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Abstract. The nonlinear interaction between a large-amplitude whistler pump and
the modified ion-cyclotron perturbations is studied. A nonlinear dispersion relation
for the modulation/filamentation interaction is derived and solved numerically to
investigate the instability properties. We discuss the relevance of the present study
with regard to recent laboratory experiments where the modulation/filamentation
of a whistler pump by the modified ion-cyclotron waves has been observed.

Whistlers are of fundamental interest in space and laboratory plasmas. In the near-
Earth environment, whistlers are generated by various sources such as lightning in
the atmosphere, particle streams in the cusp and magnetospheric turbulence and
shocks, while in laboratory experiments, whistlers can be produced by antennas in
the plasma. Non-thermal whistlers are usually guided along the geomagnetic field
lines where they travel from one hemisphere to another. Two-dimensional whistlers
in sheared magnetic fields can mediate fast magnetic field reconnection [1], which
may play an important role for the electron energization [2, 3]. Instruments on
board the CLUSTER spacecraft have been observing broadband intense electro-
magnetic waves in the whistler frequency range, correlated with density cavities
near the plasmapause as well as at the magnetopause and in the terrestrial foreshock
[4]. Observations from the Freja satellite [5] also exhibit the formation of envelope
whistler solitary waves accompanied by plasma density cavities. The linear and non-
linear properties of whistler waves have been demonstrated in various experiments.
The ducting of whistler waves in a density trough was experimentally demonstrated
by Stenzel [6] and was later interpreted as the action of the antenna near-zone field
which heats the electrons [7]. A review of whistler-related phenomena in space
and laboratory plasmas is contained in [8]. Recent laboratory experiments with
a non-stationary magnetic field [9, 10] show an axial (along the magnetic field)
self-focusing of whistlers and the formation of isolated wavepackets. Experiments
also reveal the trapping of whistlers in density depleted ducts [11] and in magnetic
ducts consisting of an enhanced magnetic field in a plasma with homogeneous dens-
ity [12]. It is likely that nonlinear phenomena associated with electron whistlers
may also emerge in high-energy laser-plasma experiments where extremely large
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(giga-Gauss) magnetic fields have been observed [13]. Accounting for the spatio-
temporal-dependent whistler ponderomotive force [14, 15], investigations of the
modulation and filamentation of finite-amplitude whistlers interacting with mag-
netosonic waves [16–19] and dispersive Alfvén waves [20] have been carried out.
The linear self-focusing of frequency modulated whistlers [21] and the nonlinear
formation of density modulated whistlers [22] were investigated theoretically and
numerically by the present authors. Recently, Sutherland et al. [23] reported ex-
perimental evidence of a four-wave decay interaction involving a whistler (helicon)
pump and modified electrostatic ion-cyclotron waves (MEICWs). This is a new
channel of transformation of energy of the high-frequency whistler wave into low-
frequency modified ion-cyclotron waves.
We present here a model which describes the four-wave interaction scenario

relevant to the experimental observations [23]. A large-amplitude whistler pump
interacting with MEICWs will generate upper and lower whistler sidebands that
form an envelope of waves. The ponderomotive force of the latter in turn reinforces
the MEICWs in a plasma with an external magnetic field ẑB0, where ẑ is the
unit vector along the z-axis and B0 is the strength of the magnetic field. Due
to the nonlinear interactions between the MEICWs and a right-hand circularly
polarized whistler pump, there appears a modulated whistler with an electric field
E⊥ =E(τ, z, r⊥)(x̂ + iŷ) exp(−iωt + ikz)+ complex conjugate (where x̂ (ŷ) is the
unit vector along the x- (y-)axis, the wave frequency ω and the wavenumber k
are related by ω = k2c2ωce/ω2

pe � ωce, c is the speed of light in vacuum, ωce is the
electron gyrofrequency and ωpe is the electron plasma frequency), which evolves
according to [17]

i(∂τ + Vg∂z )E +
Sz

2
∂2

z E +
S⊥
2

∇2
⊥E + ω

(
N − 2Vz

Vg

)
E = 0, (1)

which should replace [23, equation (2)]. Here, τ is the slow time scale, |δE/δτ | �
|ωE|. We stress that [23] does not describe the physics of modulated whistler waves
accurately. Here Vg = 2ω/k is the whistler group velocity, Sz = Vg/k = 2S⊥ is
the coefficient of group dispersion, N = ne1/n0 � 1, ne1 and Vz are the electron
density and magnetic-field-aligned electron fluid velocity perturbations associated
with the MEICWs and n0 is the unperturbed electron number density. The electron
continuity equation gives

∂τ N ≈ −∂zVz . (2)

Averaging the parallel component of the electron momentum equation over 2π/ω,
we obtain [24]

me∂τ Vz = ∂z (eφ − TeN) +
ω2
pe

4πn0ωωce

[
∂z +

2
Vg
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]
|E|2, (3)

where me is the electron mass, φ is the ambipolar potential associated with the
MEICWs, Te is the electron temperature and the third term in the right-hand
side represents the whistler ponderomotive force [17]. The ions participating in the
dynamics of the MEICWs are coupled to the electrons through the ambipolar po-
tential. The expression for the ion number density perturbation ni1 is thus obtained
by combining the linearized ion continuity and momentum equations. We have(

∂2
τ + ω2

ci

)
ni1 =

cn0ωci
B0

∇2
⊥φ, (4)

where ωci is the ion gyro-frequency. Our equations are closed by invoking ni1 = ne1.

https://doi.org/10.1017/S0022377805004071 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377805004071


Amplitude modulation of whistlers 151

Figure 1. The real frequency ΩR (upper left panel) and the growth rate Γ (lower left panel)
as a function of Kz and K⊥. The right upper and lower panels show the values of ΩR and Γ
at Kz = 0.01 cm−1 as a function of K⊥. The parameters are: B0 = 158 G; n0 = 1013 cm−3;
mi/me = 73400 (for argon); E0 = 170 V cm−1; Cs = 5 × 105 cm s−1; ω = 7.2 × 2π × 106 s−1;
and ωci = 3.8 × 104 s−1 = 6.0 kHz.

We now consider the MEICWs that are driven by the ponderomotive force of the
helicons. We obtain from (2)–(4) the equation

(
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where Cs = (Te/mi)1/2 is the ion sound speed and mi is the ion mass. We note
that the right-hand side of (5) above is different from the right-hand side of [23,
equation (3)], as the latter does not properly account for the whistler ponderomotive
force [17]. The latter is an essential ingredient in the investigation of the modula-
tional/filamentation instability [17,24] of a constant-amplitude whistler pump with
the electric field E0. The nonlinear dispersion relation corresponding to (1) and (5)
can thus be derived following [24]. We obtain[
(Ω−KzVg)2 − 1
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where D = (1 + meK
2
⊥/miK

2
z )Ω2 − ω2

ci − K2
⊥C2

s , and Ω and K are the frequency
and wavevector of the MEICWs, respectively. We solve (6) numerically by letting
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Ω = ΩR + iΓ for the parameters in [23] and display the results for ΩR and Γ in
Fig. 1. We find an oscillatory instability, located approximately along the curve in
(Kz ,K⊥) space where both D and (Ω − KzVg)2 − (SzK

2
z + S⊥K2

⊥)2/4 are zero, as
seen in the lower left panel of Fig. 1. From the upper panels of Fig. 1, we see that
the frequencies of the unstable modes are of the same order as the ion-cyclotron
frequency.
In conclusion, we have presented a model for the interaction between a large-

amplitude whistler pump and the modified electrostatic ion-cyclotron perturbation.
We have derived a nonlinear dispersion relation which takes into account the
four-wave modulation/filamentation instability which generates the modified ion-
cyclotron waves with frequencies comparable to the ion gyro-frequency. This has
relevance for a recent laboratory experiment [23] where low-frequency waves with
a frequency slightly lower than the ion-cyclotron frequency have been observed.
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