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Abstract

In this work we generalise the main result of [1] to the family of hyperelliptic curves with
potentially good reduction over a p-adic field which have genus g= (p− 1)/2 and the largest
possible image of inertia under the �-adic Galois representation associated to its Jacobian.
We will prove that this Galois representation factors as the tensor product of an unramified
character and an irreducible representation of a finite group, which can be either equal to the
inertia image (in which case the representation is easily determined) or a C2-extension of it.
In this second case, there are two suitable representations and we will describe the Galois
action explicitly in order to determine the correct one.

2020 Mathematics Subject Classification: 11G20 (Primary); 11F80, 11F85,
11G20, 11G20, 11-04 (Secondary)

1. Introduction

A hyperelliptic curve over a field K is a smooth, projective, geometrically integral alge-
braic curve X of genus g≥ 1 that has the structure of a degree 2-cover of P1. Elliptic curves
are special cases of hyperelliptic curves, with g= 1 (and a rational point). Similarly as with
elliptic curves, when char(K) �= 2, any hyperelliptic curve over K can be defined by an affine
Weierstrass equation of the form

X : y2 = f (x),

where f (x) ∈K[x] is a square-free polynomial. By this, we mean that the function field of X
is isomorphic to K(x)[y]/(y2 − f (x)), as a quadratic extension of K(x). It is also well known
that deg (f ) is equal to 2g+ 1 or 2g+ 2.

One important difference between elliptic curves and higher genus hyperelliptic curves is
that the set of points on the latter does not have a group structure. However, it is possible to
associate an abelian variety to any curve X, namely the Jacobian variety Jac(X), and study
the group structure on it. For the definition of the Jacobian of a curve, see e.g. [13, Section 1].
If K is a fixed separable closure of K, we denote by Jac(X)(K) the set of points defined over
K and lying on Jac(X). In particular we can define, for a prime �, the �-adic Tate module,
which is
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T�Jac(X)= lim←−
n

Jac(X)[�n],

where by Jac(X)[m] we denote the subgroup of m-torsion points of Jac(X)(K). It can be
proved that, for � different from the characteristic of K, this is a free Z�-module of rank 2g
(see [12, Section 15, Theorem 15·1]).

Let GK =Gal(K/K) be the absolute Galois group of K. Then we have a linear action on
the points of Jac(X), and an induced action on the Tate modules, thus we can define, for any
prime � (different from char(K)) a Galois representation

ρ� : GK −→Aut(T�Jac(X)),

which is a 2g-dimensional representation. After taking the tensor product with Q�, and fix-
ing a basis for T�Jac(X)⊗Q�, we can and will consider Aut(T�Jac(X)) as a subgroup of
GL2g(Q�).

From now on, we assume that K is a non-archimedean local field of characteristic 0, i.e.
a finite extension of Qp for some prime p; we also assume that p �= �. We denote by vK

the valuation on K, by OK the ring of integers, by πK a uniformiser, by k the residue field,
with algebraic closure k, and by Knr the maximal unramified extension of K contained in
K. Then the Galois group GK has a normal subgroup with pro-cyclic quotient, namely the
inertia subgroup:

IK = {σ ∈GK |σ (x)= x ∀x ∈ k}.
In fact, IK =Gal(K/Knr) and the quotient is isomorphic to Gal(k/k), thus it is generated

by any element of GK that acts as Frobenius on the residue field, i.e. as x 
→ x|k|. We call
any such generator a Frobenius element of K, and we denote it by FrobK . In Section 4 we
fix a precise choice of FrobK . Therefore, in order to describe the Galois representation ρ�,
we need to compute the image of the inertia elements and the image of Frobenius, either by
fixing a basis for Aut(T�Jac(X)) and computing the matrices representing these elements, or,
as in [6, Lemma 3], by expressing ρ� as a sum of irreducible representations, each equal to
the tensor product of an unramified character and a representation of some finite group.

In this work, we shall generalise the main result of [1] to higher genus curves. Namely,
we will consider hyperelliptic curves with bad, potentially good reduction at the largest wild
prime. Such curves are defined by an equation y2 = f (x) where f is square-free of odd degree
equal to the residue characteristic of K, see [14, Section 2, Corollary 2(a)], and we will focus
on the case where the image of inertia under ρ� is the largest possible.

In Section 2 we give the statement of the main result of this work. In Section 3 we describe
explicitly the action of inertia in our setting, using [7, Theorem 10·3] and [15, Section 8·2,
Proposition 25]. In Section 4 we use a good model for the family of curves we are interested
in, to compute the eigenvalues of Frobenius. Finally in Section 5 we give details about the
proof, in particular in the case where the inertia degree of K/Qp is odd, when the work of
Sections 3 and 4 is not sufficient to describe the full Galois representation.

2. Statement of the main results

Let p be an odd prime and let K be a finite extension of Qp. Let X be a hyperelliptic curve
over K defined by an equation of the form:

X : y2 = f (x) with f ∈K[x] monic, square-free, of degree p. (∗)
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Recall that the genus g of the curve satisfies p= 2g+ 1. Suppose that X has potentially
good reduction over K, i.e. there exists a finite extension F/K such that the base change
X ×K F of the curve X to F has good reduction. Then by the Criterion of Néron–Ogg–
Shafarevich (see [14, Section 2, Theorem 2(ii)]), the Galois representation ρ� restricted to
inertia factors through a finite quotient. We assume that this quotient has the largest possible
size. The first result characterises the hyperelliptic curves that satisfy this assumption. Let
α1, . . . , αp ∈K be the roots of f , � be the discriminant of f , G=Gal(K({√αi − αj}i �=j)/K),
and let IG be the inertia subgroup of G.

PROPOSITION 2·1. Let X be a hyperelliptic curve over a p-adic field K defined by an equa-
tion (∗) with potentially good reduction, and let ρ� be the �-adic Galois representation
associated to it. Then ρ�(IK)∼= IG. Moreover, |ρ�(IK)| is maximal and equal to 2p(p− 1)
if and only if

(i) the Galois group of the splitting field of f over Knr is isomorphic to the Frobenius
group Cp � Cp−1, and

(ii) vK(�) is odd.

The structure of the group IG when these two conditions hold is that of the semidirect
product Cp � C2(p−1) of Cp and C2(p−1) which has a degree 2 quotient isomorphic to the
Frobenius group Cp � Cp−1.

The first condition in this proposition is expensive to check computationally, however
the following result gives two conditions that imply those above and are easier to verify.
Throughout the rest of the paper we will assume for simplicity that these two new conditions
hold, however they can be replaced by the general ones, in fact, the main result of this paper
(Theorem 2·3) holds whenever the image of inertia is maximal, i.e. whenever assumptions
(i) and (ii) of Proposition 2·1 are satisfied.

PROPOSITION 2·2. The conditions in Proposition 2·1 are implied by the following two:

(i) f is irreducible over K;

(ii) (vK(�), p− 1)= 1.

For the proof of these statements see Section 3.
Let F=K(α1, . . . , αp,

√
α2 − α1). We will prove that if the conditions in Proposition 2·2

hold, F/K is totally ramified and X acquires good reduction over F. Moreover if the inertia
degree fK/Qp of K over Qp is even, then F=K({√αi − αj}i �=j) and so G= IG, otherwise G
is isomorphic to a semidirect product of the form IG � C2. Let us now fix a numbering on
the roots and a p-cycle σ ∈ IG (which exists since p | |IG|), such that:

σ : α1 
−→ α2 
−→ . . . 
−→ αp 
−→ α1

and σ (
√
αi − αj)=

√
σ (αi)− σ (αj) for all i, j. Moreover, for odd fK/Qp , let φ be the non-

trivial element of G that fixes the field F. For each prime � �= p we fix an embedding Q�→C.
In particular we identify

√
p with the positive real square root of p, and

√−p with the
complex number i

√
p.
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Our main result is the following.

THEOREM 2·3. Let X/K be a hyperelliptic curve over a p-adic field K defined by an equa-
tion (∗), with potentially good reduction. Let fK/Qp be the inertia degree of K/Qp. Let ρ� be
the �-adic Galois representation attached to Jac(X), for � �= p. Suppose that f is irreducible
over K and that the valuation of the discriminant of f is coprime to p− 1. Let G, IG, σ , φ be
as above.

Then ρ� is irreducible and factors as ρ� = χ ⊗ψ , where:

χ : GK −→Q
×
�

IK 
−→ 1

FrobK 
−→
√(−1

p

)
p

fK/Qp

and:

(i) if fK/Qp is even, ψ is the unique irreducible faithful representation of G= IG of
dimension p− 1;

(ii) if fK/Qp is odd, ψ is the unique irreducible faithful representation of G∼= IG � C2 of

dimension p− 1 such that tr(ψ(σφ))=−
√(−1

p

)
p.

The strategy of the proof is as follows: first we determine the Galois representation
restricted to inertia, then we find a model of X ×K F reducing to y2 = xp − x over the residue
field, and use this to determine the action of ρ�(FrobK). If the inertia degree fK/Qp is even,
then this information is enough to determine the Galois representation ρ�, otherwise there
are two representations that, when restricted to inertia, give the same result, and the two
only differ by the trace of the elements that are products of Frobenius with a wild inertia
automorphism. We will compute explicitly the trace of one such element, namely σFrobK

where σ is defined above, using again the good model y2 = xp − x, to conclude.

Example 2·4. Let X/Qp be the curve defined by y2 = f (x)= xp − p. Then f is irreducible
over Qp and vK(�)= 2p− 1 is relatively prime to p− 1. Therefore, X satisfies the
assumptions of Theorem 2·3.

3. The inertia action

In this section we prove Propositions 2·1, 2·2 and we use Proposition 25 in [15, Section
8·2] to determine the restriction to inertia of ρ�.

3.1. Proof of Propositions 2·1 and 2·2
Remark 3·1 (Cluster picture for the curve). Recall that for a hyperelliptic curve of the form
y2 = f (x), a cluster is a subset of the set of all roots of f in K with the property that the
difference of any two different elements of it has valuation ≥ δ, for some δ ∈R. For more
detailed definitions, see [7, Section 1].

Suppose that X is a hyperelliptic curve defined by an equation (∗), and that f (x) has roots
α1, . . . , αp ∈K; note in particular that, if g is the genus of the curve, then p= 2g+ 1. By
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[7, Theorem 10·3], we have that X has potentially good reduction if and only if the cluster
picture consists of a unique cluster R of size p containing all the roots. In this case, Jac(X)
also has potentially good reduction.

By the Criterion of Néron-Ogg-Shafarevich (see [14, Section 2, Theorem 2(ii)]), if
� �= p the Galois representation ρ� on T�Jac(X), restricted to inertia, has finite image, inde-
pendent of �. Moreover by Corollary 3 in the same paper, this image is isomorphic to
Gal(Knr(Jac(X)[m])/Knr) for any m≥ 3 coprime to p, and Knr(Jac(X)[m]) is the minimal
extension of Knr over which Jac(X) acquires good reduction. We can fix m= 4; then by [16,
Theorem 1·1], we have that

Knr(Jac(X)[4])=Knr
({√

αi − αj
}

i,j∈{1,...,p}
)

.

We denote by Cp � C2(p−1) the semidirect product of Cp and C2(p−1) which has the
following presentation: 〈

σ , τ |σ p = τ 2(p−1) = 1, τστ−1 = σ b
〉

,

for some b coprime to p. The exact value of b will not be relevant for the rest of the paper.
This group has a degree 2 quotient isomorphic to the Frobenius group Cp � Cp−1, i.e. the
group of affine transformations on the finite field with p elements, given by the non-abelian
semidirect product Cp � Aut(Cp). The extra C2 contained in Cp � C2(p−1) is generated by
τ p−1. We will recall and use this notation in Section 3·2.

LEMMA 3·2. With notations above, we have isomorphisms

ρ�(IK)∼=Gal
(

Knr
({√

αi − αj
}

i,j

)
/Knr

)∼= IG

and this group is isomorphic to a subgroup of Cp � C2(p−1).

Proof. Recall that IG is the inertia subgroup of the Galois group of K({√αi − αj}i,j)/K, so
we have that K({√αi − αj}i,j)Knr/Knr is also Galois with Galois group isomophic to IG.

Let L=Knr({√αi − αj}i,j) and L′ =Knr(Jac(X)[2]), and consider the tower of field
extensions L/L′/Knr. Notice that L′ is the splitting field of f over Knr, by [3, Lemma 2·1].

For all i, αi ∈ L′, therefore L is obtained from L′ by adjoining square roots of some ele-
ments of L′. So the Galois group of L/L′ is a direct product of some copies of C2. However,
it is a totally ramified extension since L′ ⊇Knr, and it is tame since p is odd, therefore it
must be cyclic. So L/L′ can only be trivial or quadratic.

Now let us consider L′/Knr. Since f is irreducible over Knr, we have that Gal(L′/Knr) has a
cyclic subgroup of order p. Therefore Gal(L′/Knr) injects into Sp, the group of permutations
on p elements, and since p divides |Sp| exactly once, necessarily the p-Sylow subgroup of
Gal(L′/Knr) is isomorphic to Cp. So, the wild inertia subgroup of Gal(L′/Knr) is isomorphic
to Cp, and the quotient by Cp is the Galois group of the maximal tamely ramified subexten-
sion of L′/Knr, so it is cyclic. Now the image of it in Sp is contained in the normaliser of Cp,
that is equal to Cp � Cp−1. Therefore Gal(L′/Knr) injects into Cp � Cp−1.

Putting all this together, if f is irreducible over Knr then Gal(L/Knr) has at most order
2 · p(p− 1), with wild inertia subgroup of order p and a cyclic quotient of order at most
2(p− 1), corresponding to the maximal tame subextension. Since L′/Knr is an intermediate
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subextension with Galois group isomorphic to a subgroup of the Frobenius group Cp �
Cp−1, this concludes the proof.

This lemma shows that, for a curve defined as in (∗) acquiring good reduction over a
wildly ramified extension, the size of the image of inertia under ρ� is at most 2p(p− 1). In
fact equality can be achieved, and in this case we say that the curve has maximal inertia
image. We now complete the Proof of Proposition 2·1.

Proof of Proposition 2·1. In Lemma 3·2, we proved that |ρ�(IK)| divides 2p(p− 1), and that
(with the same notation used in the proof) [L : L′]≤ 2 and [L′ : Knr]≤ p(p− 1). Clearly, the
second inequality is an equality precisely when the Galois group of the splitting field of f
over Knr is Cp � Cp−1. Moreover, we have:

L= L′
(√
α2 − α1

)=Knr (α1, . . . , αp,
√
α2 − α1

)
,

in fact at most one of the elements
√
αi − αj is sufficient to generate L over L′ and by

Remark 3·1 any of these elements works as they all have the same valuation. More precisely,
the extension L/L′ is quadratic if and only if α2 − α1 is not a square in L′, or equivalently it
has odd valuation. We denote by vL, vL′ the normalised valuations on L and L′ respectively.
Then vL(

√
α2 − α1)= [L : L′]vL′(α2 − α1)/2 and since by definition �=∏i>j (αi − αj)2,

we have:

vL(�)=
(

p

2

)
2vL (α2 − α1)=

(
p

2

)
4vL

(√
α2 − α1

)= 2p(p− 1)vL
(√
α2 − α1

)
;

on the other hand since the valuations on Knr and K agree on the elements of K we have
vL(�)= [L : Knr]vK(�).

Suppose that |ρ�(IK)| = 2p(p− 1), so [L : Knr]= 2p(p− 1). In particular, [L : L′]= 2 and
by the observation above this means vL′(α2 − α1) is odd. Then simplifying from the equal-
ities above we obtain that vK(�)= vL(

√
α2 − α1)= vL′(α2 − α1) is odd and, as we already

noted, Gal(L′/Knr)∼=Cp � Cp−1. Conversely suppose that Gal(L′/Knr)∼=Cp � Cp−1 and
that vK(�) is odd. Then comparing the two expressions for vL(�) and using that [L′ : Knr]=
p(p− 1) we obtain

[
L : L′

]
vK(�)= 2 · 1

2

[
L : L′

]
vL′ (α2 − α1) ,

so vL′(α2 − α1)= vK(�) is odd, which implies [L : L′]= 2 and therefore [L : Knr]
= 2p(p− 1).

To conclude this subsection, we prove Proposition 2·2.

Proof of Proposition 2·2. Since p− 1 is even, it follows from assumption (ii) that vK(�) is
odd. So, in order to prove Proposition 2·2 it suffices to prove that, if f is irreducible over
K and (vK(�), p− 1)= 1 then Gal(L′/Knr)∼=Cp � Cp−1, where L′ is as in the proofs of
Lemma 3·2 and Proposition 2·1.

Let us denote by M the splitting field of f over K. First of all, since f is irreducible over K,
then Gal(M/K) contains a subgroup H of order p. We observe that H is a p-Sylow subgroup
of Gal(M/K), since this group has a natural injection into Sp, whose p-Sylow subgroups have
order p. Therefore p divides exactly [M : K]. Let U be the maximal unramified extension of
K contained in M. If p | [M : U] then H is the first ramification group of Gal(M/K) (see [11,
Chapter IV, Section 1]). Otherwise, let α1 be any root of f in M and consider K′ =K(α1),
which has (prime) degree p over K. Since p � [M : U], we have K ⊆K′ ⊆U. Now, U/K
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is cyclic, therefore every subextension of it is Galois. In particular, K′/K is Galois, thus
K′ coincides with the splitting field of f , hence K′ =U =M. In both cases, H is normal in
Gal(M/K).

Now consider the element p−1
√
�. Using the expression of � in terms of the roots

α1, . . . , αp of f and the fact that αi − αj all have the same valuation, we can prove that
p−1
√
� ∈ L′. More precisely, we have

p−1
√
�= (α2 − α1)p p−1

√
u, where u=

∏
i>j

(
αi − αj

α2 − α1

)2

;

note that u is an element of L′ with valuation 0 and so its (p− 1)-th root gives an
unramified hence trivial extension of L′. Since (vK(�), p− 1)= 1, we also have that
[Knr( p−1

√
�) : Knr]= p− 1. Therefore p− 1 divides both [L′ : Knr] and [M : K]. Now the

inertia subgroup of Gal(M/K) is isomorphic to Gal(L′/Knr), and it is normal with cyclic
quotient. Therefore it must contain the subgroup H of Gal(M/K) isomorphic to Cp. This
proves that p and p− 1 divide [L′ : Knr] and as in the proof of Lemma 3·2 we conclude that
Gal(L′/Knr)∼=Cp � Cp−1.

3.2. The irreducible representations of the group Cp � C2(p−1)

We now want to describe the representation induced from ρ� on IG. In order to do it, we
make a digression on the irreducible representations of the group Cp � C2(p−1).

Let σ , τ ∈Cp � C2(p−1) be as in the presentation given in Section 3.1, and denote by ν
the element τ p−1, that generates the extra C2 contained in Cp � C2(p−1). Note that ν is the
only element of the subgroup C2(p−1) of Cp � C2(p−1) (except the identity) that commutes
with σ . The group Cp � C2(p−1) is the semidirect product of two abelian groups, A=Cp and
H =C2(p−1), so we are in the setting of [15, Section 8·2]. Consider a set of representatives
for the orbits of H in the group of characters of A. This set consists of two elements only,
namely the trivial representation 1 and a non-trivial character η. Let H1 (resp. Hη) denote
the subgroup of H consisting of the elements that stabilise 1 (resp. η). Then H1 =H and
Hη = 〈ν〉 ∼=C2. Now for any irreducible representation ξ of H• we obtain a representation

of G given by Ind
Cp�C2(p−1)
AH• • ⊗ξ . By [15, Section 8·2, Proposition 25] the representations

obtained in this way are exactly all the irreducible representations of Cp � C2(p−1). This
proves the following lemma.

LEMMA 3·3. The group Cp � C2(p−1) has 2(p− 1) irreducible representations of dimen-
sion 1, corresponding to the 2(p− 1) irreducible representations of H1 =C2(p−1), and two
representations of dimension p− 1 corresponding to the two irreducible representations of
Hη ∼=C2.

Out of these two (p− 1)-dimensional irreducible representations, exactly one is faithful.
Since Hη ∼=C2, the representation ξ needed for the construction described above is either
the trivial representation of Hη, or the representation sgn, defined by sgn(ν)=−1. So we

obtain the two representations Ind
Cp�C2(p−1)
C2p

η and Ind
Cp�C2(p−1)
C2p

η⊗ sgn.

(i) The representation Ind
Cp�C2(p−1)
C2p

η is not faithful. In fact,

tr
(

Ind
Cp�C2(p−1)
C2p

η
)

(1)= tr
(

Ind
Cp�C2(p−1)
C2p

η
)

(ν)= p− 1.
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(ii) The representation Ind
Cp�C2(p−1)
C2p

η⊗ sgn is faithful. In fact we have, for s ∈Cp �

C2(p−1) and for t1, . . . , tp−1 a set of representatives for Cp � C2(p−1)/C2p:

tr
(

Ind
Cp�C2(p−1)
C2p

η⊗ sgn
)

(s)=
∑

i : tist−1
i ∈C2p

η
(

tist−1
i

)
sgn(s).

For the terms occurring in this sum (which are at most p− 1) we have that η(tist−1
i )

is some root of unity, and it is 1 if and only if s= 1. So for s �= 1 we have a sum

of at most p− 1 roots of unity, different from 1, and therefore tr(Ind
Cp�C2(p−1)
C2p

η⊗
sgn)(s) �= p− 1, or equivalently the representation is faithful.

Now we can determine the representation ρ�
∣∣
IK

. Since it factors through IG, which is
isomorphic to Cp � C2(p−1), we identify it with a representation of the finite group Cp �
C2(p−1), and as such, it is faithful. Furthermore, the discussion above implies the following
lemma.

LEMMA 3·4. The restriction to inertia of the representation ρ� is irreducible.

Proof. Suppose that ρ�
∣∣
IK

is reducible. Then, since it has dimension equal to 2g= p−
1, it is the sum of p− 1 one-dimensional representations, but in this case the image
would be abelian. However, this representation factors through IG and it is faithful as a
IG-representation, so since IG is non-abelian we have a contradiction. Therefore ρ�

∣∣
IK

must
be irreducible.

Note that as a consequence of this, the representation ρ� is also irreducible. This proves
the following result.

PROPOSITION 3·5. Let X be a hyperelliptic curve over a p-adic field K defined by an
equation (∗), with potentially good reduction. Let ρ� be the �-adic Galois representation
attached to Jac(X), for � �= p. Suppose that X satisfies the conditions of Proposition 2·1,
and let IG be as in Section 2. Then the representation ρ� restricted to inertia factors
through IG ∼=Cp � C2(p−1) and, as a representation of IG, it is the unique irreducible faithful
representation of dimension p− 1.

Remark 3·6. By [7, Theorem 10·1], the representation given by the action of IK on the first
étale cohomology group H1

ét(X ×K K, Q�) is given by

ρ∗ = γ ⊗ (Q�[R]� 1),

where γ is a certain character of order 2(p− 1). This is immediate from op. cit. since the
cluster picture of X only contains the cluster R described in Remark 3·1.

Now, the representation ρ�
∣∣
IK

is dual to ρ∗, by [4, Theorem 15·1], but since by [14,
Theorem 2 (ii)] its character has integer values, it is in fact isomorphic to it.

4. The good model and the action of Frobenius

In this section we show that any hyperelliptic curve satisfying the hypotheses of
Theorem 2·3 has a good model, i.e. an integral model with good reduction, over the field
F defined in Section 2, that reduces to
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y2 = xp − x

on the residue field. We then prove that the action of Frobenius is diagonalisable, with
eigenvalues:

(i) all equal to

((−1

p

)
p

)fK/Qp/2

, if fK/Qp is even;

(ii) half equal to

((−1

p

)
p

)fK/Qp/2

and half equal to −
((−1

p

)
p

)fK/Qp/2

, if fK/Qp is

odd.

In particular we deduce that the full Galois representation ρ� is completely determined by
these data when fK/Qp is even.

As observed in Section 3, the extension F/K is totally ramified, so the residue fields of F
and K are both equal to k. Therefore we will identify the action of FrobK with that of FrobF,
which is well defined.

LEMMA 4·1. Under the assumptions of Theorem 2·3, the base change of X to F has an
integral model reducing to y2 = xp − x on k.

Proof. Over F, we can define the following change of variables:{
x 
−→ (α2 − α1) x+ α1

y 
−→√α2 − α1
py.

Then applying this change of variables to X ×K F we have the following equation:

y2 =
∏

1≤i≤p

(
x− αi − α1

α2 − α1

)
.

Note that for each i ∈ {2, . . . , p}, we have

αi − α1 =
i−2∑
j=0

σ j(α2 − α1),

where σ is the p-cycle defined in Section 2. Since σ is a wild inertia element,
(σ j(α2 − α1))/(α2 − α1) reduces to 1 on k (see [1, Lemma 3·3]), therefore the reduction
of
∏

1≤i≤p (x− (αi − α1)/(α2 − α1)) is
∏

1≤i≤p (x− (i− 1))= xp − x.

Remark 4·2. We know from the Criterion of Néron–Ogg–Shafarevich ([14, Section 2,
Theorem 2(ii)]) that Jac(X) acquires good reduction over F; this lemma shows that the curve
X itself acquires good reduction over the same extension.

Since F/K is totally ramified of degree 2p(p− 1), there is an intermediate extension F′
such that F/F′ is wild of degree p and F′/K is tame of degree 2(p− 1). Hence there exists
some 2(p− 1)th root of the uniformiser πK of K that generates F′/K. Now, since K is a
finite extension of Qp, it contains all the (p− 1)th roots of unity; moreover K also contains a
primitive 2(p− 1)th root of unity if and only if the unramified part of the extension K/Qp has
even degree, i.e. if fK/Qp is even. Therefore the Galois closure of F/K (which as observed
in Section 3 is equal to K(Jac(X)[4])) is given by F(ζ2(p−1)), where ζ2(p−1) is a primitive
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2(p− 1)th root of unity. In particular F/K is Galois if and only if fK/Qp is even, and if it is
odd then [F(ζ2(p−1)) : F]= 2.

We are now ready to compute ρ�(FrobF), hence ρ�(FrobK).

4.1. The action of Frobenius

Suppose first that n= fK/Qp is even. Then FrobF is central in Gal(L/Knr) (recall L= Fnr)

and, since ρ� is irreducible, by Schur’s Lemma ρ�(FrobF) is a scalar matrix. Let λ ∈Q�
be such that ρ�(FrobF)= λid. Then we know det (ρ�(FrobF))= |k|g = png and so λ2g = png.
On the other hand since ρ�(FrobF) is a scalar matrix then its characteristic polynomial is
precisely (T − λ)2g, and by [5, Theorem 1·6] it has integral coefficients, so λ ∈Z and in
particular λ ∈ {±pn/2}. Finally, since F/K is Galois, we have F=K(Jac(X)[4]), so ρ�(FrobF)
acts trivially modulo 4 and λ≡ 1 (mod 4). Hence

λ=
((−1

p

)
p

)fK/Qp/2

.

Suppose now that n= fK/Qp is odd. In general, ρ�(FrobF) acts as the nth power of the
linear operator obtained for n= 1, so we may first assume that n= 1. Then the square of
FrobF is central in Gal(L/Knr), hence the minimal polynomial of ρ�(FrobF) is of the form
T2 −μ. As a consequence of the Weil Conjectures (see again [5, Theorem 1·6]) we also have
that the trace of ρ�(FrobF) is given by p+ 1− |X̃F(Fp)| where X̃F is the reduction modulo
p of X ×K F. Since for each x ∈ Fp, xp − x= 0, we have precisely p affine points on X̃F, so
tr(ρ�(FrobF))= 0. Therefore the characteristic polynomial of ρ�(FrobF) has g roots equal to√
μ and g roots equal to−√μ, hence it is (T2 −μ)g, and again it has constant term equal to

pg and integer coefficients, hence μ ∈ {±p}. As in the previous case, we have μ≡ 1 (mod 4)

and so μ=
(−1

p

)
p. Putting all this together, the eigenvalues of ρ�(FrobF) for generic odd

fK/Qp are

±
√(−1

p

)
p

fK/Qp

,

each occurring g times.
Now we can prove Theorem 2·3 in the case of even fK/Qp .

Proof of Theorem 2·3 for even inertia degree. Since fK/Qp is even, we know F/K is Galois
with Galois group isomorphic to its inertia subgroup. We furthermore have

Gal(L/K)=Gal(F/K)×Gal(Knr/K),

since L= Fnr = FKnr. If we define χ as in the statement of Theorem 2·3 we have that
ρ�(FrobF)= χ(FrobF)id= χ(FrobK)id and therefore if we let ψ = ρ� ⊗ χ−1, then ψ fac-
tors through Gal(F/K) which is isomorphic to IG, and as a representation of this group it
is irreducible, faithful and (p− 1)-dimensional. By Lemma 3·5, there exists a unique such
representation.

5. The case of odd inertia degree

In this final section, we complete the Proof of Theorem 2·3 for the case when fK/Qp is
odd, computing explicitly ψ .
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Let χ be as in the statement of Theorem 2·3. Then we can fix a basis of T�Jac(X) such that
the matrix representing ψ(FrobK)= ρ�(FrobK)/χ(FrobK) in this basis is diagonal with the
first g coefficients equal to 1 and the last g coefficients equal to−1. In particularψ(Frob2

K)=
id and so Frob2

K ∈ ker (ψ). Therefore we have that ker (ψ)=Gal(K/F(ζ2(p−1))) and so
ψ factors through G=Gal(F(ζ2(p−1))/K), and it is faithful as a representation of G. Now G
is generated by IG and the element φ defined in Section 2, with G∼= IG � 〈φ〉. Note that φ is
the reduction of FrobK modulo its square. The group G has the following presentation:

G=
〈
σ , τ , φ|σ p = τ 2(p−1) = φ2 = 1, τστ−1 = σ b, σφ = φσ , φτφ = τ p

〉
.

In the diagram below we show the relations among the fields K, K(ζ2(p−1)), F, F(ζ2(p−1)),
L, K and we highlight the relevant Galois groups (here φ is the image of φ in G/IG).

LEMMA 5·1. The group G is isomorphic to a semidirect product

Cp �
(
C2(p−1) � C2

)
.

Proof. Since 〈φ〉 ∼=C2, we know that G∼= (Cp � C2(p−1)) � C2. Moreover the subgroup
given by wild inertia is normal, so G has a normal subgroup isomorphic to Cp. We only
need to prove that G also has a subgroup isomorphic to C2(p−1) � C2. The field K(α1) is an
intermediate extension of degree p over K, and Gal(F(ζ2(p−1))/K(α1))∼=C2(p−1) � C2 is a
subgroup of G.

In particular G is of the form A � H, with A abelian, as in [15, Section 8·2]. Again we can
use Proposition 25 of op. cit. to describe the irreducible representations of G.

5.1. The irreducible representations of the group G

A set of representatives for the orbits of H in the group of characters of A consists, as
in Section 3, only of the two elements 1 and η, for η any non-trivial character. It is easy
to check that, with the same notation as in Section 3, H1 =H and Hη = 〈φ, ν〉 ∼=C2

2. All
the representations of H1 give rise to a representation of G of the same dimension. Now
H1 ∼=C2(p−1) � C2 is itself a semidirect product of two abelian subgroups, so using [15,
Proposition 25] we have that all its irreducible representation have dimension dividing the
order of the second subgroup, that is either 2 or 1. However ψ is irreducible of dimension
p− 1 (since ρ� is), so unless p= 3 it cannot arise from such a representation. For p= 3 we
need a more direct approach, and this case is dealt with in [1, Section 3], so we can assume
p �= 3.
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Now let us consider the representations arising from Hη. Since this group is abelian, it
only has 1-dimensional irreducible representations, namely those given by the following
characters:

class 1 ν φ νφ

ξ1 1 1 1 1
ξ2 1 1 −1 −1
ξ3 1 −1 1 −1
ξ4 1 −1 −1 1

The irreducible representations arising from these four representations are

IndG
Cp×C2

2
ξj ⊗ η

for j ∈ {1, . . . , 4} (note that the subgroup of G isomorphic to Cp � C2
2 is in fact a direct

product). In particular these representations have dimension equal to [G : Cp ×C2
2]= p− 1.

Following the same proof as in Lemma 3·5 we have that only the representations arising
from ξ3 and ξ4 are faithful, so ψ is one of these two.

Let σ , τ be the generators of IG, as in the previous sections.

LEMMA 5·2. The representations ψ1 = IndG
Cp×C2

2
ξ3 ⊗ η and ψ2 = IndG

Cp×C2
2
ξ4 ⊗ η are

such that tr(ψ1(σφ))=−tr(ψ2(σφ))=
√(−1

p

)
p.

Proof. First of all, it is easy to check that Cp ×C2
2 is a normal subgroup of G. Moreover a

set of representatives for G/(Cp ×C2
2) is given by τ , τ 2, . . . , τ p−1. We have

tr
(
ψj(σφ)

)= p−1∑
i=1

(
ξj+2 ⊗ η

) (
τ iσφτ−i)= p−1∑

i=1

ξj+2
(
τ iφτ−i) η (τ iστ−i) .

By the relation φτφ = τ p we deduce τ 2φ = φτ 2; so if i is even then ξj+2(τ iφτ−i)=
ξj+2(φ), and if i is odd then ξj+2(τ iφτ−i)= ξj+2(φν)=−ξj+2(φ) (recall that ν = τ p−1). On
the other hand, since τστ−1 = σ b, then η(τ iστ−i) varies among all the powers of η(σ ),
which is a primitive pth root of unity; without loss of generality we can assume it is e2π i/p,
seen as a complex number. Note that(

bi

p

)
= (−1)i = ξj+2

(
τ iφτ−i

)
ξj+2(φ)

,

therefore

trψj(σφ)=
p−1∑
i=1

(−1)iξj+2(φ)η(σ )bi = ξj+2(φ)
p−1∑
a=1

(
a

p

) (
e2π i/p

)a = ξj+2(φ)

√(−1

p

)
p,

where the last equality follows from the Gauss summation formula.

5.2. The proof of Theorem 2·3
Proof. Let β(x, y)= (x′, y′) be the change of variables described in the proof of Lemma 4·1,
let “red” be the reduction map: X(K)→ X̃(k) and “lift” be any section of it (which exists
by smoothness of X̃). Then we can compute the action of a Galois automorphism γ on the
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reduced curve X̃(k) via the composition red ◦ β ◦ γ ◦ β−1 ◦ lift. In particular we will do it
for γ = σFrobK ; then we have that

tr(ρ�(σFrobK))= |k| + 1− A,

where A is the number of points on the reduced curve fixed by the map red ◦ β ◦ σFrobK ◦
β−1 ◦ lift constructed above (see [8, Theorem 1·5 and Remark 1·7] and [9, Section 6·5]).

Let (x̃, ỹ) ∈ X̃(k), then since σ is a wild inertia element we have

(x̃, ỹ)
lift−→ (x, y)

β−1

−−→ (
x(α2 − α1)+ α1, y

(√
α2 − α1

)p)
σFrobK−−−−→ (

σ(FrobK(x)) σ (α2 − α1)+ α2, σ(FrobK(y))
(
σ
(√
α2 − α1

))p)
β−→
(
σ(FrobK(x)) σ (α2 − α1)+ α2 − α1

α2 − α1
, σ (FrobK(y))

(
σ
(√
α2 − α1

))p(√
α2 − α1

)p
)

=
(
σ(FrobK(x))

σ (α2 − α1)

α2 − α1
+ 1, σ(FrobK(y))

(
σ
(√
α2 − α1

))p(√
α2 − α1

)p
)

red−→
(

x̃|k| + 1, ỹ|k|
)

.

Here we use the following facts: since σ belongs to IK , for every algebraic integer x ∈ F,
x and σ (x) reduce to the same element of k. If in addition x �= 0 then, since σ is wild, σ (x)/x
reduces to 1 (again by [1, Lemma 3·3]). Finally, by definition FrobK(x) reduces to x̃|k|. We
deduce that A is equal to the number of solutions (including the point at infinity) of the
following system of equations: ⎧⎪⎨

⎪⎩
x = x|k| + 1

y = y|k|

y2 = xp − x;

(5.1)

As in Section 4.1 let n= fK/Qp , so |k| = pn. If n= 1, then this system has 0 affine solutions
if p≡ 3 (mod 4) and 2p affine solutions if p≡ 1 (mod 4), so A= 1 or 2p+ 1 respectively.
Therefore

tr(ρ�(σFrobK))=−
(−1

p

)
p,

and so tr(ψ(σφ))= tr(ρ�(σFrobK))

χ(FrobK)
=
−
(−1

p

)
p√(−1

p

)
p

=−
√(−1

p

)
p.

For general odd n, we obtain the same system of equations independently of the curve
X we use, as long as it is defined over a p-adic field K with fK/Qp = n and it satisfies the
conditions of Theorem 2·3. Let X/Qp : y2 = xp − p as in Remark 2·4, and let XK be the base
change of X to the field K given by the unique unramified extension of Qp of degree n.
The polynomial xp − p is irreducible over K, as any root gives a ramified extension, and
vK(�)= vQp(�)= 2p− 1 is coprime to p− 1. Let ρ′� be the �-adic Galois representation
attached to Jac(X) and let ρ� be the �-adic Galois representation attached to Jac(XK); then:

(i) ρ′� and ρ� have the same restriction to the inertia subgroup;

(ii) ρ�(FrobK) acts as the nth power of ρ′�(FrobQp).
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So ρ�(σ )ρ�(FrobK)= ρ′�(σ )ρ′�(FrobQp)n. Notice that, by Section 4.1, since n− 1 is even,

we have that ρ′�(FrobQp)n−1 is the scalar matrix with eigenvalue
((−1

p

)
p
)(n−1)/2

. Therefore

tr(ρ�(σFrobK))=
((−1

p

)
p

)(n−1)/2

tr(ρ′�(σFrobQp))=−
((−1

p

)
p

)(n+1)/2

.

We conclude, since

tr(ψ(σφ))= tr(ρ�(σFrobK))

χ(FrobK)
=
−
((−1

p

)
p

)(n+1)/2

√(−1

p

)
p

n =−
√(−1

p

)
p.

6. Applications

In this section we present a few examples and applications of Theorem 2·3 and of the
tools used throughout the paper.

(i) By the computation made in Section 5·2, we find that the number A− 1 of affine
solutions of the system (5·1) is

A− 1= |k| − tr(ρ�(σFrobK))= pn +
((−1

p

)
p

)(n+1)/2

.

(ii) We can express the representation ψ given in Theorem 2·3 in terms of the characters
introduced in Section 5·1. With the same notation, we have that

ψ =ψ2 = IndG
Cp×C2

2
ξ4 ⊗ η.

A few examples are the following:

(a) For p= 5, the group IG is isomorphic to C5 � C8 in [10]. The restriction of ρ� to
inertia is given by ρ10. For odd fK/Qp , we have G∼=C2

2 · F5 in [10], with ψ = ρ13

(here the class denoted 10A is the one generated by σφ).
(b) For p= 7, IG ∼=C7 � C12 and the corresponding representation is ρ14. For odd

fK/Qp , we have G∼=Dic7 � C6 with ψ = ρ18 (here the class 14A is the one
generated by σφ).

(iii) In Section 5·1, we assumed that p �= 3. For p= 3, Theorem 2·3 still holds and a com-
plete proof is presented in [1, Section 3]. Both the results of [1] and of this paper have
been implemented in MAGMA and are available on [2].

(iv) Under the assumptions of Theorem 2·3, it is possible to compute the exponent N of
the conductor of the curve X, by using [7, Section 11, Theorem 11·3]. In fact, by the
description of the cluster picture of X made in Remark 3·1, there is only one Galois
orbit of the set of roots of f , corresponding to the only proper cluster. Let α1 be any
root of f . Then

N = vK(�K(α1)/K)− [K(α1) : K]+ fK(α1)/K + 2g,

https://doi.org/10.1017/S0305004122000019 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000019


Galois representations of hyperelliptic curves with large inertia image 633

where �K(α1)/K is the discriminant of the field extension K(α1)/K. Now, since
K(α1)/K is totally ramified of degree p and since 2g= p− 1, we obtain simply

N = vK(�K(α1)/K).

For example if f (x)= xp − p, as in Remark 2·4, then N = 2p− 1.
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