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SUMMARY
This paper presents the detailed dynamic modeling of a quadruped robot. The forward and inverse
kinematic analysis of each leg of the proposed model is deduced using Denavit-Hartenberg (D-H)
parameters. It desires to calculate the optimal feet forces of the quadruped robot’s joint torque, which
is essential for its online control. To find out the optimal feet force distribution, two approaches are
implemented to fulfill the locomotion objective. The four-legged quadruped robot and torso body’s
detailed dynamics are modeled to generate an equation of motion for the robot control system. The
Euler–Langrage theory has been used to find out the joint motion. The computer simulation results
are presented to verify the effectiveness of the dynamic model.

KEYWORDS: Quadruped robot; Kinematics; Dynamics; Feet force; Power.

1. Introduction
In the last three decades, the mobile robot has made much attention because of exploring the complex
environment, space, rescue operation, and accomplishing a task without human effort. The develop-
ment of terrestrial locomotion of the legged robot has been continuously grown over the few decades
because of more advantages than other robot vehicles.1–3 The benefits of legged locomotion depend
on the postures, the number of legs, and the functionality of the leg.4–6 A quadruped robot consists
of many interconnecting parts, which leads to a complex issue in applied mechanics and robotics
systems. Many problems bring into relation with each other like kinematics, gait planning, trajectory
generation, and dynamics are to be solved for model-based control of quadruped robots. Because
of such multibody systems complexity, it is essential to have a good mathematical model of kine-
matics and dynamics behaviors. In this context, Ding and Chen7 obtained dynamic modeling and
locomotion control for quadruped robots based on the center of inertia. Gehring et al.8 developed a
dynamic control gait for a quadruped robot. It is generally believed that Central Pattern Generators
(CPG) are capable of producing rhythmic movements. A CPG network can coordinate all joints to
complete a movement. Zhang et al. proposed the CPG model to achieve robust and dynamic trot gait,
which can change its walking frequency online as well.9 Lin and Song proposed a kinematic and
dynamic model of a quadruped model10 to analyze the stable locomotion and energy optimization
during walking.

The contact points play a significant role in providing vital forces to keep the dynamic balance
under external wrenches’ influence made up of the inertial wrenches (force and moment) of moving
links and gravity forces.11−12 Hence, force control is used for the effective assignment of trunk body
force to the feet. At any instant point, the robot’s three feet must be inside the support polygon
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Fig. 1. Steps followed to implement the methodology.

to achieve a statically stable gait. During robot walking, the distribution of foot forces problem
becomes indeterminate due to the closed-loop system.13, 14 The force–moment equilibrium equa-
tion can be used to find multiple solutions where each tip of the foot is acted by a three-dimensional
reaction force.15–18

Chen et al.19 presented a new method for an optimal force distribution to estimate feet forces gen-
erated during ground contact by transforming the friction constraints. The method is characterized
by shifting nonlinear inequalities into both linear equalities and linear inequalities. Zhou et al.20 pro-
posed a friction constraint method that is more practical-oriented than the pseudoinverse method.21

Moreover, the previous works, Marhefka and Orin,22 Zheng et al.,23 Kar et al.24 did not study a
detailed model-based kinematic and locomotion performance objectives of the robot. However, the
quadratic programming is used to calculate the feet force distribution in the six-legged robot that
optimizes the energy exhaustion in the DC motor.24 Hence, due to the inherent structural complexity
of the multibody system like a walking robot, it is very tedious to incorporate inertial terms in the
modeling.

In the majority of cases, simplified models of the robot are analyzed with kinematic and dynamic
uncertainties. However, to better understand stable locomotion, such as dynamic stability and online
control, a model-based realistic four-footed robot is necessary. In this paper, an investigation has
been carried out on kinematics, dynamics, optimal feet force distribution, and its control of a realistic
multi-legged robot.

2. Description of the Quadruped Robot and Modeling Methodology
A realistic CAD model of the four-legged robot is developed in Solidworks 2019 ×64 for study in
this work. The main robot body consists of a rectangular torso with four identical legs. Each leg has
three links connected by three actuators positioned in succession with symmetrically aligned with
the torso’s adjacent side. In mathematical modeling of the quadruped robot, the main objective is
to find kinematics equations of all interconnected links and determine the desired joint variables to
obtain the locomotion. Dynamic equations are also obtained for various uses like online control of
robot motion, forces, trajectory design, and optimization. The sequence of steps computed to carry
out the preferred methodology is shown in Fig. 1.

2.1. Kinematics of the robot
In order to find out the position and velocity of the end effector or feet of the quadruped robot, the
kinematic analysis is very much important. The forward kinematics is essential for a serial-chain
manipulator to find out the orientation and position of the end effector in cartesian space with the
help of all joint angles and link parameters. With the use of all joint angles, forward kinematics gives
only one exact solution. The inverse kinematics is the process of figure out the joint space angles
with the help of the position and orientation of the end effector. In this paper, the mechanical model
of the quadrupedal robot is divided into two main parts: legs and body or frame.

In the model, each leg has three joints and is actuated by an electric servo motor. It is starting with
the assumption that each connection between two links has a single Degree of Freedom (DOF).
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Fig. 2. Skeleton model of quadruped robot.

Fig. 3. Coordinate frame of quadruped robot.

A robot leg with n joints means it has n+1 links and associates with a joint variable. Each leg of the
robot has behaved like a serial manipulator rigidly attached to the coordinate frame to each link. To
get the coordinate of the origin of the feet/end effector relative to the base frame by choosing the
base frame’s origin at any arbitrary point. The origin of the body frame (ob) is fixed at the geometric
center of the torso, and details of the coordinate system for each linkage is shown in Figs. 2–3.
The robot forward movement is considered as on the direction xb and zb coordinates against the
gravity direction. Similarly, the four translational coordinates frames (Oio) are fixed at each joint of
legl

)
l=1,2,3,4 with the torso frame, respectively. The detailed CAD model of the quadruped is shown

in Fig. 4.

2.2. D-H parameters
In 1955, Denavit and Hartenberg15 proposed Denavit-Hartenberg (D-H) transformation matrix for
attaching an arbitrary frame to each link of a spatial linkage. The four parameters link twist (αi ),
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Fig. 4. Four-legged walking robot model.

link length (ri ), joint angle (θi ), and link offset (di ) are associated with link (i) and joint (i) in D-H
convention method. The coordinate transformation of each link (i) from previous coordinate system
(i-1) can be obtained in Eq. (1).

i−1Ti = Rotx(αi−1).T ransx(ri−1).Rotz(θi ).T ransz(di )

=

⎛
⎜⎜⎜⎝

cθi −sθi 0 ri−1

sθi cαi−1 cθi cαi−1 −sαi−1 −sαi−1di

sθi sαi−1 cθi sαi−1 cαi−1 −cαi−1di

0 0 0 1

⎞
⎟⎟⎟⎠ (1)

The above equation can be reframed in the form of orientation and position of the end effector
in Eq. (2).

i−1Ti =

⎛
⎜⎜⎜⎝

cθi −sθi 0 ri−1

sθi cαi−1 cθi cαi−1 −sαi−1 −sαi−1di

sθi sαi−1 cθi sαi−1 cαi−1 −cαi−1di

0 0 0 1

⎞
⎟⎟⎟⎠=

(
R3×3 p3×1

0 1

)
(2)

where R3×3 =
⎛
⎜⎝

cθi −sθi 0
sθi cαi−1 cθi cαi−1 −sαi−1

sθi sαi−1 cθi sαi−1 cαi−1

⎞
⎟⎠ , P3×1 =

⎛
⎜⎝

ri−1

−sαi−1di

−cαi−1di

⎞
⎟⎠

Here, R3×3 and p3×1 are represented as orientation and position of the tip of the feet. Rotx and Rotz

presents the rotation, Transx , Transz denotes the translation, and sθi , cθi are the shortest form of
sin θi and cos θi , respectively. The desired model of Denavit–Hartenberg leg parameters for forward
kinematics are given in detail in Fig. 5 and Table I. For a single leg, each transformation matrices
of a link from a previous coordinate system can be represented in notations like bT0, 0T1, 1T2

2T3,
and 3T4. The transformation from the joint (Oio) to coordinate the base frame (Ob) for each leg can
be denoted by the constant translational transformation matrix with considering (±) sign of σ and ε

in Eq. (3).

bT0 =

⎛
⎜⎜⎜⎝

0 0 1 σ P

0 1 0 εQ

−1 0 0 −H

0 0 0 1

⎞
⎟⎟⎟⎠ (3)
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Table I. D-H parameters.

ri-1 αi-1 di θ i

Link Link length Twist angle Offset distance Joint angle

1 0 0 0 θ1

2 r1 90◦ 0 θ2

3 r2 0 0 θ3

4 r3 0 0 0

Fig. 5. D-H parameters of a leg frame.

where P, Q, and H are represented as structural parameters of the robot frame. The deduction of a
homogeneous transformation matrix nearby coordinate systems is as follows (4)–(8):

bT0 = T rans(P, Q, −H)Rot (y, 900) (4)
0T1 = Rot (z, θ1) (5)
1T2 = Rot (x, 90◦)T ran(r1, 0, 0)Rot (z, θ2) (6)
2T3 = T ran(r2, 0, 0)Rot (z, θ3) (7)
3T4 = T ran(r3, 0, 0) (8)

Similarly, the coordinate of four feet in the base frame can be obtained by multiplying bT0 with 0T4

the transformation matrix. The position coordinates of one foot of legl
)

l=1 with respect to the base
frame are given in detail from Eqs. (9) to (11).

px = r2sθ2 + r3sθ23 + P (9)

py = r1sθ1 + r2sθ1cθ2 + r3sθ1cθ23 − Q (10)

pz = r1cθ1 − r2cθ1cθ2 − r3cθ1cθ23 − H (11)

where cθ23 = cos(θ2 + θ3) = cos θ2 cos θ3 − sin θ2 sin θ3, sθ23 = sin(θ2 + θ3) = sin θ2 cos θ3 +
cos θ2 sin θ3 and px , py , and pz are denoted as the elements of the position vector.

2.3. Inverse kinematic
The inverse kinematic solution is needed for motion planning and control of manipulators to achieve
the required movement. For that, it is necessary to convert position and rotational of manipulator
end effectors from Cartesian space to joint space. Due to each leg’s identical posture, one leg joint
variables’ value is to be calculated from the inverse kinematics equation and remained the same for
other legs. In this paper, we calculate in detail the joint variables by the inverse kinematic equation
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of legl
)

l=1 by the use of end effectors coordinates (px , py , pz) in base global point (Ob). The three
joint variables are given directly as follows in Eqs. (12)–(14):

θ1 = tan−1 −
(

Q + pz

H + pz

)
(12)

θ2 = cos−1

(
M2 + N 2 − r2

2 − r2
3

2r2r3

)
(13)

where M = (−r1 + pysθ1 − Hcθ1 + Qsθ1 − pzcθ1), N = (px − P)

θ3 = a tan 2(N , M) ± a tan 2(
√

(N 2 + M2 − K 2), K ), where K = r2 + r3cθ3 (14)

2.4. Dynamic modeling of four-legged robot
Multi-legged robots are very complex, and composite mechanics set up. Each leg of a quadruped
robot is tied up to one another through the body frame and finally making a closed kinematic chain
through the ground. Forces and moments are acting on a robot mechanism transmit through the
kinematic chain from one link to another. The equation of motion for a robot control system with
four legs (each leg with three DOF) is deduced by using Lagrangian dynamics formulation, and the
general equation of the ith n-DOF leg can be represented in vector-matrix form, as shown in Eq. (15).

τi − τi f − J T
gi Fgi + J T

ei Fei = [H(θ)]i

[
θ̈
]

i + Ci (θi , θ̇i )θ̇i + [
τg(θ)

]
i (15)

In this equation θ, θ̇ , θ̈ and τ are vector of joint position, velocity, acceleration, and force vari-
ables, respectively. Where H(θ)3×3 is mass inertia matrix of the leg, θ3×1

i is joint position vector,
Ci (θi , θ̇i )

3×1 is a vector of centrifugal/Coriolis terms, τgi (θi )
3×1 is a of gravitational forces/torques

terms, τ 3×1
i is the vector of joint torques.Fei and Fgi are the 3×1 vector of coupled force of legs with

body and ground forces, respectively. In the leg’s air swing stage, the ground reaction force becomes
zero, as there is no interaction between foot and ground. But in the stance phase case, ground reaction
force plays an important role due to foot and ground interaction.

2.5. Torso body dynamics
Defining xb ∈R

n as the position coordinates vector of the torso frame, the dynamics of the
quadrupedal robot body is expressed as follows in Eq. (16):

Fb = Hb(xb)ẍb + Cb(xb, ẋb)ẋb + Gb(xb) (16)

where Fb ∈R
n denotes the command forces or spatial force in the operational space acting on the

center of mass of the torso body, Hb(xb) ∈R
n×n is the positive symmetric definite inertia matrix,

Cb(xb, ẋb) ∈R
n×n is the Coriolis/centrifugal matrix, and Gb(xb) ∈R

n×1 is the (n×1) vector gravity
force.

Let us define the Jacobian matrix J (θ) ∈R
n×n transfers the joint velocity (θ ∈R

n) to the spatial
vector acting on the trunk of body velocity ( (xb ∈R

n) ) according to

xb = J (θ)θ̇

The final dynamic expression can be denoted as in Eq. (17)25

H θ̈ + C θ̇ + G = τ − τ f − J T
g Fg (17)

2.6. Calculation of feet forces
The distribution of the body force of the feet is the major task for a robot dynamic. The underlying
assumptions are considered for computing feet forces distribution:
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Fig. 6. Forces acting on a quadruped robot.

Assumption 1. It is assumed that legs are carried and the load considering no slippage between
the tip of feet and the terrain contact point.

Assumption 2. The reciprocal action between tips of the leg and ground surface must be point
contact with friction, which means that legs exert on the supporting surface through the foot are
limited to three components of forces: one perpendicular and the other two horizontals to the
surfaces.

Assumption 3. During leg movements, it is assumed that the center of gravity of the robot does
not shift significantly, and the effect of the inertia of transfer legs on the robot body is equivalent
to zero.

Approach 1. Foot Forces Calculation.

There are only two possible support-phases: three-leg grounded phase and four-leg grounded
phase to analyze the feet force for the statistically stable walk. The different force acting on a four-
footed robot is shown in Fig. 6. Now consider that F = [

fi x , fiy, fi z
]

is the ground reaction force
vector passes upward from the foot i , where i = 1, 2, 3...q, q is the number of legs supported in the
ground for a particular instant. The wrench W = [

Fi x , Fiy, Fiz, Mx , My, Mz
]T

contains the forces
and moments acting on the robot’s center of gravity (C.G), considering the effect of a surface gradi-
ent, weight, and inertia of the moving segment of robot’s body. Then without considering the inertia
effect of the transfer legs, six equilibrium equations of balance forces and moments can be written in
Eqs. (18)–(23) as follows:

Fx +
q∑

i=1

fi x = 0 (18)

Fy +
q∑

i=1

fiy = 0 (19)

Fz +
q∑

i=1

fi z = 0 (20)

n∑
i=1

yi fi z −
n∑

i=1

zi fiy + yc Fz − zc Fy + Mx = 0 (21)

n∑
i=1

zi fi x −
n∑

i=1

xi fi z + zc Fx − xc Fz + My = 0 (22)

n∑
i=1

xi fiy −
n∑

i=1

yi fi x + xc Fy − yc Fx + Mz = 0 (23)
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Under these conditions, six equilibrium equations that balance forces and moments can be written in
matrix form as given below.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 1 0 1

0 − z1 y1 0 − z2 y2 0 − z3 y3

z1 0 − x1 z2 0 −x2 z3 0 −x3

− y1 x1 0 −y2 x2 0 −y3 x3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

6×9

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1x

f1y

f1z

f2x

f2y

f2z

f3x

f3y

f3z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

9×1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fx

Fy

Fz

Mx

My

Mz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

6×1

(24)

where
[
xi , yi , zi

]
are the coordinates of ith foot–ground contact point with respect to body reference

frame (ob) and
[
xc, yc, zc

]
are the position of C.G of the robot with respect to body reference frame.

The Eq. (24) can be rearranged in matrix form as shown in Eq. (25).

[P] [F] = − [N ] [W ] (25)

where, P1 =
[

I3 I3 I3

SA SB SC

]
6×9

and [F] = [ FA FB FC ] for β = 1/2

P2 =
[

I3 I3 I3 I3

SA SB SC SD

]
6×12

and [F] = [ FA FB FC FD ] for β = β = 2/3

The tip of foot i(i = A,B,C for three-leg support; where β = 1/
2). During the three-leg support phase,

P becomes P1 and dimensions of the matrix 6 × 9, whereas the remaining phases, P becomes P2

with the size of the matrix 6 × 12.

where N =
[

I3 03

Sc I3

]
, Si =

⎡
⎢⎣

0 −zi yi

zi 0 −xi

−yi xi 0

⎤
⎥⎦

I3 is the identity matrix with size (3 × 3), 03 is the null matrix with dimension (3 × 3), and Si is
a skew-symmetric matrix. By considering the feet-tip position, the feet forces during the entire leg
motion can be calculated using the least-square method.23 The solution of Eq. (25) is indeterminate,
as it has six equations involving nine variables. The least-square method can be used to get the
minimum solution of the indeterminate equilibrium equation. The solution is written in matrix form
in Eq. (26).

F = −PT
[(

[P] [P]T
)]−1

([N ] [W ]) (26)

In the above equation, pseudoinverse can also be obtained by multiplying the transpose matrix from
the right, and this is called a generalized right inverse: P−1

right = PT
(
[P] [P]T

)−1
.26−27 Where, P

having a full rank, [P.PT ] is a positive definite matrix.

Approach 2. Joint Torque Calculation.

In this approach, joints torque can be calculated with Eq. (25) using the following relation:

F = [K ] [τ ] , where [K ] =
⎡
⎢⎣

AJ 0J 0J

0J BJ 0J

0J 0J CJ

⎤
⎥⎦

9×9
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[K ] will have the dimension (9 × 9) (for three-leg support).[τ ] = [τAτBτC ]T and τi = [τi1τi2τi3]T is
the torque vector consisting of joint torques at leg i , respectively.

The Eq. (25) can be written as

Pj [K ] [τ ] = − [N ] . [W ] (27)

PJ [τ ] = − [N ] . [W ] (28)

Again, the least-square method can be used to find the exact solution of the above indeterminate
equation.28 The final equation can be rearranged in matrix form as expressed in Eq. (29).

[τ ] = −PT
J

[(
[PJ ] [PJ ]T

)]−1
([N ] [W ]) (29)

The feet forces can be obtained using the help of Eq. (25).

3. Power Consumption
To perform any task in a quadruped robot is only possible due to energy utilized by the motors tied
to the joints of the legs. In a multi-legged robot, minimizing energy consumption with different envi-
ronmental conditions are the most challenging problem.29, 30 In a particular environmental condition,
the value of the joint velocity and torque leads to the energy utilization of each joint and then the
total system. The total energy can be expressed as

E = Em + Ee (30)

where Em stands for mechanical energy and Ee indicates heat energy loss. Furthermore, the above
equation can be expanded with energy utilized by each motor of joint (i) of the leg (l) during a time
period (t) as written in Eq. (31).31, 32

ET otal =
∫ t

0
Va Iadt =

∫ t

0

n∑
leg(l=1)

n∑
i=1

δ
(
τi θ̇i

)
dt +

∫ t

0

n∑
leg(l=1)

n∑
i=1

Ri

(
τi

Gi Ki

)2

dt (31)

where

δ(τ θ̇) =
{

τ θ̇ , if τ θ̇ greater than‘0′

0, if τ θ̇ less than equal to ‘0’

Va and Ia are the input voltage and current, respectively. Here, τ represent as joint torque and θ̇

indicates the rotational velocity. Where Ri , Gi , and Ki are the armature resistance, gear ratio, and
torque constant, respectively. Now, the total energy utilized by 12 motors of a quadruped robot can
be found out in Eq. (32).

ET otal =
∫ t

0
Va Iadt =

∫ t

0

4∑
leg(l=1)

3∑
i=1

δ
(
τi θ̇i

)
dt +

∫ t

0

4∑
leg(l=1)

3∑
i=1

Ri

(
τi

Gi Ki

)2

dt (32)

The average power is the time average of the instantaneous power or total power. Then, average
power utilization can be determined as follows:

Average Power Pave = ET otal
/
T (33)

4. Numerical Result Analysis
The primary mechanism of a legged robot must generate enough force to support its own weight
and as well as move the body. The fundamental distinction between walking and running gait is that
walking gait has a duty factor of more than 0.5 whereas running gait less than 0.5. In walk gait,
both the pair of feet are on the ground simultaneously, but in running gait, both the pair of feet
are off the ground. In asymmetrical gait, each pair of the leg has the same duty factor and with a
0.5 phase difference. Before investigating the quadruped robot’s leg characteristics, we considered
specific input parameters such as the physical dimensions, moving velocity, stride length, and duty
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Table II. Physical parameters of each link.

Link descriptions Unit Symbol Link1 Link2 Link3

Length mm r 65 100 100

Mass kg m 0.033 0.04 0.05

Center of mass mm xcm 144.9 67.9 149
ycm −72.7 −15.33 −23.8
zcm −24.42 40 −23.8

Moment of inertia g.mm2 Ixx 227,510.9 124,348.8 94,685.9
Iyy 775,870.1 287,769.6 1, 302,407.5
Izz 951,175.5 274,075.58 13,302,288.9

Product of inertia g.mm2 Ixy −374,154 −43,324.76 −198,167.3
Ixz −126,675 114,921.2 −198,343.9
Izy 62,894.1 −25,939.7 31,530.5

Body parameters
Product of inertia (body) kg.m2 Ixx 0.30

Iyy 0.05
Izz 0.32

Weight of the body kg m 1.30

Fig. 7. Walking gait pattern with support polygon of duty factor 0.75.

cycle. The detail of the simulation parameters of each leg of the quadruped robot is show in Table II.
The Jacobian matrix of the leg “l” can be written as

jl =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂xl

∂θ1

∂xl

∂θ2

∂xl

∂θ3

∂yl

∂θ1

∂yl

∂θ2

∂yl

∂θ3

∂zl

∂θ1

∂zl

∂θ2

∂zl

∂θ3

∣∣∣∣∣∣∣∣∣∣∣∣∣
Here, it is assumed that the quadruped robot moving in the x-direction with the leg sequence gener-
ated 4-3-2-1, as shown in Fig. 7. Body height and velocity are considered to be equal to 0.1 m and
0.05 m/s, respectively. The stride length and cycle time are measured to be equal to 0.1 m and 0.4 s,
respectively. Duty factor (percent of the foot on the ground on cycle time), β = 0.75.
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Table III. Average power utilization obtained by two approaches.

Approaches Average value (watts)

Approach 1 0.0672
Approach 2 0.1152

Fig. 8. Feet force distribution by approaches 1 and 2.

The distribution of foot forces is shown in Fig. 8, which is obtained by approaches 1 and 2. The
cycle time of one locomotion is set as 0–4 s. In Fig. 8, it is observed that the front and hind legs are
complemented each other in force. The total weight of the robot is the sum of all the vertical force of
each ground contact legs for a particular time. In Approach 1, it is observed that the horizontal com-
ponent tends to zero during robot uniform motion, which signifies that the friction does not influence
the total system. In the second approach, horizontal direction forces are observed to predominate in
which the findings are almost close to that published by Eden and Leblehiciglu.33

The variation of torques at each joint is shown in Figs. 9–10, obtained by approaches 1–2. It is
observed that joint 2 produced more torque compared to another joint during the locomotion. In
Approach 1, the torque variation is more (basically joint 2) than other joints of legs. However, it
seems to be less variation of torques of a different joint of the motor in Approach 2. The motor (joint
2) can be selected over the underutilized at joints 1 and 3 based on Approach 2.

In Table III, the average values of a robot’s joint power consumption can be obtained by two
approaches using Eq. (33). Figures 9 and 10 show that the average torque of Approach 1 is less

https://doi.org/10.1017/S0263574720001307 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001307


Modeling and effective foot force distribution 1515

Fig. 9. Torque at each actuator of the legs by Approach 1.

Fig. 10. Torque at each actuator of the legs by Approach 2.
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compared to Approach 2. As power utilization of the motor or system is directly proportional to
torque, Approach 1 is more power-efficient than Approach 2.

5. Conclusions
In this paper, both the kinematics and dynamics of a quadruped robot’s mathematical model have
been developed. A single-leg kinematic model has been developed using forward and inverse
kinematics to achieve statically stable gait.

1. By considering an external wrench, the distribution of required forces and moments on a
quadruped robot’s supporting legs is operated as feet force distribution.

2. Two approaches have been modeled to get the optimal distribution of feet forces. The first
approach has provided more energy-efficient and more joint torques variation in comparison to
Approach 2.

3. The Euler–Lagrangian formulation is used to calculate the joint torque of each joint. It is also
observed that the supporting phase joint torques are more than the transfer phase leg.

4. The proposed kinematic and dynamics have been tested for the walking gait of a developed
quadruped robot. In the future, work can be incorporated into a multi-legged robot to tackle the
drawback related to discontinuous and non-synchronized gait.
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