R1(w) = M11(e
i−1,c
i, j ) = M11(e

i+1,c
i, j ) = m j (M12(e

i−1,c
i, j ) + M12(e

i+1,c
i, j )),

R2(w) = M21(e
i−1,c
i, j ) = M21(e

i+1,c
i, j ) = m j (M22(e

i−1,c
i, j ) + M22(e

i+1,c
i, j )).

For a vertex w = (m − 1, j) of D, where j = 1, . . . , k, which has degree 1, we have

R1(w) = M11(e
m−2,c
m−1, j ) = m j M12(e

m−2,c
m−1, j ), R2(w) = M21(e

m−2,c
m−1, j ) = m j M22(e

m−2,c
m−1, j ).

We refer the reader to Figure 5 for notation.
For a vertex w = (1, c) of D, which has degree k, we have

R1(w) = ∑k
j=1 M11(e

2, j
1,c ) = (k − 1)M12(e

2, j ′
1,c ), j ′ = 1, . . . , k,

R2(w) = ∑k
j=1 M21(e

2, j
1,c ) = (k − 1)M22(e

2, j ′
1,c ), j ′ = 1, . . . , k.

For a vertex w = (i, c) of D, where 1 < i < m − 1, which has degree 2k, we have, for all
j ′ = 1, . . . , k,

R1(w) =
k∑

j=1

M11(e
i−1, j
i,c ) =

k∑
j=1

M11(e
i+1, j
i,c ) = (k − 1)(M12(e

i−1, j ′
i,c ) + M12(e

i+1, j ′
i,c )),

R2(w) =
k∑

j=1

M21(e
i−1, j
i,c ) =

k∑
j=1

M21(e
i+1, j
i,c ) = (k − 1)(M22(e

i−1, j ′
i,c ) + M22(e

i+1, j ′
i,c )).

Finally, for a vertex w = (m − 1, c) of D, which has degree k, we have

R1(w) = ∑k
j=1 M11(e

m−2, j
m−1,c ) = (k − 1)M12(e

m−2, j ′
m−1,c ), j ′ = 1, . . . , k,

R2(w) = ∑k
j=1 M21(e

m−2, j
m−1,c ) = (k − 1)M22(e

m−2, j ′
m−1,c ), j ′ = 1, . . . , k.

Recall that m1 > m2 > · · · > mk ≥ 1, k ≥ 2 and m ≥ 5. We will suppose that s = 1, 2 is
such that C lies in Ds .
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Fig. 6. Part of the graph D in the proof of Lemma 4·3, in the case 2 ≤ i ≤ m − 4. The thick edge is not in C
by assumptions of the lemma, and the dashed edges are claimed not to be in C by the lemma.

LEMMA 4·3. Let v = (i, c) be a vertex of Ds , where 1 ≤ i ≤ m − 2. Suppose that the edge
ei−1,k

i,c is not in C, where i > 1. Then the edges ei+1, j ′
i,c , j ′ = 1, . . . , k − 1, are not in C.

If, in addition, i ≤ m − 3, then the edges ei+2,c
i+1, j ′ are not in C, where j ′ = 1, . . . , k − 1.

Moreover, if i ≤ m − 4, then also the edge ei+3,k
i+2,c is not in C.

Proof. We will prove the lemma in the case 1 ≤ i ≤ m − 4; the cases i = m − 3 and i =
m − 2 are analogous. To abbreviate the notation, denote the edges ei−1, j

i,c by e j (if i ≥ 2), the

edges ei+1, j
i,c by f j , the edges ei+1, j

i+2,c by h j , and the edges ei+3, j
i+2,c by p j , for all j = 1, . . . , k.

So we know that ek /∈ C, see Figure 6.
By Lemmas 2·12 and 2·11 (applied to this case), we have

R1(v) =
k∑

j=1

M11( f j ) =
k∑

j=1

M11( f −1
j ) =

k∑
j=1

m j (M12( f −1
j ) + M12(h

−1
j ))

= mk

k∑
j=1

(M12( f −1
j ) + M12(h

−1
j )) + D,

(4·1)

where

D =
k−1∑
j=1

(m j − mk)(M12( f −1
j ) + M12(h

−1
j )).

Remark 4·4. Since m1 > m2 > · · · > mk−1 > mk , and M-labels are non-negative, we have
that D ≥ 0. Furthermore, D = 0 if and only if M12( f −1

j ) = M12(h
−1
j ) = 0, for all j =

1, . . . , k − 1, if and only if (by Equation (2·4)) f j , h j /∈ C, for all j = 1, . . . , k − 1.

Denote the vertex (i + 2, c) by u. We continue Equation (4·1),

R1(v) = mk

k∑
j=1

(M12( f −1
j ) + M12(h

−1
j )) + D

= mk

k∑
j=1

M21( f j ) + mk

k∑
j=1

M21(h j ) + D
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= mk(R2(v) + R2(u)) + D

= mk(k − 1)(M22( fk) + M22(hk) + M22(pk)) + D, (4·2)

where the last equality holds since R2(u) = (k − 1)(M22(hk) + M22(pk)); if i = 1, then
R2(v) = (k − 1)M22( fk), and if i ≥ 2, then still R2(v) = (k − 1)(M22(ek) + M22( fk)) = (k −
1)M22( fk), because ek /∈ C.

In the same way, we have R1(v) = (k − 1)M12( fk). So

R1(v) = (k − 1)M12( fk) = (k − 1)M21( f −1
k ) = mk(k − 1)(M22( f −1

k ) + M22(h
−1
k ))

= mk(k − 1)(M22( fk) + M22(hk)).
(4·3)

Comparing Equations (4·2) and (4·3), we obtain that mk(k − 1)M22(pk) + D = 0, but both
M22(pk) and D are non-negative, so M22(pk) = D = 0. By Equation (2·4), this implies that
pk /∈ C. By Remark 4·4, it follows that f j , h j /∈ C, for all j = 1, . . . , k − 1. This is exactly
the claim of the lemma.

Suppose first that m is odd. By Remark 4·2, we can suppose that C lies inside D1, which
is the connected component of D containing (1, c). Then the vertex v = (1, c) satisfies the
conditions of Lemma 4·3, so by this lemma the edge e2,1

1,c is not in C. This is a contradiction
with Lemma 2·8, since local surjectivity at v of the projection π2 does not hold. Thus, for
odd m, the group G(Pm) is not commensurable with a RAAG defined by a tree of diameter 4.

So we can suppose that m is 0 modulo 4, in particular, m ≥ 8. There are two cases —
either C lies inside D1, or inside D2. If C lies inside D1, then again applying Lemma 4·3 at
the vertex v = (1, c) results in a contradiction, as in the case of odd m. Thus, we can assume
that C lies inside D2. Note that the vertices (2, c) and (m − 2, c) belong to D2.

LEMMA 4·5. If m ≡ 0 (mod 4) and C lies inside D2, then the edges e1, j
2,c and em−1, j

m−2,c , are
not in C, where j = 2, . . . , k.

Proof. The proof is similar to that of Lemma 4·3. By symmetry, it suffices to prove that the
edges e1, j

2,c , for j = 2, . . . , k, are not in C. To abbreviate the notation, denote the edges e1, j
2,c

by e j , the edges e3, j
2,c by f j , and the edges e3, j

4,c by h j , j = 1, . . . , k. Denote the vertex (2, c)
by v, see Figure 7.

Note that, by Lemma 2·12, we have that M11(e
−1
j ) = m j M12(e

−1
j ) and M21(e

−1
j ) =

m j M22(e
−1
j ) for all j = 1, . . . , k. Then, we have

R1(v) =
k∑

j=1

M11(e j ) =
k∑

j=1

M11(e
−1
j ) =

k∑
j=1

m j M12(e
−1
j ) = m1

k∑
j=1

M12(e
−1
j ) − C, (4·4)

where

C =
k∑

j=2

(m1 − m j )M12(e
−1
j ).

Since m1 > m2 > · · · > mk−1 > mk , and M-labels are non-negative, we have C ≥ 0, and C =
0 if and only if M12(e

−1
j ) = 0, for all j = 2, . . . , k, if and only if (by Equation (2·4)) e j /∈ C,

for all j = 2, . . . , k.
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Fig. 7. Part of the graph D2 in the proof of Lemma 4·5. The dashed edges are claimed not to be in C by the
lemma.

Fig. 8. The graph D2 for m = 12 in the end of the proof of Theorem 4·1. The dashed edges are proved not
to be in C, which leads to a contradiction.

We continue Equation (4·4),

R1(v) = m1

k∑
j=1

M12(e
−1
j ) − C = m1

k∑
j=1

M21(e j ) − C = m1 R2(v) − C

= m1(k − 1)(M22(e1) + M22( f1)) − C.

(4·5)

On the other hand, we have

R1(v) = (k − 1)(M12(e1) + M12( f1)) = (k − 1)(M21(e
−1
1 ) + M21( f −1

1 ))

= m1(k − 1)(M22(e
−1
1 ) + M22( f −1

1 ) + M22(h
−1
1 ))

= m1(k − 1)(M22(e1) + M22( f1) + M22(h1)),

(4·6)

since M21( f −1
1 ) = M22( f −1

1 ) + M22(h
−1
1 ) by Lemma 2·12.

Comparing (4·5) and (4·6), we obtain that C + m1(k − 1)M22(h1) = 0, but both C and
M22(h1) are non-negative, so C = M22(h1) = 0. This means that h1 /∈ C, but also, by
Remark 4·4, that e j /∈ C for j = 2, . . . , k. This is exactly the claim of the lemma.

We now turn to the proof of Theorem 4·1. As we already mentioned, we use Lemma 4·5 to
deduce the absence of certain edges and Lemma 4·3 to recursively remove other edges. We
combine these two lemmas until we assure that there is no local surjectivity contradicting
Lemma 2·8, see Figure 8.

https://doi.org/10.1017/S0305004119000537 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000537


Commensurability of RAAGs 579

Fig. 9. The tree Tk,k+1.

By Lemma 4·5, we see that the edges e1, j
2,c are not in C for j = 2, . . . , k. This means that we

can apply Lemma 4·3 to the vertex v = (2, c) of D2, and we conclude that the edges e3, j ′
2,c ,

for j ′ = 1, . . . , k − 1, are not in C. If k ≥ 3, then we get a contradiction with Lemma 2·8:
local surjectivity at v of the projection π2 does not hold, since neither e1,2

2,c nor e3,2
2,c are in C.

Thus we can suppose that k = 2.
We know that e2,c

1,2 /∈ C, and by Lemma 4·3 the edges e3,1
2,c , e4,c

3,1 and e5,2
4,c are not in C.

By Lemma 2·8 applied at the vertex (5, 2), we also see that e6,c
5,2 /∈ C. We claim that the

edges e4a−1,1
4a−2,c , e4a,c

4a−1,1, e4a+1,2
4a,c , e4a+2,c

4a+1,2 are not in C, for a = 1, . . . , m/4 − 1. We prove it
by induction on a. Note that the claim holds for a = 1, as proved above. Suppose it holds
for a ≤ a′, 1 ≤ a′ ≤ m/4 − 2, and we prove it for a = a′ + 1. Since e4a′+1,2

4a′+2,c /∈ C by induc-
tion hypothesis for a = a′, by Lemma 4·3, applied at the vertex (4a′ + 2, c), we see that
e4a′+3,1

4a′+2,c , e4a′+4,c
4a′+3,1, e4a′+5,2

4a′+4,c , /∈ C. Finally, by Lemma 2·8, we get e4a′+6,c
4a′+5,2 /∈ C, and this proves

the claim.
It follows from the claim with a = m/4 − 1 that em−2,c

m−3,2 /∈ C. By Lemma 4·3, applied at
the vertex (m − 2, c), we have that em−1,1

m−2,c /∈ C. But by Lemma 4·5, em−1,2
m−2,c /∈ C, and this is a

contradiction with Lemma 2·8, see Figure 8.
Thus, if m is not 2 modulo 4, then G(Pm) is not commensurable to a tree of diameter 4.

This proves the theorem.

Note that in this way we were able to show that for P4k+2 and Tk,k+1 the system has positive
integer solutions and calculate these solutions, and this gave us a hint on how to construct
the corresponding isomorphic finite index subgroups given in Section 5.

5. Commensurability of RAAGs defined by paths and trees of diameter 4

In this section, we characterise when a RAAG defined by a path Pn is commensurable to a
RAAG defined by a tree of diameter 4. In Section 4, we have seen that a necessary condition
for commensurability is that n ≡ 2 (mod 4). In this section, we show that this is a sufficient
condition.

Recall that by Tk,k+1 we denote a tree of diameter 4, with the central vertex of degree
2 and so that the two vertices adjacent to the central vertex have degrees k + 1 and k + 2
correspondingly, Tk,k+1 has 2k + 1 leaves, see Figure 9.

THEOREM 5·1. Let k ≥ 1. Then G(P4k+2) is commensurable to G(Tk,k+1).

Note that Theorem 5·1 together with Theorem 4·1 immediately imply Theorem 1·3.
The remaining part of this section will be devoted to the proof of Theorem 5·1. In order to

do so, we first define an abstract group as a fundamental group of a certain graph of groups
X ; we then exhibit finite index subgroups H and K of G(Tk,k+1) and G(P4k+2) respec-
tively and show that they are isomorphic to that abstract group. We define the subgroups by
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Fig. 10. The “diamond” graph Di , 1 ≤ i ≤ k − 1 (on the left) and the graph Dk (on the right).

describing them as fundamental groups of finite covers of the Salvetti complexes of the cor-
responding RAAGs. We divide the proof into five subsections. In Section 5·1 we construct
X , in Section 5·2 we construct H , in Section 5·3 we prove that H is isomorphic to π1(X), in
Section 5·4 we construct K , and in in Section 5·5 we prove that K is isomorphic to π1(X).

Throughout this section we always denote the conjugation as follows: gh = hgh−1. Also,
in a group G, we denote the centraliser of an element g in G by C(g), and the centraliser of
g in a subgroup H of G by CH (g). We will occasionally use this notation even in the case
when g is not in H (for some finite index subgroup H ), and in this case, since centralizers
in RAAGs are isolated (see [CKZ]), we have CH (g) = H ∩ C(g) = CH (gn), where n is the
minimal positive integer such that gn ∈ H .

We will use basic facts from Bass-Serre theory, the reader is referred to [Serre] for details.

5·1. Construction of the graph of groups X

Recall that by F(A) we mean the free group on A. We begin by defining a graph of groups
X . The graph of groups X is built from some simpler pieces Di , which are also graphs of
groups. We begin by describing these pieces.

Let Di , i = 1, . . . , k − 1 be the “diamond” graph with i + 2 vertices, namely
v, w, u1, . . . , ui , where the vertices u1, . . . , ui have degree 2 and each of the vertices ui

is adjacent to the two vertices v and w of degree i , see Figure 10.
Let the vertex group at u j be

V (u j ) = 〈r j 〉 × F( f j , g j ).

Let the vertex groups at v and w be as follows,

V (v) = 〈s〉 × F(x1, . . . , xk2, y1, . . . , yk+1−i , z1, . . . , zi);
V (w) = 〈s ′〉 × F(x ′

1, . . . , x ′
k2+1, y′

1, . . . , y′
k−i , z′

1, . . . , z′
i).

All edge groups are isomorphic to Z
2 = 〈p, q〉.

The embedding of Z2 of the edge (v, u j ) into V (v), is defined by the map

p �−→ s, q �−→ z j ,

where j = 1, . . . , i . The embedding of Z2 of the edge (v, u j ) into V (u j ), is defined by the
map

p �−→ f j , q �−→ r j ,

where j = 1, . . . , i . The embedding of Z2 of the edge (w, u j ) into V (u j ), is defined by the
map
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p �−→ g j , q �−→ r j ,

where j = 1, . . . , i . The embedding of Z2 of the edge (w, u j ) into V (w j ), is defined by the
map

p �−→ s ′, q �−→ z′
j ,

where j = 1, . . . , i .
Let Dk be the graph with 2k + 1 vertices defined as follows: it has 1 vertex v of degree

k adjacent to k vertices u1, . . . , uk of degree 2; each vertex ui is adjacent to a vertex u′
i of

degree 1, i = 1, . . . , k, see Figure 10.
The vertex group V (v) at v is defined to be

V (v) = 〈s〉 × F(x1, . . . , xk2, z1, . . . , zk, y1).

Let the vertex groups at ui and u′
i be as follows,

V (u j ) = 〈r j 〉 × F( f j , g j ); V (u′
j ) = 〈r ′

j 〉 × F(x ′
j1, . . . , x ′

j,k+1, z′
j ).

All edge groups are isomorphic to Z
2 = 〈p, q〉. The embedding of Z2 of the edge (v, u j )

into V (v), is defined by the map

p �−→ s, q �−→ z j , where j = 1, . . . , k.

The embedding of Z2 of the edge (v, u j ) into V (u j ), is defined by the map

p �−→ f j , q �−→ r j , where j = 1, . . . , k.

The embedding of Z2 of the edge (u j , u′
j ) into V (u j ), is defined by the map

p �−→ r j , q �−→ g j , where j = 1, . . . , k.

The embedding of Z2 of the edge (u j , u′
j ) into V (u′

j ), is defined by the map

p �−→ z′
j , q �−→ r ′

j , where j = 1, . . . , k.

We now consider the graph of groups X obtained by identifying the vertices v and w in the
graphs of groups Di in the following sequence

(Dk, D1, Dk−1, D2, . . . , Dk−1, D1, Dk), (5·1)

where Dk and D1 are identified along v, D1 and Dk−1 are identified along w, Dk−1 and D2

are identified along v etc, see Figure 11. This defines the graph of groups X .

5·2. Construction of the finite index subgroup H of G(Tk,k+1)

Recall that the tree Tk,k+1 has a central vertex c of degree 2, two adjacent vertices b and
d of degree k + 1 and k + 2 respectively and leaves ai adjacent to b, i = 1, . . . , k and e j

adjacent to d, j = 1, . . . , k + 1, see Figure 9.
The subgroup H is defined as the full preimage under the natural epimorphism π :

G(Tk,k+1) → F(a1, e1) of a finite index subgroup H ′ of F(a1, e1), that is H := π−1(H ′),
where H ′ < f i F(a1, e1).

The subgroup H ′ is defined as the fundamental group of a finite cover S of degree k(k + 1)

of the bouquet of two circles. The aforementioned cover is defined as follows.
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Fig. 11. The underlying graph for the graph of groups X in the cases k = 3 (above) and k = 4 (below).

Let Pi be k + 1-cycles labelled by a1, i = 1, . . . , k, and Qi be k-cycles labelled by e1,
i = 1, . . . , k − 1. We now glue these cycles according to the following pattern:

(i) identify P1 and Q1 by 1 vertex, the basepoint;
(ii) attach P2 onto Q1 by identifying k − 1 vertices;

(iii) attach Q2 onto P2 (attached in the previous step) by identifying 2 (consecutive)
vertices;

(iv) attach P3 onto Q2 (attached in the previous step) by identifying k − 2 (consecu-
tive) vertices;

(v) . . .
(vi) attach Qk−1 onto Pk−1 (attached in the previous step) by identifying k − 1 vertices;

(vii) attach Pk onto Qk−1 (attached in the previous step) by identifying 1 vertex.
(viii) add loops labelled by e1 at all the k vertices of P1 which are not the basepoint (and

so are not on Q1), and similar for all the k vertices of Pk which are not on Qk−1.

The attachments are always performed in such a way that the vertices in the intersection of
Qi and Pi appear in those cycles in the opposite order, and similar for the intersection of Pi

and Qi−1, for all i = 2, . . . , k − 1. This defines S, and so also H .
By construction, the cycles Pl and Pm , l 	= m, Ql and Qm , l 	= m, Pl and Qm , l 	= m +

1, l 	= m, do not share any vertices. We refer the reader to Figure 12 for the construction of
the cover S in the cases k = 3 and k = 4.

Note that the vertices of S are in one-to-one correspondence with the right cosets of H ′ as
follows: if g is the label of any path from the basepoint to a vertex v in S, then v corresponds
to H ′g. In other terms, S is the Schreier graph of H ′ in F(a1, e1).

The group H ′ is a subgroup of F(a1, e1) of index k(k + 1), since it is defined by a
finite cover of degree k(k + 1). The group G(Tk,k+1) retracts onto F(a1, e1) and so the full
preimage H of H ′ in G(Tk,k+1) is a subgroup of index k(k + 1).

5·3. Isomorphism between H and π1(X)

The finite index subgroup H of G(Tk,k+1) acts on the Bass–Serre tree T of the reduced
centraliser splitting of G(Tk,k+1) and so H has an induced graph of groups structure
determined by the quotient of T by the action of H . In this subsection we prove the
following.
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Fig. 12. The cover S defining the subgroup H ′ of F(a1, e1) in the cases k = 3 (above) and k = 4 (below).
Solid edges are labelled by a1, and dashed edges are labelled by e1. The basepoint is marked by a star.

PROPOSITION 5·2. In the above notation, the subgroup H is isomorphic to the fundamental
group of the graph of groups X. Namely, the induced splitting of H given by its action on T
is X.

Proof. By Bass–Serre theory the vertices of T correspond to the left cosets of the vertex
groups of the reduced centraliser splitting, i.e. left cosets of centralisers of b, c and d in
G(Pk,k+1), and the action of G(Pk,k+1) on T is by left multiplication.

We proceed by describing the fundamental domain of the action of H on T .
Let 1 ≤ i ≤ k − 1. Let D̃i be the graph with 2i + 1 vertices described as follows: it has

1 vertex v of degree i adjacent to vertices v1, . . . , vi of degree 2; each v j is adjacent to a
vertex v′

j of degree 1, j = 1, . . . , i .
We now consider the subtree of the Bass–Serre tree T which is isomorphic to D̃i ,

with vertex v labelled by e1(a1e1)
i−2C(b), v j labelled by e1(a1e1)

i−2a j
1 C(c), v′

j labelled

by e1(a1e1)
i−2a j

1 C(d) = (e1a1)
i−1a j−1

1 C(d), j = 1, . . . , i . We now remove the vertices v′
j ,

j = 2, . . . , i . The obtained subtree D′
i (without the removed vertices; no edges are removed)

corresponds to a lift of Di , where Di is the 2i th member of Sequence (5·1), for 1 ≤ i ≤ k − 1.
Note that, strictly speaking, D′

i is not a subtree, since for some of its edges one of the ends
is not in D′

i , but, abusing the terminology, we will call it a subtree; the same observation
applies for similar constructions below.

Similarly, consider a subtree of the Bass–Serre tree which is isomorphic to D̃k−i ,
with vertex v labelled by (e1a1)

i−1C(d), v j labelled by (e1a1)
i−1e j

1C(c), v′
j labelled by

(e1a1)
i−1e j

1C(b), j = 1, . . . , k − i . We now remove the vertices v′
j , j = 2, . . . , k − i . The

obtained subtree D′′
k−i (without the removed vertices; no edges are removed) corresponds to

a lift of Dk−i , where Dk−i is the (2i + 1)th member of Sequence (5·1).
Let also D′

k be the subtree of the Bass-Serre tree T which is isomorphic to D̃k , with vertex
v labelled by C(b), v j labelled by a j

1 C(c), v′
j labelled by a j

1 C(d), j = 1, . . . , k. Note that
no vertices are removed in this case. The subtree D′

k corresponds to a lift of Dk , which is the
first member of Sequence (5·1).
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Fig. 13. The fundamental domain Y for the action of H on T in the case k = 3 (above) and k = 4 (below).
Only the vertices that are denoted by disks belong to Y , while those denoted by circles do not. Small nodes
correspond to the cosets of C(c), huge nodes – to the cosets of C(b), and middle-size nodes – to the cosets
of C(d). Representatives of the corresponding cosets are written next to the vertices.

Similarly, let D′′
k be the subtree of the Bass–Serre tree T which is isomorphic to D̃k ,

with vertex v labelled by e1(a1e1)
k−2C(b), v j labelled by e1(a1e1)

k−2a j
1 C(c), v′

j labelled by

e1(a1e1)
k−2a j

1 C(d) = (e1a1)
k−1a j−1

1 C(d), j = 1, . . . , k. Note that no vertices are removed in
this case. The subtree D′′

k corresponds to a lift of Dk , which is the last member of Sequence
(5·1).

One can readily check that the union Y of all the subtrees D′
i and D′′

k−i of T , for 1 ≤ i ≤
k − 1, together with D′

k and D′′
k , is connected. See Figure 13 for Y in the cases k = 3 and

k = 4.
We need a few additional lemmas.

LEMMA 5·3. There is a one-to-one correspondence θc between the vertices of Y which
are the left cosets of C(c) and the vertices in the cover S defining H ′, i.e. all the right cosets
of H ′.

Under θc a coset gC(c) representing a vertex of Y is mapped to the vertex of S, where one
gets after reading the word π(g) starting at the basepoint, i.e. to the vertex representing the
right coset H ′π(g).

Proof. Note that θc is a well-defined map, since C(c) = 〈b, c, d〉 is in the kernel of π .
Now, by the definition of Y , the set of left cosets of C(c) which are the vertices of Y has

the following set of representatives (one for each coset), for 1 ≤ i ≤ k − 1:

e1(a1e1)
i−2a j

1 , 1 ≤ j ≤ i; (e1a1)
i−1e j

1, 1 ≤ j ≤ k − i; a j
1 , e1(a1e1)

k−2a j
1 , 1 ≤ j ≤ k.

(5·2)
Then it follows from the definition of H ′ that the elements from (5·2) form the set of
right coset representatives for H ′, or, in other words, for each vertex v in S there is
exactly one of the elements in (5·2) which labels a path from the basepoint to v in S.
Indeed, the elements a j

1 , 1 ≤ j ≤ i, correspond to the vertices in P1 but not Q1, the ele-
ments (e1a1)

i−1e j
1, 1 ≤ j ≤ k − i, correspond to the vertices in Qi ∩ Pi+1 for all 1 ≤ i ≤
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k − 1, the elements e1(a1e1)
i−2a j

1 , 1 ≤ j ≤ i, correspond to the vertices in Pi ∩ Qi for all
1 ≤ i ≤ k − 1, and the elements e1(a1e1)

k−2a j
1 , 1 ≤ j ≤ k, correspond to the vertices in Pk

but not Qk−1.
This proves that θc is indeed a bijection.

LEMMA 5·4. There is a one-to-one correspondence θb between the vertices of Y which
are the left cosets of C(b) and the cycles labelled by a1 in the cover S defining H ′. Under
this correspondence, a coset gC(b) representing a vertex of Y is mapped to the a1-cycle
passing through the vertex of S where one gets after reading the word π(g) starting at the
basepoint (i.e. through the vertex representing the coset H ′π(g)).

Similarly, there is a one-to-one correspondence θd between the vertices of Y which are
the left cosets of C(d) and all the cycles labelled by e1 in the cover S defining H ′. Under this
correspondence, a coset gC(d) representing a vertex of Y is mapped to the e1-cycle passing
through the vertex of S where one gets after reading the word π(g) starting at the basepoint
(i.e., through the vertex representing the coset H ′π(g)).

Proof. Note that θb is a well-defined map, since C(b) does not contain e1 and so taking
another representative g′ from the coset gC(b) would result in a vertex on the same a1-cycle.

Now, by the definition of Y , the set of left cosets of C(b) which are the vertices of Y has
the following set of representatives (one for each coset):

e1(a1e1)
i−2, 1 ≤ i ≤ k.

It follows from the definition of H ′ that each word e1(a1e1)
i−2 labels a path in S from the

basepoint to a vertex on the cycle Pi , for all 1 ≤ i ≤ k. Since P1, . . . , Pk are all the cycles in
S labelled by a1, this proves the first claim.

Similarly, θd is a well-defined map, and the set of left cosets of C(d) which are vertices
of Y has the following set of representatives (one for each coset):

(e1a1)
i−1, 1 ≤ i ≤ k − 1, a j

1 , (e1a1)
k−1a j−1

1 , 1 ≤ j ≤ k.

It follows from the definition of H ′ that each word (e1a1)
i−1 labels a path in S from the base-

point to a vertex on the cycle Qi , for all 1 ≤ i ≤ k − 1, and together with a j
1 , (e1a1)

k−1a j−1
1 ,

which label paths from the basepoint to e1-loops in S, this gives all the e1-cycles, and hence
the desired result.

The correspondences from Lemmas 5·3 and 5·4 can be easily traced on Figures 12 and 13
for k = 3 and k = 4 (notice that they respect the colours).

LEMMA 5·5. Y is a fundamental domain of the action of H on T , i.e.,

(i) no 2 vertices (edges) of Y belong to the same H-orbit;
(ii) any vertex (edge) of the tree T can be brought to one of the vertices (edges) of Y by

the action of H.

Proof. Claim (i) follows from Lemmas 5·3 and 5·4. Indeed, suppose that two vertices v =
gC(c) and v′ = g′C(c) of Y are equivalent under the action of H , i.e., g′C(c) = hgC(c) for
some h ∈ H . Then π(h) ∈ H ′ and so θc(g′C(c)) = θc(gC(c)), since both correspond to the
coset H ′π(g) = H ′π(h)π(g). Then v = v′, since θc is injective.
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Similarly, if v = gC(b) and v′ = g′C(b), and g′C(b) = hgC(b) for some h ∈ H , then
θb(g′C(b)) = θb(gC(b)), since both correspond to the a1-cycle passing through the vertex
H ′π(g) = H ′π(h)π(g), so v = v′, since θb is injective. In the same way, if v = gC(d) and
v′ = g′C(d), and g′C(d) = hgC(d), then v = v′. Since no two vertices of Y are in the same
H -orbit, the same is true for edges of Y . This proves the first claim.

We now prove claim (ii). Let v be a vertex of Y , labelled by gC(α), where α is b, c or d,
and let St (v) be the star at v in the Bass–Serre tree T . Note that the stabiliser of v under the
action of H is CH (αg). We show that, modulo CH (αg), any vertex w ∈ St (v)� {v} belongs
to the orbit of a vertex labelled by:

(i) gC(b), gC(d) if α = c;
(ii) ge j

1C(c), if α = d, where j = 0, . . . , k − 1;
(iii) ga j

1 C(c), if α = b, where j = 0, . . . , k.

Indeed, suppose first v = gC(c) ∈ Y and let e = (gC(c), gxC(b)) /∈ Y . Then x ∈ C(c) =
〈b, c, d〉 and without loss of generality we can assume that x ∈ 〈b, d〉. It suffices to find h ∈
H ∩ C(cg) such that h · gxC(b) = gC(b). Hence, h = gx−1g−1 satisfies the requirements.
The case when e = (gC(c), gxC(d)) /∈ Y is similar.

Let now v = gC(d) ∈ Y , and let e = (gC(d), gxC(c)) /∈ Y . Then x ∈ C(d) =
〈c, d, ei , i = 1, . . . , k + 1〉, and without loss of generality we can assume that
x ∈ 〈c, ei , i = 1, . . . , k + 1〉. We now find h ∈ H ∩ C(dg) such that h · gxC(c) = ge j

1C(c),
for some j = 0, . . . , k − 1. Set h = ge j

1 x−1g−1 ∈ H , where j is the sum of exponents of e1

in x modulo k. Note that the choice of j guarantees that e j
1 x−1 ∈ C(d) is a loop in the graph.

The argument for the case α = b is identical.
We now show that all the edges incident to a vertex in Y can be taken to Y by elements

of H .
For the edges that are incident to a vertex of type gC(c) in Y it follows directly from

the above claim: any edge connecting gC(c) to w = g′C(b) can be brought to an edge
connecting gC(c) to gC(b), which is in Y , and similar for d.

We now consider the case of edges incident to a vertex v = gC(b) of Y . According to the
above claim, it suffices to prove that any edge connecting v to ga j

1 C(c) for j = 0, . . . , k,

can be brought to an edge of Y . If v = C(b) or v = e1(a1e1)
k−2C(b), then all these edges

are already in Y , and there is nothing to prove. Otherwise, we have v = e1(a1e1)
i−2C(b) for

some 1 ≤ i ≤ k − 1, and then the edges (gC(b), ga j
1 C(c)) are already in Y for j = 1, . . . , i ,

but not for j = i + 1, . . . , k. Thus it suffices to show that the edges (gC(b), ga j
1 C(c)) can

be brought to Y for j = i + 1, . . . , k. Indeed, let h j = gek+1− j
1 a− j

1 g−1. It follows from the
construction of S that h j ∈ H . We then have

h j · ga j
1 C(c) = gek+1− j

1 a− j
1 g−1ga j

1 C(c) = gek+1− j
1 C(c) and

h j · gC(b) = gek+1− j
1 a− j

1 C(b) = gek+1− j
1 C(b).

It follows that the edge (gC(b), ga j
1 C(c)) is mapped by h j to the edge (gek+1− j

1 C(b),

gek+1− j
1 C(c)), which belongs to Y since 1 ≤ k + 1 − j ≤ k − i .
Finally, consider the case of edges incident to a vertex v = gC(d) of Y . According

to the above claim, it suffices to prove that any edge connecting v to ge j
1C(c) for j =

0, . . . , k − 1 can be brought to an edge of Y . Suppose first v = al
1C(d) for 1 ≤ l ≤ k.

Then the edge (al
1C(d), al

1e j
1C(c)) can be brought to the edge (al

1C(d), al
1C(c)) ∈ Y , by

the element al
1e− j

1 a−l
1 , which belongs to H by the construction of S. The case when
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v = (e1a1)
k−1al−1

1 C(d) is similar. Otherwise, v = (e1a1)
i−1C(d) for some 1 ≤ i ≤ k − 1, and

the proof in this case is similar to the one above for the cosets of C(b).
This shows that indeed all the edges incident to a vertex in Y can be taken to Y by elements

of H .
To finish the proof of claim (ii) we are left to consider the case when v ∈ Y , (v, w) ∈ Y

but w is not in Y . By definition of Y , this is possible only in the following setting. Let
(u j , v j , w, u1, v1) be a path of length 4 in the Bass–Serre tree T , where g = (e1a1)

i−1 for
some 1 ≤ i ≤ k − 1 and

u j = ge j
1C(b), v j = ge j

1C(c), w = gC(d), where j = 1, . . . , k − i.

We show that u1 and u j are in the same H -orbit, that is there exist h j ∈ H so that h j ·
ge j

1C(b) = ge1C(b), for all j = 1, . . . , k − i . Indeed, one can take h j = ge1a1− j
1 e− j

1 g−1, and
it follows from the construction of S that h j ∈ H .

The case when w = gC(b) is identical and is left to the reader.
Now it is standard that Y is the fundamental domain. Indeed, one can see by induction on

the distance between an edge e of T and the closest to e vertex of Y that any edge of T can
be taken to Y by an element of H , and similar for vertices.

This proves Lemma 5·5.

It follows that the quotient of the action of T by H is a graph isomorphic to the one
associated to X . We need one more lemma about the structure of centralisers in H .

LEMMA 5·6. The following formulas hold for centralizers in H :

CH (c) = 〈c〉 × F(b, d),

CH (d) = 〈d〉 × F(ei
e j

1 , ek
1, ce j

1 | j = 0, . . . , k − 1, i = 2, . . . , k + 1),

CH (b) = 〈b〉 × F(ai
a j

1 , ak+1
1 , ca j

1 | j = 0, . . . , k, i = 2, . . . , k).

More generally, the following holds:

(i) CH (cg) = 〈cg〉 × F(bg, dg) ∼=Z× F2 for every g ∈ G;
(ii) CH (bg) = 〈bg〉 × F(ai

ga j
1 , (ak+1

1 )g, cga j
1 | j = 0, . . . , k, i = 2, . . . , k) ∼=

Z× Fk2+k+1 for every g ∈ G;
(iii) if g ∈ G is such that π(g) labels a path in S from the basepoint to a vertex on one

of the cycles Q1, . . . , Qk−1, then

CH (dg) = 〈dg〉 × F(ei
ge j

1 , (ek
1)

g, cge j
1 | j = 0, . . . , k − 1, i = 2, . . . , k + 1)

∼=Z× Fk2+k+1;
(iv) if g ∈ G is such that π(g) labels a path in S from the basepoint to a vertex on the

cycle P1 but not Q1, or Pk but not Qk−1, then

CH (dg) = 〈dg〉 × F(eg
i , cg | i = 1, . . . , k + 1) ∼=Z× Fk+2.

Proof. We just prove the first statement, the others follow from the construction of the
cover S in a similar way, since C(αg) = (C(α))g, where C(α) is a subgroup of H g−1 =
π−1((H ′)π(g)−1

) for α = b, c, d, and the cover defining (H ′)π(g)−1
can be obtained from S

just by moving the basepoint along a path with the label π(g).
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Note that

C(b) = 〈a1, . . . , ak, b, c〉 ∼=Z× Fk+1, C(c) = 〈b, c, d〉 ∼=Z× F2,

C(d) = 〈c, d, e1, . . . , ek+1〉 ∼=Z× Fk+2.

It is immediate that CH (c) = 〈b, c, d〉. Now, we have

CH (b) = H ∩ C(b) = H ∩ 〈a1, . . . , ak, b, c〉 = 〈b〉 × (H ∩ 〈a1, . . . , ak, c〉),
and H0 = H ∩ 〈a1, . . . , ak, c〉 is a subgroup of the free group F(a1, . . . , ak, c) which
is defined by the following cover: take the cycle P1 (labelled by a1, of length k + 1)
and add loops labelled by a2, . . . , ak, c at every vertex. It follows that H0 has a basis
{ai

a j
1 , ak+1

1 , ca j
1 , j = 0, . . . , k, i = 2, . . . , k}, and so CH (b) has the desired form. The proof

for CH (d) is similar.

We now show that H is isomorphic to the fundamental group of the graph of groups X .
To see this we need to check that vertex groups, edge groups and the embeddings are the
same. The vertex groups are simply centralisers (in H ) of conjugates of generators, which
we computed in Lemma 5·6. Edge groups are clearly free abelian groups of rank two and the
embeddings are mapping generators of the edge groups to the corresponding generators of
the vertex groups. Now it follows directly from the definition of X , Lemma 5·5 and Lemma
5·6 that H is isomorphic to the fundamental group of the graph of groups X . This proves
Proposition 5·2.

5·4. Construction of the finite index subgroup K in G(P4k+2)

Let now P4k+2 be the path of length 4k + 2. Let

{A, D1, C1, B1, C ′
1, D2, C2, B2, C ′

2, . . . , Dk, Ck, Bk, C ′
k, Dk+1, E}

be the ordered list of vertices of P4k+2. From now on denote by G =G(P4k+2) the corre-
sponding RAAG. Let F = F(C1, . . . , Ck, C ′

1, . . . , C ′
k) be the free group on the indicated

set of generators. We construct a finite index subgroup K ′ of F . The group K ′ corresponds
to the degree k(k + 1) cover Z of the bouquet of 2k circles defined as follows:

(i) there are exactly i cycles spanned by edges labelled by C ′
i , i = 1, . . . , k. In

particular, there is only one cycle spanned by C ′
1, its length is k(k + 1);

(ii) edges labelled by C ′
k span k cycles of length k + 1 each;

(iii) edges labelled by C ′
i span i cycles, i = 1, . . . , k − 1: one cycle of length k(k +

1) − (i − 1) and i − 1 loops;
(iv) there are k + 1 − i cycles spanned by Ci , i = 1, . . . , k. In particular, there is one

cycle spanned by Ck , its length is k(k + 1);
(v) edges labelled by C1 span k cycles of length k + 1 each;

(vi) edges labelled by Ci span k + 1 − i cycles, i = 2, . . . , k: one cycle of length k(k +
1) − (k − i) and k − i loops;

(vii) there are no loops at the basepoint;
(viii) the graph spanned by the edges labelled by Ci and C ′

i is connected, for every i =
1, . . . , k;

(xi) the graph spanned by the edges labelled by C ′
i−1 and Ci is connected, for every

i = 2, . . . , k.
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Fig. 14. A cover Z defining the subgroup K ′ in F in the case k = 3. The basepoint is marked by a star. Each
solid thin edge corresponds to two edges, one labelled by C ′

1 and the other by C3; each solid thick edge
corresponds to two edges, one labelled by C1 and the other by C ′

3; dashed thin edges are labelled by C2 and
dashed thick edges are labelled by C ′

2. Here we have α2,1 = 1, β2,1 = 1.

It is easy to see that such a cover always exists. For instance, one could have at most one
loop at each vertex, it is possible since there are (k − 1)(k − 2) loops altogether and k(k + 1)

vertices, and in this case the last two conditions follow from the previous ones. Such a cover
is not unique, but we can choose any cover satisfying the above assumptions, and this will
give isomorphic subgroups, as we will see below. See Figures 14 and 15 for covers Z in the
cases k = 3 and k = 4 respectively.

Without loss of generality, we assume that the vertices of Z which can be reached from the
basepoint by reading the words C ′ j

1 , j = 0, . . . , k − 1, all belong to different cycles labelled
by C1, and similarly the vertices of Z which can be reached from the basepoint by reading
the words C j

k , j = 0, . . . , k − 1, all belong to different cycles labelled by C ′
k .

We let K to be the full preimage of K ′ in G under the natural epimorphism π : G → F .
By definition, K has index k(k + 1) in G.

Let 2 ≤ i ≤ k − 1. By construction, the graph spanned by the edges labelled by C ′
i−1 and

Ci is connected, and the graph spanned by the edges labelled only by Ci has k + 1 − i con-
nected components, all but one being loops, and so these loops are incident to the vertices
v1, . . . , vk−i , which belong to the cycle labelled by C ′

i−1 that goes through the basepoint (of
length k(k + 1) − (i − 1)). Let αi,1 < αi,2 < · · · < αi,k−i be the lengths of the shortest ori-
ented paths labelled by C ′

i−1 starting at the basepoint and ending at the vertices v1, . . . , vk−i

(i.e, those which have loops labelled by Ci ), see Figures 14, 15. In the same way, exchang-
ing the roles of C ′

i−1 and Ci , one can define α′
i,1 < α′

i,2 < · · · < α′
i,i−2 to be the lengths of the

shortest oriented paths labelled by Ci starting at the basepoint and ending at the vertices with
loops labelled by C ′

i−1, one for each of i − 2 such loops.
Similarly, for 2 ≤ i ≤ k − 1, the graph spanned by the edges labelled by Ci and C ′

i is
connected, and the graph spanned by the edges labelled only by C ′

i has i connected compo-
nents, all but one being loops, and so these loops are incident to the vertices w1, . . . , wi−1,
which belong to the cycle labelled by Ci that goes through the basepoint (of length
k(k + 1) − (k − i)). Let βi,1 < βi,2 < · · · < βi,i−1 be the lengths of the shortest oriented paths
labelled by Ci starting at the basepoint and ending in the vertices w1, . . . , wi−1 (i.e, those
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Fig. 15. A cover Z defining the subgroup K ′ in F in the case k = 4. The basepoint is marked by a star. Each
solid thin edge corresponds to two edges, one labelled by C ′

1 and the other by C4; each solid thick edge
corresponds to two edges, one labelled by C1 and the other by C ′

4; each dashed thin edge corresponds to
two edges, one labelled by C2 and the other by C ′

3; dashed thick edges are labelled by C ′
2 and dotted edges

are labelled by C3. Here we have α2,1 = 1, α2,2 = 2, α3,1 = 3, β2,1 = 1, β3,1 = 1, β3,2 = 2.

which have loops labelled by C ′
i ), see Figures 14, 15. In the same way, exchanging the roles

of Ci and C ′
i , one can define β ′

i,1 < β ′
i,2 < · · · < β ′

i,k−i to be the lengths of the shortest ori-
ented paths labelled by C ′

i starting at the basepoint and ending at the vertices with loops
labelled by Ci , one for each of k − i such loops.

We additionally define αi,0 = βi,0 = 0 for 2 ≤ i ≤ k − 1.

5·5. Isomorphism between K and π1(X)

From now on we will denote by T the Bass–Serre tree of the reduced centraliser split-
ting of G(P4k+2). The finite index subgroup K of G(P4k+2) acts on T , and so K has an
induced graph of groups structure determined by the quotient of T by the action of K . In
this subsection we prove the following.

PROPOSITION 5·7. In the above notation, the subgroup K is isomorphic to the fundamental
group of the graph of groups X. Namely, the induced splitting of K given by its action on T
gives precisely X.

Proof. Consider the full subgraph (subtree) Y0 of the Bass–Serre tree T spanned by the
following vertices:
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Fig. 16. The fundamental domain Y for the action of K on T in the case k = 3 (above) and k = 4 (below),
where K is defined via K ′ as on Figures 14, 15. Only the vertices that are filled belong to Y , while those
with blank interior do not. Small nodes correspond to the cosets of C(Ci ), C(C ′

i ), huge nodes – to the cosets
of C(Bi ), and middle-size nodes – to the cosets of C(Di ).

(i) C(Di), C(Ci), C(Bi), C(C ′
i), i = 1, . . . , k, C(Dk+1);

(ii) C ′ j
1 C(C1), C ′ j

1 C(D1), j = 1, . . . , k − 1;
(iii) C j

k C(C ′
k), C j

k C(Dk+1), j = 1, . . . , k − 1;
(iv) C

′αi, j

i−1 C(Ci), C
′αi, j

i−1 C(Bi), i = 2, . . . , k − 1, j = 1, . . . , k − i ;

(v) C
βi, j

i C(C ′
i), C

βi, j

i C(Di+1), i = 2, . . . , k − 1, j = 1, . . . , i − 1.

Let Y be obtained from Y0 by deleting the following vertices (without deleting any edges):

(i) C
′αi, j

i−1 C(Bi), i = 2, . . . , k − 1, j = 1, . . . , k − i ;

(ii) C
βi, j

i C(Di+1), i = 2, . . . , k − 1, j = 1, . . . , i − 1.

The subtree Y is shown on Figure 16 for k = 3 and k = 4.

LEMMA 5·8. Y is a fundamental domain of the action of K on T .

Proof. We first show that no 2 vertices in Y belong to the same K -orbit. This is immediate
for the cosets of the centralisers of C ′

1, Ck, B1, B2, . . . , Bk and D2, . . . , Dk , since for them
there is only one vertex in Y even in each G-orbit.

Suppose that there exists h ∈ K such that for some 2 ≤ i ≤ k − 1 and 0 ≤ j < l ≤ k − i
we have h · C

′αi j

i−1C(Ci) = C ′αil
i−1C(Ci). By definition, h = C ′αil

i−1xC
′−αi j

i−1 , where x ∈ C(Ci) =
〈Bi , Ci , Di 〉. Then π(h) = C ′αil

i−1wC
′−αi j

i−1 ∈ K ′, where w = π(x) is a power of Ci . This means
that the vertices in Z obtained from the basepoint after reading C ′αil

i−1 and C
′αi j

i−1 are on
the same cycle labelled by Ci , which contradicts the definition of α’s. Similar argument
shows that there is no h ∈ K such that for some 2 ≤ i ≤ k − 1 and 0 ≤ j < l ≤ k − i we have
hC

βi, j

i C(C ′
i) = Cβi,l

i C(C ′
i).

In the same way, if there is h ∈ K such that hC ′ j
1 C(C1) = C ′l

1 C(C1) for some 0 ≤ j <

l ≤ k − 1, then C ′ j
1 xC ′−l

1 ∈ K for some x ∈ C(C1) = 〈D1, C1, B1〉, and so C ′ j
1 wC ′−l

1 ∈ K ′,
where w = π(x) is a power of C1, so the vertices in Z obtained from the basepoint after
reading C ′ j

1 and C ′l
1 are on the same cycle labelled by C1, which contradicts our choice of Z .
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Also, if there is h ∈ K such that hC ′ j
1 C(D1) = C ′l

1 C(D1) for some 0 ≤ j < l ≤ k − 1, then
C ′ j

1 xC ′−l
1 ∈ K for some x ∈ C(D1) = 〈A, D1, C1〉, so C ′ j

1 wC ′−l
1 ∈ K ′, where w = π(x) is a

power of C1, which is again a contradiction as above. Similar arguments apply to the cosets
of C ′

k and Dk+1. Thus no 2 vertices of Y are in the same K -orbit.
We now show that all the vertices C

′αi j

i−1C(Bi), i = 2, . . . , k − 1, j = 1, . . . , k − i , can be

mapped to C(Bi) and all the vertices C
βi j

i C(Di+1), i = 2, . . . , k − 1, j = 1, . . . , i − 1, can
be mapped to C(Di+1) by some elements of K .

Indeed, we show that there exists h ∈ K such that h · C(Bi) = C
′αi j

i−1C(Bi). It suffices to
take h = C

′αi j

i−1w j ∈ K , where w j ∈ C(Bi) = 〈Ci , Bi , C ′
i 〉. Let v be the vertex of Z where

one gets after reading the label C
′αi j

i−1 from the basevertex. It now suffices to choose w j =
w j (Ci , C ′

i ) to be the label of a path joining v to the basepoint inside the graph spanned by
the edges labelled by Ci and C ′

i , and such a path indeed exists since this graph is connected.
The proof for cosets of C(Di) is analogous and is left to the reader.
We are left to show that all the edges e in the Bass–Serre tree T which share a vertex with

Y can be mapped into Y by an element of K .
Suppose first that e = (xC(Ci), xgC(Bi )), where x = 1 and 1 ≤ i ≤ k, or x = C

′αi, j

i−1 ,
i = 2, . . . , k − 1, j = 1, . . . , k − i , or x = C ′ j

1 , j = 1, . . . , k − 1 with i = 1. In particular,
xC(Ci) is in Y . Then g ∈ C(Ci) = 〈Bi , Ci , Di 〉, so, without loss of generality, we can assume
that g = w(Di , Bi ), and so g′ = xg−1x−1 ∈ K and g′ takes e to (xC(Ci), xC(Bi)) which is
in Y by construction.

Suppose next that e = (C(Bi), gC(C ′
i )), i = 1, . . . , k. Then g ∈ C(Bi), and so, without

loss of generality, we can assume that g = w(Ci , C ′
i ). We show that for all such g there

exists h ∈ CK (Bi ) and j = 0, . . . , i − 1 such that hgC(C ′
i ) = C

βi j

i C(C ′
i). Indeed, let v be the

vertex of Z where one gets after reading the word w from the basepoint of Z . By definition,
one can choose j such that the path labelled by C

βi j

i and starting at the basepoint of Z ends in
the C ′

i -cycle that passes through v, and then h = C
βi j

i C ′l
i g−1 ∈ K for some l, and h ∈ C(Bi),

as desired. Then h takes the edge e into Y .
Let now e = (C ′ j

1 C(D1), C ′ j
1 gC(C1)), j = 0, . . . , k − 1. Then g ∈ C(D1), and with-

out loss of generality we can assume that g = w(A, C1). Hence, π(g) = Cl
1 for

some l, and so π(Cl
1g−1) = 1. Therefore, h = C ′ j

1 Cl
1g−1C ′− j

1 ∈ K . Now h takes e into
(C ′ j

1 C(D1), C ′ j
1 C(C1)), which is in Y .

All the other cases are similar to the above and left to the reader.
Now it is routine to see that Z is a fundamental domain for the action of K on T . This

proves Lemma 5·8.

We established that the quotient of the action of T by K is a graph isomorphic to the one
associated to X . We need one more lemma about centralisers in K .

LEMMA 5·9. The following formulas hold for centralizers in K :

(i) C(Cg
i ) = (K ∩ 〈Cg

i 〉) × F(Dg
i , Bg

i ) ∼=Z× F2 for all g ∈ G, i = 1, . . . , k;
(ii) C(C ′g

i ) = (K ∩ 〈C ′g
i 〉) × F(Bg

i , Dg
i+1)

∼=Z× F2 for all g ∈ G, i = 1, . . . , k;
(iii) C(Bi) = 〈Bi 〉 × Li

∼=Z× Fk2+k+1 for i = 2, . . . , k − 1, where Li is a subgroup of
index k(k + 1) in F(Ci , C ′

i) with basis⎧⎨
⎩Ck(k+1)−(k−i)

i , C
(C

′β′
i, j

i )

i , C ′k(k+1)−(i−1)

i ,

C
′(Cβi,l

i )

i , Ui,1, . . . , Ui,k2

∣∣∣∣∣∣ j = 1, . . . , k − i, l = 1, . . . , i − 1

⎫⎬
⎭ ,
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where each of Ui,1, . . . , Ui,k2 is not conjugate to a power of Ci or C ′
i ;

(iv) C(Di) = 〈Di 〉 × L ′
i
∼=Z× Fk2+k+1 for i = 2, . . . , k, where L ′

i is a subgroup of index
k(k + 1) in F(Ci , C ′

i−1) with the basis

⎧⎨
⎩

Ck(k+1)−(k−i)
i , C

(C
′αi, j
i−1 )

i , C ′k(k+1)−(i−2)

i−1 ,

C
′(Cα′

i,l
i )

i−1 , U ′
i,1, . . . , U ′

i,k2+1

∣∣∣∣∣∣ j = 1, . . . , k − i, l = 1, . . . , i − 2

⎫⎬
⎭ ,

where each of U ′
i,1, . . . , U ′

i,k2+1 is not conjugate to a power of Ci or C ′
i−1;

(v) C(B1) = 〈B1〉 × L1
∼=Z× Fk2+k+1, where L1 is a subgroup of index k(k + 1) in

F(C1, C ′
1) with the basis {C ′k(k+1)

1 , (Ck+1
1 )(C ′ j

1 ), U1,1, . . . , U1,k2, j = 0, . . . , k − 1},
where each of U1,1, . . . , U1,k2 is not conjugate to a power of C1 or C ′

1;
(vi) C(Bk) = 〈Bk〉 × Lk

∼=Z× Fk2+k+1, where Lk is a subgroup of index k(k + 1) in
F(Ck, C ′

k) with the basis {Ck(k+1)

k , (C ′k+1
k )(C j

k ), Uk,1, . . . , Uk,k2, j = 0, . . . , k − 1},
where each of Uk,1, . . . , Uk,k2 is not conjugate to a power of Ck or C ′

k ;

(vii) C(D
C ′ j

1
1 ) = 〈D

C ′ j
1

1 〉 × F((Ck+1
1 )C ′ j

1 , AC ′ j
1 , AC ′ j

1 C1, . . . , AC ′ j
1 Ck

1 ) ∼=Z× Fk+2, where j =
0, . . . , k − 1;

(viii) C(D
C j

k
k+1) = 〈D

C j
k

k+1〉 × F((C ′k+1
k )C j

k , EC j
k , EC j

k C ′
k , . . . , EC j

k C
′k
k ) ∼=Z× Fk+2, where j =

0, . . . , k − 1.

Proof. Recall that C(Ci) = 〈Ci 〉 × F(Bi , Di), C(C ′
i) = 〈C ′

i 〉 × F(Bi , Di+1), C(Bi) =
〈Bi 〉 × F(Ci , C ′

i ) for i = 1, . . . , k, and C(Di) = 〈Di 〉 × F(C ′
i−1, Ci) for i = 1, . . . , k − 1,

C(D1) = 〈D1〉 × F(A, C1), C(Dk+1) = 〈Dk+1〉 × F(C ′
k, E).

The first two claims of the lemma are immediate. We now prove the third one. Let Zi be
the (connected) graph spanned by the edges labelled by Ci and C ′

i in Z . By definition, Zi is
a cover of the bouquet of two circles, labelled by Ci and C ′

i . Let Li < F(Ci , C ′
i) be the free

group corresponding to the cover Zi . Since the index of Li in F(Ci , C ′
i) is k(k + 1), its rank

is k(k + 1) + 1. Now it is easy to see that Li has the desired basis by first choosing a basis
corresponding to a maximal subtree in Zi with k(k + 1) − (k − i) − 1 edges labelled by Ci

and k − i edges labelled by C ′
i , and then applying appropriate Nielsen transformations.

Similarly, to prove the fifth claim, we let Z1 to be the graph spanned by C1 and C ′
1 and

L1 be the corresponding subgroup of index k(k + 1) in F(C1, C ′
1). Again, one can see that

L1 has the desired basis by first choosing a basis corresponding to a maximal subtree in Z1

which includes k edges from each cycle labelled by C1 in Z1, as well as a path from the
basepoint of length k − 1 with all the edges labelled by C ′

1, and then applying appropriate
Nielsen transformations.

To prove claim (vii) for j = 0, we define L0 to be the index k + 1 subgroup of F(A, C1)

given by the cover Z0 obtained from a cycle of length k + 1 labelled by C1 by adding loops
labelled by A at every vertex. The desired basis for L0 then corresponds to a maximal subtree
in Z0. The case j > 0 is similar.

The proofs of all the other claims are similar and left to the reader.

Finally, we show that K is isomorphic to the fundamental group of the graph of groups X .
To see this we need to check that vertex groups, edge groups and the embeddings are the
same. The vertex groups are simply centralisers (in K ) of conjugates of generators, which
we computed in Lemma 5·9. Edge groups are clearly free abelian groups of rank two and
the embeddings are mapping generators of the edge groups to the corresponding generators
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Fig. 17. Structure of the product graph D= Pm−2 × Pn−2. The solid edges are in D1, and the dashed
edges are in D2.

of the vertex groups. Now Proposition 5·7 follows directly from the definition of X , Lemma
5·8 and Lemma 5·9.

Propositions 5·2 and 5·7 together imply that H and K are isomorphic, and so G(Tk,k+1)

and G(P4k+2) are indeed commensurable. This finishes the proof of Theorem 5·1.

6. Path RAAGs are not commensurable

In this section we address the proof of Theorem 1·2 which states that G(Pm) and G(Pn)

are not commensurable, with the only exception of G(P3) and G(P4).
By Corollary 2·14, it suffices to show that the linear system of equations and inequalities

associated to the product graph does not have integer solutions. The key tool is Lemma 6·3,
which allows, given a local pattern in the graph, to deduce that some edges do not exist,
see Figure 21. Applying this lemma recursively, the structure of the graph is significantly
simplified and a case-by-case analysis on the parities of n and m allows us to conclude that
the system does not have integer solutions.

We can suppose that m, n ≥ 3, since G(P0) ∼=Z, G(P1) ∼=Z
2, G(P2) ∼= F2 ×Z and G(Pn)

for some fixed n ≥ 3 are pairwise not commensurable (not even quasi-isometric, see
[BN08]). Furthermore, we can suppose that m > n ≥ 5, since other cases are already covered
by Theorem 3·1.

6·1. Product graph for two paths

We fix some m > n ≥ 3. Let a0, a1, . . . , am be the vertices of Pm , considered as canoni-
cal generators of G(Pm), and b0, b1, . . . , bn be the vertices of Pn , considered as canonical
generators of G(Pn). Then, in the above notation, �1 = Pm , �2 = Pn , and �̃1 = Pm−2, with
vertices a1, . . . , am−1, �̃2 = Pn−2, with vertices b1, . . . , bn−1.

Suppose that G(Pm) and G(Pn) are commensurable. Note that in our case D= �̃1 × �̃2 =
Pm−2 × Pn−2 is the following graph: its set of vertices is {(ai , b j ), i = 1, . . . , m − 1; j =
1, . . . , n − 1}, and two vertices (ai1, b j1) and (ai2, b j2) are connected by an edge in D if and
only if |i1 − i2| = 1 and | j1 − j2| = 1, for i1, i2 = 1, . . . , m − 1; j1, j2 = 1, . . . , n − 1. To
abbreviate the notation, we will denote the vertex (ai , b j ) of D by (i, j), for i = 1, . . . ,

m − 1; j = 1, . . . , n − 1, see Figure 17.
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Note that, by Lemma 2·8, D has two connected components, one of them, denoted by D1,
consisting of vertices (i, j) with i + j even, and the other one, denoted by D2 with i + j
odd, and C lies in one of them.

Remark 6·1. If m is odd, then the automorphism of Pm which reverses the order of its ver-
tices (it also induces an automorphism of G(Pm)) switches these components, which are in
this case isomorphic graphs, so, after applying this automorphism of G(Pm) if necessary,
without loss of generality we can assume that C lies in a particular component of D. The
same is true if n is odd. However, if both m and n are even, then the two connected compo-
nents of D are not isomorphic, and we should consider two cases, depending on whether C
lies in one or the other connected component of D.

Note that Lemmas 2·11 and 2·12 apply and provide us with a system of equations on the
edge labels of D. The equations of Lemma 2·12 get simplified in our case, in particular, in
the notation of this lemma we always have D1 = D2 = 1. We will now show that this system
of equations has no solutions, provided that restrictions on C given by Lemmas 2·8 and 2·9
hold, and this derives a contradiction.

6·2. Notation

We now introduce some auxiliary notation used in the proof.
Note that D is a planar graph, so we can think of D as a graph on the plane, and use

“compass notation”, with the first coordinate increasing from west to east, and the second
coordinate increasing from north to south. So we have the vertex (1, 1) in the top left (NW)
corner, vertex (1, n − 1) in bottom left corner (SW), vertex (m − 1, 1) in top right corner
(NE), and (m − 1, n − 1) in bottom right (SE) corner. Every vertex (i, j) in D has some of
the following incident edges (with a minimum of one): the NW edge, going to (i − 1, j − 1);
the SW edge, going to (i − 1, j + 1); the NE edge, going to (i + 1, j − 1); and the SE edge,
going to (i + 1, j + 1). Thus, the vertices of D can be subdivided into inner vertices, which
have degree 4 — those which are of the form (i, j) with 1 < i < m − 1, 1 < j < n − 1, and
boundary vertices — all the rest. Among boundary vertices there are four corner vertices,
which have degree 1, and all the rest, which have degree 2, see Figure 17.

Fix some s = 1, 2, and recall that Ds is one of the connected components of D. Consider
the following auxiliary graph D′

s : the set of vertices of D′
s coincides with the set of vertices of

Ds , and the set of edges of D′
s is equal to the union of the set of edges of Ds and the set of new

edges called boundary, which connect the vertices (1, k1) with (1, k1 + 2) (west boundary);
(m − 1, k2) with (m − 1, k2 + 2) (east boundary); (k3, 1) with (k3 + 2, 1) (north boundary);
(k4, n − 1) with (k4 + 2, n − 1) (south boundary) for all such natural k1, k2, k3, k4 that the
vertices above belong to Ds . Note that D′

s contains Ds as a subgraph.
Obviously, D′

s is also a planar graph, so we can speak about faces of D′
s — the set of all

regions bounded by edges, here we do not consider the unbounded region. Let F be the set of
all such bounded faces of D′

s (we omit the index s which is fixed). Abusing the terminology,
we will also call them faces of Ds . Note that there are two types of faces in F — square
faces, which are bounded by four edges, all belonging to Ds , and triangle (boundary) faces,
which are bounded by three edges, one of them boundary and the other two belonging to Ds .
Boundary faces can be further subdivided into west, east, north and south boundary faces,
depending on their boundary edge. Each square face has four sides, which are all edges of
Ds – the NW side, the SW side, the NE side, and the SE side; for a triangle face only two of

https://doi.org/10.1017/S0305004119000537 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000537


596 M. CASALS–RUIZ, I. KAZACHKOV AND A. ZAKHAROV

Fig. 18. The graphs D1 (solid edges) and D′
1 (solid and dashed edges) for m = 9 and n = 6.

Fig. 19. Notation for edges and faces of D1 or D2.

the sides are defined. Each square face has four corners, which are all vertices of Ds — the
north, south, east and west corner; for a triangle face only three of the corners are defined.
Two faces are adjacent if they have a common side, see Figure 18.

Recall that D1 and D2 are the connected components of D, such that D1 contains vertices
(i, j) with i + j even, and D2 with i + j odd. Note that for every face of D2 there exists
exactly one vertex of D1 inside this face (when considered on the plane), and this vertex is
not a corner vertex; and vice versa, each vertex of D1 which is not a corner vertex belongs to
exactly one face of D2. This means that there is a bijection between the faces of D2 and the
vertices of D1 which are not corner vertices. Analogous statement holds with the roles of
D1 and D2 interchanged. We denote the face of D2 (or D1) corresponding to the non-corner
vertex (i, j) of D1 (or of D2, respectively) by Qi, j . This means that if (i, j) is an inner vertex
of D (i.e., 1 < i < m − 1, 1 < j < n − 1), then Qi, j is a face of D1 if i + j is odd, and a face
of D2 if i + j is even, and in both cases it is a square face with corners (i − 1, j) (west),
(i, j − 1) (north), (i + 1, j) (east) and (i, j + 1) (south). For a vertex (1, j), 1 < j < n − 1,
Q1, j is a face of D1, if j is even, and a face of D2, if j is odd, and in both cases it is a
west boundary triangle face, with the corners (1, j − 1) (north), (2, j) (east) and (1, j + 1)

(south); analogously for other boundaries, see Figure 19.
We also denote by ek,l

i, j (or ei, j
k,l ) the (non-oriented) edge of D which connects the vertices

(i, j) and (k, l), for all possible i, j, k, l. This means that ek,l
i, j is also a side of faces Qi,l and

Qk, j (if these faces exist, which is always true except when (i, l) or (k, j) is a corner vertex),
see Figure 19.
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6·3. System of equations for the product graph of two paths

Note that, in our case and in the above notation, Lemma 2·12 and Equation (2·8) have
the following form. If w is an inner vertex of D, and e1, e2, e3, e4 are the NW, NE, SE, SW
edges of D incident to w respectively, all oriented from w, then

R1(w) = M11(e1) + M11(e4) = M11(e2) + M11(e3)

= M12(e1) + M12(e2) = M12(e4) + M12(e3),

R2(w) = M21(e1) + M21(e4) = M21(e2) + M21(e3)

= M22(e1) + M22(e2) = M22(e4) + M22(e3).

Also it follows from Lemma 2·8 (claim iii, local surjectivity) that if such w is in C⊆Ds ,
then at least one of each pair of the edges (e1, e2), (e2, e3), (e3, e4), (e4, e1) is in C. For the
boundary vertices, we have similar equations. For example, if w is the NW corner with the
SE edge e3 beginning in w, we have

R1(w) = M11(e3) = M12(e3); R2(w) = M21(e3) = M22(e3).

If w is on the west boundary, but not in a corner, and e2, e3 are the NE, SE edges beginning
in w respectively, then

R1(w) = M11(e2) + M11(e3) = M12(e2) = M12(e3),

R2(w) = M21(e2) + M21(e3) = M22(e2) = M22(e3),

and analogous equations hold for the other boundary vertices.
It follows from Lemma 2·8 (local surjectivity) that if w is a boundary vertex (of degree 1

or 2) which is in C⊆Ds , then all the edges of Ds incident to w are also in C.

6·4. Face labels

For every face F in F define two labels as follows. If F is a square face, and
w1, w2, w3, w4 are its west, north, east and south corners respectively, then let

R1(F) = R1(w2) + R1(w4), R2(F) = R2(w1) + R2(w3). (6·1)

If F is a triangle face, then exactly one of w1, w2, w3, w4 above will be missing, say w1 (so
F is west boundary face), and then define

R1(F) = R1(w2) + R1(w4), R2(F) = R2(w3); (6·2)

the other cases are analogous (just think of the missing vertex as having labels 0).

LEMMA 6·2. In the above notation, for every face F in F we have R1(F) = R2(F).

Proof. Suppose first that F is a square face. Let w1, w2, w3, w4 be the corners of F as above.
Let e1, e2, e3, e4 be oriented edges which are sides of F , such that e1 goes from w1 to w2

(NW side), e2 goes from w2 to w3 (NE side), e3 goes from w3 to w4 (SE side), and e4 goes
from w4 to w1 (SW side), see Figure 20.

By Lemma 2·12, we have

R1(w2) = M12(e
−1
1 ) + M12(e2), R1(w4) = M12(e

−1
3 ) + M12(e4).
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Fig. 20. Face labels: Lemma 6·2 claims that R1(w2) + R1(w4) = R2(w1) + R2(w3) for the square face on
the left, and R1(w2) + R1(w4) = R2(w3) for the triangle face on the right, and similar for other triangle
faces.

Together with Equation (6·1) and Lemma 2·11, this means that

R1(F) = R1(w2) + R1(w4) = M12(e
−1
1 ) + M12(e2) + M12(e

−1
3 ) + M12(e4)

= M21(e1) + M21(e
−1
2 ) + M21(e3) + M21(e

−1
4 ).

(6·3)

On the other hand, again by Lemma 2·12, we have

R2(w1) = M21(e1) + M21(e
−1
4 ), R2(w3) = M21(e

−1
2 ) + M21(e3),

so, by Equation (6·1), this gives us

R2(F) = R2(w1) + R2(w3) = M21(e1) + M21(e
−1
4 ) + M21(e

−1
2 ) + M21(e3),

which is the same as the right-hand side of Equation (6·3), so R1(F) = R2(F).
If F is a triangle face, then the proof is similar, with some summands missing in the

argument above. For example, if F is a west boundary face, w2, w3, w4 are its corners as
above, and e2 goes from w2 to w3 (NE side), e3 goes from w3 to w4 (SE side), see Figure 20,
then, by Lemma 2·12, Lemma 2·11 and Equation (6·2), we have

R1(F) = R1(w2) + R1(w4) =M12(e2) + M12(e
−1
3 ) =

=M21(e
−1
2 ) + M21(e3) = R2(w3) = R2(F).

Other cases are analogous.

We fix s equal to 1 or 2 such that C is a subgraph of Ds , as above.

6·5. Key lemma

The following lemma is key in this proof. It provides us with a way of applying conse-
quently the equations from above to prove that some edges of Ds do not belong to C, until
we obtain a contradiction with Lemma 2·8.

LEMMA 6·3. In the above notation, suppose that Q1, Q2 are two adjacent faces in F,
such that Q1 is either square or west boundary face, Q2 is either square or north boundary
face, and NE side of Q1 coincides with SW side of Q2. Suppose, in addition, that if Q1 is
square, then the west corner of Q1 does not have a NW edge in C, and, if Q2 is square, then
the north corner of Q2 does not have a NW edge in C.

Then the south corner of Q1 does not have a SE edge in C, and the east corner of Q2 does
not have a SE edge in C.

Analogous three statements hold with all the directions above rotated by π/2, π and 3π/2.
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Fig. 21. Part of the graph D in the proof of Lemma 6·3, consisting of two adjacent faces in the case when
both faces are square. Thick edges are not in C by the conditions of the lemma, and dashed edges are
claimed not to be in C by the lemma.

In the statement of Lemma 6·3, when we say that the west corner of Q1 does not have a NW
edge in C, we mean that there is either no such edge in D (this will be the case when the
west corner of Q1 is on the left boundary, i.e. is of the form (1, k)), or there is such an edge
in D, but it does not belong to C, which is equivalent to saying that all (or just one) of its
labels are 0, by Equation (2·4).

By the expression “all the directions rotated by 3π/2”, we mean that in the statement
north is changed to east, east – to south, south – to west, west – to north, and NE – to SE,
SE – to SW, SW – to NW, NW – to NE; other rotations are defined analogously in a natural
way.

Proof. Note that it suffices to prove the original statement above, the proofs of all statements
with rotated directions are similar, up to corresponding change of directions.

Suppose first that Q1 and Q2 are both square faces.
Let w1 be the west vertex of Q1, w2 be the north vertex of Q1 (which is also the west

vertex of Q2), w3 be the north vertex of Q2, w4 be the east vertex of Q2, w5 be the south
vertex of Q2 (which is also the east vertex of Q1), and w6 be the south vertex of Q1. Let h1

be the edge going from w2 to w3 (NW side of Q2), h2 be the edge going from w2 to w5 (NE
side of Q1 and SW side of Q2), h3 be the edge going from w5 to w6 (SE side of Q1), h4 be
the edge going from w1 to w2 (NW side of Q1), and h5 be the edge going from w4 to w5

(SE side of Q2). Since we will use only M11 and M22 labels below, the orientation of edges
is not important here, see Figure 21.

We can suppose that there are SE edges in Ds both from w6 and w4, otherwise the proof
is similar. Let f1 be the SE edge at w6, and f2 be the SE edge at w4. By Lemma 6·2,
we have R1(Q1) = R2(Q1). Note that R1(Q1) = R1(w2) + R1(w6) by Equation (6·1), and
R1(w2) = M11(h1) + M11(h2), R1(w6) = M11(h3) + M11( f1) by Equation (2·8). Also we
have R2(Q1) = R2(w1) + R2(w5) by Equation (6·1), and R2(w1) = M22(h4), R2(w5) =
M22(h2) + M22(h5) by Equation (2·8) and since, by the conditions of this lemma, w1 has
no NW edge in C (and so this edge, even if it exists in Ds , has M22 label equal to 0 by
Equation (2·4)). Thus, we have

R1(Q1) = M11(h1) + M11(h2) + M11(h3) + M11( f1)

= R2(Q1) = M22(h4) + M22(h2) + M22(h5).
(6·4)
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In the same way, by Lemma 6·2, we have R1(Q2) = R2(Q2). Note that R1(Q2) =
R1(w3) + R1(w5), by Equation (6·1), and R1(w3) = M11(h1), R1(w5) = M11(h2) + M11(h3)

by Equation (2·8) and since, by the conditions of this lemma, w3 has no NW edge in C
(and so this edge, even if it exists in Ds , has M11 label equal to 0 by Equation (2·4)). Also,
we have R2(Q2) = R2(w2) + R2(w4) by Equation (6·1), and R2(w2) = M22(h4) + M22(h2),
R2(w4) = M22(h5) + M22( f2) by Equation (2·8). Thus, we have

R1(Q2) = M11(h1) + M11(h2) + M11(h3)

= R2(Q2) = M22(h4) + M22(h2) + M22(h5) + M22( f2).
(6·5)

Substracting (6·5) from (6·4), we obtain

R1(Q1) − R1(Q2) = M11( f1) = R2(Q1) − R2(Q2) = −M22( f2), (6·6)

but M11( f1) ≥ 0, −M22( f2) ≤ 0, so (6·6) implies that M11( f1) = M22( f2) = 0, and so
f1, f2 /∈ C by Equation (2·4), as required.

The other cases, when Q1 is the west boundary, or Q2 is the north boundary, or both, are
analogous, with the only difference in the proof being that some summands do not appear
(we can think of them as being equal to 0). For example, if Q1 is a west boundary, and Q2

is a square, then all the notation and equalities are almost the same as above, except that w1

and h4 do not exist, so R2(Q1) = R2(w5) = M22(h2) + M22(h5), and R2(w2) = M22(h2), so
R2(Q2) = M22(h2) + M22(h5) + M22( f2). The same argument as above applies, hence the
lemma.

6·6. Case of odd m or n

We now continue with the proof of the theorem. Suppose first that at least one of m and
n is odd. Then, by Remark 6·1, we can always choose one of the connected components of
D1 and D2 of D, and suppose that C is a (connected) subgraph of this component. We will
choose now D2, and so we can suppose that C⊆D2.

Note that all faces Qi, j of D2 have even i + j ≥ 4. For an even k such that 4 ≤ k ≤ n + 1
denote by Sk the set of all faces Qi, j of D2 such that i + j = k. Then for a given k ≤ n − 1
all faces in Sk form a “SW-NE diagonal”:

Sk = {Q1,k−1, Q2,k−2, . . . , Qk−2,2, Qk−1,1},
with the NE side of Qi,k−i coinciding with the SW side of Qi+1,k−i−1 for i = 1, . . . , k − 2;
for k = n or k = n + 1 (the one which is even) Sk is as above, but with the first face missing,
and if k = n + 1 and m = n + 1, also the last face missing.

Let also Ek , for an even k such that 4 ≤ k ≤ n + 1, be the set of all edges of D2 which go
from NW to SE and are the sides of some faces in Sk . This means that, if k ≤ n, then

Ek = {e2,k−1
1,k−2, e3,k−2

2,k−3, . . . , ek−2,3
k−3,2, ek−1,2

k−2,1};
for k = n + 1 (in the case it is even) Ek is as above, but with the first edge missing. Note also
that each edge set Ek , for 4 ≤ k ≤ n + 1, separates our graph D2 in two, which means that,
after deleting all the edges of Ek from D2, the remaining graph will become disconnected,
namely it will have two connected components.

The idea is to proceed from NW to SE, showing that the edges in Ek are not in C, with
increasing k, until we get a contradiction when k = n or k = n + 1.
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Fig. 22. Part of the graph D2 in the case of odd m or n. The solid edges are in D2, and the dashed edges
are the boundary edges of D′

2, which are not in D2.

First apply Lemma 6·3 to Q1,3 and Q2,2; the conditions of the lemma are satisfied, since
NE side of Q1,3 coincides with the SW side of Q2,2, Q1,3 is west boundary face, and the
north vertex of Q2,2 is on the north boundary of D, in particular it has no NW edge. By
Lemma 6·3, the south corner of Q1,3 does not have a SE edge in C, which, in our terms,
means that if n ≥ 6, then e2,5

1,4 /∈ C (if n = 5, then the south corner of Q1,3 is on the south
boundary, so this condition is vacuous); and the east corner of Q2,2 does not have a SE edge
in C, which in our terms means that e4,3

3,2 /∈ C, see Figure 22.
Analogously, apply Lemma 6·3 to Q2,2 and Q3,1; the conditions are again satisfied. We

obtain that the south corner of Q2,2 does not have a SE edge in C, which means that e3,4
2,3 /∈ C,

and the east corner of Q3,1 does not have a SE edge in C, which means that e5,2
4,1 /∈ C (recall

that m ≥ 6). Thus, all the edges of E6 are not in C, but C is connected, so it should be
contained in one of the connected components of the graph obtained by deleting the edges
of E6 from D2. It cannot be the “NW component” (i.e., the one containing the vertex (2, 1)),
since in this component there are no vertices of the form (5, i) for some i , so it does not
project surjectively to �̃1, but C should, by Lemma 2·8. This means that C is contained in
the other component. In particular, we see that none of the edges of E4, as well as E6, are
in C.

We claim that none of the edges of Ek , for even k such that 4 ≤ k ≤ n + 1, are in C. (For
n = 5 and n = 6 this is already proved). We prove this by induction, for E4 and E6 it is
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proved above, so suppose the claim is proved for all even k such that 4 ≤ k ≤ k0, where
6 ≤ k0 ≤ n − 1, k0 is even, and let us prove it for k = k0 + 2.

Consider all the pairs of adjacent faces in Sk0 : Q1,k0−1 and Q2,k0−2, Q2,k0−2 and Q3,k0−3, . . .,
Qk0−2,2 and Qk0−1,1. By induction hypothesis, all these pairs satisfy the conditions of Lemma
6·3. Indeed, all the existing in D2 NW edges at the north and west corners of the faces from
Sk0 belong to Ek0−2 by definition, and so they do not belong to C. Applying Lemma 6·3 to
all the pairs above, we obtain that all the SE edges at the south and east corners of the faces
from Sk0 , which are exactly all the edges from Ek0+2, are not in C, and the claim is proved.

Thus, in particular, if n is even, then no edges from En are in C, and if n + 1 is even,
then no edges from En+1 are in C. Suppose first that n is even. Then deleting all the edges
of En from D2 results in a graph with two connected components, none of which projects
surjectively to �̃1 (namely, one of them does not contain vertices with the first coordinate
equal to 1, and the other one does not contain vertices with the first coordinate equal to
n − 1). This is impossible by Lemma 2·8. In the same way, if n is odd, then again deleting
all the edges of En+1 from D2 results in a graph with two connected components, none of
which projects surjectively to �̃1 (namely, one of them does not contain vertices with the first
coordinate equal to 1, and the other one does not contain vertices with the first coordinate
equal to n), and this is impossible by Lemma 2·8.

Thus, G(Pm) and G(Pn) are not commensurable if m > n ≥ 5 and at least one of m and n
is odd.

6·7. Case of even m and n

It remains to consider the case when both m and n are even and m > n ≥ 6; in particular,
m ≥ n + 2. In this case D1 (the connected component of D containing (1, 1)) contains all
four corners of D, and D2 contains no corners. We now have to consider two subcases,
depending on whether C lies inside D1 or D2.

Suppose first that C lies inside D2. Then similarly to the case when n and m are odd we
can derive a contradiction. Indeed, in the above notation and in the same way as above we
can prove by induction that none of the edges of Ek , for even k such that 4 ≤ k ≤ n, are in C.
In particular, no edges from En are in C, and deleting all the edges of En from D2 results in
a graph with two connected components, none of which projects surjectively to �̃1 (namely,
one of them does not contain vertices with the first coordinate equal to 1, and the other one
does not contain vertices with the first coordinate equal to n − 1). This is impossible by
Lemma 2·8.

So it remains to consider the case when C lies inside D1, which is more subtle.
For a vertex (i, j) of D1 denote by Ai, j the set of all edges on the “NW-SE diagonal” of D1

passing through (i, j), i.e., Ai, j consists of all edges connecting vertices (i ′, j ′) of D1 with
i ′ − j ′ = i − j . These are the edges of the form ei+k+1, j+k+1

i+k, j+k , where max{1 − i, 1 − j} ≤ k ≤
min{m − 2 − i, n − 2 − j}. Note that every Ai, j is equal to Ai ′, j ′ with i ′ = 1 or j ′ = 1 (west
or north boundary), and to Ai ′′, j ′′ with i ′′ = m − 1 or j ′′ = n − 1 (east or south boundary).

Analogously, for a vertex (i, j) of D2 denote by Bi, j the set of all edges on the “SW-NE
diagonal” of D2 passing through (i, j), i.e., Bi, j consists of all edges connecting vertices
(i ′, j ′) of D1 with i ′ + j ′ = i + j . These are the edges of the form ei+k+1, j−k−1

i+k, j−k , where
max{1 − i, j + 1 − n} ≤ k ≤ min{m − 2 − i, j − 2}. Note that every Bi, j is equal to Bi ′, j ′

with i ′ = 1 or j ′ = n − 1 (west or south boundary), and to Bi ′′, j ′′ with i ′′ = m − 1 or j ′′ = 1
(east or north boundary).
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Recall that D1 consists of all vertices (i, j) of D such that i + j is even (or, equivalently,
i − j is even). Successive application of Lemma 6·3 allows us to prove that, informally
speaking, every second diagonal of D1 is not in C, which is the content of the following
lemma.

LEMMA 6·4. In the above notation, with even m and n, suppose that (i, j) is a vertex
of D1 (i.e. i + j and i − j are even, 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1). If one of the following
conditions holds:

(i) i − j is 2 modulo 4;
(ii) (m − i) − (n − j) is 2 modulo 4, or, equivalently, i − j + (n − m) is 2 modulo 4;

then all the edges of Ai, j are not in C. If one of the following conditions holds:

(iii) i + j − m is 2 modulo 4;
(iv) i + j − n is 2 modulo 4.

then all the edges of Bi, j are not in C.

Proof. We first prove the first claim, so we suppose that i − j is 2 modulo 4, and we need
to prove that all the edges of Ai, j are not in C. According to the remarks above, it suffices to
prove the claim when i = 1 or j = 1.

We start by proving the claim for A1,3 and A3,1. The idea is to proceed diagonally from
NW to SE successively applying Lemma 6·3. Note that

A1,3 = {e2,4
1,3, e3,5

2,4, . . . , en−3,n−1
n−4,n−2}, A3,1 = {e4,2

3,1, e5,3
4,2, . . . , en+1,n−1

n,n−2 }.
Note that the conditions of Lemma 6·3 are satisfied for Q1,2 and Q2,1 (since Q1,2 is west
boundary face, and Q2,1 is north boundary face), so applying this lemma we deduce that
e2,4

1,3, e4,2
3,1 /∈ C. Furthermore, Q2,3 and Q3,2 satisfy conditions of Lemma 6·3 (since the west

corner of Q2,3 is on the west boundary of D, and the north corner of Q3,2 is on the north
boundary), so applying this lemma we deduce that e3,5

2,4, e5,3
4,2 /∈ C.

Proceeding by induction, we prove that ek−1,k+1
k−2,k , ek+1,k−1

k,k−2 /∈ C for 3 ≤ k ≤ n − 2. Indeed,
suppose that this is true for 3 ≤ k ≤ k0, for some 4 ≤ k0 ≤ n − 3 (which is the case for k0 =
3, 4 as shown above), and prove it for k = k0 + 1. The faces Qk0−1,k0 and Qk0,k0−1 satisfy the
conditions of Lemma 6·3 (since the NW edge at the west corner of Qk0−1,k0 is ek0−2,k0

k0−3,k0−1 /∈ C
by the induction hypothesis for k = k0 − 1, and the NW edge at the north corner of Qk0,k0−1

is ek0,k0−2
k0−1,k0−3 /∈ C by the induction hypothesis for k = k0 − 1). So, applying Lemma 6·3, we

get that ek0,k0+2
k0−1,k0+1, ek0+2,k0

k0+1,k0−1 /∈ C, which is exactly what we wanted.
This already shows that all the edges in A1,3 are not in C, and just two more edges from

A3,1 remain. Applying Lemma 6·3 to the faces Qn−3,n−2 and Qn−2,n−3 (which is possible
since we proved above that en−4,n−2

n−5,n−3, en−2,n−4
n−3,n−5 /∈ C), we obtain that en,n−2

n−1,n−3 /∈ C. Applying
Lemma 6·3 to the faces Qn−2,n−1 and Qn−1,n−2 (which is possible since we proved above
that en−3,n−1

n−4,n−2, en−1,n−3
n−2,n−4 /∈ C), we obtain that en+1,n−1

n,n−2 /∈ C. We conclude that all the edges of
A1,3 and A3,1 are not in C, see Figure 23.

We now prove that all the edges in A1, j are not in C for all 3 ≤ j ≤ n − 1, j is 3 modulo
4 (so that 1 − j is 2 modulo 4). For j = 3 this is proved above. We proceed by induction.
Let 3 ≤ j0 ≤ n − 5, j0 is 3 modulo 4, and suppose this is true for all j which are 3 modulo
4, 3 ≤ j ≤ j0, we will prove this is also true for j = j0 + 4. Note that if j0 + 4 = n − 1,
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Fig. 23. Part of the graph D1 in the case of even m and n, as in the proof of Lemma 6·4. The solid edges
are in D1, and the dashed edges are the boundary edges of D′

1, which are not in D1.

then the claim is vacuous, since A1, j0+4 is empty, so we can suppose that j0 + 4 ≤ n − 3, or
j0 ≤ n − 7.

Note that

A1, j0 = {e2, j0+1
1, j0

, e3, j0+3
2, j0+1, . . . , en− j0,n−1

n− j0−1,n−2}, A1, j0+4 = {e2, j0+5
1, j0+4, e3, j0+6

2, j0+5, . . . , en− j0−4,n−1
n− j0−5,n−2}.

We know by induction hypothesis that all the edges in A1, j0 are not in C, and need to
prove the same for A1, j0+4. Applying Lemma 6·3 to Q1, j0+3 and Q2, j0+2 (this is possible,
since Q1, j0+3 is a west boundary face, and the NW edge at the north corner of Q2, j0+2 is
e2, j0+1

1, j0
∈ A1, j0 , so it is not in C), we obtain that e2, j0+5

1, j0+4 /∈ C (since it is the SE edge at the south
vertex of Q1, j0+3).

Now apply Lemma 6·3 to Q2, j0+4 and Q3, j0+3 (this is possible, since the west corner of
Q2, j0+4 is on the west boundary of D, and the NW edge at the north corner of Q3, j0+3 is
e3, j0+2

2, j0+1 ∈ A1, j0 , so it is not in C), we obtain that e3, j0+6
2, j0+5 /∈ C (since it is the SE edge at the south

vertex of Q2, j0+4).
If j0 = n − 7, so j0 + 4 = n − 3 and A1, j0+4 contains only two edges, then we are done;

otherwise, j0 ≤ n − 9, and we proceed by (local) induction (inside the main induction) to
show that e2+k, j0+5+k

1+k, j0+4+k /∈ C for 0 ≤ k ≤ n − j0 − 6. Suppose this is true for all 0 ≤ k ≤ k0, for
some 2 ≤ k0 ≤ n − j0 − 7 (which is the case for k0 = 0 and k0 = 1, as shown above), and
we need to prove it for k = k0 + 1. Indeed, we can apply Lemma 6·3 to Qk0+2, j0+k0+4 and
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Qk0+3, j0+k0+3 (this is possible, since the NW edge at the west corner of Qk0+2, j0+k0+4 is
ek0+1, j0+k0+4

k0, j0+k0+3 , which is not in C by the (local) induction hypothesis for k = k0 − 1, and the

NW edge at the north corner of Qk0+3, j0+k0+3 is ek0+3, j0+k0+2
k0+2, j0+k0+1, which is in A1, j0 , and so also not

in C). So, we get that the SE edge at the south vertex of Qk0+2, j0+k0+4, which is ek0+3, j0+k0+6
k0+2, j0+k0+5,

is not in C, and this is exactly what we need (in the local induction).
This shows that all the edges of A1, j0+4 are not in C, and this is what we need in the main

induction. Thus all the edges in A1, j for 3 ≤ j ≤ n − 1, j is 3 modulo 4, are not in C, see
Figure 23.

To prove the lemma, it remains to show that all the edges in Ai,1 for 3 ≤ i ≤ m − 1, i is 3
modulo 4, are not in C. The proof is similar to the one for edges A1, j , but formally we need
to consider two cases, depending on whether Ai,1 finishes on the south or east boundary of
D: when 3 ≤ i ≤ m − n + 1, and when m − n + 1 < i ≤ m − 1.

Suppose first that 3 ≤ i ≤ m − n + 1. If i = 3, then the claim is already proved above. We
proceed by induction. Let 3 ≤ i0 ≤ m − n − 3, and suppose all the edges of Ai,1 are not in C
for all i which are 3 modulo 4, 3 ≤ i ≤ i0, we need to prove that all the edges of Ai0+4,1 are
also not in C. This can be done by Lemma 6·3, applied successively (by induction, as above)
to the pairs of faces (Qi0+2,2, Qi0+4,1), (Qi0+3,3, Qi0+5,2), . . ., (Qi0+n−1,n−1, Qi0+n,n−2).

Finally, the proof that all the edges in Ai,1 for m − n + 1 < i ≤ m − 1, i is 3 modulo 4, are
not in C, is analogous to the proofs above; we omit the details. This proves the first claim of
the lemma.

Now note that the second, third and fourth claims of the lemma can be obtained from
the first claim by rotating all the directions by π , π/2 and 3π/2 respectively. Rotation by
π/2 means replacing i by m − i , leaving j unchanged, and changing A’s to B’s; rotation
by π means replacing i by m − i and j by n − j , without changing the A’s; and rotation
by 3π/2 means leaving i unchanged, replacing j by n − j and changing A’s to B’s. So the
proof is similar to the one above, with application of the corresponding claims of Lemma
6·3. This proves the lemma.

Recall that both m and n are even. Suppose first that one of m and n is 0 modulo 4, and the
other is 2 modulo 4. Then every vertex (i, j) of D1 satisfies one of the first two conditions
and one of the last two conditions of Lemma 6·4. Hence, all the edges of Ai, j and Bi, j (for all
vertices (i, j) of D1), which are all the edges of D1, are not in C, and this is a contradiction,
so in this case G(Pm) and G(Pn) are not commensurable.

Suppose now that both m and n are 0 modulo 4. In particular, n ≥ 8, m ≥ n + 4 ≥ 12. By
Lemma 6·4, for a vertex (i, j) of D1 we have that, if i − j is 2 modulo 4, then all the edges
of Ai, j are not in C, and if i + j is 2 modulo 4, then all the edges of Bi, j are not in C. In other
words, we have

ei+1, j+1
i, j /∈ C, if i − j = 2 mod 4, ei ′+1, j ′−1

i ′, j ′ /∈ C, if i ′ + j ′ = 2 mod 4. (6·7)

Let m0 = m/2, n0 = n/2, so that, when considered on the plane, the vertices of the form
(i, n0) of D1 are on the horizontal axis of symmetry of D1, the vertices of the form (m0, j)
are on the vertical axis of symmetry of D1, and (m0, n0) is the “central” vertex of D1.

Let V be the set of vertices (i, j) of D1 such that either j ≤ n0 and j < i < m − j , or
j ≥ n0 and n − j < i < m − n + j . Let also E be the set of edges of D1 which have at least
one of the end vertices in V . Note that all the vertices of D1 of the form (m0, j), for all
j = 1, . . . , n − 1, are in V , so all the edges adjacent to them are in E , and this means that
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Fig. 24. Above: schematic figure depicting the graph D1 in the case when both m and n are 0 modulo 4,
with the regions containing the vertices in V1 and V2 marked. Below: the region with vertices in V1, with
all solid edges in D1 and thick edges not in C by Lemma 6·4.

the graph obtained from D1 by deleting all the edges from E does not project surjectively to
�̃1. We claim that all the edges of E are not in C. This will immediately imply a contradiction
by Lemma 2·8.

Let V = V1 ∪ V2, where V1 are all vertices of V of the form (i, j) with j ≤ n0, and V2

are the vertices of V of the form (i, j) with j ≥ n0. Let also E = E1 ∪ E2, where E1 are all
edges in E with both end vertices in V1, and E2 are all edges in E with both end vertices in
V2. It suffices to prove that all the edges in E1 are not in C. The proof for E2 is similar.

Let V1 = U1 ∪ U2 ∪ · · · ∪ Un0 , where U j , for 1 ≤ j ≤ n0, are all the vertices of V1 of the
form (i, j), for all admissible i , namely j < i < m − j . Let also E1 = C1 ∪ C2 ∪ · · · ∪ Cn0−1,
where Ck , for 1 ≤ k ≤ n0 − 1, consists of all edges of E1 connecting vertices with second
coordinate equal to k to vertices of E1 with second coordinate equal to k + 1. This means
that

Ck = {ek+2,k
k+1,k+1, ek+3,k+1

k+2,k , ek+4,k
k+3,k+1, . . . , em−k−2,k

m−k−3,k+1, em−k−1,k+1
m−k−2,k },

Uk = {(k + 2, k), (k + 4, k), . . . , (m − k − 2, k)}.
In particular, Ck contains m − 2k − 2 edges, see Figure 24.

We now prove by induction on k that all the edges in Ck are not in C, for all 1 ≤ k ≤ n0 − 1.
First consider the case k = 1. We have

C1 = {e3,1
2,2, e4,2

3,1, e5,1
4,2, . . . , em−4,2

m−5,1, em−3,1
m−4,2, em−2,2

m−3,1},
U1 = {(3, 1), (5, 1), . . . , (m − 3, 1)}.

By (6·7), we know that all the edges from C1 of the from e4i,2
4i−1,1 and e4i+1,1

4i,2 , where i =
1, . . . , m/4 − 1, are not in C. But, since e4i,2

4i−1,1 /∈ C, the vertex (4i − 1, 1) of U1 is not in
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C by Lemma 2·8 (local surjectivity), so e4i−1,1
4i−2,2 /∈ C, for all i = 1, 2, . . . , m/4 − 1. In the

same way, since e4i+1,1
4i,2 /∈ C, also (4i + 1, 1) /∈ C by Lemma 2·8, and so e4i+2,2

4i+1,1 /∈ C, for all
i = 1, 2, . . . , m/4 − 1. This shows that indeed all the edges of C1 are not in C.

Now suppose that for some 1 ≤ k ≤ n0 − 2 all the edges in Ck are not in C, and we need
to prove that all the edges in Ck+1 are also not in C. We have Ck and Uk as above, so

Ck+1 = {ek+3,k+1
k+2,k+2, ek+4,k+2

k+3,k+1, ek+5,k+1
k+4,k+2, . . . , em−k−3,k+1

m−k−4,k+2, em−k−2,k+2
m−k−3,k+1},

Uk+1 = {(k + 3, k + 1), (k + 5, k + 1), . . . , (m − k − 3, k + 1)}.
By the induction hypothesis, all the NE and NW edges at all the vertices of Uk+1 are not in
C, since they belong to Ck . By Lemma 2·8 (local surjectivity), all the vertices of Uk+1 are
also not in C, and so all the SE and SW edges at all the vertices of Uk+1 are not in C, and
these are exactly all the edges in Ck+1.

Thus, all the edges in Ck , for 1 ≤ k ≤ n0 − 1, which are all the edges of E1, are not in C.
This means that G(Pm) and G(Pn) are not commensurable if both m and n are 0 modulo 4.

It remains to consider the case when both m and n are 2 modulo 4. According to Theorem
4·1 in this case, if m = 4k + 2 and n = 4l + 2, for some k 	= l, k, l ≥ 1, G(Pm) is commen-
surable to G(Tk,k+1) and G(Pn) is commensurable to G(Tl,l+1), but G(Tk,k+1) and G(Tl,l+1)

are not commensurable, according to [CKZ, theorem 4·5], so G(Pm) and G(Pn) are also not
commensurable. Note that this can also be proved directly using the above equations, but it
is not completely straightforward, and we omit the argument.

This completes the proof of Theorem 1·2.
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