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Abstract

This paper facilitates the exploration of optimal individual retirement savings strategies within
a life-cycle framework by providing a convenient tool to implement a model suggested by Yaari

(1965) with an uncertain lifetime and borrowing constraints. The solution is given both for the
general case and for cases leading to closed-form equations such as power utility and Gompertz
mortality. Illustrations for a wide range of parameters indicate that starting to save for retire-

ment in the first phase of one’s career is rarely optimal. Of course, this is not to say that young
workers should not save for other motives – a limitation of this model is that risks besides
mortality are not considered. The conclusion should also be interpreted cautiously as it is

difficult to represent every possible individual circumstance and saving incentive in a single
model. The intuition behind the result is that an efficient strategy allocates the burden of
financing retirement first to periods with higher income (i.e. lower opportunity costs), creating
the potential for an initial period without savings when income grows.

1 Introduction

With Social Security’s upcoming underfunding issues and employers’ reluctance to

offer defined benefit pension plans, Americans will have to rely increasingly on their

personal savings to provide a secure retirement. In that context, there is a growing

need to understand the individual component of retirement savings. While Social

Security and defined benefit pensions are typically analyzed by complex benefit

formulas based on service and salary, individual savings require a different approach.

They are the result of a series of economic decisions where the individual evaluates

the relative costs and benefits of foregoing current consumption for future income.

Life-cycle models can capture these economic tradeoffs and lay the foundation for the

theoretical analysis of individual retirement savings. The objective of this paper is

to fill a gap in the literature by providing an explicit formulation for the optimal

retirement savings strategy in a life-cycle model that includes borrowing constraints.

The starting point for this analysis is a versatile life-cycle model proposed by

Yaari (1965) featuring intertemporal consumption decisions, time-varying income,
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an uncertain lifetime, and borrowing constraints. In a retirement planning context, a

flexible specification for the income process is necessary to represent realistic changes

over the career and at retirement. Longevity risk must also be part of the model

because it is a key determinant of savings toward retirement. Imposing borrowing

constraints (also called liquidity or non-negative wealth constraints) avoids two types

of distortions. First, workers are likely to wish to consume more than they earn at the

beginning of their career. Second, when mortality is added to a life-cycle model,

borrowing against pensions becomes more attractive because there is a low likelihood

that the loan will have to be repaid.

Yaari (1965) recognizes that the borrowing constraint can be binding over a

number of segments of the solution and, as a result, the optimal consumption process

takes two different forms in the binding and non-binding phases. However, his

solution is incomplete in the sense that it does not provide an algorithm to identify the

binding segments : at any given point in time, it is not known which one of the

two possible solutions for the optimal consumption process applies. Leung (1994,

2000, 2001, 2007) adjusts Yaari’s results with partial success by focusing solely on

the terminal wealth depletion time. Davies (1981) provides numerical illustrations

showing that the solution starts in a binding period, but only offers a necessary

condition for the solution, not a sufficient one. This paper is able to address these

limitations by adopting a different approach that exploits the dual version of the

optimization problem.1 Accordingly, the first contribution of this paper is to provide

a solution to Yaari’s model for the general case, which includes an algorithm that

identifies the number and timing of the binding phases. This solution does not require

numerical optimization and can be directly implemented with a simple application

of the bisection method. Whether this solution is based on closed-form equations

depends on the model’s specific inputs. In that regard, a second contribution of this

paper is to show that closed-form equations can be obtained for some realistic sets of

assumptions. A full solution for the case with power utility and Gompertz mortality

is presented and other cases are also discussed.

The solution to Yaari’s model then permits an examination of the optimal retire-

ment savings strategy. The analysis assumes a typical hump-shape income profile,

where earnings grow at the beginning of the career and ultimately drop at retirement.

Note that to simplify the analysis, the following factors are not modeled explicitly :

investment risk, life insurance and pensions purchases, real estate dynamics, ability to

borrow against future income with credit cards, and differential taxation of retire-

ment savings. The solution with the hump-shaped income profile generally has three

segments: (1) there is an initial period where the worker does not save at all for

retirement, (2) later, when his income increases sufficiently, the individual starts saving

at a time t, and (3) eventually retirement savings are exhausted by a time T. The third

contribution of this paper is to derive the comparative statics for the times t and T.2

1 With dual methods, a primary optimization problem is rewritten as an equivalent dual optimization
problem. While the solution to both problems is the same, the alternative dual formulation sometimes
makes it easier to obtain a solution. Applications of dual methods are commonly encountered in the
finance literature, e.g. see He and Pages (1993) and Karatzas and Shreve (1998) for a description.

2 Leung (2000) previously derived similar comparative statics for T, but not for t.
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These results indicate that the following factors are associated with both an earlier

onset and a later exhaustion of savings: low time discounts, longer life expectancy,

greater returns on assets, higher incomes, and lower pensions. While it is possible that

starting to save right away on the first day of work is optimal, a wide range of

numerical illustrations is considered in this paper and t=0 only when the rate of

return is very high. In other words, younger workers should not be expected to save

for retirement unless they are given substantial incentives to do so.

The parsimony of this paper’s model also leads to an explicit equation for the

saving rate in the interval (t, T). With a power utility function, the saving rate is one

minus a multiple of the pension-to-income ratio. The result implies that the individual

saves up to a point where the marginal benefit of doing so equals its marginal cost.

The formula provides an intuitive interpretation for the marginal benefit: it is com-

puted as if the dollar saved now was accumulated with interest and consumed at time

T, and then discounted for mortality and time preferences. This solution highlights

two of the major obstacles standing in the way of greater retirement savings:

(1) opportunity costs are high when earnings are low, which is often the case early in

the career and in some socio-economic groups, and (2) the horizon for discounting is

time T, a time well past retirement with consequently very high discount rates. These

results suggest that financial incentives intended to promote retirement savings can

meet with a limited response if their appeal is mostly based on future benefits and fail

to address the fundamental issue of high opportunity costs inhibiting saving.

The results can be related to several strands of literature besides Yaari (1965),

Davies (1981), and Leung (2007). For instance, it can be shown that the solution in

the interval (t,T) is identical to that obtained from a life-cycle model with an horizon

of T and no borrowing constraint. The solution shows that optimal savings increase

gradually with income, which is in line with the automatic increase feature recently

adopted by some defined contribution plans and the Save More Tomorrow strategy

proposed by Thaler and Benartzi (2004). From an empirical perspective, the model

can offer an explanation for low take-up rates in matching programs requiring indi-

vidual contributions (e.g. see Mitchell et al., 2007; Duflo et al., 2007). Furthermore,

this paper’s conclusion that retirement savings may arise only later in one’s career

agrees with empirical findings from the precautionary savings literature. Notably,

Davies (1981), Hubbard et al. (1995), Carroll (1997), Gourinchas and Parker (2002),

and Cocco et al. (2005) provide various estimates of the age of onset of retirement

savings ranging from 33 to 50. With a set of baseline parameters, this paper places

that age at 36, which is within the reported range. However, this paper differs in that

it does not rely on a specific set of parameters, it illustrates the sensitivity of the results

to the widest possible range of parameters. This analysis permits the reconciliation of

the various ages reported in the literature by examining their choice of assumptions.

The rest of this paper is as follows. Section 2 presents the general solution to

Yaari’s model and Section 3 provides closed-form solutions for certain cases.

Section 4 analyzes the optimal retirement savings strategy in the context of typical

hump-shaped income profiles. It also performs various robustness tests and compares

the results to those obtained with related models. Section 5 concludes by suggesting

directions for future research.
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2 General case

The choice of Yaari’s (1965) model as a basis for our analysis merits discussion, given

the common use of more complex models today. Adding risks to the model typically

lead to one of three scenarios. The first approach is to choose a model with a known

closed-form solution such as the one in Merton (1971). This solution is for an

optimization problem with consumption and portfolio choices for the case with

Hyperbolic Absolute Risk Aversion (HARA) utility, without mortality, and without

borrowing constraints. Merton gives the solution to that problem both for the cases

with and without labor income. Omitting the borrowing constraint is not an issue in

the version of the model without income because wealth has to remain greater than

zero to avoid the infinite disutility of zero consumption. When income is included in

the model, however, this argument does not apply anymore because consumption can

be financed out of income. As a result, illustrations based on that model tend to show

periods with negative wealth. The second approach (e.g. He and Pages, 1993) includes

a borrowing constraint and retains an explicit solution, however it has to assume that

the model’s parameters are stationary. This implies constant income growth, which

is particularly problematic when studying retirement savings because a decline

in income at retirement is needed to motivate these savings. The third approach

(e.g. Cocco et al., 2005) does not rely on stationary assumptions, but requires that the

problem be solved by numerical optimization. While more flexible, this approach also

has its disadvantages. Generating the solution can be time-intensive, given the long-

term nature of the problem and the large number of nodes to consider for the state

variables. This argument is often invoked when restrictive assumptions are used to

model pension income. Another issue with the numerical optimization process is that

it can obscure the solution, and conclusions are sensitive to the parameters chosen for

numerical illustrations.

This paper suggests a different approach to preserve the closed-form nature of the

solution: instead of sacrificing realism by using stationary parameters or allowing

negative wealth, the sources of risk other than mortality are left out. When analyzing

the retirement savings decision only, including portfolio choice and income risk is not

as critical as when the object of the analysis is portfolio choice or precautionary

savings. Once these risks are removed, many models with lifetime uncertainty and

borrowing constraints boil down to a special case of Yaari’s (1965) model, which is

why this model was selected as a basis for this paper. The model presented in this

paper is offered as an analytical complement, rather than a substitute for more

elaborated numerical models.

2.1 Model and assumptions

The optimization problem consists of finding the stream of consumption that

maximizes lifetime utility, subject to a budget constraint and a borrowing con-

straint, i.e.

max
c>0

Z v

0
f (t)u(ct)dt, (1)

24 Marie-Eve Lachance

https://doi.org/10.1017/S1474747210000284  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747210000284


subject to

dWt=[Wtrxct+yt]dt, W0=w0, (2)

and

Wto0 for all t, (3)

where:

’ f(t) is a discount function that can be used to represent time preferences,

mortality, or any other time-varying component of utility;
’ vfO is the last possible age in the problem;
’ u(c) is a continuous utility function of consumption with uk(c)>0, ua(c)<0,

lim
cp0

uk(c)=O, and lim
cpO

uk(c)=0;
’ r>0 is the after-tax real risk-free rate of return;
’ Wt is the wealth process and w0o0 is the initial wealth;
’ yt>0 is a deterministic, finite, after-tax, real income stream (including pensions

or annuities) that the individual expects to receive in the future.

The optimal consumption and wealth processes are denoted respectively by ct* and

Wt*; the corresponding value function is given by

V(t,Wt*)=
Z v

t

f(t)u(ct*)dt: (4)

Retirement problems are a special case of the model in which the income process

and the utility function may change upon retirement. These retirement-specific issues

are discussed in Section 4. For now, the life-cycle model is kept general with only a

mild technical restriction (which is relaxed in Appendix A): the inputs uk(yt), f(t), and
r are assumed to be such that lim

tpv
l(t)=0 and l(t) is continuous, where l(t) is a

function defined by

l(t)=uk(yt)f(t)ert: (5)

2.2 Solution

Appendix A presents a formal version of the solution along with a proof. With

technical details set aside, the solution can be exposed more intuitively in this section.

As noted by Yaari (1965), the solution is composed of two types of segments : (1)

those where the borrowing constraint is binding (Wt*=0 and ct*=yt), and (2) those

where the borrowing constraint is not binding (Wt*>0 and ct*>0).3 Yaari char-

acterizes the optimal consumption growth when there is an interior solution, but does

not delimitate the periods where the borrowing constraint is binding.

To complete Yaari’s solution, let T1,T2, …, TM denote the times when the solution

alternates between the binding and non-binding periods. The relationship between

3 While Yaari also mentions the case where ct*=0, this case is ruled out by the assumption that
lim
cp0

uk(c)=O.
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these times and the periods with Wt*>0 or Wt*=0 is illustrated below:

...0 143210 ω== +MM TTTTTTT

Case 1 0* >tW 0* =tW 0* >tW 0* =tW … 0* =tW

Case 2 0* =tW 0* >tW 0* =tW 0* >tW … 0* =tW

At inception, the solution may start either in a non-binding period (Case 1) or

in a binding period (Case 2). Afterwards, the solution can alternate a number of

times between the two types of periods. As noted by Leung (1994), there exists a time

TM after which the borrowing constraint is binding forever. In this model, this stems

from the assumption that l(t) converges to zero. A priori, M can be any number

if there are no restrictions on the model’s parameters. M should typically be one,

two, or three with a smooth income profile, but can easily be higher when income

fluctuates.

Appendix A gives an algorithm that identifiesM and the times T1, T2, …, TM. As a

starting point, these times must satisfy the budget constraint and consequently the

equations

W(0,T1)=w0 (6)

and

W(Tm,Tm+1)=0 (7)

for all non-binding phases (Tm, Tm+1) with m>0 (see equation (11) for definition

of W(t, T)). As noted in Davies (1981), the boundaries of a non-binding period

must also satisfy l(Tm)=l(Tm+1). These conditions are necessary, but they are not

sufficient to determine the times T1, T2, …, TM because (1) the solution to these

equations is not necessarily unique and (2) satisfying these equations does not

guarantee that the borrowing constraint is satisfied everywhere. To address these

issues, Appendix A suggests the following approach. First, identify the intervals Di,

i=1, …, N, where the function l(t) is decreasing. This notation allows us to introduce

an inverse function Ti(t) such that

l(t)=l(Ti(t)) with t2Dk and Ti(t)2Di: (8)

When defined, this inverse function makes it possible to rewrite equation (7) as a

single-variable problem

W(Tm,Ti(Tm))=0: (9)

Within each period Di, the properties of W(t, T) guarantee that there can be at most

one solution ti to (6) or (9). If there is more than one period i where a solution ti to (6)

or (9) exists, then the optimal one is the one with the highest l(ti). The dual approach

is used in Appendix A to show that this criterion also ensures that the borrowing

constraint is satisfied everywhere.
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With the times T1, T2, …, TM defined, the solution at time t in any non-binding

period (Tm, Tm+1) is given by

ct*=ukx1 l(Tm+1)e
xrt

f (t)

� �
, (10)

Wt*=W(t,Tm+1)=
Z Tm+1

t

exr(sxt)(cs*xys)ds, (11)

and

V(t,Wt*)=B(t,Tm+1)+C(Tm+1,Tm+2)+ . . .+C(TM,v), (12)

where

B(t,T)=
Z T

t

f(s)u(cs*)ds and C(t,T)=
Z T

t

f (s)u(ys)ds: (13)

By contrast, the solution when time t is in any binding period [Tm, Tm+1] takes the

simpler form

ct*=yt, Wt*=0, (14)

and

V(t,Wt*)=C(t,Tm+1)+B(Tm+1,Tm+2)+ . . .+C(TM,v): (15)

2.3 Relation with previous literature

The solution presented in this section can be compared to others found in the litera-

ture. First, our solution can be contrasted with the one in Davies (1981) who also uses

Yaari’s (1965) model as a basis. Davies (1981) provides a characterization of the

solution in the non-binding periods which is equivalent to equations (9) and (10), but

does not mention that this equation can have multiple solutions.4 Thus, he gives

a necessary rather than a sufficient condition for the solution. Without a l(ti) test

like the one suggested in Section 2.2, there is no guarantee that a solution that satisfies

(9) is optimal and implies a non-negative wealth process. It is not clear how Davies

(1981) addresses this issue in his numerical illustrations because he does not specify

the methodology used to produce them. Mariger (1987) also notes the limitation in

Davies (1981), and proposes a test for the case where the solution starts in a non-

binding phase at time 0.5

Second, parallels can be drawn with models featuring income risk and non-

negative wealth such as Deaton (1991), Carroll (1997), Gourinchas and Parker (2002),

4 Davies (1981) also differs by finding a case where the solution ends in a non-binding period, however this
can simply be attributed to the choice of an inverse logistic distribution for mortality (see discussion in
Appendix A for the case where the force of mortality converges to a positive constant over an infinite
horizon).

5 The test selects the horizon T1 such that c0* computed with that horizon is minimized. This is similar to the
criteria of choosing the solution with the highest l(T1) because c0* decreases in l(T1). However, it differs
because it requires testing all possible values T1s[0, v] and does not specify how to determine the onset
of a non-binding period.
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and Cocco et al. (2005). They analyze optimal consumption by graphing it as a

function of cash-on-hand Xt=Wt+yt, which is equal to wealth plus income. For the

case with power utility, the policy functions display a kinked pattern with consump-

tion tracking income closely at low levels of cash-on-hand and becoming almost

linear in cash-on-hand at higher levels. Carroll (1997) describes impatient individuals

as engaging in buffer-stock behavior: they save when cash-on-hand is below a target

and dissave otherwise. The concept of a target level of wealth motivating saving or

dissaving is also present in Deaton (1991) and Gourinchas and Parker (2002).

These results reinforce the notion that consumption behavior is explained by

wealth and that consumption increases with wealth. Our solution offers a different

perspective where wealth plays a more incidental role. To explain this, it must first be

observed that not all wealth is created equal in the model and this affects the re-

lationship with consumption. Specifically, there are two types of wealth : exogenous

wealth (the amount w0 endowed at time 0) and endogenous wealth, which arise when

the individual sets aside a portion of his income (Wt*xw0e
rt at time t). For variations

in exogenous wealth, we obtain similar findings as the ones mentioned above: con-

sumption tracks income when wealth is low (w0=0), it increases with wealth after-

wards (when w0>0), and at time 0 the individual saves only if his wealth is below a

given target. However, this relationship does not hold when endogenous wealth is

contemplated. When savings represent a reserve that the individual builds up to

smooth future income declines, a greater wealth Wt* at time t does not imply higher

consumption at that time. For instance, when the individual saves for retirement, a

greater level of wealth can coincide with a period of greater savings. For the case

where w0=0 and all wealth in the model is endogenous, equation (10) shows that

ct* can be expressed without any direct reference to wealth.6

In the endogenous case, it is the shape of the function l(t) that determines the

individual consumption/saving strategy. Letting TwTm+1, ct* can be rewritten as

ukx1 (uk(yt)l(T)/l(t)), and this equation offers a simple rule to establish whether the

individual is saving or not at any time t within a non-binding period

ct*<yt (saving) if l(t)<l(T),
ct*>yt (dissaving) if l(t)>l(T):

(16)

The intuition behind this result will be discussed later in Section 4.1. The solution for

ct* shows that in a model with certainty, an individual who accumulates his optimal

level of wealth Wt* at time t does not need to consider this level of wealth directly

when establishing how much to consume. The decision is forward-looking, and in-

come profiles play a key role in the cost–benefit utility comparison. Anticipating a

decline in income in the future is a motivation for saving at some point, although

savings may be postponed to periods with higher incomes and lower opportunity

costs. After engaging in a saving phase, the individual will eventually initiate a

decumulation phase when his income declines sufficiently.

6 There might be some confusion because both ct* and Wt* are a function of time and decreasing functions
of l(T). Technically, ct* can be written as an increasing function in Wt*. However, this relationship does
not predict how a change in Wt* affects ct*. There is a unique Wt* in the solution and to obtain a different
one, the model’s assumptions must be changed. This change would also affect the relationship between ct*
and Wt*.
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The analytic nature of our results also allows us to derive an analogue to

Carroll’s (1997) criteria for an impatient individual, but without requiring stationary

assumptions.7 An individual will not start saving at any point in his lifetime if

lk(t)=l(t)(ua(yt)ytk/uk(yt)+f k(t)/f(t))f0 for all t. The scenario with lk(t)>0 is really

what triggers having any savings in our model since the solution requires thatWt*>0

at time t.8 If w0=0, this implies that the individual must start saving out of his income

at some point before time t, although this may not be immediately at time 0. Savings

start at time 0 only when there exists a period i>1 withW(0,Ti(0))o0. According to

the condition, savings typically arise when retirement and its associated drop in

income is included in a life-cycle model. Savings can also emerge when income risk is

such that the income growth rate gt is lower than a given threshold in some scenarios.

Thus, both precautionary and retirement (life-cycle) savings are motivated by the

same desire to smooth future income declines. Retirement can be interpreted as a

limit case of precautionary savings where income declines with certainty. The differ-

ence between the two cases is then a matter of horizon. If income can decline in the

next period, the individual does not have the luxury to postpone savings because the

conditionWt*>0 must be satisfied immediately. This may explain why typically early

career savings are observed in models with income risk, but not in those with retire-

ment planning considerations alone.

3 Explicit solutions

The application of the solution described in the previous section is facilitated when

there is a closed-form equation for W(t, T). The challenge when trying to obtain this

type of solution is to avoid sacrificing realism. This section shows that it is possible to

achieve this objective with a set of assumptions which is flexible enough to reflect

many credible scenarios.

3.1 Assumptions

While other functions will be discussed in Appendix B, this section starts with the

commonly used power utility function

u(ct)=
c
1xc
t

1xc
, cl1, (17)

where c>0 is the coefficient of relative risk aversion. This utility of consumption

is multiplied by the usual exponential time-discount function exbt with b>0. The

uncertain time of death is represented by a Gompertz distribution. This is a two-

parameter mortality distribution, which is frequently used because it has the double

advantage of fitting actual mortality rates fairly well and leading to closed-form

7 Carroll (1997) defines an impatient individual as one who would not save if income was certain. In an
infinite horizon model, the condition is xgc+rxb+s2(c+1)/2<0, where g is the constant income
growth rate, c is the coefficient of risk aversion in the power utility function, b is the time discount rate,
and s2 is the variance in the change in permanent income. The criteria lk(t)f0 is similar, except that s2=0
and g=gt.

8 In Appendix A, one of the necessary conditions is that lk(t)f0 for all ts[Tm, Tm+1] within a binding
period.
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solutions for many problems. This distribution posits that the propensity to die

increases exponentially with age and its force of mortality is given by dt=e(txm)/b/b.

Lifetime uncertainty is incorporated in the model by using the standard equivalent

approach of multiplying the utility at time t by the probability p0,t of surviving from

time 0 to time t. In other words, f(t)=exbtp0,t in the objective function in equation (1).

For the Gompertz distribution, the probability of surviving from time t to time T is

given by

pt,T= exp(exm=b(et=bxeT=b)): (18)

To obtain a flexible specification for the income process, the interval [0, v] is first

divided into J subintervals [tj, tj+1] with j=1, …, J. The function J(t) is then in-

troduced to identify the period j corresponding to a time t. The level of income at the

beginning of each interval is denoted by ytj . At any of these times, the income process

is allowed to jump downwards, which permits a representation of the typical drop in

income at retirement. Over a period [tj,tj+1), the income process is assumed to grow

exponentially at a rate gj and is given by

yt=ytj exp(gj(txtj)) for t2[tj, tj+1): (19)

Since the rate of income growth can be varied over the J periods and these periods can

be made arbitrarily small, this model can be used to replicate most income patterns.

In particular, the level of pension income can be modeled as any function of past

earnings or any arbitrary amount.

3.2 Solution

By substituting the assumptions given above in the equations in Section 2, the fol-

lowing closed-form expressions are obtained for the wealth process W(t, T) and the

components B(t, T) and C(t, T) of the value function

W(t,T)=l(T)x1=cAt,TxYt,T, (20)

B(t,T)=
l(T)1x1=c

1xc
exrtAt,T, (21)

C(t,T)=
beq

1xc
;
J(T)

j=J(t)

C(dj, e
(max (t, tj)xm)=b)xC(dj, e

(min (T, tj+1)xm)=b)

(ytje
xgjtj)cx1qdj

, (22)

where

l(t)=y
xc
t exp((rxb)t+exm=b(1xet=b)), (23)

Yt,T= ;
J(T)

j=J(t)

ytj
e(gjxr)min(T, tj+1)xe(gjxr)max(t, tj)

egjtjxrt(gjxr)
, (24)

At,T=ert+hbhxa[C(a, het=b)xC(a, heT=b)], (25)

C(a, x)=
Z O

x

tax1extdt, (26)
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a=b
rxb

c
xr

� �
, h=

exm=b

c
, dj=b[gj(1xc)xb], q=exm=b: (27)

A few observations about these formulas are instructive. In the budget constraint

W(t,T) in equation (20), Yt,T can be interpreted as the present value of human capital

in the interval (t,T). The product l(T)x1/c At,T represents the present value of the

optimal consumption stream. The solution is thus equivalent to the one that would be

obtained for a model with an horizon of T and no borrowing constraint. The ex-

pression C(a,x) in (26) is the incomplete Gamma function and it commonly arises in

closed-form solutions when mortality follows a Gompertz distribution. It can usually

be computed with built-in functions in computer software.9 For example, Milevsky

(2006) shows how to evaluate this function with Excel’s functions GAMMADIST

and GAMMALN.

The solution is then completed by determining the times T1, …, TM with the

formulas listed above and the four-step algorithm presented in Appendix A. Several

cases for the specification of these times are possible, the shape of the function l(t)

determines which one applies. The solution in the appendix encompasses all possible

scenarios, and the special case M=2 is described in the next section. Within any of

the resulting non-binding phases (Tm, Tm+1), letting TwTm+1 the optimal consum-

ption process is given by

ct*=
l(T)exrt

exbtp0, t

� �x1=c

=yT e(rxb)(Txt)pt,T
� �x1=c

: (28)

Closed-form results are not limited to the power utility/Gompertz mortality case,

Appendix B describes the solution for other cases.

4 Optimal retirement savings strategy: hump-shaped income profile

With the solution to Yaari’s model established, it is now possible to address the

question that is the object of this paper : What is the optimal retirement saving

strategy in a life-cycle model with borrowing constraints? To introduce the retirement

element in the general model, it is assumed that the individual has a hump-shaped

income profile: earnings increase at the beginning of his career, they grow more

slowly or decline at older ages, and they eventually drop at retirement. This pattern

generally appears in aggregate data and permits the interpretation of all savings in the

solution as retirement savings. Since most individuals do not have retirement savings

when they start working, w0=0.

When borrowing constraints are added to a life-cycle model, formulating the

optimal saving strategy is a two-step process. First, the periods where the borrowing

constraint is binding must be determined. Second, the saving strategy within the non-

binding periods must be specified. With a hump-shaped income profile, the global

9 If the incomplete Gamma function cannot be computed with built-in functions, it can be evaluated
numerically with a series development (e.g., see Press et al., 2007).
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structure of the solution is fairly simple to describe.10 There is a time t where the

individual starts to save. A corner solution t=0 is possible, i.e. it can be optimal to

start saving at the beginning of the career. This case happens only if there exists a

period i>1 with W(0,Ti(0))o0. After time t, the individual initially builds up his

savings and then draws them down after retirement until they are exhausted by a

time T. In the two binding periods [0, t] and [T, v], the individual consumes his

entire income. In the non-binding period (t, T), the individual saves a fraction

st*=(ytxct*)/yt of his income for retirement. With that framework, a retirement

saving strategy can be characterized by three key components: t, T, and st*

in-between. The next subsections analyze each of these elements from a theoretical

perspective and the section concludes with numerical illustrations.

4.1 Optimal onset t

The optimal time of onset t is jointly determined with T and the pair is obtained by

solving the following system of two equations with two unknowns

W(t,T)=0 and l(t)=l(T): (29)

The first condition W(t, T)=0 is simply the budget constraint. The second condition

l(t)=l(T) corresponds to the breakeven point for saving in equation (16). This can

be interpreted as ‘the individual initiates a savings phase when the marginal benefit

(MB) of saving starts exceeding its marginal cost (MC)’ by rewriting l(t)=l(T) as

uk(yt)|fflffl{zfflffl}
MC of saving

= uk(yT)e(rxb)(Txt)pt,T|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MB of saving

: (30)

The result in equation (30) provides some insight regarding why some individuals

may be reluctant to start saving for retirement: they either face high opportunity

costs for saving or they discount future benefits too heavily. For instance, low in-

comes are an obstacle to saving because they imply high opportunity costs. Those

anticipating high income growth are better off postponing savings to periods with

higher income and relatively lower opportunity costs. Myopic individuals and those

with high mortality prospects may postpone saving because they severely discount the

future associated benefits. Favorable market conditions and preferential tax treat-

ment should increase returns and make it relatively more attractive to start saving

early. Poor economic conditions would have the opposite effect, especially when

combined with a lowering of incomes. Equation (30) also shows that those with high

pensions (i.e. yT) have limited incentives to start saving, while those with little or no

pensions would be more eager to save. Unfortunately, those who have both low

incomes and low pensions are caught between a rock and a hard place : while saving

now has a high opportunity cost, failing to do so can have negative consequences in

the future.

10 With a hump-shaped income profile, the problem is considerably simplified because the function l(t) has
generally only two decreasing periods, i.e. N=2 in that case. With N=2 and w0=0, the only values that
M can take areM=1 andM=2. With respect to the notation in Sections 2 and 3, t=0 and T=T1 when
M=1 and t=T1 and T=T2 when M=2. If N>2, mild technical conditions can be imposed on the
model’s parameters to rule out the case M>2.
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With a tractable solution, these intuitive results can be formalized by deriving

comparative statics for t. The derivatives are obtained by applying standard

techniques to the equations in (29).11 Based on these formulas, it can be shown that

the comparative statics have the following signs

dt

db
>0,

dt

ddt
>0,

dt

dr
<0,

dt

dy0
<0,

dt

dyT
>0: (31)

The results in (31) confirm the earlier predictions that workers start saving earlier for

retirement if they are not myopic, they live longer, they enjoy greater returns on their

investments, and they have higher incomes or lower pensions.

4.2 Optimal exhaustion T

In this model, a time T where savings are permanently depleted can always be found.

Beyond some point, the odds of being alive become so slim that it is not worth saving

for that contingency if one receives any form of pension. In a manner similar to that

used for t, the sign of several comparative statics can be established for T

dT

db
<0,

dT

ddt
<0,

dT

dr
>0,

dT

dy0
>0,

dT

dyT
<0: (32)

Aside from small methodological differences, these comparative statics for T are

similar to those obtained by Leung (2000).12 Retirees will exhaust their savings later if

they are not myopic, they expect to live longer, they have higher returns on their

investments, they had higher incomes during their careers or they have lower pen-

sions after retirement. Note that all the comparative statics here have opposite signs

when compared to those obtained for t. This is in part because, ceteris paribus, those

who start saving earlier accumulate greater retirement savings and are able to spread

these funds over a longer period of time after retirement. The results in (32) also

reflect the fact that the speed at which individuals spend down their retirement sav-

ings depends on their preferences and situation. Those who are more myopic or have

lower life expectancy will exhaust their savings more quickly. Those with higher

pension income can also afford to run down their assets more rapidly because they

will be in a relatively better situation when they have to live off their pension income

after time T. By contrast, a higher rate of return would make retirement savings last

longer and increase T for all.

4.3 Optimal level of savings

The last component of the retirement saving strategy is the saving rate st* between

times t and T, which can be expressed explicitly as a percentage of income with the

11 In the calculations, it is assumed that: the level of pensions yT is held constant when computing dt/dy0,
changing pensions does not affect pre-retirement income when deriving dt/dyT, and the result dt/ddt for
the force of mortality applies to ts(t ,T). If pensions change proportionally with income, then increasing
y0 does not affect t. For dt/dr<0, the result generally holds unless c is very high. For dT/dr>0, the result
can be demonstrated for N=2.

12 Leung’s (2000) results are based on a solution without an initial binding period. For mortality, he
introduces a shift parameter w that applies to all hazard rates and obtains dT/dw<0. Similarly, for the
income function he uses a single shift parameter j and derives dT/djf0.
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following equation

st*=
ytxct*

yt
=1x

l(t)

l(T)

� �1=c

=1x
yT
yt

(e(rxb)(Txt)pt,T)
x1=c: (33)

As explained in Section 2.3, for the case w0=0 this solution is not a direct function of

wealth, it is determined by the shape of the function l(t). This function l(t) has uk(yt)
as a component and, thus, the income profile affects saving behavior. In that regard,

equation (33) shows a new result : the saving rate st* is linear and decreasing in the

pension-to-income ratio yT/yt.
13 Thus, holding (e(rxb)(Txt)pt,T)

x1/c constant, the

saving rate should increase and decrease with income over the individual’s working

years. To examine the effect of mortality, consider the case r=b where st* is given by

1xyT/yt.pt,T
x1/c. If pt,T

x1/c was equal to one, then a less than 100% pension-to-income

ratio would motivate saving automatically. However, when the individual considers

that he might not be alive at time T when the savings are consumed, this has the same

impact as increasing the pension-to-income ratio by a factor of pt,T
x1/c For example,

if yT/yt=70%, pt,T=30%, and c=3, the effect of mortality is equivalent to using

an effective pension-to-income ratio of 70%.(30%x1/3)=105%, in which case the

individual is not interested in saving. In that example, a low value for pt,T was chosen

because, as will be illustrated later, T tends to happen much after retirement. Since

pt,T increases with t, the dissuading effect of mortality is more pronounced earlier in

the life-cycle. Last, the difference rxb also affects st*, a higher return increases savings,

and a higher time discount lowers them. Small differences can have a significant

impact when they are compounded over a long period of time Txt.

4.4 Numerical illustrations

The concepts discussed above can be illustrated more concretely with a numerical

example based on the formulas developed in Section 3.2. The results are presented for

a set of baseline assumptions before considering a wide range of sensitivity tests. For

the baseline scenario, the problem starts at age 25 with initial wealth w0=0. The real

after-tax rate of return is set to r=3%, the time-discount factor to b=3%, and the

coefficient of risk aversion to c=3. The survival probabilities are modeled according

to a Gompertz distribution with parameters m=57 and b=13. These parameters are

chosen to fit unisex mortality data from the National Center for Health Statistics

(NCHS) and correspond to a life expectancy of 75 years.14 The income process is

based on data from the 2006 Current Population Survey grouped by age, with an

adjustment for taxes.15 The individual is assumed to retire at age 62, which is the most

common retirement age in the United States. Pensions after retirement are assumed

13 The linear relationship with the pension-to-income ratio can also be found with other utility functions
such as members of the HARA family. The result for a general utility function is st*=
1xukx1(uk(yT)e(rxb)(Txt)pt,T)/yt. Thus, pension income decreases savings in any case, although the
relationship might not be linear.

14 The mortality rates are based on 2005 data for men and women. These data are available online at http://
www.cdc.gov/nchs/data/dvs/mortfinal2005_worktable_310.pdf.

15 The median earnings (wages and salaries) from series PINC-08 of the Current Population Survey are
$30,174 for ages 25–34, $36,758 for ages 35–44, $39,126 for ages 45–54, and $36,768 for ages 55–64.
A quadratic equation is fitted to these values to interpolate income values for ages 25 to 62. Taxes are
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to be fixed and represent 60% of pre-retirement income, which is in line with the

average income replacement rate observed at age 62 in the Health and Retirement

Study.

The solution to the optimization problem for the baseline scenario appears in

Figure 1: Panel A plots the optimal consumption process along with the income

assumption and Panel B displays the optimal savings. The solution in Figure 1 is

composed of three phases. First, the borrowing constraint is initially binding because

income is relatively low and the individual does not start saving for retirement until

age 36.4. The second phase in the solution is an accumulation/decumulation period

Values at selected ages (in dollars) 
Age 36.4 45 55 62 75 86.3 
Income 31,343 34,373 34,356 19,908 19,908 19,908
Consumption 31,343 31,073 30,384 29,492 26,079 19,908
Retirement savings 0 17,517 69,014 111,780 34,208 0

 $0

 $10,000

 $20,000

 $30,000

 $40,000

25 35 45 55 62 75 85 95

Age

consumption
income

A. Optimal consumption and income

$0

$20,000

$40,000

$60,000

$80,000

$100,000

$120,000

25 35 45 55 62 75 85 95

Age

B. Optimal savings

Results computed with baseline assumptions given in Section 4.4.

Figure 1. Optimal strategy with baseline assumptions

then deducted from these earnings according to the tax tables in the 2006 Internal Revenue Service 1040
form.

Optimal onset and exhaustion of retirement 35

https://doi.org/10.1017/S1474747210000284  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747210000284


starting at age 36.4 and ending at age 86.3. At the beginning of this phase, the saving

rate increases gradually as income grows and it eventually attains a rate close to 12%.

At retirement, accumulated savings reach $111,780. After retirement, a spend-down

phase is initiated until savings are exhausted by age 86.3. In the third and final phase

of the solution after age 86.3, the borrowing constraint is binding and the individual

consumes his pension income for the rest of his life. It should be noted that not

everybody lives long enough to see this last phase where retirement savings are

exhausted. In Figure 1, the probability of reaching age 86.3 is only 25%.

4.5 Robustness of results

This section examines the effect of alternative parameters and model assumptions on

the solution. First, the impact of changing the parameters is illustrated graphically in

Figure 2 and numerically in Table 1, which present the optimal ages t and T as

a function of the following factors : b, life expectancy, c, r, y0, and the income

replacement rate at retirement. Figure 2 confirms that changing these parameters has

the effect predicted by the comparative statics in (31) and (32).16 The figure also

displays the wide possible range of values that t and T can take. The ages range from

25 to 62 years old for t and from 62 to over 100 years old for T. For t, the ages are

generally less than 45 years old unless the individual is extremely myopic, he expects

to die very early, or he is not risk averse at all. In most cases, it is not optimal to start

to save for retirement right away at age 25. Since the only exception occurs when the

rate of return exceeds 9%, this suggests that it takes strong artificial incentives to

induce optimal savings at the beginning of one’s career.

The same type of sensitivity exercise is performed in Figure 3 and in the last column

of Table 1, which display the amount of retirement savings at age 62. The results

show that retirement savings can range anywhere between almost zero and several

hundred thousand dollars, depending on the parameters chosen. Except for the

income panel, those who start saving earlier in Figure 2 also accumulate higher

retirement savings in Figure 3. Note that this graph can be a useful tool to identify

parameters that lead to extreme results in terms of retirement savings.

Next, the robustness of the results is tested by considering an alternative utility

function. The dotted lines in Figure 2 give the results using an exponential utility

function with coefficient a=0.0001.17 The results are quite similar, the onset of

savings is typically within one year of the power utility results. The age of exhaustion

of savings is about two years earlier versus power utility, with larger differences in

Panel F for low replacement rates. This later result is explained by the steeper decline

in utility at low levels of consumption for the power utility function. Overall though,

the choice of the utility function is not critical for our conclusions as long as the level

of risk aversion is similar to the one for the baseline case.

16 The comparative statics for dt/dc and dT/dc were not included in these lists because these expressions
cannot be signed for all parameters.

17 The coefficient of relative risk aversion is RR=c for the power utility function and RR=ac for the
exponential function. To make results comparable, the parameter a is chosen to equate these coefficients,
i.e. such that c=ac. Given that consumption is roughly around $30,000 in the solution and that c=3,
a=3/30,000=0.0001.
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By contrast, the income growth rate has more influence on the results. This variable

was not included earlier in the comparative statics because it is not constant over the

career. Intuitively, higher income growth rates should translate into a later onset of

retirement savings. If one wants to finance a given amount of retirement savings, it is

relatively cheaper (in terms of utility) to do so later if it is assumed that incomes grow

over time. This effect should be more pronounced for those with steeper income

growth because they face a greater price differential for saving early versus late.

To illustrate this, Figure 4 shows the optimal consumption profiles for two income

Table 1. Sensitivity analysis

Age of onset
of retirement
savings (t)

Age of exhaustion
of retirement
savings (T)

Retirement
savings at age 62

(in dollars)

A. TIME-DISCOUNT PARAMETER

b=0% 26.5 94.7 228,202
b=4% 39.8 83.4 88,211

b=8% 49.9 74.2 40,134
b=12% 54.6 69.8 23,957

B. LIFE EXPECTANCY

50 years 55.9 67.0 16,665

70 years 38.2 81.7 89,791
90 years 33.7 99.8 162,246

C. RELATIVE RISK AVERSION

c=0.1 60.6 63.5 4,540

c=1 42.9 74.9 55,200
c=3 36.4 86.3 111,780
c=5 35.0 92.1 135,743

c=10 33.7 100.2 163,495

D. RATE OF RETURN

r=0% 44.4 77.3 58,828
r=4% 33.9 89.7 138,123
r=8% 26.3 101.1 269,254

r=12% 25.0 108.6 421,212

E. INITIAL INCOME

y0=$20,000 38.4 82.8 66,482
y0=$40,000 31.9 95.3 402,014

y0=$60,000 30.3 99.6 765,640

F. PENSIONS

Replacement rate: 5% 27.9 109.0 399,517
Replacement rate: 25% 30.8 98.1 272,277

Replacement rate: 50% 34.7 89.6 151,634
Replacement rate: 75% 39.6 80.8 59,640
Replacement rate: 100% 47.1 66.4 2,116

Note: Results computed with the baseline assumptions given in Section 4.4., except for
parameter change in panel. Pensions are kept constant in Panel E and pre-retirement income is
kept constant in Panel F.
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patterns (one flat, one steep) that are obtained by multiplying the baseline growth

rates by a factor. The income growth rates are multiplied by 0.2 (2) for the flat (steep)

scenario. In Figure 4, pension income is set at 60% of average career income for each

case. The figure shows that savings start earlier at age 27 for the flat scenario and later

at age 39 for the steep scenario. The results for the flat case should be viewed with

caution because this type of income pattern is typically seen in groups with lower

education and income (e.g. see Campbell and Viceira, 2002). Since those with very

low incomes have high replacement rates from Social Security, the pension effect
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 savings arise in the 100% replacement rate case because earnings decline before retirement.
** For exponential utility, horizontal axis is coefficient of absolute risk aversion multiplied by 30,000.

Figure 2. Sensitivity analysis : power vs. exponential utility*

(Optimal ages of onset and exhaustion of retirement savings)
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(as shown in Figure 2F) can offset part of the effect from the reduction in income

growth, and savings may not start so early in practice.

The choice of the mortality distribution is another assumption that can be varied.

To test whether the outcomes are affected by the use of the Gompertz distribution in

place of actual mortality rates, the results were derived again using the formulas in

Appendix B and a discrete mortality table based on the NCHS death rates truncated

at age 100. The solutions are extremely close : t=36.5 and T=86.3 for the NCHS

mortality table versus t=36.4 and T=86.4 for the Gompertz distribution. A more

extreme robustness test is to consider the case without mortality by assuming a fixed

horizon at age �TT. The comparison between the cases with and without mortality
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Figure 3. Sensitivity analysis with power utility
(Retirement savings at age 62)
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depends greatly on the choice of �TT. Figure 5 illustrates how the consumption profiles

are affected in two cases, �TT=75 (life expectancy) and �TT=86:3 (the age at which assets

are exhausted in the baseline case). Without the discount for mortality, post-

retirement consumption carries a greater weight in the decision process, which should

lead to earlier and higher retirement savings. Figure 6 supports this, t decreases to

35.2 for �TT=75 and to 33.3 for �TT=86:3. Retirement savings are slightly higher for
�TT=75 at $116,390 and much higher for �TT=86:3 at $166,564. Although retirement

savings are relatively more attractive when mortality is removed, it is still suboptimal

to start saving for retirement very early in the career, probably because of the

anticipation of future income growth. It should also be noted that retirement savings
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With mortality, savings at retirement=$111,780
Fixed horizon at age 75, savings at retirement=$116,390
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Solid lines represent income and dashed lines consumption. Results computed with the baseline assumptions
given in Section 4.4, except for variations in mortality.

Figure 5. Consumption with and without mortality
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Solid lines represent income and dashed lines consumption. Results computed with the baseline assumptions
given in Section 4.4, except that income growth rates are multiplied by 0.2 in the flat case and by 2 in the
steep case. Pensions are 60% of average career income.

Figure 4. Optimal consumption and income growth
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can be significantly overstated in models that use a fixed horizon much longer than

life expectancy.

Relaxing the borrowing constraint has a meaningful impact on the results. As

mentioned in the introduction, it is particularly important to add this constraint when

lifetime is uncertain. Figure 6 illustrates this point by presenting the optimal wealth

process when the borrowing constraint is removed for the cases with and without

mortality. The case with mortality is based on the NCHS death rates. Figure 6 shows

that the results are more distorted for the case with mortality. Young workers want to

borrow in both cases, but retirees only want to borrow in the case with mortality.

When young workers can borrow, they start saving for retirement later because they

have to repay their debt first. Figure 6 shows that t increases to 46 in the case without

mortality and to 52 in the case with mortality. The results for cases with a limited

amount of borrowing permitted should lie somewhere between those of Figures 1 and

6. Although not captured by the model, an additional concern is that retirement

savings could be delayed further if the interest rate charged on the loan is greater than

the risk-free rate.18

The case with w0>0 can next be examined with the general solution developed in

Section 2. As mentioned in that section, there is a difference between wealth that the

individual builds up voluntarily and endowed wealth. In a case like the one in the

baseline scenario where it is not optimal to start saving right away when w0=0, any

endowed wealth is automatically spent down over a period of time.19 This may or may

not affect retirement savings. If w0<W(0, t), initial wealth is exhausted before time t

and the solution has M=3: it starts in a non-binding phase and afterwards has the

same three phases as for the case with w0=0. If w0>W(0, t),M=1 and the individual

does not draw down his entire savings before starting to save for retirement. In other

-$150,000

-$100,000

-$50,000

$0

$50,000

$100,000

25 35 45 55 62 75 85 95
Age

With mortality and borrowing constraints
With mortality and without borrowing constraints
Without mortality and borrowing constraint

Results computed with the baseline assumptions given in Section 4.4, except that mortality is based on
NCHS death rates.

Figure 6. Wealth with and without borrowing constraint

18 The interaction between credit use and retirement savings would be an interesting topic to investigate in
future research.

19 In practice, the outcome may be different if retirement savings are illiquid or if a penalty tax applies.
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words, a portion of the endowed wealth is used to increase retirement savings. The

threshold W(0, t=36.4) is $39,870 for the baseline case and Figure 7 illustrates

two possible scenarios for the solution by contrasting the cases w0=$20,000 and

w0=$50,000. The $20,000 case is below the threshold and initial savings are drawn

down by age 33. The solution is then identical to the one for the baseline scenario with

savings starting again at age 36 and being exhausted by age 86. The case with

w0=$50,000 is above the threshold and there is only one long non-binding period

which ends at a slightly later time T=86.6.

There are several other model variations that would be interesting to consider

(bequests, risky asset, income risk), but they imply losing the closed-form solution.

Still, the expected results can be discussed briefly. As discussed in Section 2.3, adding

income risk would add a layer of precautionary savings in the early part of the career.

For risky pensions, the effect would depend on the specific modeling assumptions. To

get a quick idea of the possible magnitude of the results, one can think of a worst-case

scenario that indicates the earliest possible age of onset. For example, in the baseline

scenario if pensions can decrease by at most 25%, the earliest retirement savings

could start is age 33.9. A much more catastrophic scenario would be needed to induce

savings at the beginning of the career. Next, adding a bequest function would likely

affect the speed at which the individual exhaust his savings after retirement. On the

other hand, this effect would be small if the bequest motive is mostly satisfied with

sources outside liquid wealth such as life insurance or the survivor pension paid by

Social Security.

Adding risky assets would mean higher expected returns, but also more volatility

which would be penalized by risk averse investors. Merton’s (1971) closed-form

solution offers a simple strategy to estimate the combined effect of risk and return. In

his solution for the optimal consumption process, the effect of adding a risky asset is

to increase the rate of return from r to r+0.5(mxr)2/cs2, where m is the expected risky

return and s2 the variance of the risky asset. For example, if the risk-free rate is 3%,

$0

$20,000

$40,000

$60,000

$80,000

$100,000

$120,000

$140,000

25 35 45 55 62 75 85 95
Age

Initial wealth = $0
Initial wealth = $20,000
Initial wealth = $50,000

Results computed with the baseline assumptions given in Section 4.4, except for initial wealth.

Figure 7. Effect of positive initial wealth
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the coefficient of risk aversion is c=3, the risky asset expected return is 8%, and its

standard deviation is s=15%, r=4.9% would be used instead of 3%. Since the

effect of adding a risky asset is similar to the effect of increasing the rate of return, the

impact can be estimated with the results presented in Figure 2D. An earlier onset of

retirement savings could arise, but only in cases where expected returns are relatively

high when compared to risk penalties. In any case, it would take a significantly high

risk premium for an immediate saving strategy to be optimal.

4.6 Onset of retirement savings in other life-cycle models

Our model’s prediction for the age of onset of retirement savings can be compared to

those of related life-cycle models by Davies (1981), Hubbard et al. (1995), Carroll

(1997), Gourinchas and Parker (2002), and Cocco et al. (2005). These models are

retained because they share a common core of assumptions with this model, they

feature intertemporal consumption decisions, non-negative wealth, and declining

income at the end of the career.20 Some of these models are more restrictive than ours

because they use a fixed horizon, impose parameter restrictions, or require that

pensions be a multiple of earnings in the year before retirement. They all also differ in

that they rely on numerical optimization techniques rather than an explicit solution.

On the other hand, the last three models are more general in the sense that they

include income risk and, in the case of Cocco et al. (2005), portfolio choice. Carroll

(1997) and Gourinchas and Parker (2002) do not impose a borrowing constraint

directly, but their assumption of a possible zero-income scenario guarantees that the

individual never chooses to borrow. With this approach, it is not possible to obtain

our results as a special case by removing income risk because wealth would become

negative.

Table 2 provides a summary of the assumptions used in each model and in our

baseline scenario, along with their predicted age for the onset of retirement savings.21

The predictions of these models are consistent with the analysis in Section 4.5, they

all find that young workers do not save for retirement, they wait until their thirties

or forties. Our analysis in Figure 2 allows us to tie in all these results and offer

an explanation for their differences by examining their choice of parameters. The

relatively high income growth rate (5.4%) in Davies (1981) can be responsible for the

later onset between age 40 and 45. Carroll’s (1997) later age range of 45–50 for

operatives and managers is likely due to the fact that he uses a high discount rate

relative to the rate of return (4% versus 0%). His assumption that unskilled laborers

have no income growth after 40 can explain why he finds an earlier age around 35–40

for that group. Similarly, lower income growth for the case with high school edu-

cation can justify the earlier age of 33 in Hubbard et al. (1995). Savings also start a

20 This is not an exhaustive list, these papers should be considered as representative of other works, for
example Campbell and Viceira (2002), Cagetti (2003), and Samwick (2006). Although Deaton (1991) is a
common reference for borrowing constraints, it is not included here because its assumption of stationary
income growth prevents it from predicting an onset of retirement savings.

21 Most models have age-specific income growth rates. Since they all start with a growth phase and end
with a declining (or lower growth) phase, the average income growth rates are presented for these two
periods.
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Table 2. Optimal onset of retirement savings (t) in related models

Authors

Assumptions
Optimal onset
of retirement
savings (t)b Mortality c r

Average income growth
(by age range)

Pensions replacement
rate (annual growth)

Davies (1981) 1.5% Inverse logistic 1 3% 20–56: 5.4%
57–65:–4.8%

100% (x2.25%) 38*

4 44*
Hubbard et al.
(1995)

3% Fixed 80 3 3% High school:
21–49: 1.8%*
50–65: x1.8%*

54% (–1.9%)* 33

College:
21–49: 2.5%*
50–65: x5.8%*

100% (–2.4%)* 37*

Carroll (1997) 4% Fixed 80 2 0% Unskilled:
25–40: 3%
41–65: 0%

70% (0%) 35–40*

Operatives :
25–50: 2.5%
51–65: 1%

45–50*

Managers :
25–55: 3%
56–65: x1%

45–50*

Gourinchas and
Parker (2002)

4% Fixed 87 0.5 3.4% 26–50: 1.4%*
51–65: x1.1%*

See note 38*

Cocco et al. (2005) 4% NCHS 10 2% 20–43: 2.4%*
44–65: x0.5%*

68% (0%) 35*

Baseline 3% Gompertz 3 3% 25–50: 1.7%
51–65: x0.6%

60% (0%) 36

Note: An asterix indicates values estimated from graphical results. In Cocco et al. (2005), the risk premium is 4%. In Gourinchas and Parker (2002), the
problem is truncated at retirement and the retiree receives a multiple of the last permanent component of income. The value function used at retirement
implies a multiple of about 2% and a fixed horizon around age 87. Two set of ages for the onset of retirement savings are reported: 38 (based on a target
wealth analysis) and 40–45 (based on the life-cycle/buffer-stock breakdown).
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little sooner at age 35 in Cocco et al. (2005), possibly because of a high risk aversion

assumption with c=10. At the other extreme, Gourinchas and Parker (2002) use a

low level of risk aversion at c=0.5 and find an age of 38. As shown in Figure 2, the

low risk aversion should normally push the onset of savings much later, but two

offsetting forces in Gourinchas and Parker (2002) prevent this : the individual does

not have much of a pension, and savings must be spread out over a relatively long

fixed horizon going up to age 87.

It should be clarified that models featuring additional risks do not have a precise

time (such as t) that identifies when retirement savings start. This age is typically a

rough estimate corresponding to the time where wealth starts building up more

quickly in the solution, making it difficult to conduct analyzes such as the sensitivity

illustrations in Figure 2. Some exceptions include Gourinchas and Parker (2002) who

offer a strategy to detangle buffer-stock (precautionary) and life-cycle (retirement)

savings. They define the life-cycle component as the solution to the model without

income risk. While this is an interesting approach, the problem is that models such as

Carroll (1997) and Gourinchas and Parker (2002) rely on income risk to prevent

violations of the borrowing constraint. Without income risk, the results are those of

a model without borrowing constraints and they display the same pattern as illu-

strated in Figure 6. As discussed earlier, removing the borrowing constraint delays

the onset of retirement savings by several years. Indeed, Gourinchas and Parker

(2002) report two different ages for the onset of retirement savings : 38 (based on a

target wealth analysis) and 40–45 (based on the life-cycle/buffer-stock breakdown).

Besides understating life-cycle savings, this approach also overstates precautionary

savings because they are defined as the complement of life-cycle savings. This

problem can be corrected by measuring retirement savings with a model with explicit

borrowing constraints such as the one suggested in this paper.22

5 Conclusion

With a declining outlook for pensions, a larger share of retirement income will have

to be derived from individual savings. In that context, the objective of this paper is to

uncover the economic dynamics underlying the formation and exhaustion of indi-

vidual retirement savings within the context of Yaari’s (1965) model. This mechanism

is often obscured in numerical solutions to increasingly complex life-cycle models.

This paper develops a life-cycle model which captures enough realistic features to

produce credible numerical illustrations, yet is sufficiently parsimonious to generate

explicit solutions. Specifically, the theoretical contribution of this paper is threefold.

First, it revisits Yaari’s (1965) model and solves it for the general case. Second,

it shows how to obtain closed-form equations for that solution for certain sets of

realistic assumptions. Third, it derives several comparative statics for t and T, the

times of onset, and exhaustion of retirement savings. While the previous literature has

often focused on wealth as a determinant of consumption and saving behavior, our

22 In future work, an interesting extension to Gourinchas and Parker’s (2002) approach would be to divide
further the amount of precautionary savings into a component that is due to risky career income and one
that is due to risky pension income.
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solution indicates that the evolution of this behavior over the life-cycle is explained by

the shape of the function l(t). This function captures the combined effect of income

profiles, risk aversion, time preferences, investment return, and mortality.

Analyzing the resulting solution reveals that the optimal retirement savings

strategy can be divided into three stages over the life-cycle : a period [0, t] without any

savings, a period [t, T] where savings are accumulated and then depleted, and, lastly,

a period [T, v] where savings are permanently exhausted. The same trade-off moti-

vates the individual to either start saving or to save more: the marginal benefit of a

dollar saved must be greater than its opportunity cost. This relationship highlights

two of the main factors hindering retirement savings: (1) those with relatively lower

incomes have higher opportunity costs and are likely to be better off paying their bills

than saving for retirement, and (2) the benefits of saving may not loom large in the

decision process because they are effectively discounted as if they were consumed at

time T, which ranges from about 62 to 100 years old in our illustrations. Efforts to

promote savings may be wasted if they fail to recognize these hurdles. These major

obstacles also suggest that, for some, low observed retirement savings can be in line

with optimal behavior rather than being a sign of deviation from normative behavior.

When evaluating whether people save enough for retirement, it should be kept in

mind that there is a difference between making ex-ante optimal saving decisions and

having ex-post adequate retirement savings.

The model developed in this paper could be applied to quantify the impact on

savings and welfare of various retirement-related programs. By contrast with simple

retirement savings accumulation techniques, some advantages of the model proposed

in this paper are that it : (1) recognizes the opportunity cost associated with saving,

(2) takes into account the intricate relationship between optimal individual saving

behavior, income, and pensions, and (3) measures and contrasts welfare in different

scenarios.23 While this model may not be as flexible as existing ones in terms of

incorporating various sources of risk, it does not rely on numerical optimization and

has an exact solution which is much faster to obtain. This is an attractive feature for

problems requiring a large number of repetitions of the solution, for example when

dealing with large datasets or solving for welfare equivalents. Of course, it would also

be very valuable to explore ways to incorporate risks in the solution without resorting

to numerical optimization.

This paper presents multiple opportunities for future research. For instance,

it would be interesting to examine whether incentives such as favorable tax treatment

and employer matching contributions make it optimal to save early. Another appli-

cation is to assess the benefits for employers of offering defined contribution plans in

light of the finding that saving early is not optimal. Lastly, a third area of research

suggested in Section 4.5 is to analyze the interaction between credit use and the onset

of retirement savings.

23 An example of an application with welfare-equivalents was given in a previous version of the paper for
the case of automatic enrollment. Sup-optimal saving behavior without automatic enrollment was re-
presented by assuming that the individual delayed the onset of his savings by d years (after his optimal
date t) and adopted his optimal saving strategy afterwards. The results showed that automatic enroll-
ment was associated with welfare losses for those with mild to moderate sub-optimal behavior and
welfare gains for those with more serious issues (d=20).
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Appendix A: Solution and proof to the problem of Section 2

Proposition 1. Let l(t) and W(t,T) be the continuous functions defined respectively

in equations (5) and (11). Assume that lim
tpv

l(t)=0 and w0o0. For any two periods

i and k, define Ti(t) as an inverse function such that tsDk, Ti(t)2Di, and

l(t)=l(Ti(t)). The solution to the optimization problem in (1)–(3) takes two possible

forms, depending on the borrowing constraint being binding or not. The times

T1,…,TM separate the binding and non-binding periods and are constructed with the

following four-step process :

Step 1. Identify the periods Di where l(t) is strictly decreasing

Let Di=[ti
l, ti

u), denote the periods i=1,…,N where the function l(t) is strictly de-

creasing, i.e. lk(t)<0 for all ts(ti
l, ti

u) and lk(t)o0 for all other t. If N=1, t1
l=0,

and w0=0, then M=0 and the borrowing constraint is binding for all t. Otherwise,

proceed to Step 2.

Step 2. Determine whether the borrowing constraint is binding at t=0

In the first period [0, T1], the borrowing constraint is non-binding in Case 1 and

binding in Case 2. Case 1 applies if w0>0 or if w0=0 and there exists a period io1

(i>1 if t1
l=0) with a solution tisDi to W(0,ti)=0 with l(ti)ol(0). Proceed to Step 3

in Case 1 and to Step 4 in Case 2.

Step 3. Solve for T1 in W(0, T1)=w0

For each period io1 (i>1 if w0=0 and t1
l=0) with W(0,ti

l)fw0 and W(0,ti
u)>w0,

there exists a unique value tis[ti
l,ti

u) such that W(0,ti)=w0. There exists at least one

period i such that a time ti exists. If more than one solution ti exists, select the period

i* with the highest associated value for l(ti) and set T1=ti*. If i*=N, then M=1 and

the solution is complete. Otherwise, proceed to Step 4.

Step 4. Solve for Tm in W(Tm,Ti(Tm))=0 (with Tmx1sDk)

For each period is(k,N], let [�ttli, �tt
u
i ] denote the range of values of tsDk for which

Ti(t) is defined and toTmx1. If [�ttli, �tt
u
i ] is non-empty, W(�ttli,Ti(�tt

l
i))f0, and

W(�ttui ,Ti(�tt
u
i ))>0, there exists a unique value ti2[�ttli, �ttui ) such that W(ti,Ti(ti))=0.

There exists at least one period is(k,N] such that a time ti exists. If more than one

solution ti exists, select the period i* with the highest associated value for l(ti) and

set Tm=ti* and Tm+1=Ti*(ti*). If Tm+1sDN, then M=m+1 and the solution is

complete. Otherwise, repeat Step 4.

Accordingly, the optimal consumption and wealth processes within any non-binding

period (Tm, Tm+1) are given respectively by equations (10) and (11). Within any

binding period [Tm, Tm+1], these processes become ct*=yt and Wt*=0.

Proof. The first step in solving an optimization problem such as the one in (1)–(3) is

to formulate its Lagrangian as

L=
Z v

0
f(t)u(ct)dt+m w0x

Z v

0
exrt(ctxyt)dt

� �
+

Z v

0
g(t) w0x

Z t

0
exrs(csxys)ds

� �
dt ,

(34)
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where mo0 and g(t)o0 denote respectively the Lagrange multipliers for the budget

constraint and the borrowing constraint. Following He and Pages (1993), the prob-

lem can be simplified by introducing the process X(t)=m+
R w

t g(s)ds and rewriting the

Lagrangian more compactly as

L=
Z v

0
f(t)u(ct)dt+X(0)w0+

Z v

0
X(t)exrt(ytxct)dt: (35)

For ct* to be an optimal control, there must exist a process X(t) such that the fol-

lowing five Kuhn–Tucker necessary conditions are satisfied

@L

@c
=0 ) ct*=ukx1 X(t)exrt

f (t)

� �
, (36)

ct*=yt whenever Wt*=0, (37)

X0(t)Wt*=0 and X0(t)f0 for all t, (38)

W0*=w0, (39)

Wt*o0 for all t, (40)

where

Wt*=
Z v

t

exr(sxt)(cs*xys)ds: (41)

Below, it is verified that these conditions are satisfied by a candidate solution con-

sisting of the process

X(t)= l(t) for t2[Tm,Tm+1] in binding periods,
l(Tm+1) for t2[Tm,Tm+1] in non-binding periods

�
(42)

and the times T1,…,TM defined in Proposition 1. The first condition in (36) is met

because the optimal consumption process ct* in (10) and (14) is obtained by substi-

tuting X(t) in (36). The second condition in (37) is satisfied because ct*=ukx1(l(t)exrt/

f(t))=yt whenever Wt*=0. The third condition in (38) holds because (1) Xk(t)=
dl(Tm+1)/dt=0 whenever Wt*>0, and (2) by construction of the times T1,…,TM,

Xk(t)=lk(t)f0 whenever Wt*=0. The fourth condition in (39) follows from the

requirement that T1 satisfies W0*=W(0,T1)=w0 in Case 1 and that W0*=0=w0 in

Case 2. The fifth condition in (40) (Wt*o0 for all t) necessitates a lengthier proof and

dual methods are used here to present a more compact argument.24 For that purpose,

let ct*=ukx1(X(t)exrt/f(t)) and define the dual utility function

J(X*(t), t)=min
X2D

J(X(t), t)=
Z v

t

f(s)u(cs*)dsx
Z v

t

X(s)exrs(cs*xys)ds: (43)

As demonstrated in He and Pages (1993), the optimization problem in (1)–(3) is

equivalent to finding the process X2D which minimizes JwJ(X(t),t), where D re-

presents the set of non-negative and decreasing processes. The connection between

24 An alternative proof which is not based on dual methods is also available from the author upon demand.
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the minimization of J and the borrowing constraint can be established by observing

that Jx(X*(t),t)=exrtWt*. If J is minimized, the borrowing constraint is satisfied

because it must be the case that Jx(X*(t),t)f0 along the optimal path (otherwise,

J could be decreased by picking a lower X(t)). To show that our solution indeed

minimizes J, first observe that the optimal process X(t) must take the form given in

equation (42) to satisfy conditions (36), (37), (38), and (40). The argument can then

be completed by showing that J would increase if, among the possible solutions

that satisfy the budget constraint (i.e. the times ti such that W(0,ti)=w0 and

W(ti,Ti(ti))=0), a ti other than the one with the highest value of l(ti) was chosen.

For Case 1, J decreases with X(0)=l(ti) because Jx(X(0),0)=xw0f0; setting T1=ti
with l(ti)<l(ti*) would thus increase J. For Case 2 with Tmx1sDk, J decreases with

X(t)=l(ti) for all ts(ti,tk
u) because over that range Jx(X(t), t)=x

RTi(t)

t exrs(cs*xys)

ds=
R t

ti
exrs(cs*xys)ds<0. Choosing any of the other admissible tisDk with l(ti)<

l(ti*) for Tm would imply that X(t) decreases for all t2(ti*, ti) � (ti*, t
u
k) and that

consequently J increases.

Finally, Proposition 1’s proof can be completed by demonstrating the existence

and uniqueness of the times ti. Within each period Di, this stems from the continuity

of the functionsW(0,t) andW(t,Ti(t)) and by noting that in Case 1 dW(0,t)>0 for all

ts(ti
l,ti

u) and that in Case 2 dW(t,Ti(t))=dt>0 for all t2(ti, �ttui ) if W(ti,Ti(ti))=0.

The result follows by applying the intermediate value theorem in conjunction with

the boundaries defined in Proposition 1. Similar arguments can be used to prove the

global existence of at least one time ti in each problem. In that case, it must also be

considered that in Case 1W(0,0)=0 and lim
tpv

W(0, t)=O, and that in Case 2 it can be

shown that (1)W(�ttli,Ti(�tt
l
i))f0 for all i with [�ttli, �tt

u
i ] non-empty and (2) there must exist

at least one period i with W(�ttui ,Ti(�tt
u
i ))>0.25

Remarks on Proposition 1. In the equations, W(0,ti)=w0, W(ti,Ti(ti))=0, and

l(t)=l(Ti(t)), the times ti and Ti(t) can be inverted numerically by applying the

bisection method with the bounds defined in Proposition 1. The set [�ttli, �tt
u
i ] is non-

empty when l(ti
l)ol(tk

u) and l(ti
u)<l(tmx1) and the bounds are given by �ttli=max

[Tmx1,Tk(t
l
i)] and �ttui=min[tuk,Tk(t

u
i )]. If lk(t)=0 for all t between ti

u and ti+1
l , some

minor adjustments have to be made to Proposition 1: [ti
l,ti

u) becomes [ti
l,ti

u], [�ttli, �tt
u
i )

becomes [�ttli, �tt
u
i ], and tk+1

l is substituted to Tmx1. Last, to be more precise, i* is such

that l(ti)<l(ti*) for all i<i* and l(ti)fl(ti*) for all i>i*.

If l(t) does not converge to zero as t gets larger, then the solution may end in a non-

binding phase. The condition lim
tpv

l(t)=0 should generally be satisfied if the force of

mortality increases quickly enough, i.e. the chance of survival at extremely old ages is

virtually zero. When mortality is not included in the model or when the force of

mortality converges to a positive constant in an infinite horizon model, the condition

may or may not be satisfied depending on the model’s specific combination of para-

meters. Nevertheless, results can easily be extended to the case where l(t) does not

converge to zero. Essentially, when solving for the time at which a non-binding

25 The assumption that l(t) converges to zero implies that lim
tpv

W(0, t)=O and also that, if k<N, there

must exist at least one period i>k with l(t)>l(�ttui ) for all t2(�ttui ,Ti(�tt
u
i )), and thus W(�ttui ,Ti(�tt

u
i ))>0.
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period ends, the corner solution at the last possible age v (or O with an infinite

horizon) has to be considered. More precisely, the procedure for solving for T1 in

W(0,T1)=w0 has to be adjusted to include the case W(0,v)=w0 if l(v)>l(0).

Similarly, for W(Tm,Tm+1)=0, the case W(Tm,v)=0 has to be considered if

l(v)>l(Tm). The rest of the process is the same (including the test for the highest l),

but a constant l is substituted to l(T1) in equation (6) and l(Tm) is substituted to

l(Tm+1) in equation (9).

The results can also be extended to the case with discontinuities in l(t) : in the limit,

these jumps can be replicated by a very rapid change in l(t). The solution is mostly

unaffected when the break in l(t) occurs when the function is increasing. In that case,

functions evaluated at discontinuous points are simply replaced with their left-side

limit. If the jump occurs at a time t̃ where the function l(t) is decreasing, the

methodology used to solve for the times ti has to be slightly modified. Specifically,

three possible scenarios have to be considered: the solution can be before, at, or after

time t̃. Standard techniques such as the intermediate value theorem can be used to

identify which case applies. When the solution is at time t̃ in Case 1, a constant l

is substituted to l(Tm+1) and the problem becomes : solve for l in W(0, t̃ )=w0.

In Case 2, the problem changes toW(t̃,ti)=0 if t̃sDk and toW(ti, t̃ )=0 with l(Tm+1)

replaced by l(Tm) if t̃sDi>k.

Appendix B: Other utility and mortality functions

This appendix discusses some additional cases where closed-form equations can be

derived. The results for ct* and Wt* for the log utility case u(ct)=ln(ct) are obtained

by substituting c=1 in equations (27) and (28). The exponential utility function

u(ct)=xexp(xact) with a>0 also yields explicit results for the optimal consumption

and wealth processes, which become

ct*=yTx
(rxb)(Txt)+exm=b(et=bxeT=b)

a
, (44)

Wt*=yT
1xexr(Txt)

r
x

rxb

ar
Txtx

1xexr(Txt)

r

� �

x
exm=b

a

eT=bxr(Txt)xet=b

xr+1=b
xeT=b

1xexr(Txt)

r

� �
xYt,T:

(45)

More generally, other members of the HARA family of utility functions, i.e. those

that take the form

u(ct)=
1xh

h

kct
1xh

+g
	 
h

(46)

can produce explicit equations for ct* and Wt*. However, if gl0, the condition

lim
cp0

uk(c)=O is violated. Less technically, this means that zero consumption could be

optimal and the equations given above would have to be adjusted slightly to reflect

periods with zero consumption, if any.

In addition, the mortality distribution is not restricted to the Gompertz case. For

example, the case of the Makeham distribution (which adds a constant K to the
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Gompertz force of mortality) involves only a minor adjustment to our previous

results, equation (28) would have to be multiplied by exp(xKt/c), andxbK/c would

be added to a in equation (27). The case with a constant force of mortality m at all

ages is also straightforward, but should be used with caution as it makes it difficult

to reflect very high mortality rates at older ages. More generally, the results can be

adjusted to fit any discrete mortality table with survival probabilities pk, pk+1, …, pl.

Assuming a constant force of mortality within each period, the function At, T in (25)

would be replaced by

At,T=ert ;
l

s=k

p1=cs

ps+1

ps

� �xmax (s, t)=c
est min(s+1,T)xest max(s, t)

ss
,

with ss=
rxb+ ln(ps+1=ps)

c
xr, t2[k, k+1) and T2[l, l+1):

(47)
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