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The sparse identification of nonlinear dynamics (SINDy) is a recently proposed
data-driven modelling framework that uses sparse regression techniques to identify
nonlinear low-order models. With the goal of low-order models of a fluid flow,
we combine this approach with dimensionality reduction techniques (e.g. proper
orthogonal decomposition) and extend it to enforce physical constraints in the
regression, e.g. energy-preserving quadratic nonlinearities. The resulting models,
hereafter referred to as Galerkin regression models, incorporate many beneficial
aspects of Galerkin projection, but without the need for a high-fidelity solver to project
the Navier–Stokes equations. Instead, the most parsimonious nonlinear model is
determined that is consistent with observed measurement data and satisfies necessary
constraints. Galerkin regression models also readily generalize to include higher-order
nonlinear terms that model the effect of truncated modes. The effectiveness of such an
approach is demonstrated on two canonical flow configurations: the two-dimensional
flow past a circular cylinder and the shear-driven cavity flow. For both cases, the
accuracy of the identified models compare favourably against reduced-order models
obtained from a standard Galerkin projection procedure. Finally, the entire code base
for our constrained sparse Galerkin regression algorithm is freely available online.

Key words: low-dimensional models, nonlinear dynamical systems

1. Introduction
Fluid flows are characterized by high-dimensional, nonlinear dynamics that gives

rise to rich structures. Despite this apparent complexity, the dynamics often evolves
on a low-dimensional attractor defined by a few dominant coherent structures that
contain significant energy or are useful for control (Holmes et al. 2012). Given this
property, one might aim to derive or identify reduced-order models that reproduce
qualitatively and quantitatively the dynamics of the full system. Over the past decades,
identifying robust, accurate and efficient reduced-order models has thus become a
central challenge in fluid dynamics and closed-loop flow control (Fabbiane et al.
2014; Brunton & Noack 2015; Sipp & Schmid 2016; Rowley & Dawson 2017).

Many traditional model reduction techniques are analytical. They rely on prior
knowledge of the Navier–Stokes equations and the existence of a high-fidelity solver
to project onto an orthogonal basis of modes, resulting in a dynamical system in
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terms of the coefficients of this expansion basis. These modes may come from a
classical expansion, such as Fourier modes, or they may be data-driven, as in the
proper orthogonal decomposition (POD) (Sirovich 1987; Berkooz, Holmes & Lumley
1993). In the latter case, the model reduction may be considered a hybrid approach,
mixing knowledge of the physics with empirical modes obtained from measurement
data. Control-theoretic extensions, such as balanced POD (BPOD) (Willcox & Peraire
2002; Rowley 2005), have also been widely applied for closed-loop flow control
(Ilak & Rowley 2008; Bagheri, Brandt & Henningson 2009; Illingworth, Morgans
& Rowley 2010). Although such approaches to model reduction have been widely
successful for linear systems, as described in the recent review by Rowley & Dawson
(2017) and references therein, they have been applied with only limited success to
obtain low-order approximations of nonlinear systems, mostly on flow oscillators.
One can cite for instance the seminal work of Noack et al. (2003) and Tadmor et al.
(2010) wherein the authors have shown that such reduced-order models obtained
from a Galerkin projection can reproduce the transients and nonlinear dynamics
of the von Kármán vortex shedding past a two-dimensional cylinder, provided the
projection basis includes a shift mode quantifying the distortion between the linearly
unstable base flow and marginally stable mean flow. Recently, Semaan et al. (2016)
have extended this reduced-order modelling strategy to include the effect of control
actuation for the flow around a high-lift configuration airfoil.

In contrast, data-driven approaches are becoming increasingly popular and
encompass a variety of different techniques such as the eigensystem realization
algorithm (ERA) (Juang & Pappa 1985), dynamic mode decomposition (DMD)
(Rowley et al. 2009; Schmid 2010; Kutz et al. 2016), Koopman theory (Mezić
2005, 2013) and variants (Tu et al. 2014; Williams, Kevrekidis & Rowley 2015),
cluster reduced-order modelling (CROM) (Kaiser et al. 2014), NARMAX (Glaz, Liu
& Friedmann 2010; Zhang et al. 2012; Billings 2013; Semeraro et al. 2017) and
network analysis of fluids (Nair & Taira 2015). Advances in machine learning are
also greatly expanding the ability to extract governing dynamics purely from data.
Neural networks have long been used for flow modelling (Milano & Koumoutsakos
2002; Zhang & Duraisamy 2015) and control (Lee et al. 1997), and recently deep
neural networks (Krizhevsky, Sutskever & Hinton 2012) have been used for Reynolds
averaged turbulence modelling (Ling, Kurzawski & Templeton 2016; Kutz 2017).
However, many approaches in machine learning, such as neural networks, are prone
to overfitting, do not yield interpretable models, and make it difficult to incorporate
known physical constraints.

Advanced regression methods from statistics, such as genetic programming or
sparse regression, are driving new algorithms that identify parsimonious nonlinear
dynamics from measurements of complex systems. Bongard & Lipson (2007)
and Schmidt & Lipson (2009) introduced nonlinear system identification based
on genetic programming, which has been used in numerous practical applications
in aerospace engineering, the petroleum industry and in finance. More recently,
Brunton, Proctor & Kutz (2016a) have proposed a system identification approach
based on sparse regression known as the sparse identification of nonlinear dynamics
(SINDy). Following the principle of Ockham’s razor, the SINDy algorithm rests on
the assumption that there are only a few important terms that govern the dynamics
of a given system, so that the equations are sparse in the space of possible functions.
Sparse regression is then used to determine the fewest terms in a dynamical system
required to accurately represent the data. The resulting models are parsimonious,
balancing model complexity with descriptive power while avoiding overfitting and
remaining interpretable.
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Many of these regression techniques can be recast into a minimization problem
and their solution can be obtained using efficient algorithms available in libraries
such as CVXOPT (Andersen, Dahl & Vandenberghe 2013). However, a major
drawback of regression-based methods is the possible loss of existing symmetries
in the governing equations which may otherwise be included in the physics-based
Galerkin projection methods described previously (Noack, Morzynski & Tadmor 2011;
Balajewicz, Dowell & Noack 2013; Carlberg, Tuminaro & Boggs 2015; Schlegel &
Noack 2015). A notable exception is the physics-constrained multi-level quadratic
regression used to identify models in climate and turbulence (Majda & Harlim 2012).
Including energy-preserving constraints is known to improve the long-time stability
and performance of nonlinear models, while standard Galerkin projection methods
often suffer from stability issues (Carlberg, Barone & Antil 2017). Starting from
the original SINDy algorithm (Brunton et al. 2016a), we propose in this work a
new implementation of the algorithm which allows the user to include physical
constraints such as energy-preserving nonlinearities or to enforce symmetries in
the identified equations. The resulting algorithm relies on the use of constrained
least-squares (Golub & Van Loan 2012) to incorporate additional constraints in the
SINDy algorithm for the sparse identification of the low-dimensional dynamical
system. The ability of the present approach, hereafter named sparse Galerkin
regression, is demonstrated on two different flow configurations: the emblematic
two-dimensional cylinder flow and the shear-driven cavity flow. We also show that
including higher-order nonlinearities in the regression improves the stability and
accuracy of resulting models, capturing the effect of truncated low-energy modes on
the dynamics of high-energy modes.

The manuscript is organized as follows: § 2.1 provides the reader with a quick
introduction to the original SINDy algorithm, while the new algorithm is presented
in § 2.2. The physical constraints used in this work are discussed in § 3, while
the two flow configurations considered herein are presented in § 4. The different
low-dimensional systems identified are compared against standard Galerkin projection
in § 5. Finally, § 6 summarizes our key findings and provides the reader with possible
extensions to this work.

2. Constrained sparse identification
Here we discuss the core mathematical and algorithmic framework used to identify

nonlinear reduced-order models from data. The proposed Galerkin regression method
is based on a modified version of the sparse identification of nonlinear dynamics
(SINDy) method (Brunton et al. 2016a). The original SINDy algorithm is introduced
in § 2.1, and the modifications to include physical constraints, such as energy
conservation, known eigenvalues or symmetries, are discussed in § 2.2. Implementation
details for both algorithms are presented to promote reproducibility; in addition, code
is freely available online (https://github.com/loiseaujc/SINDy). Specific constraints
that are used to enforce energy conservation are derived later in § 3.

2.1. Sparse identification of nonlinear dynamics (SINDy)
Identifying dynamical systems from data has been a central challenge in mathematical
physics, with a particularly rich history in fluid dynamics. Typically, the structure
of the system identified is either constrained via prior knowledge of the governing
equations, as in Galerkin projection, or a small handful of heuristic models are
posited and parameters are optimized to match the data. Simultaneously identifying
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the structure and parameters of a model from data is considerably more challenging,
as there are combinatorially many possible model structures. The sparse identification
of nonlinear dynamics algorithm (Brunton et al. 2016a) bypasses the intractable brute
force search through all possible model structures, leveraging the observation that
many dynamical systems

ẋ= f (x) (2.1)

have dynamics f that is sparse in the space of possible right-hand side functions. It is
then possible to solve for the relevant terms that are active in the dynamics using a
convex `1-regularized regression that penalizes the number of terms in the dynamics
and scales well to large problems. Note that the vector x refers to the state of the
system, and may be replaced with a vector of POD coefficients a for reduced-order
modelling.

First, time-series data are collected from (2.1) and formed into a data matrix,

X =
[
x(t1) x(t2) · · · x(tm)

]T
, (2.2)

where T denotes the matrix transpose. A similar matrix of derivatives is formed:

Ẋ =
[
ẋ(t1) ẋ(t2) · · · ẋ(tm)

]T
. (2.3)

In practice, this may be computed directly from the data in X . For noisy data, the
total-variation regularized derivative tends to provide numerically robust derivatives
(Chartrand 2011).

Based on the data in X , a library of candidate nonlinear functions Θ(X) is
constructed:

Θ(X)=
[
1 X X 2

· · · X d
· · · sin(X) · · ·

]
. (2.4)

Here, the matrix X d denotes a matrix with column vectors given by all possible time
series of dth degree polynomials in the state x.

The dynamical system in (2.1) may now be represented in terms of the data
matrices in (2.3) and (2.4) as

Ẋ =Θ(X). (2.5)

Each column Ξk in Ξ is a vector of coefficients determining the active terms in the
kth row equation in (2.1). A parsimonious model will provide an accurate model fit
in (2.5) with as few terms as possible in Ξ . Such a model may be identified using a
convex `1-regularized sparse regression:

Ξk = argmin
Ξ ′k

‖Ẋ k −Θ(X)Ξ ′k‖2 + λ‖Ξ
′

k‖1. (2.6)

Here, Ẋ k is the kth column of Ẋ . Sparse regression, such as the LASSO (Tibshirani
1996) or the sequential thresholded least-squares algorithm used in SINDy, improves
the numerical robustness of this identification for noisy overdetermined problems,
in contrast to earlier methods (Wang et al. 2011) that used compressed sensing
(Candès 2006; Donoho 2006). Alternatively, symbolic regression techniques such as
the fast function extraction could be used to identify nonlinear terms in the dynamics
(McConaghy 2011). Note that the reformulation of the nonlinear dynamics into a
linear regression framework via a library of candidate basis functions in (2.5) was
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developed earlier by Yao & Bollt (2007), although they did not obtain parsimonious
models with sparsity promoting techniques.

The sparse vectors Ξk may be synthesized into a nonlinear dynamical system model:

ẋk =Θ(x)Ξk. (2.7)

Note that xk is the kth element of x and Θ(x) is a row vector of symbolic functions
of x, as opposed to the data matrix Θ(X).

Identifying the most parsimonious nonlinear model by applying sparse regression
in the library Θ is a convex procedure. The alternative approach, which involves
regression onto every possible sparse nonlinear structure, constitutes an intractable
brute-force procedure. SINDy bypasses this combinatorial search with modern convex
optimization and machine learning. Note that, if Θ(X) consists only of linear terms,
and if the sparsity promoting term is set to λ= 0, this algorithm reduces to dynamic
mode decomposition (Rowley et al. 2009; Schmid 2010; Kutz et al. 2016). A major
benefit of the SINDy architecture is its ability to identify parsimonious models that
contain only the required nonlinear terms, resulting in interpretable models and
avoiding overfitting.

Recent extensions to SINDy enable the identification of nonlinear differential
equations with rational function nonlinearities by reformulating the problem as an
implicit differential equation and solving for the active terms by finding the sparsest
vector in the null space of an augmented library containing functions of the state and
derivative terms (Mangan et al. 2016). SINDy has also been generalized to identify
partial differential equations from data (Rudy et al. 2017; Schaeffer 2017), and has
been extended to include inputs and control (Brunton, Proctor & Kutz 2016b). Other
nonlinear modelling techniques, such as NARMAX (Billings 2013), have been widely
applied to problems in fluid mechanics, including modelling of wave packets in
a turbulent jet (Semeraro et al. 2017), flutter instability (Zhang et al. 2012) and
unsteady aerodynamics (Glaz et al. 2010). SINDy is closely related to NARMAX
modelling, which has also been extended to include sparsity-promoting techniques
such as the LASSO for parsimonious modelling (Kukreja, Löfberg & Brenner 2006;
Kukreja & Brenner 2007; Linscott & Wiklund 2014). However, the extensions of
SINDy to identify partial differential equations (Rudy et al. 2017; Schaeffer 2017)
and biological regulatory networks (Mangan et al. 2016) highlight the flexibility of
this simple regression framework.

2.2. Constrained sparse identification
It has been shown in § 2.1 that the identification problem can be cast as a convex
optimization problem where the sparsity of the solution Ξ can be promoted using an
`1 penalization. Alternatively, sparsity can also be promoted by using the sequential
thresholded least-squares algorithm as in Brunton et al. (2016a). In this case, the
convex minimization problem can be rewritten as

min
Ξ
‖Θ(X)Ξ − Ẋ‖2

2,

subject to Cξ = d,

}
(2.8)

where ξ =Ξ(:) is the vectorized form of the sparse matrix of coefficients, and where
Cξ = d are linear equality constraints, which can be used to enforce that some entries
of ξ are equal to zero. The minimization problem is then solved iteratively. After
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an initial least-squares regression, the thresholding is performed as follows: if |ξi|

is smaller than λ (the sparsity knob) times the mean of the absolute value of the
non-zero entries of ξ , then an additional row is added to the constraint matrix C
to enforce ξi = 0. Two or three iterations of this small variation of the sequential
thresholded least-squares algorithm are usually sufficient to ensure convergence of the
constrained minimization procedure. The sparsity parameter λ should be chosen to
promote parsimonious models that strike a balance between accuracy and complexity
to avoid overfitting the data.

From a practical point of view, each iteration of (2.8) can be recast as an
unconstrained problem using an augmented functional formulation where the
constraints are imposed via Lagrange multipliers. The resulting unconstrained
minimization problem then reads

min
ξ ,z
‖Θ(X)Ξ − Ẋ‖2

2 + zT (Cξ − d). (2.9)

Given our choice of augmented functional, it can be shown that the optimal solution
ξ that satisfies the constraints is also solution to the Karush–Kuhn–Tucker (KKT)
equations [

2Θ̂(X)T Θ̂(X) CT

C 0

] [
ξ
z

]
=

[
2Θ̂(X)T Ẋ(:)

d

]
, (2.10)

where Θ̂(X) is a diagonal matrix consisting of n copies of Θ(X), X(:) is the
vectorized form of X (same as the vectorization of Ξ into ξ = Ξ(:)) and n is the
dimension of x. This matrix equation for constrained least-squares is the counterpart
to the ordinary least-squares normal equations. It has a unique solution if C has full
row rank and

[
Θ̂(X) C

]T
has full column rank.

Interestingly, the linear equality constraints Cξ = d do not have to be used for
the sole purpose of sparsity promotion. Indeed, these can also be used to enforce
additional user-provided constraints such as an a priori known value of a given entry
ξi or to impose some linear relationship between the entries of ξ to mimic a given
physical process. Specific constraints required to conserve energy in a fluid are derived
later in § 3.

Notes on the numerical implementation. Although it has been extended with the
possibility of including user-provided constraints, SINDy is at its core a classical
linear regression problem. Its computational cost depends essentially on:

(i) the dimension of the state vector x characterizing the system,
(ii) the number of functions included in the pool of admissible functions Θ(x),

(iii) the algorithm used to solve the optimization problem.

Since the systems considered in the present work are characterized by only
three degrees of freedom and only have up to 20 different functions included in
Θ(x), the solution to the optimization problem has been obtained directly using the
closed-form solution of the KKT equations, which involves the inversion of a 60× 60
symmetric-positive-definite matrix. If the number of degrees of freedom and/or
the number of admissible functions considered is relatively large, the constrained
optimization problem can be solved using gradient descent algorithm or a variant,
e.g. L-BFGS or stochastic gradient descent. In this work, the constrained sparse
regression algorithm is implemented in Python. It uses the CVXOPT library (Andersen
et al. 2013) to solve the constrained least-squares problem. Moreover, every time
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an additional sparsity constraint is added as a new row to the matrix C, a QR
rank-revealing decomposition of C is performed using SciPy (Jones et al. 2001) to
ensure it has full rank (i.e. no linearly dependent constraints).

3. Deriving the constraints
The Navier–Stokes equations governing the dynamics of the perturbation u evolving

on top of the base flow Ub are given by

∂u
∂t
=−(Ub · ∇)u− (u · ∇)Ub −∇p+

1
Re
∇

2u− (u · ∇)u, (3.1)

∇ · u= 0, (3.2)

where Ub is the base flow velocity field, u is the perturbation velocity field and p
the corresponding pressure. The aim of reduced-order modelling is to obtain a low-
dimensional system of the form

da
dt
=La+N (a), (3.3)

where a is a vector of POD coefficients that represent the degrees of freedom of the
reduced-order model, and where L and N (a) are low-dimensional approximation of
the linearized Navier–Stokes operator and of the quadratic nonlinear term, respectively.

For the reduced-order model (3.3) to be a good approximation of its high-
dimensional counterpart, the former needs to have the same physical properties
as the latter. While this may be enforced when the reduced-order model is derived
based on a Galerkin projection (Noack et al. 2011; Balajewicz et al. 2013; Carlberg
et al. 2015; Schlegel & Noack 2015), these properties need to be actively enforced
when a system identification approach such as SINDy is used. This discussion on the
different constraints used in the present work rests on the assumption that the library
of candidate functions used in the identification is given by

Θ(a)=
[
P1(a) P2(a) · · · PN(a)

]
, (3.4)

where Pi(a) defines all the polynomials of degree i in the entries of a. Thus, SINDy
models will be obtained in terms of the vector a of POD coefficients.

3.1. Constraining the quadratic nonlinear term
The nonlinear Navier–Stokes equations (3.2) are partial differential equations
characterized by the quadratic nonlinear term −(u · ∇)u. It can be shown that∫

Ω

u · (u · ∇)u dΩ = 0, (3.5)

where the boundary terms resulting from the integration by parts are assumed to be
small enough and can thus be neglected for the sake of simplicity and parsimony. The
contribution of the quadratic nonlinear term to the total energy of the perturbation
is zero: it is an energy-preserving nonlinearity, its role being only to redistribute the
perturbation’s energy along the different length scales of the problem.

Given that our projection basis contains the POD modes, their amplitudes ai(t) are
directly related to the kinetic energy of the perturbation. The constraint required in our
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system identification for the low-dimensional quadratic nonlinear term to be energy
preserving is thus

a ·N (a)= 0. (3.6)

In the rest of this work, all of the identified models will be characterized by three
degrees of freedom so that the state vector is given by

a=
[
a1 a2 a3

]T
. (3.7)

Expanding (3.6) in terms of the regression coefficients ξ yields

0 =
[
a1 a2 a3

]  ξ
(a1)
4 a1 ξ

(a1)
5 a1 + ξ

(a1)
7 a2 ξ

(a1)
6 a1 + ξ

(a1)
9 a3

ξ
(a2)
4 a1 + ξ

(a2)
5 a2 ξ

(a2)
7 a2 ξ

(a2)
8 a2 + ξ

(a2)
9 a3

ξ
(a3)
4 a1 + ξ

(a3)
6 a3 ξ

(a3)
7 a2 + ξ

(a3)
8 a3 ξ

(a3)
9 a3


a1

a2
a3



+
[
a1 a2 a3

] ξ
(a1)
8 a2a3

ξ
(a2)
6 a1a3

ξ
(a3)
5 a1a2

 . (3.8)

For (3.8) to hold, the matrix involved in the first term is required to be skew
symmetric, while the second term implies ξ (a1)

8 + ξ
(a2)
6 + ξ

(a3)
5 = 0. Overall, this gives

rise to the following ten different linear equality constraints:

ξ
(a1)
8 + ξ

(a2)
6 + ξ

(a3)
5 = 0,

ξ
(a1)
4 = ξ

(a2)
7 = ξ

(a3)
9 = 0,

ξ
(a1)
5 =−ξ

(a2)
4 ,

ξ
(a1)
7 =−ξ

(a2)
5 ,

ξ
(a1)
6 =−ξ

(a3)
4 ,

ξ
(a1)
9 =−ξ

(a3)
6 ,

ξ
(a2)
8 =−ξ

(a3)
7 ,

ξ
(a2)
9 =−ξ

(a3)
8 ,



(3.9)

which induce a coupling of the different ordinary differential equations governing
the evolution of a1, a2 and a3. If the system we aim to identify has more degrees
of freedom, the exact same procedure applies, although it would require more
calculations to derive all of the required constraints.

3.2. Including higher-order nonlinearities
Reduced-order modelling based on Galerkin projection usually requires a relatively
large projection basis. Despite the low-dimensional effective dynamics of the cylinder
flow at Re= 100, Noack et al. (2003) demonstrated the need to include the first eight
POD modes along with the shift mode for the reduced-order model to provide
a reasonably faithful approximation of the original high-dimensional dynamics.
Including the higher-harmonic POD modes was deemed necessary in order to limit
the energy overshoot otherwise observed during the nonlinear saturation process.
Even though they might be required to prevent a non-physical behaviour of the
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reduced-order model, these higher-harmonic modes have very low energy and limited
dynamics of their own: they are essentially enslaved to the dominant POD modes.
In order to ease the rest of the discussion, let us consider the following generalized
mean-field model:

da1

dt
= σa1 +ωa2 − a1a3,

da2

dt
=−ωa1 + σa2 − a2a3,

da3

dt
= λ(−a3 + a2

1 + a2
2),


(3.10)

with σ and λ being positive constants. Assuming λ� σ implies that the dynamics
of a3 is entirely enslaved to that of a1 and a2. Here, a3 thus plays the role of
the higher-order POD modes. Using adiabatic elimination (Haken 1983) or centre
manifold reduction (Wiggins 2003; Carini, Auteri & Giannetti 2015), it is well
known that these enslaved degrees of freedom can be reduced out of the problem,
while their influence onto the driving modes can be accounted for by appropriately
modifying the nonlinear terms. In the present case, a3(t) can be approximated as

a3(t)≈ a2
1 + a2

2. (3.11)

Inserting this approximation into our original system (3.10), one can recast it as an
effective two-dimensional dynamical system given by

da1

dt
= σa1 +ωa2 − (a2

1 + a2
2)a1,

da2

dt
=−ωa1 + σa2 − (a2

1 + a2
2)a2.

 (3.12)

As can be seen, the influence of the eliminated degree of freedom is accounted for
by transforming the original quadratic nonlinearity into an effective cubic one. The
same approach has been used to reduce the eight-dimensional system derived by
Noack et al. (2003) for the two-dimensional cylinder flow into one having only three
degrees of freedom, i.e. the amplitude of the shift mode and that of the first two
POD modes. Such an approach, which can be summarized as derive then reduce,
is generally quite involved, requiring cumbersome calculations, particularly if the
original Galerkin projection model has more than just a few degrees of freedom.
However, in the present work, high-order nonlinearities modelling the influence of
the truncated modes can be automatically incorporated in the identification process,
with no additional post-analysis. For that purpose, the library Θ(a) of admissible
functions only needs to be extended in order to include higher-order polynomials.
Note, however, that it is unclear at the present time how to constrain these high-order
nonlinearities to ensure that the identified model is physical, although the method is
effective in practice without constraining the higher-order terms.

4. Flow configurations
To demonstrate the effectiveness of Galerkin regression, we consider two proto-

typical flow configurations, the incompressible flow past a circular cylinder and the
shear-driven cavity flow. These flows have been selected because they are standard
benchmark problems for modal analysis, model reduction and control in the literature,
and because they provide a balance between complexity and interpretability.
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4.1. Cylinder flow
The first flow configuration considered is the two-dimensional incompressible viscous
flow past a circular cylinder at Re= 100. This Reynolds number, based on the
free-stream velocity U∞, the cylinder diameter D and the kinematic viscosity ν,
is well above the onset of vortex shedding (Zebib 1987; Schumm, Eberhard &
Monkewitz 1994) and below the onset of three-dimensional instabilities (Zhang
et al. 1995; Barkley & Henderson 1996). The saturation process of the instability
is well described by the first-order self-consistent model of Mantič-Lugo, Arratia &
Gallaire (2014). In the fluid dynamics community, a large body of literature exists
in which this particular set-up has been chosen to illustrate modal decomposition
(Bagheri 2013; Noack et al. 2016) and model identification techniques (Noack et al.
2003; Sengupta et al. 2015; Brunton et al. 2016a; Rowley & Dawson 2017). This
set-up is thus a particularly compelling test case to illustrate our model identification
strategy, as well as to draw connections and quantify its performance against other
well-established techniques, namely Galerkin projection.

The dynamics of the flow is governed by the incompressible Navier–Stokes
equations. The centre of the cylinder has been chosen as the origin of the reference
frame (x, y), where x denotes the streamwise coordinate and y denotes the spanwise
coordinate. This study considers the same computational domain as in Noack et al.
(2003), extending from x = −5 to x = 15 in the streamwise direction, and from
y = −5 to y = 5 in the spanwise direction. A uniform velocity profile is prescribed
at the inflow, a classical stress-free boundary condition is used at the outflow, and
free-slip boundary conditions are used on the lateral boundaries of the computational
domain. Based on the spectral element solver Nek5000 (Fischer, Lottes & Kerkemeir
2008), the domain is discretized by 1832 seventh-order spectral elements. Finally, the
time integration of the diffusive terms relies on a backward differentiation of order
3, while the convective terms are advanced in time based on a third-order accurate
extrapolation.

The vorticity field of the linearly unstable fixed point Ub, computed using the
selective frequency damping approach (Åkervik et al. 2006), is shown in figure 1(b).
Figure 1(a,c) also provides the eigenspectrum of the linearized Navier–Stokes operator
and the vorticity field associated with the leading unstable eigenmode for the sake of
completeness. Though this eigenmode is clearly related to vortex shedding, it is well
known that both its spatial distribution and the frequency of the associated eigenvalue
differ quite significantly from that of the nonlinearly saturated von Kármán vortex
street (Barkley 2006).

In the rest of this work, three different transient evolutions are considered. The first
one, shown in figure 3(a), is started with the initial condition

U(x, 0)=Ub(x)+ εu′(x), (4.1)

where Ub is the linearly unstable base flow, u′ is the leading unstable eigenmode
normalized such that it is unit norm and ε = 10−6. A direct numerical simulation has
been run until a statistical steady state has been achieved. The dynamics of the system
on the final attractor is then equidistantly sampled using M = 1000 velocity field
snapshots with a sampling frequency approximately 30 times larger than the vortex
shedding frequency (Noack et al. 2016). The shift mode, denoted u∆ and depicted in
figure 2(a), quantifies the distortion between the unstable base flow equilibrium and
the mean flow. It has been shown to be crucially important for POD-based reduced-
order modelling (Noack et al. 2003; Tadmor et al. 2010). The snapshot POD method
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FIGURE 1. (Colour online) (a) Eigenspectrum of the linearized Navier–Stokes operator for
the two-dimensional cylinder flow at Re= 100. Vorticity fields of (b) the base flow and
(c) the leading linearly unstable eigenmode.

(a) (b) (c)

FIGURE 2. (Colour online) Vorticity fields of (a) the shift mode, (b) the first and (c)
second POD modes of the cylinder flow at Re= 100.

of Sirovich (1987) has then been used to extract the two most energetic modes u1 and
u2, depicted in figures 2(b) and 2(c), respectively. The evolution in time of the POD
coefficients is shown in figure 3(a), along with a projection of the system’s trajectory
onto the (a1, a∆) plane, where a1(t) is the amplitude of the POD mode u1 and a∆(t)
is the amplitude of the shift mode u∆. As shown in Noack et al. (2003), the system
evolves on a low-dimensional paraboloid manifold characterized by a∆ ∝ a2

1 + a2
2.

Two additional transient evolutions, started with the initial conditions

U(x, t)=Ub ± 2.25u∆, (4.2)

are considered in order to capture the off-manifold dynamics. The first one, shown in
figure 3(b), corresponds to a direct numerical simulation started from the mean flow.
The second one, shown in figure 3(c), is characterized by an initial condition having a
reversed flow region longer than that of the linearly unstable base flow. In both cases,
the flow is rapidly attracted toward the vicinity of the fixed point before escaping
away from it due to its linearly unstable nature. Including this off-manifold dynamics
was deemed necessary in order to identify a physically consistent equation governing
the dynamics of the mean-flow distortion a∆(t). In the rest, the transient evolutions
shown in figure 3(a,b) are forming the training dataset used for the identification. The
remaining transient evolution (see figure 3c) is used for cross-validation purposes.

4.2. Shear-driven cavity flow
The second flow configuration investigated is the incompressible shear-driven cavity
flow. It is a geometrically induced separated boundary layer flow having a number
of applications in aeronautics. The leading two-dimensional instability of the flow is
mostly localized along the shear layer developing at the interface between the outer
boundary layer flow and the inner-cavity flow (Sipp et al. 2010). This oscillatory
global instability of the external shear layer relies on two essential mechanisms. On
the one hand, the convectively unstable nature of the shear layer causes perturbations
to grow as they are convected downstream. On the other hand, the inner-cavity
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FIGURE 3. (Colour online) Time evolution of the POD coefficients and corresponding
trajectory in the phase space projected onto the (a1, a∆) plane for the cylinder flow at
Re = 100. The time evolution of a2(t), not shown, is very similar to that of a1(t). All
three datasets used in the present work are presented.

recirculating flow and the instantaneous pressure feedback provide the mechanisms
allowing these same perturbations to eventually re-excite the upstream shear layer.
The coupling between these mechanisms gives rise to a linearly unstable feedback
loop at sufficiently high Reynolds numbers. In this case, the overall saturation process
of the instability is well described by the second-order self-consistent model recently
proposed by Meliga (2017). Note that for compressible shear-driven cavity flows, a
similar unstable feedback loop exists wherein the feedback mechanism is provided
by upstream-propagating acoustic waves (Rossiter 1964; Rowley, Colonius & Basu
2002; Yamouni, Sipp & Jacquin 2013). This strictly two-dimensional linearly unstable
flow configuration has served multiple purposes over the past decade: illustration of
optimal control and reduced-order modelling (Barbagallo, Sipp & Schmid 2009),
investigation of the nonlinear saturation process of globally unstable flows (Sipp &
Lebedev 2007; Meliga 2017) or as an introduction to dynamic mode decomposition
(Schmid 2010), to name just a few.

The computational domain and boundary conditions considered are the same as in
Sipp & Lebedev (2007). The Reynolds number is set to Re = 4250, based on the
free-stream velocity U∞ and the depth L of the open cavity. As for the cylinder, the
linearly unstable flow, the corresponding eigenspectrum and the vorticity field of the
leading unstable eigenmode are presented in figure 4 for the sake of completeness.
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FIGURE 4. (Colour online) (a) Eigenspectrum of the linearized Navier–Stokes operator
for the shear-driven cavity flow at Re= 4250. Vorticity fields of (b) the base flow and (c)
the leading linearly unstable eigenmode. The dashed lines indicate the spatial extent over
which the free-slip boundary condition is imposed.

(a) (b)

FIGURE 5. (Colour online) Vorticity fields of (a) the shift mode and (b) the first POD
mode for the shear-driven cavity flow at Re= 4250.

Three different transients are once again considered. The first one, shown in
figure 6(a), is started with the initial condition

U(x, 0)=Ub(x)+ εu′(x), (4.3)

where Ub is the linearly unstable base flow, u′ is the leading unstable eigenmode
normalized such that it is unit norm and ε=10−8. This direct numerical simulation has
been run until a statistically steady state has been reached. As for the cylinder flow,
the dynamics of the attractor has been equidistantly sampled using M= 1000 velocity
field snapshots with a sampling frequency approximately 30 times larger than the
oscillation frequency of the shear layer. The shift mode u∆ is depicted in figure 5(a)
and the leading POD mode is shown in figure 5(b). While the leading unstable
eigenmode and the dominant POD mode of the cylinder flow are extremely different,
this is not the case for the shear-driven cavity flow at Re = 4250. Note furthermore
that, despite the fundamental difference of the geometry, the different frequency of the
oscillations and the smaller growth rate of the instability, the two flows considered
herein appear to exhibit relatively similar dynamics when looking at the systems’
trajectories projected onto the a1–a∆ planes: both low-dimensional representations of
the flows appear to evolve along a parabolic manifold; see figures 3(b) and 6(b). As
for the cylinder, two additional transients, started from either side of the fixed point
in the direction of the shift mode, have been included. Once again, the transients
shown in figure 6(a,b) are forming the training dataset used for the identification
problem, while the transient depicted in figure 6(c) will be used for cross-validation
purposes only.

5. Results and discussion
Following the seminal work of Noack et al. (2003), so-called quadratic Galerkin

regression models are constructed from the basic building blocks necessary for
reduced-order modelling of the flow configurations considered, i.e. a linear operator
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FIGURE 6. (Colour online) Time evolution of the POD coefficients and corresponding
trajectory in the phase space projected onto the (a1, a2) plane for the shear-driven cavity
flow at Re= 4250. The time evolution of a2(t), not shown, is very similar to that of a1(t).
All three datasets used in the present work are presented.

L and an energy-preserving quadratic nonlinearity N (a). For that purpose, the library
Θ(a) used in the identification process is defined as

[
P1(a) P2(a)

]
, i.e. all the

polynomials of degree 2 or less in the entries of a. A second type of models, cubic
Galerkin regression models, are made of the same basic building blocks as their
quadratic counterparts. They moreover include higher-order nonlinearities which can
serve to model the truncated modes, as discussed in § 3.2. For that purpose, the
library Θ(a) used in the identification process is defined as

[
P1(a) P2(a) P3(a)

]
,

i.e. all the polynomials of degree 3 or less in the entries of a. Up to 57 coefficients
then need to be identified for the present case with n= 3 state variables.

5.1. Cylinder flow
Figures 8 and 9 provide a comparison of the dynamics predicted by the low-
dimensional Galerkin regression models identified using constrained sparse regression
against the dynamics of the original system for the two-dimensional cylinder flow
at Re = 100. It also provides the dynamics predicted by two additional data-driven
reduced-order models, namely:

(i) the minimal Galerkin projection model including only the shift mode and the first
two POD modes,
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(ii) a Galerkin projection model including the shift mode and the first eight POD
modes.

5.1.1. Model selection
Model selection and cross-validation are crucial components of system identification.

The goal is to identify, among all candidate models, the parsimonious model
that optimally balances model accuracy and model complexity. As the sparsifying
parameter λ is varied in the SINDy procedure, a Pareto front is swept out, reducing
the combinatorially many candidate models down to a small handful of candidates
models. Mangan et al. (2017) have recently demonstrated how SINDy can be
combined with the well-known Akaike information criterion (AIC) (Akaike 1974)
or the Bayes information criterion (BIC) (Schwarz et al. 1978) in order to select
the most parsimonious model from this Pareto front. Given a candidate model, the
associated AIC score is given by

AIC= 2k− 2 ln(L(a,Ξ))+ 2
(k+ 1)(k+ 2)
(m− k− 2)

, (5.1)

where L(a,Ξ) is the loss function of the observations a given the best-fit parameter
values Ξ of the candidate model and k is the total number of free parameters. The
last term in (5.1) is a finite sample size correction where m is the total number of
observations used to cross-validate the model. These training and testing datasets are
the same as those shown in figure 3. For two models of the same accuracy, the AIC
score will penalize the one having the larger number of terms.

The AIC scores for each candidate model can have a wide range of values, hence
requiring a rescaling by the minimum AIC value. The relative AIC score is thus given
by

∆=AIC−AICmin. (5.2)

The different candidate models can then be ranked based on this relative AIC score.
Following Mangan et al. (2017), models with ∆ 6 2 have so-called strong support,
models with 4 6∆6 7 have weak support and models with ∆> 10 have no support.
It should be emphasized that the model characterized by ∆= 0 is not necessarily the
best model possible, but only the best one among the different models tested.

Figure 7 depicts the distribution of all the different models identified in the
complexity versus AICc plane for the two-dimensional cylinder flow at Re = 100.
Note that none of the unconstrained models are shown as they have all diverged
in the cross-validation stage when trying to reproduce the dynamics of the transient
evolution shown in figure 3(c). This observation will be investigated in § 5.1.3.
Although the quadratic Galerkin regression models have lower complexity and appear
at first to be more physical, it is interesting to note that they are largely dominated by
the cubic models. In the rest of this section, only the best constrained quadratic model
and the best constrained cubic model are considered. Excluding the transient evolution
shown in figure 3(c) from the validation stage, a similar analysis is performed in
order to select the unconstrained models considered in the following sections.

5.1.2. Qualitative comparisons
Let us consider the first transient evolution forming our training dataset, shown in

figure 3(a). Figures 8 and 9 provide visual comparisons of the dynamics predicted
by the different models. The time evolution of the mean-flow distortion predicted by
the low-dimensional Galerkin projected systems, shown in figure 8(a), indicates that
the duration of the transients is largely over-estimated and that an energy overshoot
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FIGURE 7. (Colour online) Distribution of all the different constrained low-order models
identified in the complexity versus AICc plane. The red circle corresponds to the best
model identified.

occurs once nonlinear saturation kicks in. On the one hand, the over-estimation of the
duration of transients results from the fact that the leading POD modes (see figure 2)
provide only a crude approximation of the leading linear instability eigenmodes (see
figure 1). On the other hand, the overshoot and the ensuing larger amplitude of the
mean-flow distortion mostly result from the disruption of the energy cascade due to
neglecting the higher-harmonic POD modes. Being entirely neglected, these higher
harmonics cannot absorb the excess energy produced by the two most energetic
modes. The latter then grow beyond the correct value until the mean-flow distortion
a∆(t) can eventually absorb this excess energy via the coupling terms. As shown in
figure 8(b), the constrained and unconstrained quadratic Galerkin regression models
suffer from similar drawbacks, although the duration of transients is shortened and
the final amplitude of the mean-flow distortion is in agreement with that of the
original system. Moreover, the unconstrained model a priori performs better than
the constrained one. Comparatively, the cubic Galerkin regression models provide an
almost perfect fit to the original data, as shown in figures 8(b) and 9(d): the amplitude
of the limit cycle is less than 0.5 % higher than that of the original system while
the saturation of the mean-flow distortion differs by less than 0.1 %. Moreover, the
inclusion of the cubic nonlinearities, modelling the influence of the truncated modes,
has a stabilizing effect, hence preventing the energy overshoot and larger limit cycle
amplitude observed for the quadratic models.

5.1.3. Quantitative analysis
Table 1 reports the growth rate and circular frequency of the leading eigenvalue

of the low-dimensional linear operator L for the different models considered and
compares it against the values obtained from a linear stability analysis of the
linearized Navier–Stokes equations. As discussed previously, the leading POD modes
(see figure 2) provide only a crude approximation of the leading linear instability
eigenmodes (see figure 1). As a result of this crude approximation, the growth rate
of the leading eigenvalue of the low-dimensional operator L obtained by Galerkin
projection is three to four times smaller than the actual value obtained by linear
stability analysis, hence explaining the over-estimation of the transients duration,
while the associated frequency is 10 % larger than the actual one. Similarly, the
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FIGURE 8. (Colour online) Comparison of the time evolution of the mean-flow distortion
a∆ predicted by the different data-driven models for the two-dimensional cylinder flow at
Re= 100. The transient evolution considered, which is part of the training dataset, is the
one depicted in figure 3(a).
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FIGURE 9. (Colour online) Comparison of the trajectory in the a1–a∆ plane predicted
by the different reduced-order models for the two-dimensional cylinder flow at Re= 100.
The light grey trajectory is the one given by a direct numerical simulation. Only the
constrained cases are reported for the Galerkin regression models.

growth rate of the unconstrained and constrained quadratic models are 30 % smaller
than the correct value. Compared to these models, the spectral properties of the cubic
Galerkin regression models are in excellent agreement with the results obtained from
linear stability analysis of the Navier–Stokes equations, the identified growth rate σ
being only 6 % larger than the true one while the corresponding frequency is only up
to 1 % different than the correct value. Introducing higher-order nonlinearities in the
model identification thus not only allows us to take into account the influence of the
truncated modes on the driving ones, but it also enables the optimization procedure
to correctly estimate the growth rate of the linear instability.

Now focusing our attention on the decay rate σ∆ of the shift mode, it can be
seen that both constrained models identify the mean-flow distortion as being linearly
stable, so does the unconstrained cubic model. Although the unconstrained quadratic
model appears to outperform the constrained one when looking at the evolution
depicted in figure 8(b), it can be seen from table 1 that it surprisingly identifies the
mean-flow distortion as being linearly unstable. This misprediction of the linearly
stable nature of the mean-flow distortion also explains why the present unconstrained
model fails to reproduce the dynamics of the third transient evolution (see figure 3c)
used in the cross-validation stage. If one were to consider only our first two transient
evolutions (figure 3a,b) without prior knowledge of the problem, one could easily
conclude that the system is indeed linearly unstable in the a∆ direction. From an
identification point of view, the governing equations for a1, a2 and a∆ are obtained
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Galerkin Unc. quad. Con. quad. Unc. cubic Con. cubic
projection SINDy SINDy SINDy SINDy N–S

σ 0.044 0.111 0.115 0.156 0.162 0.152
ω 0.97 0.81 0.81 0.87 0.88 0.88
σ∆ −0.04 0.032 −0.122 −0.052 −0.122 N/A

TABLE 1. Comparison of growth rate σ and circular frequency ω of the leading eigenvalue
for the different models considered. Results from a global stability analysis of the Navier–
Stokes (N–S) equations are also reported. The last row also reports the value of the decay
rate σ∆ associated with the shift mode. Note that only the first two transients shown in
figure 3 are part of the training dataset.

independently from one another in the absence of constraints that would otherwise
couple them. As a consequence, an equation predicting a linear instability of a∆
is thus the simplest model identifiable which balances parsimony and consistency
with measurements available in our training dataset. Such a model is however not
acceptable as it could lead to a misunderstanding of the physics at play. This example
thus clearly demonstrates the benefits of introducing physics into the identification
process: coupling all of the equations governing the evolution of the system through
the use of constraints mimicking the energy-preserving nature of the quadratic
nonlinearity enables the identification of a much more physical low-dimensional
system.

Finally, figure 10 depicts time series of a1(t) in the nonlinearly saturated stage and
the associated Fourier spectrum for the different models considered. Comparing these
different Fourier spectra, it is clear that the vortex shedding frequency ω= 1.15 (St=
0.18) predicted by all the models in the nonlinear regime is in excellent agreement
with that observed from direct numerical simulation.

5.2. Shear-driven cavity flow
Figure 11 provides a comparison of the dynamics predicted by the low-dimensional
Galerkin Regression models identified using constrained sparse regression against the
dynamics of the original system for the two-dimensional shear-driven cavity flow at
Re = 4250. It also provides the dynamics predicted by two additional data-driven
reduced-order models, namely:

(i) the minimal Galerkin projection model including only the shift mode and the first
two POD modes,

(ii) a Galerkin projection model including the shift mode and the first six POD
modes.

The model selection procedure, being the same as described in § 5.1, is thus not
discussed again for the present case.

5.2.1. Overview
Figure 11 provides visual comparisons of the dynamics predicted by the different

models for the two-dimensional shear-driven cavity flow at Re = 4250. Although
the geometry and the physics are quite different from that of the two-dimensional
cylinder flow, the present Galerkin projection models suffer from similar drawbacks
as before: a misprediction of the transients duration and the saturation to higher
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FIGURE 10. (Colour online) Time series of the nonlinearly saturated dynamics of a1(t)
and normalized Fourier spectra for the different models considered for the two-dimensional
cylinder flow at Re= 100. Note that the larger width of the peak in (a) is solely related to
the smaller integration window used in direct numerical simulation. Only the constrained
cases are reported for the Galerkin regression models.

mean-flow distortion due to the disruption of the energy cascade. However, the
key difference is that for the shear-driven cavity flow, the growth rate of the linear
instability mode is slightly over-predicted by the Galerkin projection models. Looking
now at figure 11(b), the two quadratic Galerkin regression models correctly reproduce
the asymptotic dynamics of the shear-driven cavity flow. Both of them slightly
over-predict the duration of the transients. Finally, both cubic models appear to
exhibit similar accuracy as shown in figure 11(c), although the unconstrained version
appears to saturate slightly faster.

5.2.2. Quantitative analysis
Table 2 provides a comparison of the growth rate σ and circular frequency ω of

the leading unstable eigenvalue for each of the models considered. As assessed from
figure 11, all of these growth rates are in qualitative agreement with that obtained
from a global linear stability analysis of the Navier–Stokes equations, the constrained
cubic model differing by less than 1 %. One way to further improve the accuracy of
the quadratic models would be to constrain the eigenspectrum of the low-dimensional
linear operator to be a subset of its high-dimensional counterpart. Such a constraint
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FIGURE 11. (Colour online) Comparison of the time evolution of the mean-flow distortion
a∆ predicted by the different data-driven models for the two-dimensional shear-driven
cavity flow at Re= 4250.

Galerkin Unc. quad. Con. quad. Unc. cubic Con. cubic
projection SINDy SINDy SINDy SINDy N–S

σ 0.029 0.017 0.018 0.032 0.025 0.024
ω 7.50 7.51 7.53 7.1 7.55 7.51
σ∆ −0.11 −0.03 −0.035 −0.035 −0.03 N/A

TABLE 2. Comparison of growth rate σ and circular frequency ω of the leading eigenvalue
for the different models considered. Results from a global stability analysis of the Navier–
Stokes equations are also reported. The last row also reports the value of the decay rate
σ∆ associated with the shift mode.

on the determinant of the low-dimensional linear operator is however a non-convex
constraint and does not fall within the scope of the library CVXOPT used in the
present work.

Let us finally explore the decay rate σ∆ of the shift mode predicted by the different
models, shown in table 2. Contrary to the cylinder flow, all models presented here
correctly identify a linearly stable shift mode. Note however that if only the transient
shown in figure 6(a) had been considered, the unconstrained quadratic model would
suffer from the same shortcoming as for the cylinder flow (i.e. linearly unstable
shift mode). Given that the relative distance to the critical Reynolds number is
comparatively smaller in the present case compared to the cylinder flow, the influence
of the truncated modes is expected to be less important. One might thus hypothesize
that the correctness of the unconstrained quadratic model is related to this fact. In
any case, this example once again underlines the importance of using physics-based
constraints in order to identify physically relevant low-order models.

6. Conclusion
This paper develops a new data-driven Galerkin regression framework to identify

nonlinear reduced-order models of a fluid. The resulting models incorporate a number
of beneficial features of standard Galerkin projection, making them easy to interpret
and use, but without the need for access to a high-fidelity Navier–Stokes model
for the projection. Galerkin regression models also provide a more flexible model
identification, in that they readily generalize to include higher-order nonlinear terms
that model the effect of truncated modes; the inclusion of these terms is shown to
be extremely effective in the examples presented here. In fact, including higher-order
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nonlinear terms in the models prevents underfitting, and allows for models with
improved accuracy in terms of fewer, more energetic modes. The Galerkin regression
framework leverages the recent sparse identification of nonlinear dynamics (SINDy)
algorithm (Brunton et al. 2016a), and generalizes it to include user-provided
constraints directly into the sparsity-promoting regression. These additional constraints
can be used to enforce a priori known values of some of the regression coefficients,
inherent symmetries of the system of equations or some physical behaviour such
as the energy-preserving nature of the quadratic nonlinearity of the Navier–Stokes
equations.

The two-dimensional cylinder flow and the shear-driven cavity have each been
carefully analysed to illustrate the system identification capabilities of the resulting
algorithm. For that purpose, two polynomial libraries have been used and the
constraints have been chosen in order to enforce different physical properties. The
accuracy and performance of the so-called Galerkin regression models have been
compared against reduced-order models derived using a classical Galerkin projection
method. All of the regression models qualitatively reproduce the main features of the
original system: linear instability of the fixed point and final saturation to a periodic
limit cycle. Though these models rely essentially on a data-driven approach, visual
inspection of their trajectories in the phase space highlights the connection between
the quadratic models and the models obtained using a Galerkin projection procedure
in the seminal work of Noack et al. (2003). Moreover, both flow configurations
highlight the importance of including cubic nonlinearities into the admissible pool of
functions for the identification process, something utterly impossible with classical
Galerkin projection without significant additional post-analysis. These cubic terms then
model the influence of the truncated modes onto the driving ones, eventually enabling
the identification of a low-dimensional system with much better predictive capabilities.
Although some of the unconstrained models identified reproduce faithfully the
dynamics of the original system, analysis of their spectral properties has highlighted
the importance of incorporating physically meaningful constraints into the regression
to ensure that the identified model has the correct physical behaviour. In their absence,
the SINDy algorithm can incorrectly identify the mean flow distortion as a linearly
unstable manifold of the fixed point, while adding constraints results in the correct
identification of a linearly stable eigenvalue.

Despite its promise, such an approach to system identification still suffers from
certain limitations. One such limitation is illustrated by the quadratic constrained
models which tend to under-estimate the growth rate of the linear instability. Given
prior knowledge of the linear stability of the high-dimensional system (see § 4.2),
one could then constrain the eigenspectrum of the low-dimensional linear operator
to be a subset of its high-dimensional counterpart. Such a constraint, involving
the determinant of the low-dimensional matrix, falls outside the scope of convex
optimization. Current developments, based on the nonlinear optimization library
NLOPT (Johnson 2014), attempt to overcome such limitations. One might also argue
that the systems considered in the present work are inherently low-dimensional and are
thus not representative of the high-dimensionality of a transitional or turbulent flow.
However, such flows have already been modelled with some success using a Galerkin
projection procedure (Gloerfelt 2008). Given the parallels drawn in the present work
between Galerkin projection and Galerkin regression, there is reason to believe that
the present approach may be successfully applied to such flows as well. Indeed,
this is an exciting future direction and is the subject of ongoing work. Including
high-order nonlinear terms in the pool of admissible functions in combination with
the sparsity-promoting capabilities of the algorithm might furthermore allow the
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identification of smaller and more robust reduced-order models without significantly
altering their accuracy and predictive capabilities.

Extending these constrained regression methods to experimental data may also
present unique challenges and rewards. Many numerical schemes are designed to
preserve energy; however, in turbulent simulations and experiments where sensors
have limited bandwidth, dissipation may be large enough to affect the stability of
models. Explicitly incorporating energy-preserving constraints in the SINDy regression
may be especially important in these problems to find nearby conservative systems.

Acknowledgements
We are grateful for many fruitful discussions with B. Noack, J. Proctor and

N. Kutz. We also appreciate valuable feedback from S. Dawson and C. Rowley.
S.L.B. acknowledges generous funding support from the US Defense Advanced
Research Projects Agency (DARPA HR0011-16-C-0016) and from the US Air Force
Office of Scientific Research (AFOSR FA9550-16-1-0650 and FA9550-18-1-0200).

Appendix A. Connection with NARMAX
Over the years, a number of different approaches have been proposed for the

identification of nonlinear dynamical systems from measured data. One of the most
versatile and popular approach is NARMAX (Billings 2013): nonlinear auto-regressive
model with exogeneous inputs. Although it targets the identification of discrete-time
dynamical systems, its formulation is very close to that of the SINDy framework.
Apart from the discrete-time versus continuous-time representations of the dynamics,
one core difference between these two approaches essentially lies in the algorithm
used to enforce the parsimony of the model: NARMAX classically uses the
orthogonal least-squares procedure, while SINDy is based on a `1-penalized or
iterative hard-thresholded least-squares regression. In addition, the SINDy framework
has been extended significantly, including to identify partial differential equations,
to connect with Koopman operator theory, and to incorporate information criteria,
rational function nonlinearities, and, in the present work, constraints. However, SINDy
may be considered as a close relative of the NARMAX family of system identification,
and the constrained SINDy algorithm may be used to identify effective NARMAX
models, as demonstrated in this Appendix A.

Here, we apply SINDy to identify NARMAX-like models of the two-dimensional
cylinder flow at Re= 100; we only consider this flow configuration for simplicity. As
before, the first two transient evolutions depicted in figure 3(a,b) form the training
dataset, while the last trajectory (see figure 3c) is used solely for cross-validation
purposes. In the rest, we postulate that the discrete-time model can be written as

a(t)=La(t− τ)+N (a(t− τ)). (A 1)

Given a library of admissible right-hand side functions Θ(a), this discrete-time system
can be recast as

a(t)=Θ(a(t− τ))Ξ . (A 2)

As before, Ξi is a sparse column vector indicating which functions from the library
Θ(a) are active in the equation governing the dynamics of ai(t). Given time-series
data of a(t), these sparse column vectors can once again be identified using the SINDy
algorithm, based on a `1-regularized least-squares minimization. The last parameter
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FIGURE 12. (Colour online) Comparison of the trajectory in the a1–a∆ plane predicted
by the different reduced-order models for the two-dimensional cylinder flow at Re= 100.
The light grey trajectory is from direct numerical simulation.

which has to be set before the identification is the time lag τ . Here, it is chosen as
τ = 0.25.

Figure 12 depicts the trajectory in the (a1, a3) plane predicted by an unconstrained
NARMAX-like model, a constrained one and the constrained cubic Galerkin
regression model presented earlier. Although all three trajectories are virtually
identical, it must be noted that the two constrained models are more parsimonious
than the unconstrained one. Indeed, while the unconstrained NARMAX model has
45 terms in its right-hand side, the constrained NARMAX and Galerkin regression
models have 35 and 37 terms, respectively. Moreover, the unconstrained model fails
to reproduce the transient evolution shown in figure 3(c). Importantly, both NARMAX
models are identified using the SINDy algorithm and code base. This example clearly
underlines the versatility of the SINDy framework and the benefit of introducing
physics into the identification process by means of constraints.
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