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Poisson errors and adaptive rebinning in X-ray powder diffraction data
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This work provides a short summary of techniques for formally-correct handling of statistical uncer-
tainties in Poisson-statistics dominated data, with emphasis on X-ray powder diffraction patterns.
Correct assignment of uncertainties for low counts is documented. Further, we describe a technique
for adaptively rebinning such data sets to provide more uniform statistics across a pattern with a wide
range of count rates, from a few (or no) counts in a background bin to on-peak regions with many
counts. This permits better plotting of data and analysis of a smaller number of points in a fitting pack-
age, without significant degradation of the information content of the data set. Examples of the effect
of this on a diffraction data set are given. © 2018 International Centre for Diffraction Data. This is a
work of the U.S. Government and is not subject to copyright protection in the United States.
[doi:10.1017/S0885715618000726]
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I. INTRODUCTION

The X-ray diffraction community collects a great deal of
data which consist of patterns with very sharp, intense peaks
scattered over a background with a weak signal. The individ-
ual bins in these patterns consist of photon counts, and their
statistical variation is well described by Poisson (counting)
statistics. Such data sets may be collected either as a single,
uniform scan of an instrument over the full angular range of
interest, or as a set of shorter scans which cover the regions
around the sharp peaks at high resolution, so that most of
the data acquisition time is spent on “interesting” regions.
Hybrid scans which cover the peaks at high resolution, and
the whole pattern at a lower resolution, are particularly effec-
tive at reducing counting time while assuring precise peak
information and a good understanding of the background.
This paper presents a statistically rigorous set of procedures
for manipulating such data sets, especially in the case in
which the data involve very low counting rates, where the dif-
ference between exact Poisson statistics and the
commonly-used Gaussian approximation is significant.

II. STATISTICAL BACKGROUND

For a Poisson-distributed variable which describes the
counting of uncorrelated events at a fixed rate, the following
well-known relations hold (Wikipedia, 2018) (where a quan-
tity x in angle brackets 〈x〉 represents the mean value of the
quantity):

P(m,N) = mN

N!
e−m (1)

Var(N,m) ; 〈(N − m)2〉 = 〈N2〉 − m2 = m, (2)

where P(μ, N ) is the Probability Distribution Function (PDF)
of observing N events in some interval if the perfectly-known
mean rate of events for this interval is μ, and Var(N, μ) is the
expected variance of the number of events around this mean,
which is also equal to the mean. The critical statement here is
that μ is somehow known correctly, a priori. However, in a
real measurement, all that is available is an observation of
the number of counts N itself. The first issue to address is
the determination of the relationship between an observed
number of counts and an expected mean value μ. This has
been addressed by Bayesian methods in papers such as
Kirkpatrick and Young (2009), which conclude that, for an
observation of N events in an interval, the most probable
assignment of μ is μ =N + 1, and that the variance from
Eq. (2) is also N + 1.

Another (more transparent) approach, which yields
exactly the same result, is to directly consider the possibilities
presented by an observation of N events. To accomplish this,
we need to note some properties of P(μ, N ):

∑1
i=0

P(m, i) = 1 (3)

∫1
0
P(m,N) dm = 1 (4)

∫1
0
mmP(m,N) dm = (m+ N)!

N!

= (N + 1) × . . .× (N + m). (5)

Equations (3) and (4) imply P(μ, N ) is both a normalized PDF
for the discrete variable N at fixed μ and for the continuous
variable μ for a fixed N. Then, for a given number N of counts
observed, we can consider these counts to have resulted from,
with equal probability, a parent distribution with any possible
value of μ. From this, we calculate the expectation value of μ
and its variance. The assumption of equal probability is
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equivalent to a Bayesian approach having no prior informa-
tion. Then,

〈m〉 =
∫1
0
mP(m,N) dm = N + 1

〈m2〉 − 〈m〉2 =
∫1
0
m2P(m,N)dm− (N + 1)2

= (N + 2)(N + 1) − (N + 1)2 = N + 1.

(6)

III. APPLICATION TO DATA

Equation (6), then, establishes that the variance of an
observation of N counts is N + 1. As pointed out in
Kirkpatrick and Young (2009), this is commonly used ad
hoc to eliminate divide-by-zero conditions in statistical analy-
ses in which a weight of 1/σ2 is used in a fitting procedure, but
it is formally correct to do this. Data from X-ray powder dif-
fraction experiments are often stored as “xye” files, in which
the first column is the detector angle, the second column is
the counting rate, and the third column is the standard uncer-
tainty on that counting rate. The previous section then yields
rules for both creating and manipulating xye file data. First,
in the creation of an xye entry, if one has N counts in a
dwell time of τ, the columns would be set to

y =N/t

e = �������
N + 1

√
/t.

(7)

If one is faced with already-created xye files, in which the more
standard choice of y =N/τ and e = ��

N
√

/t has been made, it is
possible to approximately convert them to this standard. The
problem lies in the bins with zero counts, which therefore are
recorded with zero error. This makes it impossible to directly
compute the dwell time for the empty bins. Assuming the data
were taken with constant or smoothly varying count times,
though, one can use the dwell time τ′ from a nearby non-empty
bin with rate y′ and error e′, by computing τ′ = y′/e

′2 and then
replacing the e value of the empty bin with enew = 1/τ′ = e

′2/y′.
The e column of non-zero bins will be replaced with

enew =
�������
N + 1

√

t
=

��������������
(y/eorig)2 + 1

√
y/e2orig

=
������������������
e2orig + (e2orig/y)

2
.

√
(8)

Note that the alternative of just dropping empty bins is statisti-
cally wrong; the empty bins have finite weight and contribute
to any analysis.

After this, the more interesting question is how to com-
bine bins in such data sets. The data are always treated as het-
eroskedastic, but the distributions are not really Gaussian. The
usual method of computing the minimum-uncertainty
weighted mean of two Gaussian-distributed quantities y1 ±
σ1 and y2 ± σ2:

y = y1/s2
1 + y2/s2

2

1/s2
1 + 1/s2

2

(9)

is not really right, since these are Poisson variates, and not
Gaussian. The correct solution to combine a set ofMmeasure-
ments recorded as yj and ej (j = 1. . .M ) is to reconstruct the Nj

and τj which are represented by the recorded values, and com-
pute the total N and τ. This preserves the Poisson nature of the
statistical distribution (since all that has been done is to
regroup counts). One can solve Eq. (7) for each N and τ
using an intermediate quantity α:

aj ;
yj
ej

( )2

= N2
j

Nj + 1

Nj =
aj +

����������
a2
j + 4aj

√
2

tj =
��������
1+ Nj

√
ej

(10)

and the statistics of the M combined measurements are:

y =
∑M

j=1 Nj∑M
j=1 tj

e =
��������������
1+∑M

j=1 Nj

√
∑M

j=1 tj

(11)

IV. ADAPTIVE REBINNING

Often, it is useful to take a data set which has regions with
many bins with only a few counts, and accumulate the many
low-count bins into a smaller number of bins with higher num-
bers of counts. This is not normally recommended for
least-squares fitting procedures, assuming the weights are
computed carefully, since any aggregation of data results in
some loss of information. However, most of the aggregation
is in regions with few counts, where there is not much infor-
mation in the first place, and it may result in a large speed
increase because of the reduction in the number of bins to ana-
lyze. For the purposes of plotting data sets, and for the presen-
tation of results for distribution, rebinning can be very useful.
If such rebinning is carried out in such a way as to assure a
minimal statistical significance for each accumulated bin,
rather than by just collecting fixed-width groups of bins
together (which at least results in uncorrelated bins, but results
in broadening of peaks in regions with plenty of counts), or
(worse) by computing a running average (which produces cor-
related bins, most likely resulting in incorrect error estimates
from fitting software), the resulting data set can preserve a
great deal of information about the widths and positions of
strong peaks, while creating points in the weak regions
which have reduced y uncertainties at the expense of increased
x uncertainties.

We present an algorithm here that rebins data from a set of
xye values while reasonably preserving the shape of strong
peaks, and strictly preserving statistics of the counts within
bins and the first moments of peaks. It transforms an xye set
into a new xye set. This set can be created from a single xye
pattern, or from multiple patterns which have just been concat-
enated into a single array, and then sorted on x. There is no
requirement on the uniqueness of x values, as long as they
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are non-decreasing. The notation below implicitly uses the
conversions in Eq. (10). Although we represent the calculation
of αj and Nj as pointwise operations, if one is working in a
computer language which permits direct array operations,
these can be computed for the entire xye array in advance of
the iterative part of the algorithm. We assume a computer lan-
guage which includes lists of objects in one form or another
(python lists, c++ std::vector, etc.), and in which the first ele-
ment of a list is indexed as element 0, and the the ith element
of the list z is written as zi. We use quantities in brackets {a, b,
c, . . .} to represent a list of items. The pseudocode is written
without the use of structured programming constructs, even
though a “while” loop is likely the real implementation of
the steps from 3 through 13 in a modern computer language.
The “=” sign is a comparison operator; the “←” is assignment.

The input to the algorithm is M points of xye data, refer-
enced as xj, yj, ej, αj, and Nj (from Eq. (10)), and a minimum
relative error ε for a bin to be considered sufficient. The toler-
ance in step 8 is just a small fraction of the typical bin spacing,
so that combined data sets which may have very nearly equal x
values do not get similar bins split across outgoing channels.
The algorithm runs as follows:

1. create lists sn← {0}, sτ← {0}, sxn← {0}
2. create data counter j← 0 and current bin counter k← 0
3. if j =M: go to step 13
4. snk← snk + Nj

5. sτk← sτk + τj
6. sxnk← sxnk + xj Nj

7. j← j + 1
8. if j < M and xj− xj−1 < tolerance: go to step 3 (make sure

nearly repeated x values all get summed into the same bin)
9. if snk + 1 < 1/ε2: go to step 3 to accumulate more data

10. append a 0 to lists sn, sτ, and sxn to start a new bin
11. k← k + 1
12. go to step 3
13. eliminate any bins in all lists corresponding to bins for

which snj = 0. This can really only happen on the final
bin if there are empty bins at the end of the incoming
data sets.

14. compute x′ ← sxn/sn (operations on lists are carried out
element-by-element).

15. compute y′ ← sn/sτ
16. compute e′ � �������

sn+ 1
√

/st

These final lists are the new xye data set. It is worth noting,
though, this has thrown away one piece of statistical informa-
tion. The new bins are unevenly spaced, and have an uncer-
tainty on their x value, too, since they are aggregated from
multiple original bins. A more complete version of this algo-
rithm would generate 4 columns of output: x, x error, y, y error,
and would include a summation of x2j Nj to allow computation
of the second moment of x which would feed into the x error.
The incompatibility of this with common pattern fitting algo-
rithms makes it less easy to use, and the benefits seem mostly
weak, so in most cases, the algorithm in this section suffices.

V. SAMPLE RESULTS

Figure 1 shows the result of this type of operation on data
sets collected from the NIST Parallel Beam Diffractometer
(PBD) (Mendenhall et al., 2016, 2017) equipped with a

focusing mirror. The data consist of a coarse survey scan of
diffraction of Cu radiation from a silicon powder
(SRM660b, NIST, 2010) sample (red “ + ” signs), and a
very fine scan over the peak to get details of the peak shape
(green circles). The blue crosses are the result of concatenating
and sorting these two sets, and rebinning with a 1 = 2% rela-
tive tolerance. The following characteristics are evident: (1) on
top of the peak, the rebinned channels are in 1:1 correspon-
dence with the raw data, since statistics are sufficient there
that each channel satisfies the 1 = 2% requirement; (2) as
one moves down the side of the peak, the rebinned points
move farther apart, since more channels are being aggregated
to achieve the goal; (3) the variance of the blue crosses is
much lower than the red (survey) data in the low-counts
region, since the bins are highly aggregated. The total number
of points in the source data sets, over the whole scan range
(20°–140°) is about 6000, but only 640 remain in the rebinned
set, yet very little information has been lost.

The utility of this procedure for preparation of readable
graphic representations of data becomes particularly clear
when data are being presented on a logarithmic vertical
scale. In this case, the noise in low-count areas, especially if
there are channels with no counts, results in a nearly unread-
able baseline. Figure 2 shows this effect, with data synthesized

Figure 2. (Color online) Log-scale plotted data showing the benefit of
rebinning to the readability of the baseline below peaks. Red “ + ” are
semi-synthetic data; blue “x” with the line is rebinned. Error bars are 1σ of
the aggregated data.

Figure 1. (Color online) Example of rebinned data from CuKα diffraction
from silicon powder. Green circles, high-resolution on-peak scan. Red “ + ”,
low-resolution survey scan. Blue crosses, rebinned combination showing
variable bin spacing with 1 = 2%. The data sets are offset vertically for
clarity. Violet crosses at the bottom are the rebinned set projected down to
the x-axis, to make it easier to see the adaptive point spacing. The inset
shows a vertically expanded region where the count rate is very low.
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from those of Figure 1 to simulate reduced counting statistics.
The red crosses are widely scattered on the log scale, but the
blue, rebinned result has a very easily determined level.

Although, in general, data rebinning is harmful to the
analyses of data such as least-squares fitting, it is worthwhile
to quantify the actual effect of such binning on such fits. The
complete data set, from 2θ = 20° to 2θ = 140°, used as an
example in Figure 1 has been adaptively rebinned into sets
with 1 = 10%, 1 = 5%, 1 = 2%, and 1 = 1% tolerances.
These sets were then fitted using the Fundamental
Parameters Approach (FPA) (Cheary and Coelho, 1992;
Cheary et al., 2004; Mendenhall et al., 2015) and a Pawley
procedure (Pawley, 1980) using Topas51 (Bruker AXS,
2014) software. The fit parameters allowed to vary were the
lattice parameter, the Lorentzian crystallite size broadening,
and the apparent outgoing Soller slit width to fit the axial
divergence, and are displayed in Table I. It is important to
note that the same underlying data set is used in all cases,
so the differences between the fits should be much less than
the statistical error bars if the rebinning is valid. Only the
set reduced to 176 points (less than 3% of the original size)
is beginning to show changes to the fit that are statistically sig-
nificant; in this set, many of the weaker peaks only have 2 or 3
points across the full width at half maximum. The fit times
were the time for 200 iterations of the fitter, they vary signifi-
cantly from run to run, and should only be taken as general

guidance for speed. The difference between the almost-
complete (1 = 10% tolerance) and very sparse (1 = 1% toler-
ance) data set is shown in Figure 3.

VI. CONCLUSION

A formal recognition of the differences between the errors
associated with a Poisson distribution and those of a Gaussian
distribution leads to some rules which allow manipulation of
counting-statistics data sets in a manner that does not degrade
the statistical information in them. In particular, the associa-
tion of a variance of N + 1 with an observation of N counts
allows uniform handling of statistics in systems that span
the extremely-low pure-Poisson range up to the usual
Gaussian limit. This allows simple aggregation of data from
multiple sets, as well as adaptive adjustment of the size of
counting bins to maintain statistical significance even in
regions of very sparse counts. Although, in general, precision
analysis of data sets should be carried out on minimally-
preprocessed data, we demonstrate that using rebinning,
within reason, does not perturb fitting results and can speed
up fits because of the reduced number of data points. The
data compression that results from adaptive rebinning may
be very useful in building rapidly-searchable catalogs of pat-
terns. This probably has its primary utility in patterns in
which strong features are sparsely distributed over a largely
featureless background, or data which are oversampled rela-
tive to the resolution required to describe the narrowest
features.
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TABLE I. Results of fitting data set with varying adaptive rebinning tolerance ε.

Tolerance ε (%) set size (points) fit time (s) lattice (pm) size (nm) Soller width (degree)

10 6686 16 543.1008 ± 0.002 568 ± 13 9.6 ± 0.2
5 2599 13 543.1015 ± 0.002 568 ± 13 9.5 ± 0.2
2 638 3 543.1013 ± 0.001 575 ± 13 9.5 ± 0.1
1 176 3 543.1048 ± 0.003 509 ± 20 9.3 ± 0.2

Errors reported are purely statistical 1σ.

Figure 3. (Color online) Comparison of minimally aggregated data to highly
aggregated data used for fits in Table I. This is a detail of a weak region of the
entire angular range from 20° to 140°. The data labels are the tolerance used in
the rebinning.

1 Certain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such
identification is neither intended to imply recommendation or endorsement
by the US government, nor is it intended to imply that the materials or equip-
ment identified are necessarily the best available for the purpose.
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