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A perfect matching M in an edge-coloured complete bipartite graph Kn,n is rainbow if no

pair of edges in M have the same colour. We obtain asymptotic enumeration results for

the number of rainbow perfect matchings in terms of the maximum number of occurrences

of each colour. We also consider two natural models of random edge-colourings of Kn,n

and show that if the number of colours is at least n, then there is with high probability

a rainbow perfect matching. This in particular shows that almost every square matrix of

order n in which every entry appears n times has a Latin transversal.

2010 Mathematics subject classification: Primary 05A16

Secondary 05B15, 05C15, 05D40

1. Introduction

A subgraph H of an edge-coloured graph G is rainbow if no colour appears twice in E(H).

The study of rainbow subgraphs has a large literature: see, e.g., [1, 6, 9, 10, 11]. In this

paper we deal with rainbow perfect matchings of an edge-coloured complete bipartite graph

Kn,n. Edge-coloured complete bipartite graphs Kn,n are equivalent to integer matrices of

size n × n (also called n-squares), and the problem of finding a rainbow perfect matching

is equivalent to finding a Latin transversal of length n in the corresponding n-square

(that is, a set of n pairwise distinct entries, no two in the same row or the same column).

If an n-square contains exactly n copies of each entry, it is called an equi-n-square. In

particular, proper edge-colourings of Kn,n with n colours are equivalent to Latin squares,

an interesting subclass of equi-n-squares. The following is a longstanding conjecture of

Ryser [16] on the existence of Latin transversals in Latin squares.

Conjecture 1.1 (Ryser [16]). Every Latin square of odd order admits a Latin transversal.

The above conjecture is not true for even order Latin squares. For instance, the Latin

square A = (aij), where aij = i + j (mod n), contains no Latin transversals for even n.
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Nevertheless, it was also conjectured by Brualdi that every Latin square has a partial

Latin transversal of length n − 1. This conjecture was extended by Stein [18] to equi-n-

squares.

There are different approaches to these conjectures. For instance, Hatami and Shor [7]

proved that every Latin square has a partial transversal of size n − O(ln2 n). Snevily [17]

conjectured that every subsquare of the addition table of an abelian group of odd order

has a Latin transversal, a conjecture which was eventually proved by Arsovski [2]. Another

approach was given by Erdős and Spencer [5]. They proved the following result.

Theorem 1.2 (Erdős and Spencer [5]). Let A be an n-square. If every entry in A appears

at most n−1
4e

times, then A has a Latin transversal.

In order to get the above result the authors developed the lopsided version of the

Lovász Local Lemma. The main idea of this version is to generalize the dependency

graph through the so-called lopsidependency graph. In this graph, non-edges may no longer

represent mutual independence, and the hypothesis of the Local Lemma is replaced by a

weaker assumption.

In this paper we address two problems: first, the asymptotic enumeration of rainbow

perfect matchings in a given edge-colouring of Kn,n, and second, the existence of rainbow

perfect matchings in random edge-colourings of Kn,n. We consider not necessarily proper

edge-colourings, but the asymptotic enumeration applies to proper ones as well.

Theorem 1.2 gives sufficient conditions on the existence of at least one Latin transversal.

One of the goals of this article is to show that, under only slightly stronger assumptions,

we can ensure the existence of many Latin transversals. Although there is no specific

conjecture on the number of Latin transversals of a Latin square, Vardi [19] proposed

the following conjecture for the particular class of addition tables of cyclic groups.

Conjecture 1.3 (Vardi [19]). Let z(n) be the number of Latin transversals in the table of

the cyclic group of order n. There exist two constants 0 < c1 < c2 < 1 such that

cn1n! � z(n) � cn2n!,

for all odd n.

Recall that z(n) = 0 if n is even. In a more general setting, McKay, McLeod and

Wanless [14] showed that c2 < 0.614. Giving a lower bound on z(n) is still an open

problem. It is conjectured in [4] that the right asymptotic order of magnitude is around

z(n) ∼ 0.39nn!. (1.1)

Here we provide, under the hypothesis of Theorem 1.2, upper and lower bounds for the

number of rainbow perfect matchings in an edge-coloured Kn,n that are asymptotically

tight. The techniques used to derive these bounds are inspired by the framework devised

by Lu and Székely [12] to obtain asymptotic enumeration results using the Lovász Local

Lemma.
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Our first result gives an asymptotic estimate of the expectation that a random matching

is rainbow.

Theorem 1.4. Consider an edge-colouring of Kn,n such that no colour appears more than

n/k times. Let M denote the family of pairs of non-incident edges that have the same colour

and let M be a perfect matching of Kn,n chosen uniformly at random. Denote by XM the

indicator variable that M is rainbow. Let μ = |M|/n(n − 1).

If k � 10.93 then there exist constants 0 < c1(k) < 1 < c2(k) depending only on k such

that

e−c2(k)μ � P(XM = 1) � e−c1(k)μ.

In the proof of Theorem 1.4 we obtain c1(k) = 1 − 2/k − 32/k2 + o(1) and c2(k) =

1 + 16/k. Therefore, if k = ω(1), then

P(XM = 1) = e−(1+o(1))μ.

Moreover, if k = ω(n1/2) then

P(XM = 1) = (1 + o(1))e−μ.

We note that the existence of a rainbow perfect matching in Theorem 1.2 is ensured

with the slightly smaller value k � 4e ≈ 10.87. We also observe that the bounds on the

probability of a rainbow perfect matching in Theorem 1.4 depend only on the cardinality

of M, but not on the particular structure of the pairs of monochromatic non-incident

edges composing M. The dependence on |M| is natural, since a colouring in which all

pairs of monochromatic edges are mutually incident (|M| = 0) has n! rainbow perfect

matchings.

In particular, observe that any proper edge-colouring where each colour appears exactly

n/k times, satisfies |M| ∼ n3/2k. This implies the following corollary of Theorem 1.4, which

has the same form as Conjecture 1.3.

Corollary 1.5. The number r(n, k) of rainbow perfect matchings in a proper edge-colouring

of Kn,n in which each colour appears exactly n/k times, k � 10.93, satisfies

γ1(k)
nn! � r(n, k) � γ2(k)

nn!

for some constants 0 < γ1(k) < γ2(k) < 1 which depend only on k.

One interesting question is how far k can be pushed down and still have at least

cnn! rainbow perfect matchings in a proper edge-colouring of Kn,n, for some 0 < c < 1.

Wanless [20, Section 3] defines the function f(n) to be the minimum number of Latin

transversals among all the Latin squares of order n (case k = 1). Notice that f(2n) = 0

and Ryser’s conjecture states that f(2n + 1) > 0 for any n � 0. As far as we know, this

function has not yet been studied.

The results in Theorem 1.4 require the condition k � 10.93, which is close to the one

given by Erdős and Spencer [5] for the existence of rainbow perfect matchings. It seems
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difficult to drop this condition, at least by using a probabilistic approach. This prompts

us to ask what we can say about most edge-colourings of Kn,n in the more general setting

when k � 1 (we cannot use less than n colours). Thus we study the existence of rainbow

perfect matchings in random edge-colourings. We restrict ourselves to colourings with a

fixed number s = kn of colours. We define two natural random models that fit with this

condition.

In the uniform random model, Cu(n, s), each edge gets one of the s colours independently

and uniformly at random. In this model, every possible edge-colouring with at most s

colours appears with the same probability. In the regular random model, Cr(n, s), we

choose an edge-colouring uniformly at random among all the equitable edge-colourings.

Recall that a colouring is called equitable if each colour class has the same size. Although

the models have the same expected behaviour, we consider both interesting to analyse.

Results analogous to the one in Theorem 1.4 can be proved for these random models.

Proposition 1.6. Let C be a random edge-colouring of Kn,n in the model Cu(n, s) (or Cr(n, s))
with s = kn colours (k > 1). Then,

P(XM = 1) = e−(c(k)+o(1))μ,

where

μ ∼ n2

2s
and c(k) = 2k

(
(k − 1) ln

(
k − 1

k

)
+ 1

)
.

For k = 1, we have P(XM = 1) = e−(2+o(1))μ.

Obviously, we have that c2(k) < c(k) < c1(k), where c1(k) and c2(k) are the constants

appearing in Theorem 1.4. It is worth noting that, for any k � 1, we have c(k) > 1. Observe

also that when s = n, the number of rainbow perfect matchings is w.h.p. around (e−1)nn! .

If (1.1) holds, an edge-colouring induced by a cyclic group of odd order would contain

more rainbow perfect matchings than a typical edge-colouring of the complete bipartite

graph.

Since the colourings are random, we have a stronger concentration of the rainbow

perfect matching probability than in the case of arbitrary edge-colourings. We say that a

property holds with high probability (w.h.p.) in Cu(n, s) (or Cr(n, s)) if the probability that

the property is satisfied by an edge-colouring chosen uniformly at random from Cu(n, s)
(or Cr(n, s)) tends to one as n → +∞.

By using the random model Cu(n, s) we can show that for any s � n, almost all edge-

colourings have a rainbow perfect matching.

Theorem 1.7. A random edge-colouring of Kn,n in the Cu(n, s) model (s � n) contains a

rainbow perfect matching w.h.p.

To prove Theorem 1.7 we use the second moment method on the random variable that

counts the number of rainbow perfect matchings in the Cu(n, s) model. This result can
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be proved for the Cr(n, s) model using the same ideas. In particular, this implies that the

Ryser conjecture is true w.h.p. for equi-n-squares.

The paper is organized as follows. In Section 2 we provide a proof for Theorem 1.4. The

random colouring models are defined in Section 3, where we also prove Proposition 1.6.

Theorem 1.7 is proved in Section 4. Finally, in Section 5, we discuss some open problems

on rainbow perfect matchings that arise from the paper.

2. Asymptotic enumeration

In this section we prove Theorem 1.4. The theorem provides exponential upper and lower

bounds for the probability that a random perfect matching in an edge-coloured complete

bipartite graph is rainbow.

2.1. Lower bound

For a given perfect matching, the property of being rainbow can be expressed in terms

of the non-occurrence of certain partial matchings. One of the standard tools to give a

lower bound for the probability of the existence of a structure that avoids some given

bad events is the Lovász Local Lemma. As shown in [5], it is convenient in our current

setting to use its lopsided version.

Given a set of events A = {A1, . . . , Am}, a graph H with vertex set V (H) = [m] is a

lopsidependency graph for the events in A if, for each i and each subset S ⊆ {j | ij �∈
E(H), j �= i}, we have

P(Ai | ∩j∈SAj) � P(Ai).

Thus, the lopsided version weakens the condition on the dependency graph used. Instead

of having each event independent of every subset of its non-neighbours, we need the event

to be negatively correlated to this subset.

Following Lu and Székely [12], we adopt the more explanatory term negative dependency

graph for this kind of dependency graph. We next recall the statement of the Lopsided

Lovász Local Lemma we will use. It includes an intermediate step, that appears in its

proof, which will also be used later on.

Lemma 2.1 (LLLL). Let A = {A1, . . . , Am} be a set of events and let H be a negative

dependency graph for A.

If there exist x1, . . . , xm ∈ (0, 1) such that, for each i,

P(Ai) � xi
∏

ij∈E(H)

(1 − xj), (2.1)

then, for each T ⊂ [m] we have

P(Ai| ∩j∈T Aj) � xi.

In particular, for each pair S, T ⊂ [m] of disjoint sets we have

P(∩i∈SAi| ∩j∈T Aj) �
∏
i∈S

(1 − xi), (2.2)
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and

P(∩m
i=1Ai) �

m∏
i=1

(1 − xi).

Recall that M denotes the family of pairs of non-incident edges that have the same

colour in a given edge-colouring of Kn,n. For each such pair {e, f} ∈ M, let Ae,f denote

the event that the pair {e, f} belongs to the random perfect matching M. We define AM
to be the set of events Ae,f for any {e, f} ∈ M. Consider the following dependency graph.

Definition. The rainbow dependency graph H has the family M as its vertex set. Two

elements in M are adjacent in H if they contain at least two incident edges in Kn,n.

It is shown by Erdős and Spencer [5] that the graph H defined above is a negative

dependency graph. The following lower bound can be obtained in a similar way to Lu

and Székely [12, Lemma 2]. Recall that we consider edge-colourings of Kn,n in which each

colour appears at most n/k times.

Lemma 2.2. With the above notations, if k � 10.93 and n > 200 then

P(∩{e,f}∈MAe,f) � e−(1+16/k)μ,

where

μ =
∑

{e,f}∈M
P(Ae,f).

Proof. Set AM = {A1, . . . , Am}, where Ai = Ae,f for some {e, f} ∈ M. The size of M
depends on the configuration of the colours in E(Kn,n). Let us give an upper bound on

|M|. Since each colour appears at most n/k times, in the worst case, we have a proper

edge-colouring with kn colours. Thus,

|M| � kn

(
n/k

2

)
� n2(n − 1)

2k
.

The probability that a given pair of non-incident edges belongs to a random perfect

matching is

p = P(Ai) =
1

n(n − 1)
.

Therefore,

μ =
|M|

n(n − 1)
� n

2k
. (2.3)

Since n > 200, we have that 0 < p < 10−4/4. For any k � 10.93, set t = 4/k. It can be

checked that for any such t and p we have

pe(1+4t)t < 1 − e−(1+4t)p.
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Thus, choose xi ∈ (pe(1+4t)t, 1 − e−(1+4t)p). Observe that the maximum degree in H is less

than 4n(n − 1)/k: given a pair {e, f} ∈ M, there are at most 4n possibilities for selecting

an edge e′ incident to either e or f, and at most n/k − 1 choices for a second edge f′ with

the same colour as e′. Hence, for any 1 � i � m, we have that

∑
ij∈E(H)

P(Aj) � 4n(n − 1)

k
· 1

n(n − 1)
= t.

Using the previous inequality, for any 1 � i � m we have

P(Ai) = p < xie
−(1+4t)t < xi

∏
ij∈E(H)

e−(1+4t)P(Aj ) < xi
∏

ij∈E(H)

(1 − xj). (2.4)

Thus, by Lemma 2.1,

P(∩m
i=1Ai) �

m∏
i=1

(1 − xi) � e−(1+16/k)μ.

This proves the lemma.

2.2. Upper bound

Lu and Székely [12] propose a new enumeration tool using the Lovász Local Lemma.

Their objective is to find an upper bound for the non-occurrence of rare events. In order

to adapt the Local Lemma, they define a new type of parametrized dependency graph:

the ε-near-positive dependency graph.

Let A = {A1, . . . , Am} be a set of events. A graph H with vertex set [m] is an ε-near-

positive dependency graph if:

(i) P(Ai ∩ Aj) = 0 for each ij ∈ E(H), and

(ii) for any set S ⊆ {j : ij �∈ E(H), j �= i} we find that P(Ai | ∩j∈SAj) � (1 − ε)P(Ai).

Condition (i) implies that only incompatible events can be connected. Condition (ii)

says that the non-occurrence of any set of non-neighbours cannot shrink the probability

of Ai too much. An ε-near-positive dependency graph provides an upper bound for the

probability that no event in A occurs.

Theorem 2.3 (Lu and Székely [12]). Let A = {A1, . . . , Am} be a set of events with an ε-

near-positive dependency graph H . Then,

P(∩m
i=1Ai) �

m∏
i=1

(1 − (1 − ε)P(Ai)).

Observe that this upper bound implies an exponential upper bound of the form e(1−ε)μ,

where μ =
∑m

i=1 P(Ai).

Lu and Székely [12] also showed that an ε-near-positive dependence H can be construc-

ted using a family of matchings M. Unfortunately the conditions of [12, Theorem 4] that

would provide the upper bound in our case do not apply to our family M of matchings.

Instead we give a direct proof for the upper bound which is inspired by their approach.
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Lemma 2.4. With the hypothesis of Lemma 2.2, the rainbow dependency graph H is an

ε-near-positive dependency graph with

ε = 1 − e−(2/k+32/k2+o(1)).

Proof. Set AM = {A1, . . . , Am}, where Ai = Ae,f for some {e, f} ∈ M. The rainbow

dependency graph H for AM clearly satisfies condition (i) in the definition of ε-near-

positive dependency graph, since two adjacent events have incident edges and a matching

is composed of a set of non-incident edges. For condition (ii) we want to show that, for

each i and each T ⊆ {j | ij �∈ E(H), j �= i}, we have the inequality

P(Ai|B) � (1 − ε)P(Ai),

where B = ∩j∈TAj . This is equivalent to showing

P(B|Ai) � (1 − ε)P(B).

Let {a1, . . . , an} and {b1, . . . , bn} be the vertices of the two stable sets of Kn,n. By

symmetry, we may assume that Ai consists of the event related to the 2-matching

{an−1bn−1, anbn}. Then {Aj : j ∈ T } consists of a set of events related to the 2-matchings

in Kn,n − {an−1an, bn−1bn}. This graph is just the complete bipartite graph Kn′ ,n′ , n′ = n − 2,

with an edge-colouring in which each colour appears at most n′/k′ times, where k′ =

k(1 − 2/n). Let us call B′ the event B viewed in Kn′ ,n′ (primes indicate changing the

probability space from random perfect matchings in Kn,n to random perfect matchings in

Kn′ ,n′ ), so that

P(B|Ai) = P(B′). (2.5)

For any r, s ∈ [n], r �= s, let Cr,s denote the event related to the 2-matching {an−1br, anbs}.
Define Tr,s ⊂ T as the maximal subset of indices of the 2-matchings which meet none of

the two vertices br, bs. Set Br,s = ∩j∈Tr,s
Aj . Let us show that

P(B) =
1

n(n − 1)

∑
r �=s

P(B′
r,s), (2.6)

where, as before, B′
r,s denotes the event Br,s in the probability space of random perfect

matchings in Kn′ ,n′ .

For convenience, we may split the event B corresponding to ∩j∈TAj in several events

depending on the perfect matching containing {an−1br, anbs}. We note that, by the definition

of Br,s, we have B ∩ Cr,s = Br,s ∩ Cr,s. Thus,

P(B) =
∑
r �=s

P(B ∩ Cr,s) =
∑
r �=s

P(Br,s ∩ Cr,s).

Note that, since by the definition of T none of the perfect matchings involved in B meets

vertices in {an−1an, bn−1bn}, we have, for all r, s, r �= s,

P(Br,s|Cr,s) = P(Br,s|Cn−1,n).
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Moreover, we observe that P(Br,s|Cn−1,n) = P(B′
r,s). Therefore

P(B) =
∑
r �=s

P(Br,s|Cr,s)P(Cr,s) =
1

n(n − 1)

∑
r �=s

P(Br,s|Cn−1,n) =
1

n(n − 1)

∑
r �=s

P(B′
r,s),

giving equation (2.6).

Set xi = 1 − e−(1+16/k′)p′
. By inequality (2.4) and the choice of xi, the hypothesis (2.1)

of Lemma 2.1 is satisfied. Thus, we can now use the intermediate inequality (2.2) of

Lemma 2.1 with S = T \ Tr,s to obtain

P(B′) = P(B′
r,s)P(∩j∈SAj | B′

r,s) � P(B′
r,s)

∏
j∈S

(1 − xj), (2.7)

for any r, s, r �= s. By combining (2.5) with (2.7) we get

n(n − 1)P(B|Ai) �
∑
r �=s

P(Br,s)
∏
j∈S

(1 − xj). (2.8)

Now we give a uniform bound on
∏

j∈S (1 − xj). Recall that S = T \ Tr,s is the set of

indices of 2-matchings in M′ that are incident to br or bs. The size of this set can be

bounded independently of r and s by

|S | � 2n′
(
n′

k′ − 1

)
� 2

n2

k
.

Observe that

xi = 1 − e−(1+16/k′)p′ � 1 − e−(1+16/k+o(1))p

(where p = 1/n(n − 1)), and we have∏
j∈S

(1 − xj) � e−(1+16/k+o(1))p|S | � e−(2/k+32/k2+o(1)). (2.9)

By using (2.8) with (2.9) and (2.6) we get

P(B|Ai) � e−(2/k+32/k2+o(1)) 1

n(n − 1)

∑
r �=s

P(Br,s) � e−(2/k+32/k2+o(1))
P(B). (2.10)

Therefore,

ε = 1 − e−(2/k+32/k2+o(1))

satisfies the conclusion of the lemma.

Now we are able to prove Theorem 1.4.

Proof of Theorem 1.4. Set AM = {A1, . . . , Am}, where Ai = Ae,f for some {e, f} ∈ M.

By Lemma 2.4, the graph H is an ε-near-positive dependency graph with

ε = 1 − e−(2/k+32/k2+o(1)).
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It follows from Theorem 2.3 that the probability of having a rainbow perfect matching is

upper-bounded by

P(∩m
i=1Ai) �

m∏
i=1

(1 − (1 − ε)P(Ai)) � e−(1−ε)μ.

By plugging in our value of ε and by using

e−(2/k+32/k2+o(1)) � 1 − 2

k
− 32

k2
+ o(1),

we obtain

P(∩m
i=1Ai) � e−(1−2/k−32/k2+o(1))μ.

Combining this upper bound with the lower bound obtained in Lemma 2.2, we obtain

exp

{
−

(
1 +

16

k

)
μ

}
� P(∩m

i=1Ai) � exp

{
−

(
1 − 2

k
− 32

k2
+ o(1)

)
μ

}
.

This proves the theorem.

In particular, if k = ω(
√
n),

P(∩m
i=1Ai) = (1 + o(1))e−μ,

as a corollary of Theorem 1.4. This means that when k is sufficiently large with n, the

asymptotic estimate coincides with the one obtained by assuming that the bad events Ai

are mutually independent.

3. Random colourings

In this section we will analyse the existence of rainbow perfect matchings in random

edge-colourings of Kn,n.

Recall that, in the uniform random colouring model Cu(n, s), each edge of Kn,n is given

a colour uniformly and independently chosen from a set of s colours, i.e., every possible

colouring with at most s colours appears with the same probability.

In the regular random colouring model Cr(n, s), a colouring is chosen uniformly at

random among all colourings of E(Kn,n) with equitable colour classes of size n2/s. Let us

give a set-up for this model. Consider two sets A and B, each with n2 points. Partition A

into s cells C1, . . . , Cs, each with n2/s elements, representing the different colours. Let B

represent the edges of Kn,n. A perfect matching between the points of A and B induces an

equitable edge-colouring of the entire graph. The probability space Cr(n, s) of colourings

is settled by choosing such a perfect matching uniformly at random. Let us show that

Cr(n, s) is a uniform model for the set of equitable edge-colourings of Kn,n.

Lemma 3.1. Every equitable edge-colouring with s colours has the same probability in the

Cr(n, s) model.
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Proof. We show that every equitable edge-colouring arises from the same number of

perfect matchings from A to B. Let C be an equitable edge-colouring of Kn,n. Let Ei ⊂ B

be the set of edges that have colour i under C . We have |Ei| = n2/s and there are (n2/s)!

perfect matchings from Ci to Ei assigning colour i to the edges in Ei. Therefore, there are

exactly ((n2/s)!)s perfect matchings from A to B giving rise to the edge-colouring C . This

number does not depend on C .

We consider these two models since they simulate the worst situation among the

colourings admitted in Theorem 1.4: the probability that a perfect matching is rainbow

only depends on the size of M, and this set has its largest cardinality when there are few

colours and the number of occurrences of each of them is maximized. This means that

there are exactly s = nk colours with n/k occurrences each. Observe that in both random

models, the expected size of each colour class is also n/k. In this sense, they are consistent

with the hypothesis of Theorem 1.4.

Proof of Proposition 1.6. Consider an edge-colouring obtained using the Cu(n, s) model

and let M denote a fixed perfect matching of Kn,n. If XM is the random variable indicating

that M is rainbow, then

P(XM = 1) =
s

s
· s − 1

s
· s − 2

s
· · · · · s − (n − 1)

s

=

n−1∏
i=0

(
1 − i

s

)
. (3.1)

For s = n we can get directly from (3.1)

P(XM = 1) =
n!

nn
= e−(2+o(1))μ.

Assume s > n. By writing (1 − x) = exp{ln (1 − x)} for 0 < x < 1, we have

P(XM = 1) =

n−1∏
i=0

exp

{
ln

(
1 − i

s

)}

= exp

{n−1∑
i=0

ln

(
1 − i

s

)}

= exp

{∫ n

0

ln

(
1 − x

s

)
dx + e1(n, s)

}
,

where e1(n, s) is the error term obtained by replacing the sum for the integral.

Since ln
(
1 − i

s

)
is decreasing, we have

n∑
i=1

ln

(
1 − i

s

)
�

∫ n

0

ln

(
1 − x

s

)
dx �

n−1∑
i=0

ln

(
1 − i

s

)
.
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Thus, the error term can be bounded by

e1(n, s) �
∣∣∣∣
n−1∑
i=0

ln

(
1 − i

s

)
−

∫ n

0

ln

(
1 − x

s

)
dx

∣∣∣∣ (3.2)

�
∣∣∣∣
n−1∑
i=0

ln

(
1 − i

s

)
−

n∑
i=1

ln

(
1 − i

s

)∣∣∣∣
=

∣∣∣∣ln
(

1 − n

s

)∣∣∣∣
= ln

(
k

k − 1

)
= O(1),

where k = s/n.

Also, ∫ n

0

ln

(
1 − x

s

)
dx = −(s − n) ln

(
s − n

s

)
− n. (3.3)

Using μ ∼ n
2k

, we get

P(XM = 1) = exp

{
−

(
(k − 1) ln

(
k − 1

k

)
+ 1

)
n + e1(n, s)

}

= exp

{
−2k

(
(k − 1) ln

(
k − 1

k

)
+ 1 + o(1)

)
μ

}
,

proving the first part of the proposition for the Cu(n, s) model.

Now we study the probability that a fixed perfect matching M is rainbow in the Cr(n, s)
model. According to the construction of the Cr(n, s) model, the probability of M being

rainbow is

P(XM = 1) =
n2

n2
·
n2 − n2

s

n2 − 1
·
n2 − 2 n2

s

n2 − 2
· · · · ·

n2 − (n − 1) n
2

s

n2 − (n − 1)

=

n−1∏
i=0

(
1 − i(n2 − s)

s(n2 − i)

)

= exp

{n−1∑
i=0

ln

(
1 − i(n2 − s)

s(n2 − i)

)}

= exp

{∫ n

0

ln

(
1 − x(n2 − s)

s(n2 − x)

)
dx + e2(n, s)

}
,

where e2(n, s) is the error term obtained by replacing the sum for the integral.

If s = n we have ∫ n

0

ln

(
1 − x(n − 1)

(n2 − x)

)
dx = −n(n − 1) ln

(
n

n − 1

)
,

which, by using the Taylor expansion of the logarithm, gives

P(XM = 1) = e−(2+o(1))μ.
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By arguments analogous to those in (3.2), we can bound the error e2(n, s) = O(1). In the

case where s > n, and using k = s/n, we have∫ n

0

ln

(
1 − x(n2 − s)

s(n2 − x)

)
dx = −

(
(k − 1) ln

(
k − 1

k

)
− (n − 1) ln

(
n − 1

n

))
n

= −
(

(k − 1) ln

(
k − 1

k

)
+ 1 + o(1)

)
n.

Hence

P(XM = 1) = exp

{
−2k

(
(k − 1) ln

(
k − 1

k

)
+ 1 + o(1)

)
μ

}
.

Note that, for both models of random edge-colourings, the probability that a fixed

perfect matching is rainbow is asymptotically the same. Observe that for the two random

models we obtain the exact asymptotic value of the probability, while bounds provided

by Theorem 1.4 (when the size |M| of the set of bad events is maximum) are probably

not sharp, though consistent with the values for the random models.

We finally observe that for both models, when k = 1 we have P(XM = 1) = e−(2+o(1))μ,

while if k → +∞ then P(XM = 1) → e−μ, since

2k

(
1 − (k − 1) ln

(
k

k − 1

))
= 1 + O

(
1

k

)
.

This reflects the fact that, when k is large, the number of bad events decreases and the

model behaves as though they were independent.

4. Existence of rainbow perfect matchings

The aim of this section is to prove that there exists w.h.p. a rainbow perfect matching for

any edge-colouring of E(Kn,n) with s � n colours. We only consider the Cu(n, s) model, but

the results can be adapted to the Cr(n, s) model as well. The number of rainbow perfect

matchings is counted by X =
∑

M XM , which, according to Proposition 1.6, has expected

value

μ = E(X) = P(XM = 1)n! = exp

{
−2k

(
(k − 1) ln

(
k − 1

k

)
+ 1 + o(1)

)
μ

}
n!.

In order to have a rainbow perfect matching we just need to show that X �= 0.

Proof of Theorem 1.7. To show that there exists some rainbow perfect matching w.h.p.

we will use the second moment method. By the Chebyshev inequality, we have

P(X = 0) � P(|X − μ| > μ) � σ2

μ2
, (4.1)

where σ2 denotes the variance of X. Observe that X = 0 is equivalent to the non-existence

of rainbow perfect matchings. Therefore, we need to compute σ2 and show that it is
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asymptotically smaller than μ2. Note that

E(X2) =
∑

(M,N)

E(XMXN).

Let M and N denote two perfect matchings of Kn,n with |M ∩ N| = z. Then

E(XMXN) = P(XM = 1)P(XN = 1 | XM = 1).

If XM = 1, we know that the edges of M ∩ N are rainbow. In the remaining n − z edges

to colour, we must avoid the z colours that appear in M ∩ N. Thus,

P(XN = 1 | XM = 1) =

n−1∏
i=z

(
1 − i

s

)
∼ exp

{
α(z)z2

2s

}
P(XM = 1). (4.2)

where 1 � α(z) � 2, as can be derived from (3.3). Observe that the events XM = 1 and

XN = 1 are positively correlated.

For any perfect matching M and any integer z, such that 0 � z � n, we claim that there

exist at most
(
n
z

)
(e−1(n − z)! + 1) perfect matchings N such that |M ∩ N| = z. We can

assume without loss of generality that M is given by the identity and N by a permutation

π ∈ Sn. There are
(
n
z

)
ways to choose which edges of M will be shared by N, i.e., the set

I = {i : π(i) = i}. In order for π to correspond to a matching N with exactly z common

edges with M, its restriction to [n] \ I must be a derangement. It is well known that the

proportion of derangements among all the permutations of length n − z is

n−z∑
i=0

(−1)i

i!
� e−1 +

1

(n − z)!
.

Therefore there are at most e−1(n − z)! + 1 ways to complete the perfect matching,

concluding our claim. Hence,

E(X2) = n!

n∑
z=0

(
n

z

)(
e−1(n − z)! + 1

)
P(XM = 1)P(XN = 1 | XM = 1).

Since σ2 = E(X2) − E(X)2,

σ2(X)

E(X)2
=

n!
∑n

z=0

(
n
z

)(
e−1(n − z)! + 1

)
P(XM = 1)P(XN = 1 | XM = 1)

(n!P(XM = 1))2
− 1

= e−1
n∑

z=0

1

z!

(
1 +

e

(n − z)!

)
P(XN = 1 | XM = 1)

P(XM = 1)
− 1.

For the sake of simplicity, let us define

f(s) =

n∑
z=0

1

z!

(
1 +

e

(n − z)!

)
P(XN = 1 | XM = 1)

P(XM = 1)
.
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Then, using (4.2),

f(s) �
n∑

z=0

1

z!

(
1 +

e

(n − z)!

)
exp

{
α(z)z2

2s

}

�
∞∑
z=0

1

z!
exp

{
α(z)z2

2s

}
+

e

n!

n∑
z=0

(
n

z

)
exp

{
α(z)z2

2s

}

=

∞∑
z=0

1

z!

∞∑
t=0

1

t!

(
α(z)z2

2s

)t

+
e

n!

n∑
z=0

(
n

z

) ∞∑
t=0

1

t!

(
α(z)z2

2s

)t

=

∞∑
t=0

ats
−t,

where

at =
1

2tt!

( ∞∑
z=0

(α(z)z2)t

z!
+

e

n!

n∑
z=0

(
n

z

)
(α(z)z2)t

)
.

Observe that a0 = e
(
1 + 2n

n!

)
. Since s � n2,

f(s) � e + O(s−1).

Observe that s � n; otherwise, P(XM = 1) = 0 in equation (3.1). Hence,

σ2

μ2
= e−1f(s) − 1 = O(s−1) → 0.

This concludes the proof.

Corollary 4.1. For any ε > 0, an equitable edge-colouring of Kn,n with s colours, s � n,

contains more than (1 − ε)c(k)nn! rainbow perfect matchings with probability at least 1 −
O(ε−2s−1).

Proof. It follows from the proof of Theorem 1.7 that

P(X > (1 − ε)μ) � σ2

ε2μ2
= O(ε−2s−1) → 0.

5. Final remarks and some open problems

Theorem 1.4 provides upper and lower bounds for the number of rainbow perfect

matchings of a given edge-colouring of Kn,n such that the number of occurrences of each

colour is at most n/k and k � 10.93. It is probably not true that each such edge-colouring

contains e−(1+o(1))c(k)μn! rainbow perfect matchings, where c(k) is defined in Proposition 1.6.

It would be interesting to see how tight these upper and lower bounds c1(k) and c2(k)

provided in Theorem 1.4 are, by showing extremal examples.

We believe that every edge-colouring with colour classes of cardinality n/k still has an

exponential fraction of perfect matchings that are rainbow for any k > 1. Determining

smaller values of k with this property may shed some additional light on the open
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conjectures on Latin transversals. Corollary 4.1 shows that almost all equitable edge-

colourings with n colours contain an exponential fraction of perfect matchings that are

rainbow.

For s = n, equation (4.1) provides an upper bound estimate for the probability p that a

random colouring has no rainbow perfect matchings of the type

p = O(n−1). (5.1)

The proportion of Latin squares among the set of square matrices with n symbols is of

the order of e−(1+o(1))2n2
, so this estimate falls short of proving an asymptotic version of

Ryser’s original conjecture. We have provided a probabilistic approach to the problem

by showing that every equi-n-square admits a Latin transversal with high probability.

Even though there are some almost sure results on Latin squares (see e.g., [13, 3]), and

some results on generating random Latin squares [15, 8], to our knowledge there are no

random models for Latin squares that could pave the way to an asymptotic version of the

conjectures of Ryser or Brualdi on the existence of Latin transversals in Latin squares.

On the other hand the following example shows how to construct exponentially many

Latin squares (in general edge-colourings of K2k,2k with 2k colours) which have no rainbow

perfect matchings. Let k be odd. Choose two arbitrary colourings α1, α2 of Kk,k with colours

{a1, . . . , ak} and two arbitrary colourings β1, β2 of Kk,k with colours {b1, . . . , bk}.
Let {A1 ∪ A2, B1 ∪ B2} be the stable sets of K = K2k,2k with |Ai| = |Bi| = k, and use αi

for the edges connecting Ai with Bi, i = 1, 2, and βi for the edges connecting Ai with Bj ,

i �= j. Suppose that the resulting edge-coloured graph has a rainbow perfect matching M.

Since M must use the k colours a1, . . . , ak , we may assume that it uses at least (k + 1)/2

of these colours from the subgraph K[A1, B1] induced by A1 ∪ B1. But then each of the

subgraphs K[A1, B2] and K[A2, B1] can only use (k − 1)/2 colours b1, . . . , bk and some

colour bi cannot be used in the perfect matching, contradicting that M is rainbow.

It is easy to see that there are about nn
2

equitable edge-colourings of Kn,n. By the

construction displayed above, if n ≡ 2 mod 4, we can get (kk
2
)4 = 2−n2

nn
2

equitable edge-

colourings that do not contain rainbow perfect matchings. Thus, for any colouring of

C ∈ Cr(n, s),

P(C does not contain a rainbow matching) � 2−n2 � e−(1+o(1))2n2

≈ P(C is a proper colouring),

and there is no chance of proving Ryser’s conjecture w.h.p. by improving the upper bound

in (5.1).
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