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SUMMARY
With regard to the small basin of attraction of the passive limit cycles, it is important to start from
a proper initial condition for stable walking. The present study investigates the passive dynamic
behaviors of two-dimensional bipedal walkers of a compass gait model with different foot shapes. In
order to find proper initial conditions for stable and unstable period-one gait limit cycles, a method
based on solving the nonlinear equations of motion is presented as a boundary value problem (BVP).
An initial guess is required to solve the related BVP that is obtained by solving an initial value
problem (IVP). For parametric analysis purposes, a continuation method is applied. Simulation
results reveal two, period-one gait cycles and the effects of parameters variation for all models.
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1. Introduction
Stable walking is one of the most important activities in our daily life. However, walking is a very
complicated dynamic phenomenon and has not been very well understood. Bipeds represent a class
of legged robots that attempt to imitate the human style of locomotion. Designing biped robots from a
human-like walking perspective has particular importance in the field of robotics and the prosthetics
industry. Biped locomotion is one sophisticated form of legged locomotion. Perhaps the simplest
model which has been used to study some basic features of human locomotion is the simple two-link
inverted pendulum. This passive legged mechanism which can easily perform a steady gait cycle on a
shallow slope, was first initiated by McGeer in the 1990s.1,2 Unlike traditional humanoid robots, that
use actuated joints to control every motion,3–5 this passive dynamic walker utilizes gravity as its source
of energy. The energy lost due to friction and collisions can be compensated by the potential energy.
McGeer’s results suggest that the mechanical parameters of the human body such as leg lengths and
their mass distributions affect the gate quality.6 Inspired by the work of McGeer, researchers studied
many different simple to complex biped robots in order to achieve passive walking. Goswami et al.7

introduced the compass gait biped robot with point feet. Garcia et al.8 introduced a design of passive
walkers with two massless links and a hip mass that could walk on arbitrarily shallow slopes. Both
of these popular models are studied for local stability and bifurcation routes to chaos based on the
change in the slope angle. Wisse et al.9 and Kumar et al.10 studied a stable passive walker with
upper body and toed feet. Moreover, Safa et al.11 studied the motion of Garcia’s simplest model on
stairs instead of ramps. The search for cyclic motions in the passive bipedal walking is a root-finding
problem using a map, which was first done by Hurmuzlu.12 This map function is generally called
a Poincare map, which is used to analyze walking motions.1,8,13 Fixed points of the Poincare map
are computed using Newton–Raphson method from a good estimate of the initial condition achieved
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Fig. 1. Different models of the compass gait biped robot (a) point feet, (b) curved feet, and (c) flat feet.

from the nonlinear equations of the walking motion.14,15 Indeed, these points are periodic solutions
that yield periodic gaits. It is noted that, the eigenvalues of the Jacobian matrix around these fixed
points of the Poincare map define the stability of the gait cycle. A stable periodic gait exists, if a
passive walker starts walking from the neighborhood of these stable fixed points. All the possible
initial conditions for a stable walking motion are in the basin of attraction of the stable gait, which
contains the fixed points. The basin of attraction of the walker is a small region and decreases as the
slope angle increases.16,17

In order to prevent falling forward or backward, it is important to start with proper initial conditions.
Garcia et al.8 found the proper initial conditions of the simplest walking model using the linearized
equations of motion. Other researchers proposed a simple search algorithm to find a set of the initial
conditions that result in stable limit cycles for various parameter values.18 Recently, Jeon et al.19

applied falling boundary and energy balance line to estimate the proper initial conditions. These set
of initial conditions are within the basin of attraction of the stable gait cycle. It is noteworthy that
the basin of attraction is small, then the passive bipeds have many walking limitations. In addition,
these walkers cannot walk on level ground and their motions on shallow slopes are with low speeds.20

However, the effort to generate pretty human-like gaits with low energy consumption has increased
the importance of the passive dynamic walker. From this point of view, the significant role of foot
shape in the walking process was studied through simulations and experiments.18,21,22 The study
of passive dynamic behavior is possible by solving their nonlinear differential equations. However,
analytical solutions of these equations are difficult for biped models with different foot shapes.

Finding the proper initial conditions for a stable periodic gait in the passive bipedal walking is very
important and requires a new numerical solution. Therefore, this research proposes a new approach
to get the initial conditions for stable and even unstable period-one gait limit cycles of all compass
gait models with different foot shapes such as curved and flat feet. Using continuation method, the
effects of physical parameters variation are investigated, as well.

2. Theoretical Analysis

2.1. The passive biped dynamic walkers
2.1.1. Models. Goswami et al.13 considered the simple passive compass gait biped robot. Biped
robots with different foot shapes are shown in Fig. 1. Two kinds of feet including curved and flat
feet are added to the basic model studied by Goswami. The physical parameters of these models are
denoted in Fig. 1, in which r is the radius of the curved foot. For the flat feet model with fixed ankle,
c is the distance between the ankle and the end of heel, and d is the distance between the ankle and
the end of toe. When r in Fig. 1b, or c and d in Fig. 1c vanishes, these models become the simple
passive compass gait model with point feet. Also the subscripts st and sw indicates the stance leg and
the swing leg, respectively.
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Fig. 2. The flat feet model (a) 1st swing phase 1, (b) 1st transition, (c) 2nd swing phase, and (d) 2nd transition.

These models have two symmetric legs, which are rigidly connected by a frictionless hinge joint
at the hip, allowing them to swing freely. There are three point-masses, one for the hip and the other
two for the legs. At the start of each step, the gait consists of double support. The basic model walks
passively down the rigid ramp of slope γ in two-dimensional space with suitable initial conditions.
During swing phase, the entire stance leg acts as an inverted pendulum pivoting around its foot. The
swing leg is represented as a free pendulum pivoting around the hip until it reaches the slope surface
at the end of each step. The scuffing problem of the swing leg is neglected at the mid-stance. It is
assumed that, there is no slip and no bounce at the pivot point. Then, the roles of the two legs will be
changed. The equations of motion of the swing phase together with the transition rule are needed to
describe the dynamics behavior of the models. The transition role is obtained by using conservation
of angular momentum and geometric collision conditions.

2.1.2. Dynamic equations of motion for the swing phase. The equations of motion between collisions
can be determined by using the well-known Lagrange–Euler equations. The models have two degrees
of freedom, i.e. θst and φ. θst is the angle of the stance leg with normal to the slope surface, while φ

is the angle between the stance and the swing legs. To simplify the governing equations, following
assumptions and dimensionless parameters are introduced.

mst = msw = m, β = m

mH

, τ =
√

g

l
t, ā = a

l
, b̄ = b

l
, r̄ = r

l
, c̄ = c

l
, d̄ = d

l
, (1)

where β is the mass ratio and τ is the dimensionless time. Therefore, the dimensionless equations
describing the dynamics of pendulum motion are given by:

Mn (θ) θ̈ + Cn

(
θ , θ̇

)
θ̇ + gn (θ) = 0, (2)

where θ = [ θst φ ]T , Mn(θ) is the inertia matrix, Cn(θ, θ̇ ) is the centrifugal and Coriolis terms, and
gn(θ) is the gravitational vector. The dimensionless matrices for the three biped models of Fig. 1 are
given in Appendix A.1.

The swing phase for the flat feet model can be divided into two phases. As illustrated in Fig. 2a, at
the first swing phase, the heel of the stance leg acts as a hinge. The first swing phase appears similarly
in the models with the point feet and the curved feet. When the toe of the stance leg touches a ramp,
the second swing phase will be started as shown in Fig. 2b. These swing phases have nearly similar
dynamics equations and the only difference is in the change in switching pivot point from the heel
to the toe. Thus, the dimensionless matrices of the second swing phase can be used after replacing c̄

with −d̄.
Moreover, the equations of motion of the flat and the curved feet models are the same as the basic

model when their feet shape parameters vanishes.
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2.1.3. Transition rules at collision. The collision occurs when the swing leg touches the ramp surface
and the former stance leg leaves the slope in the same instant. Therefore, the swing leg becomes the
new stance leg and vice versa. This instantaneous impact is assumed to be plastic without slipping.
The effect of collisions, which appears in the initial values and includes leg angles and angular
velocities, is called transition rules. Thus, the transition rules of angular velocities can be derived by
applying the conservation law of the angular momentum about the hip and the impact points, i.e.

Q−
n

[
θ̇st

φ̇

]−
= Q+

n

[
θ̇st

φ̇

]+
, (3)

where Q−
n and Q+

n are both square matrices given in appendix A. 1. The superscripts “–” and “+”
denote immediately before and after the collision, respectively. Moreover, the normalized matrices
Q−

n and Q+
n can be found in Appendix A. 2. At each step, for the point and curved feet models there is

only one collision and one heel-strike, whereas the flat feet model has two collisions. At the end of the
first swing phase, the contact point changes from the heel to the toe of the stance leg. After rotating
on the toe, the heel-strike occurs at the end of the second swing phase. For the simple compass gait
model, the heel-strike can be modeled by the following geometric collision condition.

φ − 2θst = 0. (4)

By employing the geometric relations, the transition rules of the angular displacement are given
as J, in the following equation.

[
θst

φ

]+
=

[−1 0

−2 0

]
J

[
θst

φ

]−
. (5)

For the curved feet model, the geometric collision condition and the transition rules of angular
displacement are similar to the basic model. For the flat feet model, the geometric collision relation
of the toe-strike is defined when the angle of the stance leg vanishes. If this is the case, the angular
relationship before and after the collision is given in the square matrix J as follows:

[
θst

φ

]+
=

[
1 0

0 1

] [
θst

φ

]−
. (6)

Each step starts and ends with the heel-strike. For the flat feet model, if the ankle parameters of c and
d are chosen equal, the geometric collision condition of the heel-strike is the same as the heel-strike
of the point and curved feet models. Consequently, for all biped models the whole transition rules are
identified with the following matrix:

q+ =
[

J 0

0
(
Q+

n

)−1
Q−

n

]
q−, (7)

with q = [θst, φ, θ̇st, φ̇]T . The above expression reveals that the state vector after collision, which is
taken as a new initial condition for the next step is determined by a map function. This function is
defined as a solution of the governing equations when it meets the collision condition.

2.2. Finding the proper initial conditions and period-one gait cycles
The motion of the biped models is switching between two dynamics parts. The first part is a time-
continuous gait including the motion of swing phase. The second part is the discrete collision events.
The differential equations cannot be solved continuously in according to the collision events. In
fact, they should be solved by using the transition rules that describe the relations between the state
vector before and after the collision. To get a stable gait cycle, it is needed to solve the equations
of the swing phase and the transition rules with appropriate initial conditions. Since it is difficult

https://doi.org/10.1017/S0263574715000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000077


170 Determination of the initial conditions

Fig. 3. The outline of the proposed method for determination of appropriate initial conditions.

to analytically solve the governing equations, usually in dynamical systems, numerically iterative
searching algorithm is used for finding periodic motions. Using perturbation method, Garcia et al.
determined the leg angles and velocities at the fixed points.8 But it is difficult to apply this method
for biped models with the curved or flat feet shapes. Using the gait cycle as a function of the slope
surface, Garcia et al. found period-one limit cycles.8 Their methods based on making the Poincare
map can be time consuming, especially in bipeds with complex gait patterns. Finding two periodic
solutions (long and short) is another problem in applying these solution procedures. To overcome
difficulties in obtaining appropriate initial conditions for a stable and unstable gait cycles, the basic
idea of the proposed algorithm is explained in the followings.

In general, the nonlinear equations of the biped robots can be solved conceptually in the form of a
BVP in which the angle and angular velocities define the boundary conditions. The following form
can define the state-space representation of equation of motion for the biped robots with different
foot shapes.

q̇ = d

dt

(
θ

θ̇

)
=

(
θ̇

−M−1
n (θ)

[
Cn

(
θ, θ̇

)
θ̇ + gn (θ)

]
)

(8)

q (t = 0) = q+, q (t = T ) = q−.

Using the dimensionless time τ = t/T , where T is the step period, Eq. (8) can be rewritten as follows:

q ′ = d

dτ

(
θ

θ ′

)
= T

(
θ ′

−M−1
n (θ)

[
Cn

(
θ, θ ′) θ ′ + gn (θ)

]
)

q (τ = 0) = [
θst φ θ ′

st φ′ ]+
, q (τ = 1) = [

θst φ θ ′
st φ′ ]−

. (9)

In order to determine the boundary conditions in one-step, it is necessary to include transition
rule at the collision point of Eq. (7). However, it is difficult to solve the nonlinear BVP if there is
no closed-form solution for it. In this work, the proposed method to determine initial conditions of
stable and unstable period-one limit cycles is based on the well capabilities of MATLAB or other
numerical softwares in solving different differential equations such as ordinary differential equation
(ODE) or IVP, BVP, differential delay equation (DDE) and etc.23 There are different algorithms such
as Runge–Kutta’s method for solving ODEs in MATLAB that can solve stiff and non-stiff problems
with a desired accuracy. Also, MATLAB offers various integrator options such as EVENT option to
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Table I. Physical parameters of the investigated cases.

Simplest walking model Foot shape parameter Slope angle

Point feet ā = 0 r̄ = 0, c̄ + d̄ = 0 0.009 rad
Curved feet r̄ = 0.05
Flat feet c̄ = d̄ = 0.0001 0.001 rad

Fig. 4. Schematic structure of the continuation method.

improve the ODE solver performance.23 This option acts as a function that can be used for different
objectives such constructing a Poincare map, or if statement. Moreover, MATLAB uses collocation
technique for numerically solving BVP, but solving BVP needs a good initial estimate for the desired
solution. With regard to the collisions or jump conditions in the biped models, solving the BVP is
not easy. To overcome these difficulties, the proposed approach combines the MATLAB capabilities
in solving ODE and BVP to obtain the appropriate initial conditions or the gait cycles. The general
procedure to obtain the period-one gait cycle for different biped models is explained as following.

As mentioned earlier, solving the equations of motion at swing phases and the equations of impact
form a BVP. In other hand, the overall model of the biped walking along with the initial conditions
forms an IVP. The solution of this IVP results in a periodic gait if the walker goes down a slope
with an appropriate initial conditions. Since a BVP might have multiple solutions, MATLAB BVP
solvers such as bvp4c, bvp5c or bvp6c require an initial guess.23 Moreover, it is necessary that the
initial guess be as close as to the true solution of BVP. For this purpose, by using ODE numerical
solution methods such as ode45 of MATLAB, the solution of an IVP can be a good initial guess to
BVP. The IVP also needs an initial guess (value) to be proceeded by time. It is much better to choose
this arbitrary initial guess from small values. For calculating a cyclic solution, it is necessary to stop
the solution at a specific conditions and applying the transition rule given by Eq. (7) at the end of this
cycle. This termination condition is called an “event” in MATLAB ODE solver. For all models, the
“event” can be defined as the time when the swing leg scuffs with the slope surface. This situation
can be occurred in any time, even at the mid-stance of the swing phase. The models with point and
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Fig. 5. Suitable initial estimate of BVP for point feet model at long period from solving IVP with swing leg
scuffing event condition (γ = 0.009 rad).

Fig. 6. Proper initial condition for the simplest model with point feet at long period (γ = 0.009 rad).

curved feet have the same impact event that is given by

l (cos θst − cos (φ − θst)) = 0. (10)

As mentioned earlier, there are two impact events for the flat feet model as defined by the following
expressions:

(
c̄ + d̄

)
sin θst = 0

c̄ sin θst + cos θst − d̄ sin(φ − θst) − cos(φ − θst) = 0. (11)
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Fig. 7. Leg angles vs. time over one-step at a long-period gait cycle obtained by Garcia et al.8

Fig. 8. (a) Leg angles vs. time over three steps at a long period gait cycle, (b) limit cycle in phase plane of the
point feet model (γ = 0.009 rad).

Now, the transition rule is applied to the solution at the point of the swing foot scuff with the
slope surface. Next, with this obtained initial condition, the solution of the ODE problem is preceded
with time until at the steady state a periodic solution is obtained. This periodic solution is not the
true gait cycle or the solution of BVP, since at the end of each step the true solution must justify
the condition of φ = 2θst. Since the periodic solution of the ODE problem, at least can satisfy the
equations of motion or the transition rules, it is a very good initial solution for the BVP. Then, by
applying this initial solution to the BVP solvers such as bvp4c of MATLAB, an accurate solution
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Fig. 9. Loci of eigenvalues for the point feet model at long period-one gait cycle (γ = 0.009 rad).

Fig. 10. (a) Short period-one gait cycle, (b) limit cycle in phase plane of the point feet model (γ = 0.009 rad).

of the problem can be obtained. This output provides the appropriate initial conditions for the stable
and the unstable period-one gait cycles. It is noted that for all biped models, the BVP must uses the
true collision conditions at the end of each step. The outline of the proposed algorithm for finding the
initial conditions of the limit cycles of biped robot is illustrated in Fig. 3.

Upon finding the initial conditions, the walker’s periodic gait can be simulated by integrating
the equations of the swing phase and applying the transition rules at true collision condition. This
simulation forms an IVP by defining the event as the time when φ = 2θst and the initial conditions
as an initial value. As opposed to the previous studies which require defining Poincare map in their
solving processes, here the fixed points or periodic gaits can be found directly without defining such
map. Numerical calculations found two period-one solutions to this IVP as short period and long
period gait cycles based on different initial conditions.
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Fig. 11. Suitable initial estimate of BVP for the point feet model at long period from solving IVP with swing
leg scuffing event condition (γ = 0.004 rad).

Fig. 12. Proper initial condition for the point feet model at long period (γ = 0.004 rad).

2.3. Stability analysis
The local stability of a limit cycle walking can be analyzed around the fixed points on the Poincare
map by evaluating the eigenvalues of the Jacobian matrix.8 If the eigenvalues of the Jacobian matrix
are inside the unit circle in the complex plane, the limit cycle is stable. Garcia et al. found the
Jacobian by both numerical and analytic procedure.8 This approach calculates the Jacobian matrix
by simulating one step for a small perturbation on each of the states of the fixed points.
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Fig. 13. (a) Long period limit cycle, (b) loci of eigenvalues for the point feet model (γ = 0.004 rad).

Fig. 14. Suitable initial estimate of BVP for the curved feet model at long period from solving IVP with swing
leg scuffing event condition (γ = 0.009 rad).

2.4. Parameter study
Upon applying the proposed algorithm and obtaining the initial conditions for the gait cycle of
the passive walker, it is necessary to provide an initial guess for other sets of parameter values, as
well. This can be done by investigating the effect of varying parameters on the limit cycle behavior
of the biped models. Continuation method, which solves the problem as a sequence of relatively
simpler problems, is used here to simply solving a BVP. To obtain the initial conditions for different
parameters of the robot under study here, continuation method in according to Fig. 4 uses an available
solution of the BVP for biped with given parameter value as the initial guess for the next value.
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Table II. Three cases for investigating parameters variation.

Simplest walking models Parameter values

Point feet β = 0 ā = 0 γ = [0.009 : 0.01 : 0.015]
Curved feet ā = 0, γ = 0.009 r = [0 : 0.01 : 0.15]

Fig. 15. Proper initial condition for the curved feet model at long period (γ = 0.009 rad).

3. Simulations

3.1. Finding the period-one gait cycles
In this subsection, the period-one gait cycles are determined by using the suggested algorithm to
find the proper initial conditions for all the models. Obviously, when the distance between the foot
and hip and the mass ratio are close to zero, the simple compass gait model becomes the simplest
walking model conceived by Garcia et al.8 By applying the presented method on the different cases of
Table I, simulation results are discussed as following.

Figures 5 and 6 show how the suitable guess and the proper initial conditions are obtained for the
simplest walking model with point feet, respectively. Firstly, in according to the proposed solution
procedure, the problem is solved as an IVP with an arbitrary initial guess and the event condition of
scuffing the swing leg. By applying the transition rule to the state at the instant of swing leg scuffs
with surface, and using them as an initial guesses and continuing the solution of IVP with time, a
periodic solution will be obtained, as shown in Fig. 5. As seen from Fig. 5a, the solution of the stance
leg has similar form with its real gait (although its amplitude and period are different with the true
solution), but the solution of the swing leg is different from what is expected for the true solution.
Now, by selecting the end cycle of this periodic solution as an initial solution guess of BVP with true
jump condition, accurate solution of the problem related to the initial conditions can be obtained, as
shown in Fig. 6. Moreover, Fig. 6 is completely similar with Garcia’s obtained result shown in Fig. 7.
This is a long period gait. This result shows the good performance of the proposed algorithm.

The obtained result for a long period-one gait limit cycle with step period T = 3.882 is
shown in Fig. 8. The initial conditions of the point feet model are found as [θ∗

st, φ
∗, θ̇∗

st, φ̇
∗] =

[0.2003, 0.40062, − 0.19983, − 0.01582]. The corresponding eigenvalues of the Jacobian matrix
for this gait cycle are [−0.193 ± 0.554i, 0, 0]. As anticipated, all of these eigenvalues are inside the
unit circle shown in Fig. 9. It means that the long period-one limit cycle of the point feet model is
stable. Also the point feet model has a short period-one gait cycle with step period T = 3.112 as
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Fig. 16. (a) Long period-one limit cycle, (b) loci of eigenvalues for the curved feet model (γ = 0.009 rad).

Fig. 17. Suitable initial estimate of BVP for the flat feet model at short period from solving IVP with swing leg
scuffing event condition (γ = 0.001 rad).

shown in Fig. 10. The initial conditions of this gait cycle are
[
θ∗

st, φ
∗, θ̇∗

st, φ̇
∗] = [0.165, 0.40062,

− 0.19983, − 0.01582]. For this gait cycle, one of the eigenvalues has magnitude greater than 1.
This result implies that the short period-one limit cycle is unstable. It is noted that Garcia’s simplest
waking model exhibits two period-one gait cycles, one of them is stable for 0 < γ < 0.015 rad.8

Appendix B contains all necessary MATLAB M-files to obtain the stable and the unstable period-one
gait cycles of the point feet biped model.

The above simulations of the point feet model also repeated for the slope angle of 0.004 rad, and
the obtained results are shown in Figs. 11–13. In this case, the initial conditions were determined as
[θ∗

st, φ
∗, θ̇∗

st, φ̇
∗] = [0.1534, 0.3068, − 0.1561, − 0.0073]. The eigenvalues of the Jacobian matrix
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Fig. 18. Proper initial condition for the flat feet model at short period (γ = 0.001 rad).

Fig. 19. Leg angles vs. time over two step at a short period-one gait cycle for the flat feet model (γ = 0.001 rad).

are [−0.23 ± 0.59i, 0, 0]. The loci of eigenvalues in Fig. 13b, exhibits the stable long period-one
limit cycle of the point feed biped robot.

The proposed algorithm is repeated for the curve feet model with the specification given in Table
I. The initial estimated BVP solution and the long period-one gait cycle are shown in Figs. 14 and 15,
respectively. Since the radius of the curved foot is very small, the gait cycle for this model is nearly
the same as that for the point feet model. From Fig. 16, it is observed that the simplest walking model
with curved feet has stable long period-one limit cycle.

There are two period-one gait cycles for the flat feet biped model of Table I. This section focuses
on the short period-one gait cycle of the flat feet model. As mentioned in Section 2, one step motion
of this model is divided into four phases consisting of two swing phases and two collisions. The
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Fig. 20. Gait cycles of the point feet model for γ = [0.009 : 0.01 : 0.015].

Fig. 21. (a) Long period-one gait cycles, and (b) limit cycles in phase plane, for the point feet biped model with
slope angles of γ = [0.009 : 0.01 : 0.015].

suitable initial estimated BVP solution is provided in Fig. 17. The proper initial conditions and the
two steps of the flat feet model at short period are shown in Figs. 18 and 19.

Figures 9, 13 and 16 clearly reveals that the long period-one gait cycles of all models in Table I
are stable, whereas the short ones are unstable.

3.2. Effect of varying different parameters
In this subsection, the effect of varying parameters, as given in Table II, on the limit cycle behavior
of the point feet and the curved feet walking robots are studied.

3.2.1. Point feet model: slope angle γ . The continuation method uses the output of BVP for the
slope 0.009 rad at the long period gait as the initial guess for the next slope. Then by continuously
changing the slope angle, the long period-one gait limit cycles for other parameters are obtained. The
gait cycles for all slope angles are shown in Figs. 20 and 21.

Figure 22 shows the changes of the initial conditions or the fixed points versus slope angles for the
point feet biped model. With increase in the slope angle, the leg angles increase while their angular
velocities decrease. Also the stability analysis is done for small perturbations around these points.
For the range of the slope angles where the eigenvalues are smaller than unity, the point feet model
has a stable walking. According to the simulation results of Fig. 23, the stable long period-one gait
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Fig. 22. Variation of the fixed points vs. slope γ for the point feet model.

Fig. 23. Loci of eigenvalues for the point feet model for γ = [0.009 : 0.01 : 0.015].

cycle exists for 0 < γ < 0.015 rad. When γ = 0.015 rad, one of the eigenvalues is greater than unity;
therefore the period one gait cycle looses stability.

3.2.2. The curved feet model: foot parameter r̄ . Using the model presented in Table I and applying
the continuation algorithm, the effects of the varying foot parameter r̄ for the curved shape biped
robot are investigated, as well. The solutions of BVP and the one step gait cycle are shown in Fig. 24.
Using these initial conditions, the long period-one gait cycles and limit cycles in phase plane are
obtained and illustrated in Fig. 25.

Moreover, the variations of the calculated fixed points are shown in Fig. 26. These results imply
that with increase in radius, the leg angles at the fixed points increase, but the angular velocities at
these points decrease. Also the loci of the corresponding eigenvalues, as illustrated in Fig. 27, show
that these limit cycles are stable.

4. Conclusion
In this work, compass gait biped robot with three different foot shapes has been studied. Initial
conditions have been found for the stable and unstable period-one gait limit cycles by solving the
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Fig. 24. Initial conditions of the curved feet model for r̄ = [0 : 0.01 : 0.15].

Fig. 25. (a) Long period-one gait cycles, (b) limit cycles in phase plane on the range of radius.

nonlinear equations of motion as a BVP. The appropriate initial guess for this BVP has been determined
by the periodic output of solving the equations as an IVP with a small arbitrary initial guess. In the
solving process, it has been required to locate points where the swing leg scuffs with slope surface,
which can be defined as an event collision. After finding the initial conditions, the walker’s periodic
gait has been simulated by integrating the equations of the swing phase and applying a transition
rule at φ = 2θst. The existence of the two period-one gait limit cycles has been confirmed through
calculations of the proposed algorithm for three models. The fixed points have been computed in the
small neighborhood of the proper initial conditions without using the Poincare map. Moreover, the
continuation method has been presented to quantify the effects of variation of physical parameters on
the stability of limit cycle. This method has been applied to get the proper initial conditions for some
sets of slope angles and radii of the point and curved feet models, respectively.
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Fig. 26. Variation of fixed points vs. r̄ for the curved feet model (γ = 0.009 rad).

Fig. 27. Loci of eigenvalues for various r̄ of the curved feet biped model.
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Appendix A. Models details
This appendix defines the equations of compass gait biped models as shown in Fig. 1.

A.1. Dynamics of the swing phase
For the point feet model:

Mn(θ) =
[

1 + β[(a2 + b
2 + 1) − 2b cos φ] −βb(b − cos φ)

b − cos φ −b

]

Cn(θ, θ̇ )θ̇ + g(θ) =
[

βbφ̇(2θ̇st − φ̇)sinφ + βbsin(θst − φ − γ ) − (1 + β(a + 1))sin(θst − γ )

θ̇2
stsinφ + sin(θst − φ − γ )

]
.

For the curved feet model:

Mn11 = (1 + β)[r2 + (1 − r)2 + 2r(1 − r) cos θst] + β[r2 + (a − r)2 + 2r(a − r) cos θst]

+ βb
2 − 2βb[r cos(θst − φ) + (1 − r) cos φ]

Mn12 = βb[−b + r cos(θst − φ) + (1 − r) cos φ]

Mn21 = −b + r cos(θst − φ) + (1 − r) cos φ

Mn22 = b
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Cn11 + gn11 = βbr(θ̇st − φ̇)2sin(θst − φ) + βb(1 − r)(2θ̇st − φ̇)φ̇sinφ

+ [(1 + β)r(1 − r) + βr(a − r)]θ̇2
stsinθst + rsinγ − (1 − r)sin(θst − γ )

+ β[2rsinγ − (a + 1 − 2r)sin(θst − γ ) + bsin(θst − φ − γ )]

Cn21 + gn21 = −[(1 − r)θ̇2
stsinφ + sin(θst − φ − γ )].

For the flat feet model:
First swing phase

Mn11 = (1 + 2β)c2 + (1 + β) + β(a2 + b
2
) − 2βb(csinφ + cos φ)

Mn12 = βb(csinφ + cos ϕ − b)

Mn21 = −(csinφ + cos ϕ − b)

Mn22 = −b

Cn11 = βbφ̇(φ̇ − 2θ̇st)(c cos φ − sinφ)

Cn21 = −(c cos φ − sinφ)θ̇2
st

gn11 = c cos(θst − γ ) − sin(θst − γ )

+ β[2c cos(θst − γ ) − (a + 1)sin(θst − γ ) + bsin(θst − φ − γ )]

gn21 = sin(θst − φ − γ ).

Second swing phase

Mn11 = (1 + 2β)d
2 + (1 + β) + β(a2 + b

2
) + 2βb(dsinφ − cos φ)

Mn12 = −βb(dsinφ − cos ϕ + b)

Mn21 = dsinφ − cos ϕ + b

Mn22 = −b

Cn11 = −βbφ̇(φ̇ − 2θ̇st)(d cos φ + sinφ)

Cn21 = (d cos φ + sinφ)θ̇2
st

gn11 = −{[d cos(θst − γ ) + sin(θst − γ )]

− β[2d cos(θst − γ ) + (a + 1)sin(θst − γ ) − bsin(θst − φ − γ )]}
gn21 = sin(θst − φ − γ ).

A.2. Transition rules at collision
The matrices, Q−

n and Q+
n for the point feet model are specified below:

Q−
n =

[
(1 + 2βa) cos φ− − 2βab βab

−a 0

]

Q+
n =

[
1 + β(a2 + b

2 + 1 − 2b cos φ+) −βb(b − cos φ+)

b − cos φ+ −b

]
.
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The curved feet model

Q−
n11

= r2 + (1 − r)2 cos φ− + r(1 − r)(cos θ−
st + cos(φ− − θ−

st )

+ β[2(r2 + b(r − a)) + r(1 + a − 2r) cos θ−
st + 2(1 − r)(a − r) cos φ−

+ r(1 + a − b − 2r) cos(φ− − θ−
st )]

Q−
n12

= βb[a − r(1 − cos(φ− − θ−
st ))]

Q−
n21

= r(1 − cos θ−
st ) − a

Q−
n22

= 0

Q+
n11 = [1 − 2r(1 − r)(1 − cos θ+

st )]

+ β[1 + b
2 + a2 − 2r(1 + a − 2r)(1 − cos θ+

st ) − 2b(rcos(φ+ − θ+
st ) + (1 − r) cos φ+)]

Q+
n12 = −βb[b − r cos(φ+ − θ+

st ) − (1 − r) cos φ+]

Q+
n21 = b − (1 − r) cos φ+ − rcos(θ+

st − φ+)

Q+
n22 = −b.

The flat feet model
First collision

Q−
n11 = (1 − cd) + β[(1 + a2 − cd) + b(−2 cos φ + (d − c)sinφ + b)]

Q−
n12 = βb(cos φ − dsinφ − b)

Q−
n21 = b − cos φ − csinφ

Q−
n22 = −b

Q+
n11 = (1 + d

2
) + β[(a2 + 1 + 2d

2
) + b(2dsinφ+ − 2 cos φ+ + b)]

Q+
n12 = βb(cos φ − dsinφ − b)

Q+
n21 = cos φ − dsinφ − b

Q+
n22 = b.

Second collision:

Q−
n11 = [(1 − cd) + 2β(a − cd)] cos φ− − 2βab − (d + c)[1 + β(a + 1)]sinφ−

Q−
n12 = βab

Q−
n21 = −a

Q−
n22 = 0

Q+
n11 = (1 + d

2
) + β[(1 + a2 + b

2 + 2d
2
) − 2b(dsinφ+ + cos φ+)]

Q+
n12 = βb(−b + csinφ+ + cos φ+)

Q+
n21 = b − csinφ+ − cos φ+

Q+
n22 = −b.
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Appendix B
Matlab M-file for simulation of simplest walking model with point feet
Function Simplest walking point Feet
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc, clear all, close all, format long,
%%%%%%%%%% normal constant values%%%%%%%%%%%%
gamma = 0.009;% slope of the walking surface
% x0 = [theta stance; phi; thetadot stance; phidot]
x0 = [.01; .02; -.01; 0];
%%%%%%%% Find proper initial conditions%%%%%%%%
tstart = 0; tfinal = 1e2;tout1 = tstart;
xout1 = x0.’; teout1 = []; xeout1 = []; ieout1 = [];
options1 = odeset(‘event’, @collision1, ‘RelTol’, 1e-12, ‘AbsTol’, 1e-12);
for i = 1 : 50
% Solve until the first terminal event by ODE15s
sol 1 ode = ode45(@swing stage,[tstart, tfinal],x0,options1);
t1 = sol 1 ode.x’; x1 = sol 1 ode.y’; te1 = sol 1 ode.xe’; xe1 = sol 1 ode.ye’; ie1 = sol 1 ode.ie’;
nt = length(t1); tout1 = [tout1;t1(2:nt)]; xout1 = [xout1;x1(2:nt,:)];
teout1 = [teout1; te1]; xeout1 = [xeout1; xe1]; ieout1 = [ieout1; ie1];
% Normal Jump conditions
QP1 = [1 0; 1-cos(2∗x1(end,1)) -1];
QN1 = [cos(2∗x1(end,1)) 0; 0 0];
H1 = QP1 QN1;
x0(1,1) = -x1(end, 1);
x0(2,1) = -2∗x1(end,1);
x0(3 : 4,1) = H1∗[x1(end,3); x1(end,4)];
tstart = t1(nt);
end
figure(1), subplot(221), plot(tout1, xout1(:,1)), xlabel(‘time (sec), (l/g)∧1∧/∧2’), ylabel(‘\theta s t
(rad)’)
subplot(222), plot(tout1, xout1(:,2)), xlabel(‘time (sec), (l/g)∧1∧/∧2’), ylabel(‘\phi (rad)’)
subplot(223), plot(tout1, xout1(:,3)), xlabel(‘time (sec), (l/g)∧1∧/∧2’), ylabel(‘\theta∧\cdot s t (rad/s)’)
subplot(224), plot(tout1, xout1(:,4)), xlabel(‘time (sec), (l/g)∧1∧/∧2’), ylabel(‘\phi∧\cdot (rad/s)’)
figure(2), subplot(121), plot(xout1(:,1), xout1(:,3)), xlabel(‘\theta (rad)’), ylabel(‘\theta∧ \cdot
(rad/s)’), axis tight,
subplot(122), plot(xout1(:,2), xout1(:,4)), xlabel(‘\phi (rad)’), ylabel(‘\phi∧\cdot (rad/s)’), axis tight,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
solinit bvp.x = sol 1 ode.x;solinit bvp.y = sol 1 ode.y;solinit bvp.parameters = pi;
sol bvp = bvp4c(@bipedbvp, @bipedbc, solinit bvp);
T1 = sol bvp.parameters;t bvp = T1∗sol bvp.x;t bvp = t bvp-t bvp(1);T = t bvp(end)
figure (3), subplot(121), plot (t bvp, sol bvp.y(1,:), ‘r’, t bvp, sol bvp.y(2,:),’b’), grid on, axis
tight,xlabel(‘time (sec), (l/g)∧1∧/∧2’),ylabel(‘\theta s t, \phi’),h = legend(‘\theta s t’,’\phi’);
subplot (122), plot (t bvp, sol bvp.y(3,:), ‘r’, t bvp, sol bvp.y(4,:),’b’), grid on, axis tight,xlabel(‘time
(sec), (l/g)∧1∧/∧2’),ylabel(‘\theta∧\cdot s t, \phi∧\cdot’),h = legend(‘\theta∧\cdot s t’,’\phi∧\cdot’);
%%%%%%%%%%% Find period-one gait cycles%%%%%%%%%%%
x02 = sol bvp.y(:,1);
xout2 = []; tout2 = []; teout2 = []; xeout2 = []; ieout2 = [];
options2 = odeset(‘event’, @collision2, ‘RelTol’, 1e-12, ‘AbsTol’, 1e-12);
for i = 1:5
sol 2 ode = ode15s(@swing stage,[tstart, tfinal],x02,options2);
t2 = sol 2 ode.x’; x2 = sol 2 ode.y’; te2 = sol 2 ode.xe’; xe2 = sol 2 ode.ye’; ie2 = sol 2 ode.ie’;
nt = length(t2);tout2 = [tout2;t2(2:nt)];xout2 = [xout2;x2(2:nt,:)];
teout2 = [teout2; te2]; xeout2 = [xeout2; xe2]; ieout2 = [ieout2; ie2];
% Normal Jump conditions
QP2 = [1 0; 1-cos(2∗x2(end,1)) -1];QN2 = [cos(2∗x2(end,1)) 0; 0 0];
H2 = QP2 QN2;
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x02(1,1) = -x2(end, 1);x02(2,1) = -2∗x2(end,1);
x02(3 : 4,1) = H2∗[x2(end,3); x2(end,4)];
tstart = t2(nt);
end
figure(4),subplot(121), plot (tout2, xout2(:,1),tout2, xout2(:,2),’–’),xlabel(‘time (sec)’), ylabel(‘Leg
angles (rad)’),grid on, axis tight,h = legend(‘ \theta s t’,’\phi ‘);
subplot (122), plot (xout2(:,1), xout2(:,3),xout2(:,2),xout2(:,4),’–’), xlabel(‘Leg angles (rad)’),
ylabel(‘Angular Velocities (rad/s)’),h = legend(‘Stance Leg’,’Swing Leg ‘);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
functiondxdt = swing stage(t,x)
M = [1 0; 1-cos(x(2)) -1];
N = [sin(gamma-x(1)); x(3)∧2∗sin(x(2))+sin(x(1)-x(2)-gamma)];
C = -Mn;
dxdt(1,1) = x(3);dxdt(2,1) = x(4);dxdt(3,1) = C(1,1);dxdt(4,1) = C(2,1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [value,isterminal,direction] = collision1(t,x)
value = cos(x(1))-cos(x(2)-x(1));isterminal = 1;direction = -1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [value,isterminal,direction] = collision2(t,x)
value = -x(2)+ 2∗x(1);isterminal = 1;direction = -1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%
functiondydx = bipedbvp(x,y, T)
M = [1 0; 1-cos(y(2)) -1];
N = [sin(gamma-y(1)); y(3)∧2∗sin(y(2))+sin(y(1)-y(2)-gamma)];
C = -Mn;
dydx = [T∗y(3); T∗y(4); T∗C(1); T∗C(2)];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res = bipedbc(ya,yb,T)
QP = [1 0; 1-cos(ya(2)) -1];
QN = [cos(yb(2)) 0; 0 0];
H = QP QN;
res = [ya(1)+yb(1)
ya(2)+2∗yb(1)
ya(3)-(H(1,1)∗yb(3)+H(1,2)∗yb(4))
ya(4)-(H(2,1)∗yb(3)+H(2,2)∗yb(4))
ya(2)+yb(2)];
end
end
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