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Fó GAMES AND REFLECTION IN L(R)

J. P. AGUILERA

Abstract. We characterize the determinacy ofFó games of lengthù
2 in terms of determinacy assertions

for short games. Specifically, we show that Fó games of length ù
2 are determined if, and only if, there is a

transitive model of KP+AD containing R and reflecting Π1 facts about the next admissible set.

As a consequence, one obtains that, over the base theory KP+DC+“R exists,” determinacy for Fó

games of length ù2 is stronger than AD, but weaker than AD+Σ1-separation.

§1. Introduction. We study the consistency strength of Fó-determinacy for games
of length ù2. We see that the situation here is tied with that of short games. For
example, over the base theory

KP+DC+“R exists,”

Fó-determinacy for games of length ù
2 is much stronger than AD; however, it is

much weaker than AD + Σ1-separation. Over ZFC, Fó-determinacy for games of
lengthù2 is stronger than the existence of a transitive model ofKP+ AD containing
all reals; yet weaker than the existence of a transitive model of KP + AD + Σ1-
separation containing all reals. The consistency strength of this theory is hard to
describe in terms of large cardinals: determinacy assumptions for games of lengthù2

(over ZFC or overKP+DC+ “R exists”) for all pointclasses between the clopen sets
and the Borel sets lie strictly between the existence of all finite amounts of Woodin
cardinals (as a schema) and the existence of infinitely many Woodin cardinals, in
terms of consistency strength (see [3]).
Much like in the case of short Fó games, long games are tied to reflection for

set-theoretic formulae of a certain complexity, except that—rather than in L—one
needs to consider reflection in the L(R)-hierarchy. Given an admissible set, let A+

denote the next admissible set, in the sense of Barwise–Gandy–Moschovakis [7]; i.e.,
A+ is the smallest admissible set containing A. By convention, all admissible sets
are transitive.

Definition 1.1. An admissible set A is Π+1 - reflecting if for every Π1 formula φ
with parameters in A and one free variable, if A+ |= φ(A), then there is some B ∈ A
with all parameters in φ such that B+ |= φ(B).
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Fó GAMES AND REFLECTION IN L(R) 1103

Our main theorem is:

Theorem 1.2. The following are equivalent:

1. Σ02-determinacy for games of length ù
2;

2. There is a Π+1 -reflecting model of AD containing R.

Precursors to this work include, on the side of long games, Blass’ [8] theorem that
determinacy for all games of length ù2 is equivalent to ADR, Neeman’s [21] work
on games of countable length, Trang’s [24] work on analytic games of additively
indecomposable length, as well as previous work on games of length ù2 that are
open (see Theorem 6.1 below), clopen [5], Borel [4], or projective [6]. On the
side of Fó games we mention Solovay’s and Tanaka’s [23] work in the contexts
of subsystems of set theory and analysis, respectively, and Wolfe’s [26] original
proof of Fó-determinacy.

§2. Preliminaries. In this section, we collect some preliminary definitions and
results.

2.1. Games of transfinite length. We study two-player, perfect information games
of length ù2 which are Fó , i.e., Σ

0
2-definable. These are games in which, given A ∈

P(R)∩Σ02, two players, Player I and Player II, alternate
1 ù2-many turns playing

natural numbers, thus producing a sequence x∈Nù
2
. Since the spacesR\Q andNù

2

are recursively homeomorphic, the sequence xmay be identified with a(n irrational)
real number. Player I wins if x ∈ A; otherwise, Player II wins.
As above, we will often identify sequences of natural numbers of length ù2 with

ù-sequences of reals and with single reals. Given reals x0,x1, ..., we will denote by

x= 〈x0,x1, ...〉

the single real number coding the sequence (x0,x1, ...), via some fixed recursive
coding.The precise coding usedwill be immaterial, except for the continuity property
that the first n digits x should only depend on x0,x1, ... ,xn. Similarly, if s and t are
infinite sequences, or reals coding them, we will denote by

s⌢t

the single real number coding the result of concatenating s and t.

2.2. Reflection in L(R). We recall the definition of the L(R) hierarchy: L0(R) is
defined to be Vù+1, the collection of all sets all of whose elements are hereditarily
finite.Lα+1(R) is the set of all subsets ofLα(R) definable overLα(R)withparameters.
At limit stages, Lë(R) is the union of all Lα(R), for α < ë. The function

α 7→ Lα(R)

is ∆1 with R as a parameter. The first step towards proving Theorem 1.2 is the
observation that it suffices to restrict to admissible sets of the form Lα(R).

1Since the Σ02 sets are closed under recursive substitutions, the rules of the game may require either
player to make the first move.
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1104 J. P. AGUILERA

We will use the following nonstandard notation:

Definition 2.1. Let α be an ordinal. We denote by

α+

the least ordinal â such that α < â and Lâ(R) is admissible.

Definition 2.2. An ordinal α is Π+1 - reflecting if Lα(R) is Π
+
1 -reflecting.

Lemma 2.3. Suppose A is aΠ+1 -reflecting set and R ∈A. Let α =Ord∩A; then, α
is Π+1 -reflecting.

Proof. Let φ be a Π1 formula with parameters in Lα(R) such that
(

Lα(R))
+
|= φ(Lα(R)).

Clearly,
(

Lα(R))
+
= Lα+(R). Moreover, A

+ is an admissible set containing Lα(R),
soLα+(R)⊂A

+. Letø be the formula in the language of set theory with parameters
in A∪ {A} asserting that for all â , if no ã ∈ (α,â) is admissible, then Lâ(R) |=
φ(Lα(R)). Being admissible is expressible internally,α is ∆1-definable fromA, and—
as remarked earlier— Lâ(R) is ∆1-definable from â and R (which belong to Lα(R)).
Hence, ø is Π1. Moreover, A

+ |= ø(A), so, by reflection, there is B ∈ A such that
B+ |=ø(B) andB contains all parameters inø. In particular,R∈B. Let â =Ord∩B;
since B ∈A, â ∈A, so, in particular, â < α. Lâ+(R)⊂ B

+. By choice ofø, we obtain
that Lâ+(R) |= φ(Lâ(R)), as desired. ⊣

Corollary 2.4. The following are equivalent:

1. There is a Π+1 -reflecting model of AD containing R; and
2. There is a Π+1 -reflecting ordinal α such that Lα(R) |= AD.

Proof. Suppose that A is a Π+1 -reflecting model of AD containing R and let
α = Ord∩A. By Lemma 2.3, Lα(R) is Π

+
1 -reflecting. Moreover, it is a subset of A

containing all reals, and thus all possible strategies for games; hence, Lα(R) |= AD.
The converse is immediate. ⊣

This motivates the following definition:

Definition 2.5. We denote by óR the least Π
+
1 -reflecting ordinal.

óR is the analog of the ordinal ó
1
1 for L(R). Unlike ó

1
1 , the set-theoretic properties

of óR are not decidable within ZF. For instance, under AD, óR is big—it is a limit of
weakly inaccessible cardinals (this follows from Moschovakis [16, Theorem 5], by
which, under AD, every R-admissible ordinal is weakly inaccessible). In contrast, if
V = L, then óR <ù2.

Definition 2.6. LetA⊂R×R and writeAx = {y∈R : (x,y)∈R}. We write aRA
for the set of all x ∈ R such that Player I has a winning strategy for the game on R
with payoff Ax. We define

aRΣ02 = {aRA : A ∈ Σ02}.

(Classes such as aRΣ01 or a
RΠ01 are defined analogously.) To prove Theorem 1.2, it

suffices to prove that determinacy for Fó games of lengthù
2 is equivalent to the fact
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that LóR(R) |= AD. Following previous proofs of determinacy for games of length

ù2, our first goal is to locate winning strategies for Σ02 games on R. We shall show
that

P(R)∩Σ
LóR (R)

1 = aRΣ02.

The main tool for this is the theory of inductive definitions on R, the basics of
which we recall next.

2.3. Inductive definitions. Suppose that φ : P(Rm)→ P(Rm) is an operator. We
define sets φë ⊂ Rm inductively by

φ0 =∅,

φ<ë =
⋃

ì<ë

φ(φ<ì),

φë = φ<ë∪φ(φ<ë),

φ∞ =
⋃

ë∈Ord

φë.

The least κ such that φ∞ = φκ is called the closure ordinal of φ and denoted |φ|.
If Γ is a class of operators, we write

|Γ|= sup{|φ| : φ ∈ Γ}.

Definition 2.7. Let Γ be a class of operators

φ : P(Rm)→P(Rm).

We say that R⊂ Rn is Γ- inductive if there is b ∈ Rm–n such that for all a ∈ Rn,

a ∈ R if, and only if, (a,b) ∈ φ∞.

An operator φ is defined by a formula ø(x,X) if, and only if,

φ(X) = {a ∈ Rm : ø(a,X)}.

Thus, it is natural to consider classes of operators specified in terms of definability.
Let Γ be a pointclass; we say that an operator φ is in Γ if it is defined by a formula
in Γ with an additional predicate symbol X. We say that an operator is positive if
this additional predicate symbol appears only positively, i.e., not in the scope of
any negations (or in the antecedent of implications). An operator is monotone if
X ⊂ Y ⊂ R implies φ(X) ⊂ φ(Y). Every positive operator is monotone, of course.
We may also speak of a formula defining an operator being positive under the
obvious circumstances.

Definition 2.8. Let Γ be a pointclass.

1. Γ–IND is the pointclass of all Γ-inductive sets.
2. Γpos–IND is the pointclass of all (positive- Γ)-inductive sets.
3. Γmon–IND is the pointclass of all (monotone- Γ)-inductive sets.

Since every positive operator is monotone, we have

Γpos–IND⊂ Γmon–IND⊂ Γ–IND.
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Definition 2.9. A subset ofR is inductive if it is positive analytical inductive, i.e.,
letting IND be the class of all inductive sets, we have

IND=
⋃

n∈N

(Σ1,posn –IND).

A subset of R is coinductive if its complement is inductive. We write coIND for the
class of coinductive sets.

Remark 2.10. One can actually show that the full analytical hierarchy is not
necessary to construct all inductive sets, and indeed

IND= Σ1,posn –IND

whenever 2 ≤ n (see Moschovakis [20, Exercise 7C.13]). For such an n, Theorem
2.14 below (due to Harrington andKechris) implies thatΣ1,monn –IND=Σ1n–IND, and
indeed one can show

Σ1,posn –IND( Σ1,monn –IND= Σ1n–IND,

which differs from the corresponding situation for (arithmetical) induction on N.
To verify the proper inclusion, it suffices to find an example of a Σ1n–IND set which
is not inductive.
We sketch the constructionof such a set. First, fix apositiveΣ12-inductive definition

ø constructing a prewellordering of a subset of R of length κR, the closure ordinal
of the inductive sets. Assume, without loss of generality, that ø constructs this
prewellordering by only using reals whose first digit is 0. φ(X) is defined as follows:
as long as 2 does not belong to X, apply ø to X, unless every real in the resulting
set is already in X, in which case add 2 to X and add the pair (x,y) to X for every
x whose first digit is 0 and every y whose first digit is 1. If 2 belongs to X, then
apply to X the variant of ø that constructs an isomorphic prewellordering, except
that it only uses reals whose first digit is 1. This inductive definition produces a
prewellordering of length κR+κR and thus cannot be inductive. It can be seen to
be Σ1n for some n (not 2), and not positive. Note the increase in complexity (from Σ

1
2

to Σ1n); because of this, this construction cannot be used to show that coIND
pos–IND

is a proper subset of coIND–IND. Indeed, it is not, by Theorem 2.16 below (due to
Harrington and Moschovakis).
None of what has been said in this remark shall be used below, however.

Pointclasses of the form Σ1n (or of other forms) can be relativized by allowing sets
of reals as parameters. This leads to a relativized version of the inductive sets:

Definition 2.11. Let X ⊂ R. A subset of R is inductive on X if it is positive
analytical-on-X inductive, i.e., letting IND(X) be the class of all sets inductive on X,
we have

IND(X) =
⋃

n∈N

(Σ1,posn (X)–IND).

In the definition above, “positive” refers to the variable on which the induction is
carried out, not to the parameter X.
Let κ be the closure ordinal of the inductive sets, i.e., the supremum of closure

ordinals of positive analytical inductive definitions. ThenLκ(R) is the smallestmodel
of KP containing R and
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IND= P(R)∩ΣLκ(R)1 ,

where Σ1-definability in the equation above allows for parameters. Subsets of R
that are both inductive and coinductive are called hyperprojective. By ∆1-separation,
these are the sets of reals in Lκ(R).
In general, let α be an ordinal and suppose that α is smaller than the least non-

R-projectible ordinal, i.e., that there is a surjection

ñ : R→ Lα(R),

which is Σ1-definable over Lα(R) (this restriction can be relaxed, but all ordinals
relevant to this article will be of this form). Let X be a set of reals coding Lα(R) this
way. Then, if κX is the closure ordinal of the X -inductive sets, we have that LκX (R)
is the smallest model of KP containing Lα(R) and

IND(X) = P(R)∩Σ
LκX (R)

1 .

An alternate definition of the inductive sets is given by the following theorem:

Theorem 2.12 (Moschovakis [18]). The following are equivalent:

1. A⊂ R is inductive,
2. there is a projective (or even analytic) set B⊂ R such that for all x ∈ R,

x ∈ A↔∃x0∀x1∃x2 ...∃n(x,〈x0, ... ,xn〉) ∈ B.

Moschovakis’ theorem has the following easy consequence:

Corollary 2.13. IND(X) = aRΣ01(X).

Proof. Assume X =∅ for simplicity. To see that

IND⊂ aRΣ01,

it suffices to notice that given a projective B, statements of the form

∃x0∀x1∃x2 ...∃n(x,〈x0, ... ,xn〉) ∈ B

can be decided by an open (in our sense) game on R (the details can be verified e.g.,
as in [2]). Conversely, let U ∈ Σ01∩P(R2). Write

U =
⋃

i∈N

Ui

as a countable union of basic clopen sets. Thus,

x ∈ aRU if, and only if, ∃x0 ∈ R∀x1 ∈ R ... ∃n ∈ N(x,〈x0,x1, ...〉) ∈Un.

Since Un is basic open, it is of the form

O(s, t) = {(x,y) ∈ R : (s, t)❁ (x,y)},
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where ❁ denotes end-extension. Let kn be the length of s and t. By our choice of
coding of infinite sequences of real numbers by real numbers, the first kn digits of a
sequence 〈x0,x1, ...〉 depend only on x0, ... ,xkn . Clearly, the set

U∗
n =

{

(x,〈k,x0, ... ,xk〉) : k is greater than or equal to the length of the

unique finite sequences s and t such that Un =O(s, t), and

∃xk+1∃xk+2 ... (x,〈x0,x1, ...〉) ∈Un)
}

;

is projective. Let

A=
{

x ∈ R : ∃x0 ∈ R∀x1 ∈ R ... ∃n,m ∈ N(x,〈n,x0,x1, ... ,xn〉) ∈U
∗
m

}

.

We claim that A is inductive. To see this, first notice that the collection of all
pairs (x,〈n,x0,x1, ... ,xn〉) belonging to some U

∗
m is projective. Moreover, the real

〈n,x0,x1, ... ,x〈n,m〉〉 coding the tuple (n,x0,x1, ... ,x〈n,m〉) agrees on the first n digits
with the real 〈n,x0,x1, ... ,xn〉 coding the tuple (n,x0,x1, ... ,xn). Thus, it follows from
the definition of U∗

m that

(x,〈n,x0,x1, ... ,xn〉) ∈U
∗
m

implies

(x,〈〈n,m〉,x0,x1, ... ,x〈n,m〉〉) ∈U
∗
m.

Hence, A is inductive. Finally, writing kn for the length of the finite sequences s and
t such that Un =O(s, t),

x ∈ A iff ∃x0 ∈ R∀x1 ∈ R ... ∃n,m ∈ N(x,〈n,x0,x1, ... ,xn〉) ∈U
∗
m

iff ∃x0 ∈ R∀x1 ∈ R ... ∃n,m ∈ N km ≤ n ∧

∃yn+1∃yn+2 ... (x,〈x0,x1, ... ,xn,yn+1, ...〉) ∈Um

iff ∃x0 ∈ R∀x1 ∈ R ... ∃m ∈ N(x,〈x0,x1, ...〉) ∈Um.

Here, the first and second equivalences hold by definition. The third equivalence
holds because whether (x,〈x0,x1, ...〉) belongs to Um depends only on the first
km digits of 〈x0,x1, ...〉 (by definition of km), which in turn depend only on
x0,x1, ... ,xkm . ⊣

Wemention some results on the relation between inductive definitions, monotone
inductive definitions, and positive inductive definitions.2 For a collection Γ of sets,
we denote by Γ̆ the dual class consisting of complements of sets in Γ. Similarly for
a collection of operators.

Theorem 2.14 (Harrington–Kechris [11, 10]). Let F be a collection of operators
containing Π11 and closed under ∧,∨,∃

R and recursive substitutions. Suppose that

1. WF ∈ F̆ , and
2. F̆ ⊂ Fmon–IND.

Then Fmon–IND= F–IND.

2We would like to thank A. S. Kechris for sharing the notes [10] with us.
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We state the following theorem without defining all notions involved, and
afterwards state the instance in which we will be interested:

Theorem 2.15 (Harrington–Moschovakis [12]). Let Q be a quantifier on R. Let
Γ be the pointclass of all sets which are positive Q-inductive and let Γ̆ be the pointclass
dual to Γ. Then,

Γ̆–IND= Γ̆pos–IND.

In particular, lettingQ be the quantifier ∃R, we have Γ= IND and Γ̆ = coIND, and
thus:

Theorem 2.16 (Harrington–Moschovakis).

coIND–IND= coIND
pos–IND.

We mention that Harrington and Moschovakis’ theorem as stated in [12] is more
general and e.g., implies the following classical result:

Theorem 2.17 (Grilliot). Σ11–IND= Σ
1,pos
1 –IND.

We finish by recalling the definition of a Spector class (on R).

Definition 2.18. A pointclass Γ is called3 a Spector class on R if the following
conditions hold:

1. Γ is closed under ∧,∨,∃R,∀R;
2. Γ contains all analytical relations;
3. Γ is parametrized by R;
4. Γ has the prewellordering property.

2.4. Short Fó games. In order to locate winning strategies for Σ
0
2 games on R

within the L(R)-hierarchy, it might be helpful to recall the location of winning
strategies for Σ02 games on N in the L-hierarchy. This is a result of Solovay and is
obtained by combining three theorems in recursion theory.
The first one of them is also due to Solovay:

Theorem 2.19 (Solovay). Σ1,pos1 –IND= aΣ02.

A proof of Solovay’s theorem can be found in [13] or in [20]. It will adapt to prove
the analog for games on R later, as well as the fact that aRΣ02-determinacy implies
determinacy for Σ02 games of length ù

2. The second theorem is Grilliot’s Theorem
2.17 which, together with Theorem 2.19 implies that

Σ11–IND= aΣ02.

The final theorem is due to Aczel and Richter. Recall that ó11 denotes the least
Σ11-reflecting ordinal.

3This differs from the notion of “Spector pointclass” in Moschovakis [20].
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1110 J. P. AGUILERA

Theorem 2.20 (Aczel–Richter [1]). |Σ11| = ó
1
1 , where |Σ

1
1| refers to closure under

inductive operators on N.

Combining everything, one sees that, in order to know which player wins a
(lightface) Σ02 game on N, one needs not search beyond Ló11

for a winning strategy.

Our plan for locating Player I’s winning strategies for Σ02 games on R will be to
follow the same steps as in the argument for games on N.

§3. Coinductive operators and games.

Theorem 3.1. aRΣ02 = coIND
pos–IND.

Proof. Webegin by quotingWolfe’s proof of Σ02-determinacy andSolovay’s proof
of Theorem 2.19 to prove that

aRΣ02 ⊂ coIND
pos–IND. (1)

Although the argument for this inclusion is very similar to the one for games on N,
a variation of it will be used below in the proof of Lemma 5.1 below, so we prefer to
include all the details.
Let A ⊂ R2 be a Σ02 set (where we assume no parameter is needed; the general

result follows by relativization). Say A is given by

(x,y) ∈ A↔∃n∀m(n,x ↾m,y ↾m) ∈ P,

where P is recursive. The proof proceeds by showing that having a winning strategy
in a certain game G∗(〈〉) equivalent to the Gale–Stewart game on reals with payoff
Ax is equivalent to the membership of x in a set in coIND

pos–IND. For s a finite
sequence of real numbers of even length, define G∗(s) to be the following game:

1. Players I and II alternate turns playing real numbers αn.
2. After infinitely many rounds have taken place, Player I wins if, letting

t(m) = s⌢〈α0,α1, ... ,αm〉

(i.e., letting t be the real coding the result of concatenating s with the first m
moves of the play (α0,α1, ...)), we have

∃n∀m∀m′ <m(n,x ↾m′, t(m) ↾m′) ∈ P.

Note that by our conventions on coding sequences of reals by single reals, we have

s⌢〈α0,α1, ...〉 ↾m= t(m) ↾m.

This implies that Player I has a winning strategy for the game on A if, and only if,
she has one for the game on G∗(〈〉). The game G∗(s) is like G∗(〈〉), except that we
assume that s has already been played. We shall show that Player I having a winning
strategy is in coINDpos–IND.
Let s be a finite sequence of real numbers of even length and X be a set of reals.

Consider the following game, G(X ,s):
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1. Players I and II alternate turns playing real numbers αn.
2. After infinitely many rounds have taken place, Player I wins if, and only if,
letting

t(2m) = s⌢〈α0, ... ,α2m〉,

one of the following holds for each m ∈ N:
(a) there is n≤ lth(s) such that we have

∀m′ <m(n,x ↾m′, t(2m) ↾m′) ∈ P.

(b) t(2m) ∈ X .

The formula

φ(s,X) = “s has even length and Player I has a winning strategy in G(X ,s)” (2)

is clearly in aRΠ01 with an additional predicate for X and X appears positively in
it. Since Π01 games on R are determined by the Gale–Stewart theorem [9], the dual
pointclass of aRΠ01 is a

RΣ01. By Corollary 2.13, (2) is in coIND
pos. The claim is now

that

s ∈ φ∞ ↔ “Player I has a winning strategy in G∗(s).”

As in Solovay’s proof, it is first shown that if s ∈ φî , then Player I has a winning
strategy inG∗(s), by induction on î. Suppose that this holds for φ<î and that s∈ φî ,
so that Player I has a winning strategy in G(φ<î ,s), say, ó. A winning strategy for
G∗(s) is obtained as follows: Player I begins by playing G∗(s) by ó so long as the
first winning condition of G(s,X) is satisfied, i.e., so long as after round m, letting
t(m) = s⌢〈α0,α1, ... ,αm〉, we have

∃n≤ lth(s)∀m′ <m(n,x ↾m′, t(2m) ↾m′) ∈ P.

If after some round this condition is not satisfied, then (since ó is a winning
strategy), we must have

∃æ < î
(

s⌢〈α0, ... ,α2m〉 ∈ φ
æ
)

,

in which case the induction hypothesis yields a winning strategy for the game
G∗(s⌢〈α0, ... ,α2m〉) which should now be followed.
Conversely, if Player I has a winning strategy ó in G∗(s) then s must belong to

φ∞, for otherwise (by monotonicity of φ and determinacy of closed games) Player
II has a winning strategy ô in G(s,φ∞). If so, we could face off the strategies ó and
ô against each other. Since ô is winning for Player II, after finitely many rounds, one
will reach a partial play t(2m1) = s

⌢〈α0, ... ,α2m1〉 such that the following hold:

1. ∀n≤ lth(s)∃m′ <m1 (n,x ↾m
′, t(2m1) ↾m

′) 6∈ P; and
2. t(2m1) 6∈ φ

∞.

The second condition yields a new strategy ô1 for Player II that can now be played
against ó in G(t(2m1),φ

∞) until some stage m2 at which the two conditions above
hold again, etc. Continuing this process infinitely often yields a play

t= s⌢〈α0,α1, ...〉
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such that for each k,

∀n≤ lth(t(2mk))∃m
′ <mk (n,x ↾m

′, t(2mk+1) ↾m
′) 6∈ P,

so that

∀n∃m′(n,x ↾m′, t ↾m′) 6∈ P,

contradicting the fact that ó was a winning strategy for Player I in G(s). This
completes the proof of (1).
The second step consists in showing that

coIND
pos–IND⊂ aRΣ02. (3)

Let φ(s,X) be a positive coIND operator.
By a theorem of Kechris and Moschovakis (see [13, Theorem 2.18]) and since Σ02

is parametrized by R and has the prewellordering property, aRΣ02 is a Spector class
on R. By the “Main Lemma” of Moschovakis [19] (see also [13, Theorem 1.7]), in
order to see that φ∞ ∈ aRΣ02, it suffices to show that a

RΣ02 is closed under φ, i.e.,
that for all A ∈ aRΣ02, the set

Aφ = {(x,z) : φ(x,{y : (y,z) ∈ A})}

is in aRΣ02. Let us put

Az = {y ∈ R : (y,z) ∈ A}

and verify that

{(x,z) : φ(x,Az)} ∈ aRΣ02.

Since φ is in coIND, it follows from Moschovakis [18] that there is a Π11 formula ø
such that

φ(x,X)↔∃y0∀y1 ... ∀nø(x,〈y0, ... ,yn〉,X),

say,

φ(x,X)↔∃y0∀y1 ... ∀n∀wø0(w,x,〈y0, ... ,yn〉,X),

for some arithmetical ø0.
To verify that Aφ is in a

RΣ02, fix x and z; we play the natural game given by the
equivalence above:

1. Players I and II begin by playing real numbers y0,y1, ... until Player II decides
to move on to the next stage after turn n. If this never happens, Player I wins.

2. Player II plays w ∈ R. Let è0 = ø0(w,x,〈y0, ... ,yn〉,Az) and assume without
loss of generality that è0 has been rewritten without implications and without
negations whose scope is not a single atomic formula.

3. If èk has been defined and is a formula in the language of second-order
arithmetic with an additional predicate Az, we proceed by cases:
(a) If the outermost logical connective of èk is a disjunction, then Player I
chooses one of the disjuncts; we set èk+1 equal to this choice.

(b) If the outermost logical connective of èk is a conjunction, then Player II
chooses one of the conjuncts; we set èk+1 equal to this choice.
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(c) If èk is atomic then either it is an atomic formula not involvingX, in which
case the game ends and Player I wins if, and only if, èk holds; or it is of the
form a ∈ Az (since φ is positive). In the latter case, the game continues.

(d) Let B ∈ Σ02 be such that Az = aRB. Players I and II alternate infinitely
many turns playing reals w0,w1,w2, ... . At the end, Player I wins if, and
only if, (〈w0,w1, ...〉,w,a,z) ∈ B.

Clearly the winning condition for the game is Σ02. It is easy to verify that Player I
has a winning strategy in this game if, and only if (x,z) ∈ Aφ . This proves (3). ⊣

Together with Harrington and Moschovakis’s Theorem 2.16, the previous result
yields:

Corollary 3.2. coIND–IND= aRΣ02.

§4. Coinductive operators and reflection. Let � be a binary relation. As a
convention, we will use ≺ to denote the strict part of � (i.e., x≺ y whenever x� y
and y 6� x) and ≡ to denote �-equivalence (i.e., x ≡ y whenever x � y and y � x).
Similar conventions shall apply to variations of �, e.g., by subscripts. Notice that
any two of �, ≺, and ≡ determine the other one.
Given a binary relation � and an equivalence relation E with the same field, � is

said to commute with E if x � y, xEa, and yEb imply a � b, and similarly for the
strict part ≺. A binary relation �commutes with itself if it commutes with ≡; this
follows from transitivity. An induction on the complexity of formulae shows that if
� is a binary relation that commutes with itself, then any first-order formula in the
vocabulary {≺,=} holds of some tuple (x1, ... ,xn) of objects in field(�) if, and only
if, it holds of any tuple (y1, ... ,yn) such that xi is ≡-equivalent to yi for each i, so
long as equality is interpreted as ≡.
We define in the natural way the notion of a preorder on R coding an initial

segment of L(R):

Definition 4.1. Let α be an ordinal. A coding of Lα(R) is a preorder � on a
subset of R such that

(Lα(R),∈,=)∼= (field(�),≺,≡)/≡.

The right-hand side of the displayed equation is the quotient structure of the
structure (field(�),≺,≡) by ≡. The relation ≡ becomes equality in this quotient. If
� is a coding of some Lα(R), then ≺ induces a wellfounded transitive relation on
≡-equivalence classes and there is a surjection ñ from field (�) to Lα(R) such that
x≺ y if, and only if, ñ(x) ∈ ñ(y). If so then in this section only, let us denote ñ(x) by
|x|�.

Theorem 4.2. |coIND|= óR.

The proof of Theorem 4.2 will be divided into two lemmata:

Lemma 4.3. |coIND| is Π+1 -reflecting.
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Proof. The lemma will be proved by an argument similar to the one of [1,
Theorem 10.7]. We have not checked whether the results of [1] (e.g., the lemma
proved in the appendix) hold in full in the context of recursion on R but, since we
are only interested in proving Lemma 4.3 (and are not analyzing, e.g., ordinals of
the form |Σ1n|), we do not need to be very careful with issues of definability, which
greatly simplifies the situation.
Given an inductive definition φ, there is a natural way of associating to it a

prewellordering on R, namely, letting

w(x) =

{

least î such that x ∈ φî+1, if it exists,

∞, otherwise;

we put

x�φ y if, and only if, w(x)≤ x(y).

Let φ be a universal coinductive operator, i.e., a coinductive operator such that
whenever ø is a coinductive operator, we have

ø(X) = {x ∈ R : (x,a) ∈ φ(X)}

for some a ∈ R. (See Moschovakis [19] for a proof of the existence of universal
coinductive sets; they can be defined uniformly in X.) Below, we will define a
coinductive operator Θ which simultaneously applies φ, defines the prewellordering
associated with φ, and codes initial segments of Lα(R) along the prewellordering
given by φ. Given X ⊂ R, write

(i,X) = {(i,x) : x ∈ X}.

Conversely, we write

Xi = {x ∈ R : (i,x) ∈ X}.

Let X ⊂ R and � be a binary relation on X. Suppose moreover that U is a set of
real numbers and that X consists only of tuples of real numbers none of whose first
coordinate belongs to U. We define a set Def(X ,�) and a binary relation �+ such
that if� has fieldX and codes Lα(R), then�

+ is a relation onX⊕Def(X ,�) which
codes Lα+1(R). The reason for mentioningU at all will become clear soon; roughly,
it contains indicators which we will use to identify which reals belong to Def(X ,�)
and which do not.
Def(X ,�) is the set of all tuples (x0,ϕ, Eb), where x0 ∈ U , ϕ is a formula of arity

lth(Eb)+ 1 in the vocabulary {=,≺} and Eb is a finite tuple of elements of X. For
x,y ∈ X ⊕Def(X ,�), we put x≺∗ y if, and only if, one of the following holds:

1. x,y ∈ X and x≺ y;
2. y ∈Def(X ,�) is of the form (x0,ϕ, Eb) and (X ,≺,≡) |= ϕ(Eb,x).

Afterwards, let xEy if, and only if x and y have exactly the same ≺∗-predecessors,
and put x�+ y if, and only if, xEy or there are aEx and bEy such that a≺∗ b. Hence,
the relation ≺∗ is a first approximation to ≺+. It extends ≺ by specifying which of
the elements ofX are smaller than which of the new elements. It may thus be that an
element x of Def(X ,�) turns out to have exactly the same≺∗-predecessors as some
other element y of Def(X ,�) or of X. We would then like to force these x and y to
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be ≡+-equivalent, which is what we do. Note that this definition depended on U, so
when in need of precision, we may write Def(X ,�,U) for Def(X ,�) and �+U for
�+. By inspecting the construction, one sees that both Def(X ,�,U) and �+ are,
say, hyperprojective (in fact, much simpler) in X, U, and �. Another feature of this
definition is that if {�é}é is an increasing family of relations obtained this way, and
�0 is a coding of some Lα(R) then

⋃

é �é is a coding of some Lâ(R) (this is where
the set U in the definition is used).
We now define the operator Θ. Given X ⊂ R, Θ will map X to a set Y with four

parts, Y0,Y1,Y2, and Y3 defined in terms of X0, X1, X2, and X3. If X is of the right
form, Y1 will be a prewellordering of some length α+1 and Y3 will be a coding of
Lα+1(R) with field Y2.

1. Y0 = φ(X0);

2. Y1 = X1∪
{

(x,y) : x ∈ Y0∪field(X1) and y ∈ Y0 \field(X1)
}

;

3. Y2 = X2∪Def(X2,X3,U), where U = Y0 \field(X1);
4. Y3 = X

+U
3 , where U = Y0 \field(X1).

The class of coinductive operators is closed under Boolean connectives and real
quantifiers, so Θ is coinductive. The operator generates the inductive definition φ∞

on its first component, while simultaneously coding �φ in its second component.
At each stage î, all new elements added to the field of �φ , i.e., those of �φ-rank
î+1, are used to define the new elements of the set (Θî)2 which acts as the field of
a relation (Θî)3 that codes Lî+1(R).
Any fixed point of Θ will contain a fixed point of φ in its first component. Because

φ is universal coinductive, an argument as in [1, Theorem 8.5] (but using continuous
reducibility in place of many-one reducibility4) shows that

|Θ|= |φ|= |coIND|.

Hence, we need to show that |Θ| is Π+1 -reflecting (although, to show that there is a
Π+1 -reflecting ordinal ≤|coIND|—which is really the point of this lemma, we do not
need the argument from [1, Theorem 8.5]). Recall that, given a coding � of some
Lα(R), in this section we write |x|� for the element of Lα(R) coded by x, if any.

Sublemma 4.4. Let ø be aΠ1 formula in the language of set theory. Then, there is
a coinductive operator Ψ, such that whenever ë≤ |Θ|,

1. for all c1, ... ,cl ∈ (Θ
ë)2,

Lë+(R) |= ø
(

|c1|(Θë)3 , ... , |cl|(Θë)3
)

↔ (c1, ... ,cl) ∈Ψ(Θ
ë).

2. for all c1, ... ,cl ∈ R, if there is some i < l+1 such that ci 6∈ (Θ
ë)2, then

(c1, ... ,cl) 6∈Ψ(Θ
ë).

Proof. The main observation is that by Barwise–Gandy–Moschovakis [7,
Lemma 2.9], for every admissible set A, a relation P on A is coinductive on A with
parameters if, and only if, it is Π1 over A

+, with parameters in A∪{A}. Moreover,

4A proof of the Kleene’s Recursion Theorem in this context can be found e.g., in [15, Theorem 3.1].
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this correspondence is uniform, in that the definition of the coinductive relation
depends only on the Π1 formula and its parameters, and not on the admissible set
A (as long as it contains the parameters),5 and vice-versa.
Hence, given a Π1-formula ø, the set of all a1, ... ,al ∈ Lë(R) such that

Lë+(R) |= ø(a1, ... ,al)

is a coinductive subset of Lë(R) (and thus of Lë+1(R)). Since (Θ
ë)3 is a coding of

Lë+1(R), there is a surjection

ñ : (Θë)2→ Lë+1(R),

such that a pair (x,y) belongs to the strict part of (Θë)3 if, and only if, ñ(x)∈ ñ(y). It
follows that the preimage of a coinductive subset of Lë+1(R) under ñ is coinductive
on R from the parameters (Θë)2 and (Θ

ë)3. Hence, there is a coinductive operator
Ψ′ such that

1. for all c1, ... ,cl ∈ (Θ
ë)2,

Lë+(R) |= ø(|c1|(Θë)3 , ... , |cl|(Θë)3)↔ (c1, ... ,cl) ∈Ψ
′((Θë)2⊕ (Θ

ë)3).

2. for all c1, ... ,cl ∈ R, if there is some i < l+1 such that ci 6∈ (Θ
ë)2, then

(c1, ... ,cl) 6∈Ψ
′((Θë)2⊕ (Θ

ë)3).

Now, both (Θë)2 and (Θ
ë)3 reduce to Θ

ë continuously, and this reduction is
uniform in ë, so there is an operator Ψ as desired. ⊣

Letø be a Π1 sentence and let Ψ be given by the sublemma, so that for all ë≤ |Θ|
and all c1, ... ,cl ∈ (Θ

ë)2, we have

Lë+(R) |= ø(|c1|(Θë)3 , ... , |cl|(Θë)3)↔ (c1, ... ,cl) ∈Ψ(Θ
ë).

Since φ was chosen to be a universal coinductive operator, Θ(X) is complete
coinductive for all X, so there is a continuous function

g : Rl 7→ R

such that for all c1, ... ,cl ∈ R and all X ⊂ R do we have

(c1, ... ,cl) ∈Ψ(X)↔ g(c1, ... ,cl) ∈Θ(X).

Hence,

Lë+(R) |= ø(|c1|(Θë)3 , ... , |cl|(Θë)3)↔ g(c1, ... ,cl) ∈Θ(Θ
ë). (4)

5This can be shown directly for admissible sets of the form Lα(R): given such a set, one defines an
operator, elementary in Lα(R), that successively outputs extensions of Lα(R), like Θ does. To ensure
that the operator is elementary, one can have it e.g., add only Σ1-definable sets at each stage, instead of
all first-order–definable sets. One can ask the operator to also check at each limit stage whether the Π1
fact with parameters in Lα(R) holds of the structure it outputs. Like we did with Θ, this operator can be
ensured to have closure ordinal α+ by asking it to generate a universal Σ1(Lα(R)) inductive definition
in parallel. The operator for that can be obtained e.g., from the universal Σ1(P) subset of R, where P is a
subset of R coding Lα(R). The set P can be obtained uniformly in a Σ1(Lα(R)) way (for multiplicatively
indecomposable α; see Steel [22, Lemma 1.4]).
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Suppose then that there are elements ã1, ... ,ãl of Lë(R) such that

L|Θ|+(R) |= ø
(

ã1, ... ,ãl
)

.

By construction, (Θ<ë)3 is a coding of Lë(R) for each ë, so (Θ
∞)3 is a coding of

L|Θ|(R) with field (Θ
∞)2. Thus, there is a surjection

ñ : (Θ∞)2→ L|Θ|(R)

such that the pair (x,y) belongs to the strict part of (Θ∞)3 if, and only if, ñ(x)∈ ñ(y).
Pick c1, ... ,cl such that for each 0< i < l+1, ñ(ci) = ãi. Then,

L|Θ|+(R) |= ø
(

|c1|(Θ∞)3 , ... , |cl|(Θ∞)3
)

.

By (4),

g(c1, ... ,cl) ∈Θ(Θ
∞)⊂Θ∞.

|Θ| is a limit ordinal, so there is some ë < |Θ| such that

g(c1, ... ,cl) ∈Θ(Θ
ë),

so that, by (4),

Lë+(R) |= ø
(

|c1|(Θë)3 , ... , |cl|(Θë)3
)

.

Notice that the sequence of sets {(Θë)2 : ë < |Θ|}, as well as the sequence of
isomorphisms witnessing that each (Θë)3 is a coding of Lë+1(R) are strictly
increasing, and this implies that

|ci|(Θë)3 = |ci|(Θ∞)3

for each 0< i < l+1, which yields the result. This proves the lemma. ⊣

Lemma 4.5. If κ is Π+1 -reflecting, then |coIND| ≤ κ.

Proof. This proof is like that of [1, Lemma 10.1]. Suppose κ is Π+1 -reflecting
and let φ be a coinductive operator. Since κ is Π+1 -reflecting, it is R-recursively
inaccessible. Because coinductive relations are universal relations on the next
admissible set, it follows that if A ∈ P(R)∩Lα(R), then Lα++1(R) can compute
coinductive relations on A. Now, Lκ(R) can compute the sequence {φ

ë : ë < κ} in
a Π1 way (with parameters): x is the ëth element of this sequence if every transitive
set of the form Lα(R) containing an increasing (ë+1)-sequence of R-admissible
sets believes that x is the ëth element of the sequence. Moreover, this definition is
uniform onR-recursively inaccessible ordinals. Thus, lettingø be aΠ1 formula such
that

a ∈ φ<κ↔ Lκ(R) |= ∃ëø(a,ë),

the question of whether a belongs to φ(φ<κ) is coinductive over φ<κ, hence
over Lκ(R), hence universal over Lκ+(R), so, by Π

+
1 -reflection, φ(φ

<κ) ⊂ φ<κ, as
desired. ⊣

This concludes the proof of Theorem 4.2. The main consequence of interest
to us is:
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Corollary 4.6. P(R)∩Σ
LóR (R)

1 = aRΣ02.

Proof. By Theorems 3.1 and 4.2, we need to show that

P(R)∩Σ
L|coIND|(R)

1 = coIND–IND.

That the class on the right-hand side is contained in the one on the left is clear. The
converse follows from the proof of Lemma 4.3: one can use a coinductive operator
to inductively generate codes for initial segments of L(R) below |coIND|, so an
existential statement about L|coIND|(R) can be rephrased in terms of membership in
the least fixed point of a coinductive operator. ⊣

§5. Fó -determinacy.

Lemma 5.1. Suppose that all sets in aRΣ02 are determined. Then, all Σ
0
2 games of

length ù2 are determined.

Proof. Note thatΣ02 games of lengthù withmoves inR are determined. Suppose
that all sets in aRΣ02 are determined and letA ∈ Σ02. We show that the game of length
ù2 with payoff A is determined. Let us refer to this game as G. The proof begins
very much like that of Theorem 3.1: we begin by replacing G with a game G∗(〈〉).
Without loss of generality we shall assume that there is a recursive set P such that A
is given by

x ∈ A↔∃n∀m(n,x ↾m) ∈ P,

For s a finite sequence of real numbers of even length, define G∗(s) to be the
following game:

1. Players I and II alternate ù2-many turns playing natural numbers to produce
a countable sequence {αn : n ∈ N} of real numbers.

2. After ù2-many rounds have taken place, Player I wins if, letting

t(m) = s⌢〈α0,α1, ... ,αm〉,

we have

∃n∀m∀m′ <m(n, t(m) ↾m′) ∈ P.

As before, Player I has a winning strategy for G if, and only if, she has one for
G∗(〈〉). Moreover, Player II has a winning strategy for G if, and only if, she has one
for G∗(〈〉). The game G∗(s) is like G∗(〈〉), except that we assume that s has already
been played.
Let ns be a natural number, s be a sequence of natural numbers of even length

ù ·ns and X be a set of sequences of natural numbers of length <ù
2. Consider the

following game, G(X ,s):

1. Players I and II alternate ù2-many turns playing natural numbers to produce
digits corresponding to a countable sequence {αn : n ∈ N} of real numbers.

2. After ù2-many rounds have taken place, Player I wins if, and only if, letting

t(m) = s⌢〈α0, ... ,αm〉,
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one of the following holds for each m ∈ N:
(a) there is n≤ ns such that we have

∀m′ <m(n, t(m) ↾m′) ∈ P.

(b) t(m) ∈ X .

Thus G(X ,s) is a game on N of length ù2. Write

φ(s,X) = “Player I has a winning strategy in G(X ,s).” (5)

The argument from Theorem 3.1 shows that if s ∈ φ∞, then Player I has a winning
strategy in G∗(s). To complete the proof, it remains to show that if s 6∈ φ∞, then
Player II has a winning strategy in G∗(s).
Notice thatG(X ,s) is a game of lengthù2 withmoves inN and payoff inΠ01 (using

X as a second-order oracle). We consider the following auxiliary game, which we
shall denote by H(X ,s):

I ó0 ó1 ...
II ô0 ô1 ...

Here, ói and ôi are real numbers coding strategies for games onN of lengthù. Player
I wins the game if, and only if, the sequence

(s,ó0 ∗ ô0∗,ó1 ∗ ô1, ...)

satisfies the winning condition of G(X ,s). Here, ó ∗ ô denotes the real number
obtained when the strategies ó and ô are faced off against each other. Thus,H(X ,s)
is a game of lengthùwithmoves inR and payoff inΠ01(X).Wewill need a sublemma:

Sublemma 5.2. Suppose that all subsets of R in aRΣ01(X) are determined. Then,
the following are equivalent:

1. Player I has a winning strategy in H(X ,s); and
2. Player I has a winning strategy in G(X ,s).

Moreover, the games are determined.

Proof. The equivalence is proved by arguing as in the proof of [5, Theorem
1.1]. This is possible because the game H(s,X) is Π01(X). The proof of [5, Theorem

1.1] uses determinacy of sets in aRΣ01; in this case, we need determinacy of sets in
aRΣ01(X), which we are assuming. H(X ,s) is closed and thus determined by the
Gale–Stewart theorem. The proof of [5, Theorem 1.1] also shows that if Player II
has a winning strategy in H(X ,s), then she has one in G(X ,s), so that this game is
also determined. ⊣

Remark 5.3. Sublemma 5.2 essentially states that Lemma 5.1 holds if one
replaces Σ02 by Π

0
1. The part of the proof of [5, Theorem 1.1] used in the proof

of Sublemma 5.2 goes through forΠ01 games. It would also go through for Σ
0
1 games

if one switched the order in which the players move in the definition of H(X ,s).
The proof, however, does not go through for more complicated games. By different
arguments (involving the theory of scales in L(R)), one can prove analogues of
Lemma 5.1 for more complicated pointclasses, up to ∆11 (see [4]). The result of
replacing Σ02 by Π

1
1 in the statement of Lemma 5.1 is not provable in ZFC.
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It follows from Corollary 2.13 that if X ∈ Lα(R), then all winning strategies for
games on R with payoff in Σ01(X) are definable over Lα+(R), so a

RΣ01(X) belongs
e.g., to Lα++(R).

Sublemma 5.4. aRΣ02 is closed under the open-game-on- R quantifier; i.e., if X ∈
aRΣ02, then a

RΣ01(X)⊂ aRΣ02.

Proof. This can be proved directly by an argument like the one of (3) in Theorem
3.1. Alternatively, one can also appeal to the “Main Lemma” of Moschovakis [19]
(as in the proof of Theorem 3.1): since operators definable from X by an open
game quantifier are X -inductive (by Corollary 2.13) and aRΣ02 is a Spector class, it
suffices to show that aRΣ02 is closed under the inductive step. But the inductive step
is positive analytical on X and a real parameter, so clearly aRΣ02 is closed under it. ⊣

Write

φ′(s,X) = “Player I has a winning strategy in H(X ,s).”

Clearly, φ′(s,X) is an operator in aRΠ01 and thus in coIND (by Corollary 2.13). By

Theorem 4.2, there is some ç ≤ óR such that φ
′∞ = φ

′ç. By Corollary 4.6 and the
hypothesis of the lemma,

LóR(R) |= AD.

Since óR is recursivelyR-inaccessible, i.e.,R-admissible and a limit ofR-admissibles,

it follows that for every æ < ç, every subset of R in aRΣ01(φ
′æ) is determined. Hence,

an induction along æ shows that

φ′æ = φæ ,

for all æ < ç. It follows that

φ∞ = φ′∞∈ Σ
LóR (R)

1 = aRΣ02.

(In case ç = óR, the last step of the induction follows from Sublemma 5.4.)
Now, suppose that s 6∈ φ∞. By definition, Player I does not have awinning strategy

in G(φ∞,s). By the two sublemmata, G(φ∞,s) is determined. Thus, Player II has a
winning strategy in G(φ∞,s). But then, an argument as in the proof of Theorem 3.1
shows how to turn this into a winning strategy for G∗(s). This concludes the proof
of the lemma. ⊣

We are now led to the main theorem of the article.

Theorem 5.5. The following are equivalent:

1. Σ02-determinacy for games of length ù
2;

2. There is a Π+1 -reflecting model of AD containing R.

Proof. If Σ02 games of length ù
2 are determined, then clearly sets in aRΣ02 are

determined, so that LóR(R) |= AD, by Corollary 4.6.
Conversely, suppose that there is a Π+1 -reflecting model of AD containing R. By

Corollary 2.4, LóR(R) |= AD. Since óR is R-admissible,

P(R)∩LóR(R) = P(R)∩∆
LóR (R)

1 .
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Let Γ be the pointclass of all sets of reals which are Σ1-definable over LóR(R) with
parameters. Using that LóR(R) |= AD, Steel [22, Theorem 2.1] implies that Γ has the
scale property. Since óR is R-admissible, Γ is closed under existential and universal
real quantification and thus byMoschovakis [17], it has the uniformization property.
Hence, the hypotheses for the Kechris–Woodin determinacy transfer theorem [14]

are satisfied, and we may apply it to conclude that all sets in Σ
LóR (R)

1 are determined.

ByCorollary 4.6, all sets inaRΣ02 are determined. By Lemma 5.1,Σ
0
2-games of length

ù2 are determined. ⊣

§6. Concluding remarks. Let us remark that the proof of Theorem 5.5 also yields
the following result, which was pointed out in [2]:

Theorem 6.1. The following are equivalent over ZFC:

1. Σ01-determinacy for games of length ù
2,

2. There is a transitive model of KP+AD containing the reals.

To prove Theorem 6.1, repeat the proof of Theorem 5.5, using the least κ such
that Lκ(R) is admissible in place of óR, Corollary 2.13 in place of Corollary 4.6, and
Sublemma 5.2 in place of Lemma 5.1.
A classical theorem of Kripke states that, in L, the least α such that Lα is a model

of KP+Σ1-separation is the union of a chain of Σ1-elementary substructures. The
situation is analogous in L(R). This and Theorem 1.2 imply the consistency results
mentioned in the introduction.

Theorem 6.2. The following theories are strictly increasing in consistency strength:

1. KP+DC+“R exists” + AD;
2. KP+DC+“R exists” + Σ02-determinacy for games of length ù

2;
3. KP+DC+“R exists” + AD+Σ1-separation.

Proof. Working in KP+DC+“R exists,” assume that Σ02 games of lengthù
2 are

determined. We show that there is a model of

KP+DC+“R exists” +AD.

Consider the following game of length ù2:

1. Player I begins by choosing a Σ01 game of length ù
2;

2. Player II decides which role she wants to have in the game;
3. Players I and II play the game chosen by Player I, taking the roles specified by
Player II.

This game is perhaps not Σ01, but it is certainly, say, ∆
0
2. It clearly cannot be won

by Player I, and any winning strategy for Player II easily reduces continuously to a
winning strategy for some player for any prescribed Σ01 game of length ù

2. Since R
exists, one may use collection to conclude that there is a set A containing winning
strategies for all Σ01 games of length ù

2. From A and R one may use Σ0-separation
to conclude that there is a universal aRΣ01 set. Hence, there is a universal IND
set, from which one can easily compute a prewellordering of R whose length is
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an R-admissible ordinal κ. By collection, this ordinal exists, so Lκ(R) |= KP+DC

and

IND= P(R)∩ΣLκ(R)1 .

Since all Σ02 games of length ù
2 are determined, all aRΣ01 games of length ù are

determined, and so

Lκ(R) |= AD.

For the remaining implication, suppose that AD holds and Σ1-separation holds.
It follows that

L(R) |= AD+Σ1 – Separation.

To see this, we assume without loss of generality that for no ordinal ç do we have

Lç(R) |= AD+Σ1 – Separation,

i.e., that the least non- R-projectible ordinal does not exist. Thus, it suffices to show
that every subset of R which is Σ1-definable (with parameters) over L(R) belongs
to L(R). If not, then by Steel [22, Lemma 1.14], there is a partial surjection from
R onto L(R) which is Σ1-definable over L(R) with parameters. However, L(R) is a
Σ1-definable class and Σ1-separation holds (in V), so this surjection is actually a set.
But this is impossible, for its restriction to the ordinals is also a surjection. Thus,

L(R) |= AD+Σ1 – Separation

as claimed. Working in L(R), there are arbitrarily large R-stable ordinals. But it is
immediate from the definition that if

Lα(R)≺1 Lα++1(R),

(recall Definition 2.1) then óR <α, so there is a (set) model ofKP in which all games
of length ù2 are determined (and AD holds in this model, additionally). ⊣

By a slightly more elaborate argument involving Inner Model Theory (one can
e.g., use the results in Part II of Müller [25]), one can replace KP by ZFC in the
statement of Theorem 6.2(2) (and, in fact, by much stronger theories). Similarly,
and using Theorem 6.1, one can replace Theorem 6.2(1) by the theory ZFC +
Σ01-determinacy for games of length ù

2. We omit the details.
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Kechris, B. Löwe, and J. R. Steel, editors), Lecture Notes in Logic, vol. 1, Cambridge University Press,
Cambridge, MA, 2008.
[23] K.Tanaka,Weak axioms of determinacy and subsystems of analysis II.Annals of Pure andApplied

Logic, vol. 52 (1991), pp. 181–193.
[24] N. D. Trang, Generalized solovay measures, the HOD analysis, and the Core model induction,

Ph.D. thesis, University of California at Berkeley, 2013.
[25] S. Uhlenbrock, Pure and hybrid mice with finitely many woodin cardinals from levels of

determinacy, Ph.D. thesis, WWUMünster, 2016.
[26] P.Wolfe,The strict determinateness of certain infinite games.The Pacific Journal ofMathematics,

vol. 5 (1955), pp. 841–847.

DEPARTMENT OFMATHEMATICS
UNIVERSITY OF GHENT
KRIJGSLAAN 281-S8, 9000 GHENT, BELGIUM

and
INSTITUTE OF DISCRETEMATHEMATICS AND GEOMETRY
VIENNA UNIVERSITY OF TECHNOLOGY
WIEDNER HAUPTSTRAßE 8-10, 1040 VIENNA, AUSTRIA

E-mail: aguilera@logic.at

https://doi.org/10.1017/jsl.2020.20 Published online by Cambridge University Press

mailto:aguilera@logic.at
https://doi.org/10.1017/jsl.2020.20

	1 Introduction
	2 Preliminaries
	2.1 Games of transfinite length
	2.2 Reflection in L(R)
	2.3 Inductive definitions
	2.4 Short Fσ games

	3 Coinductive operators and games
	4 Coinductive operators and reflection
	5 Fσ-determinacy
	6 Concluding remarks

