
J. Fluid Mech. (2013), vol. 730, pp. 343–363. c© Cambridge University Press 2013 343
doi:10.1017/jfm.2013.248

Interfacial instability of coupled-rotating
inviscid fluids

Malek Ghantous1,† and John A. T. Bye2

1Centre for Ocean Engineering, Science and Technology, Swinburne University of Technology,
VIC 3122, Australia

2School of Earth Sciences, University of Melbourne, VIC 3010, Australia

(Received 13 March 2012; revised 24 March 2013; accepted 13 May 2013;
first published online 30 July 2013)

We consider the three-dimensional, cylindrical equivalent to the problem of instability
between two inviscid fluids due to a velocity shear between them, known as
Kelvin–Helmholtz instability. We begin by developing the solution to the linearized
equations for a rotating fluid. While this solution is not in itself new, we carry the
analysis further than previous treatments by including non-zero modes and considering
the effect of the surface tension, particularly on the dispersion relation. We then
consider a system of two fluids rotating at different rates and derive its dispersion
relation, which is rather more complicated than that for a single rotating fluid. While a
general analytic solution is unattainable, by investigating some special cases we show
that the fundamental mode is always stable, and that Kelvin–Helmholtz instability
also exists for the system. We compare our results with experiments and conclude by
suggesting some hypothetical links between the theory and nature.
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1. Introduction
Although in this paper we concentrate mainly on theory, the motivation behind the

problem came from a series of experiments. These involved a cylindrical tank half-
filled with water, above which a spinning rotor generated a wind which perturbed the
water’s surface (Vladusic 2001). Some of the waves suggested that Kelvin–Helmholtz
instability had a role to play in their generation, and it was apparent to us that, so far
as we could tell, the theory had never been adapted to this geometry; indeed, given
that we now have a system with shear varying continuously with radius, and cannot
consider the fluids to be in an inertial reference frame, it is arguably a new problem.
The experimental results on Kelvin–Helmholtz instability are interpreted in detail in a
separate paper (Bye & Ghantous 2012). Here we focus on the general linear solution
for the dynamics of interfacial capillary–gravity waves between two discontinuously
shearing fluids in a circular domain. While we do not pretend to be able to describe
the rich variety of wave patterns that were observed in the experiment, we hope
that this analytical approach, while incomplete for the obvious reason that many
simplifying assumptions have been made, may help to illuminate the subject further.

† Email address for correspondence: mghantous@swin.edu.au
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344 M. Ghantous and J. A. T. Bye

We note the body of work devoted to a similar experimental set-up, with two fluids
forced at either end by differentially rotating rotors (for example Hart (1972) and
Bradford, Berman & Lundgren (1981)), and a related experimental set-up, where a
cylinder filled with one fluid is forced at either end by counter-rotating rotors (for
example Gauthier et al. (2002), Nore et al. (2003, 2004) and Moisy et al. (2004)).
While these studies have investigated instabilities in the motion, none has explored
the theory behind inviscid interfacial instability of two distinct fluids of arbitrarily
large density contrast, both co- and counter-rotating, in the general case of arbitrary
rotation rates with arbitrarily large shear. Furthermore, the scope of this study differs
from previous work in two important ways. First, in the wave analysis both fluids are
assumed to be of infinite vertical extent, which means that shallow wave dynamics,
where the velocities of each fluid are independent of depth, do not apply. Second,
there are no restrictions on the ratio or direction of rotation or on the density ratio.
While Bradford et al. (1981) treated a very tall tank, their two fluids had similar
densities and the rotation rates of the two fluids were only slightly different. Their
focus was on geostrophic effects, and they along with Hart (1972) experimentally
modelled the general circulation on the rotating Earth by applying a small differential
rotation to two fluids of small density contrast. Our experimental model, on the other
hand, is an investigation of large density contrast oscillations which represent air–sea
interaction under rotation on short time periods, in which the Earth’s rotation is of
negligible importance; crucially, they rotated the whole cylinder and rotors either
at top or bottom applied the differential rotation, whereas our cylindrical tank was
stationary with a rotor at the top. Nevertheless, Bradford et al.’s calculations did show
a quasi-geostrophic interfacial instability for conditions similar to their experiments,
and we have tried to compare our purely inviscid theory to their viscid one. While
some other studies have investigated differentially rotating fluids in an annulus (such
as Gula, Zeitlin & Plougonven (2009), who were exploring shallow-water dynamics)
we treat exclusively a cylinder. The boundary conditions of these systems are different,
and in particular mean that solutions involving the Bessel function of the second kind,
or indeed Hankel functions, are not present in the cylinder.

We assume that our two fluids of infinite extent are bounded by a cylindrical wall of
radius r = r0, with an interface at z = 0 when the surface is unperturbed. In order to
coherently develop the analysis we begin by examining only a single fluid of density
ρ, which is rotating with a solid-body angular frequency Ω . This problem has already
been solved by Miles (1963), but we approach it in a more straightforward manner
by assuming a form for the solution by analogy with the non-rotating fluid. This is
somewhat akin to Chandrasekhar’s approach to exploring Kelvin–Helmholtz instability
due to uniform shear in a rotating frame (Chandrasekhar 1961), but here the treatment
is only for one fluid, and there is no shear or possibility of instability. While we
arrive at essentially the same result as Miles did, there is a slight difference due to
our inclusion of the non-axisymmetric modes from the beginning. (The difference can
be removed by a simple change of variables.) We also, for the sake of completeness,
include surface tension and determine the dispersion relation, as well as complete
expressions for the velocities, and we retain the surface displacement due to rotation
which Miles omitted. This constitutes § 2; in § 3 we introduce the second fluid. Once
again this is not entirely new (Bradford et al. (1981) described the same velocity
relations as ours) but we provide details of the solution method and describe the
equations for the inviscid radial and vertical scaling parameters and, in particular, we
determine the dispersion relation. Of course, a complete theory would really need to
be nonlinear, as linear theory will only enable us to explore the onset of instability
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z

FIGURE 1. Definition sketch of the coordinate system in the cylindrical domain. The mean
fluid rotation rate is Ω = dθ/dt.

without its development, but that problem belongs in the realm of computation rather
than analysis.

Since a general solution to the dispersion relation is not possible, in § 4 we explore
several special cases for which analytic solutions could be found. We also compare
these with two experiments.

2. Waves on a rotating fluid
2.1. Determining an expression for the pressure

Consider a semi-infinite cylinder of an inviscid fluid bounded by walls at radius r = r0

and with the undisturbed interface at z= 0 (figure 1). The equations of motion are

∇ ·u= 0 (2.1)

− 1
ρ
∇p− gẑ= ∂u

∂t
+ (u ·∇)u. (2.2)

We separate the velocities into the wave-induced velocities (u, v,w) and solid-body
rotation, Ωr, where Ω is the angular frequency of the rotating fluid and r is the radius
(r 6 r0),

ur = u (2.3)
uθ = v +Ωr (2.4)
uz = w. (2.5)

From the equations of motion we have, after eliminating nonlinear terms, the
following differential equations relating the velocities to the pressure,

∂u

∂t
+Ω ∂u

∂θ
−Ω2r − 2Ωv =− 1

ρ

∂p

∂r
(2.6)

∂v

∂t
+ 2Ωu+Ω ∂v

∂θ
=− 1

rρ

∂p

∂θ
(2.7)

∂w

∂t
+Ω∂w

∂θ
=− 1

ρ

∂p

∂z
− g. (2.8)

As the solid-body term is a function of r only we can immediately incorporate it into
the pressure. Assuming that the solution is separable, based on that of the non-rotating
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346 M. Ghantous and J. A. T. Bye

tank we propose that the pressure takes the following form:

p= pa + AekzR(r) sin(nθ − ωt)− ρgz+ ρΩ
2r2

2
, (2.9)

where pa is the atmospheric pressure (or in any case the pressure of a much less dense
fluid above onto the fluid below) and k is a vertical scaling variable. Defining the
operator

L = ∂

∂t
+Ω ∂

∂θ
, (2.10)

we can rewrite (2.8) as

L w=− 1
ρ

∂p

∂z
− g. (2.11)

This suggests the separable form for w

w= Bekz cos(nθ − ωt)R(r). (2.12)

Substituting this into (2.11) gives

−B(Ωn− ω)ekzR(r) sin(nθ − ωt)=−kA

ρ
ekzR(r) sin(nθ − ωt) (2.13)

from which we can determine the expression for w,

w= Ak

ρ(Ωn− ω)e
kz cos(nθ − ωt)R(r). (2.14)

Similarly, the equations for u and v suggest the following forms,

u∼ ekzU(r) cos(nθ − ωt) (2.15)

v ∼ ekzV(r) sin(nθ − ωt). (2.16)

Using these we can rewrite (2.6) and (2.7) as

L U cos(nθ − ωt)− 2ΩV sin(nθ − ωt)=− 1
ρ

∂R

∂r
sin(nθ − ωt) (2.17)

L V sin(nθ − ωt)+ 2ΩU cos(nθ − ωt)=− 1
ρr

R
∂ sin(nθ − ωt)

∂θ
, (2.18)

and evaluating the operators gives

−U(Ωn− ω)− 2ΩV =−A

ρ

∂R

∂r
(2.19)

V(Ωn− ω)+ 2ΩU =−An

ρr
R. (2.20)

These can be combined to give

U =−A

ρ

(
2Ωn

r
R+ α∂R

∂r

)(
4Ω2 − α2

)−1
(2.21)

V = A

ρ

(
nα

r
R+ 2Ω

∂R

∂r

)(
4Ω2 − α2

)−1
, (2.22)
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where α = (Ωn− ω). Applying the operator L to (2.1) we get

U

r
+ ∂U

∂r
+ n

r
V − Ak2

ρα
R= 0 (2.23)

which, upon substitution of U and V from (2.21) and (2.22), gives

1
r

∂R

∂r
+ ∂

2R

∂r2
− n2

r2
R− α−2(4Ω2 − α2)k2R= 0. (2.24)

We can rearrange this as

1
r

∂R

∂r
+ ∂

2R

∂r2
+ R

(
γ 2 − n2

r2

)
= 0 (2.25)

where

γ 2 = k2

(
1− 4Ω2

α2

)
. (2.26)

Equation (2.25) is Bessel’s equation and the solution is R(r) = Jn(γ r), where we have
implicitly eliminated the Bessel function of the second kind as it blows up at the
origin. This is the same form as that found by Miles (1963), with the only difference
being the presence of Ωn in α2. (A change of variables can remove this, but the same
change has to be made in the arguments of the sinusoids.) With the Bessel function,
the pressure is

p= AekzJn(γ r) sin(nθ − ωt)− ρgz+ ρΩ
2r2

2
. (2.27)

2.2. Finding the velocities, surface elevation and deriving the dispersion relation
Referring back to the proportionalities (2.15) and (2.16), the velocities u and v can be
recovered from (2.21) and (2.22). These are, shown together with w for the sake of
completeness,

u=−Aekz cos(nθ − ωt)

ρ(4Ω2 − α2)

(
αγ J′n(γ r)+ 2Ωn

r
Jn(γ r)

)
(2.28)

v = Aekz sin(nθ − ωt)

ρ(4Ω2 − α2)

(
2Ωγ J′n(γ r)+ nα

r
Jn(γ r)

)
(2.29)

w= Ak

ρα
ekzJn(γ r) cos(nθ − ωt). (2.30)

Note that

J′n(γ r)= dJn(γ r)

d(γ r)
. (2.31)

We now seek a form for the surface equation. The surface elevation η satisfies

uz|z=η =
∂η

∂t
+ (u ·∇)η. (2.32)

Discarding the nonlinear terms gives us

Ak

ρα
Jn(γ r) cos(nθ − ωt)=L η, (2.33)
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348 M. Ghantous and J. A. T. Bye

and if we assume a separable form for η as for the pressure and velocities we arrive at

η = Ak

ρα2
Jn(γ r) sin(nθ − ωt)+ f (r). (2.34)

The f (r) term is related to the curvature of the surface due to the rotation of the fluid
and will be evaluated shortly. Assuming that the curvature of the surface due to the
effect of surface tension is small, the pressure difference across the surface is given by

1p|z=η = pa − p|z=η = ρσ∇2η, (2.35)

where σ is the specific surface tension. Setting the surface tension to zero for the
moment, we obtain

−AJn(γ r) sin(nθ − ωt)+ ρgη − ρΩ
2r2

2
= 0. (2.36)

Substituting in the expression (2.34) for η results in the following equation:

Agk

α2
Jn(γ r) sin(nθ − ωt)+ ρgf (r)= AJn(γ r) sin(nθ − ωt)+ ρΩ

2r2

2
. (2.37)

As f is a function of r alone it must be associated with the Ω2r2 term, so

f (r)= Ω
2r2

2g
. (2.38)

This paraboloid is what we would expect from comparison with the unperturbed
surface arising from Bernoulli’s equation. Meanwhile, the remainder of (2.37) leads to
the dispersion relation,

gk = α2 = (Ωn− ω)2. (2.39)

Now suppose that the surface tension is non-zero; from (2.35) we have

A

(
gk

α2
− 1
)

Jn(γ r) sin(nθ − ωt)+ ρgf (r)− ρΩ
2r2

2

= ρσ
Ak

ρα2
sin(nθ − ωt)

(
γ

r
J′n(γ r)+ γ 2J′′n(γ r)− n2

r2
Jn(γ r)

)
+ ρσ

(
f ′(r)

r
+ f ′′(r)

)
, (2.40)

and again it is clear that the terms involving f or its derivatives, being functions of r
only, must be associated with the Ω2r2 term. Thus,

f ′′(r)+ f ′(r)
r
− g

σ
f (r)=−Ω

2r2

2σ
. (2.41)

Leaving this aside for a moment, the remaining terms must also be equal, and they can
be rearranged as

J′′n(γ r)+ 1
γ r

J′n(γ r)+
[

1
σγ 2

(
α2

k
− g

)
− n2

γ 2r2

]
Jn(γ r)= 0 (2.42)
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which is satisfied as long as

1
σγ 2

(
α2

k
− g

)
= 1. (2.43)

This is, in fact, our dispersion relation, written more fully as

(Ωn− ω)2 = gk + σk3

(
1− 4Ω2

(Ωn− ω)2
)
. (2.44)

Setting Ω = 0 we retrieve the dispersion relation for a non-rotating fluid, which may
easily be confirmed by deriving the expressions with Ω = 0 (see for example Le
Méhauté (1976)).

The solution to the inhomogeneous differential equation (2.41) is

f (r)= C1I0

(√
g

σ
r

)
+ C2

{
iI0

(√
g

σ
r

)
− 2
π

K0

(√
g

σ
r

)}
+ Ω

2r2

2g
+ 2

Ω2σ

g2
. (2.45)

Here I0 and K0 are the modified Bessel functions of the first and second kinds,
respectively, of order zero. Clearly C2 must be zero as the solution cannot be allowed
to be infinite at the origin. As for C1, we use the condition at the cylinder wall. A
contact angle, φ, between the fluid and the wall can be defined as (Bachelor 1967):

γ12 = γ31 + γ23 cosφ, (2.46)

where the γij are the surface tensions between media i and j. For the purposes of this
problem we may envisage these as the cylinder wall (medium 1), air (medium 2) and
the water in the tank (medium 3). (In practice, determining the contact angle is not
straightforward; the problem is outlined by Ghantous (2010).)

Armed with our contact angle, the condition on the slope of the surface at the
boundary becomes

df

dr

∣∣∣∣
r=r0

= tan
(
π

2
− φ

)
(2.47)

C1

√
g

σ
I1

(√
g

σ
r0

)
+ Ω

2r0

g
= tan

(
π

2
− φ

)
(2.48)

and this uniquely defines our C1 for any given combination of media. Our surface can
now be fully described. From (2.34) and (2.45), together with the value of C1 just
determined and C2 = 0, this is

η = Ak

ρα2
Jn(γ r) sin(nθ − ωt)+ C1I0

(√
g

σ
r

)
+ Ω

2r2

2g
+ 2

Ω2σ

g2
. (2.49)

The oscillating part of the solution was solved under the assumption that the surface
was located at z = 0. The paraboloid part of the solution indicates that this is not in
fact generally true, however the perturbations are linear waves, so can be justifiably
superimposed onto the paraboloid surface. This is at least true for a surface which
does not deviate much from the non-rotating surface, corresponding to a small value
for the rate of rotation, Ω .

2.3. The effect of rotation
Returning to the oscillatory part of the solution, the wave disturbance of the surface
profile, and the effect of rotation on the form of the solution, we find that the rather
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350 M. Ghantous and J. A. T. Bye

more complicated expression for the radial scaling γ , as compared with k in the
non-rotating cylinder, actually has no bearing on the geometric form of the surface
other than amplitude. Clearly for Ω = 0 the value of γ is just k, but in order to satisfy
the condition at the boundary of the cylinder, where ∂η/∂r = 0, the value of γ must
be the same for all Ω given a value for n.

One might guess that we arrive at a different solution as we approach (Ωn− ω)2 =
4Ω2 (in this realm we also approach the limits of linear theory). This is the point at
which γ 2 = 0; we may take the limit as (Ωn− ω)2→ 4Ω2, while keeping γ constant,
and (Ωn − ω) must increase towards infinity, as would in fact Ω and, importantly, k.
Were the ratio

4Ω2

(Ωn− ω)2 (2.50)

to become greater than one, either k would need to be imaginary, leading to inertial
oscillations with depth, or γ would need to be imaginary, leading to modified Bessel
functions, a solution which would no longer fit the boundary conditions, nor the
requirements for our linear, first-order solution (that is, small amplitude everywhere).
Beyond noting their existence we shall not treat inertial oscillations here.

Applying the dispersion relation (2.39), the expression for γ becomes

γ 2
R = k2

(
1− 4Ω2

kg

)
(2.51)

where γR is the value of γ set by the boundary condition at the radius r0. Given that
γR is a constant, this produces a quadratic in k, whose solution is

k = 2Ω2

g
±
√

4Ω4

g2
+ γ 2

R , (2.52)

and we may ignore the negative solution as negative k would lead to increasing
pressure perturbations with depth. It is clear from this expression for k that for any
non-zero Ω , and any non-zero γR, k is always larger than 4Ω2/g and (2.51) is always
positive. In the rapidly rotating limit Ω→∞, k approaches 4Ω2/g.

Turning now to the amplitude we make the following observation: as the difference
(Ωn − ω) increases, so does k and, as we have just seen, k approaches 4Ω2/g. The
amplitude of the oscillating part of the expression for η (equation (2.49)) remains
unchanged, but the individual velocities u, v and w (equations (2.28)–(2.30)) increase.
For w this is easy to see, since α can be replaced with

√
kg by the dispersion relation,

which leads to the amplitude being proportional to
√

k. For u, substituting in the
dispersion relation (2.39), the expression for γ (2.26) and using the recurrence relation

J′n(γ r)= Jn−1(γ r)− n

γ r
Jn(γ r) (2.53)

gives, in the limit as k→ 4Ω2/g (implying that α→ 2Ω),

u= Ak3/2ekz

ρ
√

gγR
cos(nθ − ωt)Jn−1(γRr). (2.54)

The horizontal velocity is now proportional to k3/2. In this limit v behaves similarly,
and since k is also large the horizontal velocities dominate the vertical velocity.
Meanwhile, the pressure, remains unchanged (save for the Ω2r2 term which defines
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the parabolic surface profile of the undisturbed surface), and the motion becomes
quasi-horizontal. By substitution it is easy to show that the limiting forms of the
equations for u, v and w satisfy the continuity equation (2.1).

3. Two fluids with horizontal shear
In the previous section, we derived the velocities and a surface relation for a

rotating fluid, which describes both a mean surface profile and surface waves, and
demonstrated that the equations of motion also permit the existence of inertial waves
for certain frequencies. We shall now show that when two fluids are superposed and
there is a rotating shear between them, instability ensues.

3.1. Finding the surface elevation, being the shape of the interface between the fluids
This problem is analogous to the two-dimensional, constant shear instability problem
which is described in varying levels of detail in several texts. Perhaps the clearest
illustration of the solution to the basic problem is still to be found in the original
paper by Lord Kelvin (Thomson 1871). (Helmholtz’s paper (von Helmholtz 1868b),
although it predates Kelvin’s, is not as clear, and does not show the mathematical form
that Kelvin describes. It is in German but Guthrie (von Helmholtz 1868a) published a
translation later the same year, which is what we have consulted.) And Chandrasekhar
usefully explores a variety of complications, including that of rotation (Chandrasekhar
1961), however in his case the entire system is rotating and the shear is still uniform.
What we are investigating here is a rotating fluid resting on top of a second fluid
rotating at a different rate. In this situation, the shear between the fluids increases with
radius from the axis of rotation.

We begin by defining the properties of the upper and lower fluids, which we denote
by subscripts U and L, respectively. The two fluids of densities ρU and ρL are assumed
to be stably stratified (ρU < ρL) and rotating at the rates

ΩU =Ω0 −Ω (3.1)
ΩL =Ω0 +Ω, (3.2)

where Ω0 is the mean rotation. The equations of motion are the same as those for a
single rotating fluid (2.6)–(2.8), except the rate of rotation differs in either fluid. Above
an interface placed at z= 0 they are

∂uU

∂t
+ΩU

∂uU

∂θ
−Ω2

Ur − 2ΩUvU =− 1
ρU

∂pU

∂r
(3.3)

∂vU

∂t
+ 2ΩUuU +ΩU

∂vU

∂θ
=− 1

rρU

∂pU

∂θ
(3.4)

∂wU

∂t
+ΩU

∂wU

∂θ
=− 1

ρU

∂pU

∂z
− g, (3.5)

while below the interface they’re

∂uL

∂t
+ΩL

∂uL

∂θ
−Ω2

Lr − 2ΩLvL =− 1
ρL

∂pL

∂r
(3.6)

∂vL

∂t
+ 2ΩLuL +ΩL

∂vL

∂θ
=− 1

rρL

∂pL

∂θ
(3.7)

∂wL

∂t
+ΩL

∂wL

∂θ
=− 1

ρL

∂pL

∂z
− g. (3.8)
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Once again we assume a form for the pressure, which now resembles that for a single
homogeneous rotating fluid as in (2.9),

pU = pa + ρU

{
Ae−kUzR(r) sin(nθ − ωt)− gz+ Ω

2
Ur2

2

}
(3.9)

pL = pa + ρL

{
BekLzR(r) sin(nθ − ωt)− gz+ Ω

2
Lr2

2

}
. (3.10)

We assume that just like the lower fluid, the upper fluid is of infinite extent whose
pressure, integrated over the entire column, is finite and denoted by pa. To satisfy
continuity at the surface the functions R(r) and sin(nθ − ωt) must be identical for both
fluids; continuity also requires the exponential functions to be equal at the interface,
which is easily satisfied for z= 0, and since the perturbations are expected to decrease
as we move away from the interface in either direction, the exponential function for
the lower fluid must grow with positive z and that for the upper fluid decrease with
positive z. Furthermore, we do not assume that kU and kL are, in general equal. This
follows naturally from the previous section where it was found that k is dependent on
the rotation rate of the fluid.

Following the same method as for the single homogeneous fluid, we find
expressions for the vertical velocities

wU =−AkU

αU
e−kUzR(r) cos(nθ − ωt), (3.11)

wL = BkL

αL
ekLzR(r) cos(nθ − ωt), (3.12)

where αU = (ΩUn − ω) and αL = (ΩLn − ω). We can likewise find expressions for the
radial and azimuthal velocities which, as before, are used to derive equations for R(r).
The equations are identical to (2.25) except we now have different (but still equal)
expressions for γ above and below the surface:

γ 2
U = k2

U

(
1− 4Ω2

U

(ΩUn− ω)2
)
= γ 2

L = k2
L

(
1− 4Ω2

L

(ΩLn− ω)2
)
. (3.13)

The solutions are the Bessel functions

R(r)= Jn(γUr)= Jn(γLr), (3.14)

where we ignore the Bessel function of the second kind as it is not finite at the centre
of the cylinder of fluid, and γ = γU = γL.

The horizontal velocities are derived using the same technique as before, and are
identical save for the subscripts indicating the fluid, and the sign of the exponent, so

uL =−BekLz cos(nθ − ωt)

4Ω2
L − α2

L

(
αLγLJ′n(γLr)+ 2ΩLn

r
Jn(γLr)

)
(3.15)

uU =−Ae−kUz cos(nθ − ωt)

4Ω2
U − α2

U

(
αUγUJ′n(γUr)+ 2ΩUn

r
Jn(γUr)

)
(3.16)

vL = BekLz sin(nθ − ωt)

4Ω2
L − α2

L

(
2ΩLγLJ′n(γLr)+ nαL

r
Jn(γLr)

)
(3.17)

vU = Ae−kUz sin(nθ − ωt)

4Ω2
U − α2

U

(
2ΩUγUJ′n(γUr)+ nαU

r
Jn(γUr)

)
. (3.18)
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In order to determine the surface expressions we make use once again of (2.32). We
get two expressions which must be equal,

η =−AkU

α2
U

Jn(γ r) sin(nθ − ωt)+ f (r)

= BkL

α2
L

Jn(γ r) sin(nθ − ωt)+ f (r). (3.19)

Once again f (r) is the mean surface elevation. The two expressions for the surface
give us a second equation in terms of the frequency ω,

−AkU

(ΩUn− ω)2 =
BkL

(ΩLn− ω)2 . (3.20)

From the surface condition we may derive the dispersion relation, which provides a
third equation for ω. The pressure difference across the surface is

1p|z=η = pU|z=η − pL|z=η = T∇2η (3.21)

where T is the surface tension. If we substitute the expressions for pressure (3.9) and
(3.10), then we have

η − T

g(ρL − ρU)
∇2η = ρLB− ρUA

g(ρL − ρU)
Jn(γLr) sin(nθ − ωt)+

(
ρLΩ

2
L − ρUΩ

2
U

ρL − ρU

)
r2

2g
. (3.22)

Using (3.19) we get an inhomogeneous differential equation for the function f (r),

f ′′(r)+ f ′(r)
r
− g(ρL − ρU)

T
f (r)=−Ω

2
LρL −Ω2

UρU

2T
r2, (3.23)

and an equation relating derivatives of the Bessel function,

J′′n(γ r)+ 1
γ r

J′n(γ r)+
[
α2

L(BρL − AρU)

BkLγ 2T
− g(ρL − ρU)

γ 2T
− n2

γ 2r2

]
Jn(γ r)= 0. (3.24)

This latter equation is satisfied if

γ 2T + g(ρL − ρU)= α2
L

BkL
(BρL − AρU). (3.25)

The solution of (3.23) is

f (r)= C1I0

(√
g(ρL − ρU)

T
r

)
+ Ω

2
LρL −Ω2

UρU

2g(ρL − ρU)

[
r2 + 4T

g(ρL − ρU)

]
(3.26)

with the constant of integration C1 determined by the contact angle (see § 2.2); if
there is no surface tension it is zero in order to satisfy the condition that the solution
be finite everywhere. f (r) gives us the paraboloid mean surface, determined by the
difference of inertially weighted terms for each fluid plus the effect of the surface
tension.

Ignoring surface tension, if we set ΩL =ΩU, so that both fluids are rotating at the
same rate, their velocities must be equal at the interface, and so from (3.11) and (3.12)
we must have that A=−B, just as for two non-rotating fluids; see article 231 of Lamb
(1932). The left-hand term of the surface elevation equation (3.22) then resembles
the form for an internal (interfacial) wave between two fluids with no shear from
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rectilinear theory, with the only difference being the presence of the Bessel function.
As we show in the next section, however, there are only two cases where we can
recover this relationship between A and B: the first is when the mean rotation rates
of each fluid are exactly equal, and the second when n = 0 and they are equal in
magnitude but counter-rotating. This contrasts with Kelvin–Helmholtz instability for
non-rotating fluids, where the relationship always holds, as shown in article 232 of
Lamb (1932).

3.2. Equations for the vertical scaling and for A and B
From (3.25) and (3.20) we arrive at

γ 2T + g(ρL − ρU)= ρLα
2
L

kL
+ ρUα

2
U

kU
. (3.27)

Multiplying through, alternately, by kL and kU and using (3.13), we find expressions
for the vertical scaling factors for each fluid,

kL

[
γ 2T

ρL
+ g(1− χ)

]
= α2

L ± αLαUχ

√
α2

U − 4Ω2
U√

α2
L − 4Ω2

L

(3.28)

kU

[
γ 2T

ρL
+ g(1− χ)

]
= α2

Uχ ± αLαU

√
α2

L − 4Ω2
L√

α2
U − 4Ω2

U

(3.29)

where χ = ρU/ρL and the signs must be the same. These expressions imply a strict
relationship between A and B, since from (3.20) we have the ratio

ξ ≡−A

B
= kLα

2
U

kUα
2
L

. (3.30)

The relations (3.28) and (3.29) enable us to express this as

ξ =
αLαU ± α2

Uχ

√
α2

U − 4Ω2
U√

α2
L − 4Ω2

L

αLαUχ ± α2
L

√
α2

L − 4Ω2
L√

α2
U − 4Ω2

U

. (3.31)

Therefore A and B are not arbitrary constants. Instead, their ratio is a function of
the frequency ω, the azimuthal wavenumber n, the density ratio of the fluids χ and
the rates of rotation of the two fluids ΩL and ΩU; note it is not a function of any
of the independent space or time variables r, θ , z or t, so the differential equations
remain valid. Because it is their ratio which is defined, rather than their exact value, a
common, arbitrary scaling constant may be applied which disappears in the analysis. It
may be seen from (3.31) that when the rates of rotation are the same, that is ΩL =ΩU,
that ξ = 1. For the unique case of n= 0, ΩL =−ΩU also returns ξ = 1.

3.3. The dispersion relation
Substituting either of the relations (3.28) or (3.29) into (3.13) gives a dispersion
relation for the coupled system,[

γ 3T

ρL
+ γ g(1− χ)

]2

= α2
L(α

2
L − 4Ω2

L)± 2αLαUχ

√
α2

L − 4Ω2
L

√
α2

U − 4Ω2
U + α2

Uχ
2(α2

U − 4Ω2
U). (3.32)
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For given values of the radial scaling γ , gravitational acceleration g, density ratio of
the fluids χ , the mode n and the rotation rates ΩL and ΩU, this equation determines
the allowed frequencies. However, it is not straightforward to solve; one method is to
move the terms other than the square roots to one side and square both sides, which
gives an octic equation in ω. The solutions to this can then be introduced into the
original equation to determine which ones solve it (rather than the octic itself). But
since there is no algebraic method for solving octic equations in general, we avoid
treating them here.

Before we investigate some special cases of the general equation in detail, we may
make some comments on the behaviour of the system. We can determine frequency
limits from (3.13), exactly as we did in § 2 but now for two fluids. For real values
of ω, kU and kL and in order to ensure that γ is real so the boundary conditions are
satisfied, we must have that

α2
U = (ΩUn− ω)2 > 4Ω2

U (3.33)

and

α2
L = (ΩLn− ω)2 > 4Ω2

L . (3.34)

This leads to the following restrictions for ω when ΩU > 0 and ΩL > 0,

ω < ΩU(n− 2), ω > ΩU(n+ 2), (3.35)
ω < ΩL(n− 2), ω > ΩL(n+ 2), (3.36)

and when ΩL < 0,

ω >ΩL(n− 2), ω < ΩU(n+ 2). (3.37)

Thus, ω must satisfy separate conditions for each fluid simultaneously. Clearly, when
ΩL = ±ΩU this condition is effectively the same for the two fluids, but when the
magnitudes of ΩU and ΩL differ then they are unrelated. In the limit as n→∞ all
frequencies are allowed. Now when α2

U < 4Ω2
U and α2

L < 4Ω2
L , the only way that the

boundary conditions can be satisfied (meaning that γ is real) is for kU and kL to
be imaginary, which implies the existence of inertial waves. Because there are two
inequalities to satisfy, one for each fluid, it is possible for one fluid to have inertial
waves while the other does not. In the present work we are interested in surface wave
phenomena, so we leave inertial waves here.

3.4. Boundary condition for the cylinder wall
At the cylinder wall the radial velocity must be zero, which means that both (3.15) and
(3.16) must both be zero. This is impossible to satisfy for any non-zero frequency ω,
except for when n= 0, indicating that the separable solution is not generally valid. But
various limiting forms of the equations exist for which the condition can be satisfied,
so the separable solution in many situations should function as a good approximation
of the system.

The only difference between (3.15) and (3.16) is that due to the different solid-
body rotation rates, ΩL and ΩU. The boundary condition can be satisfied when this
difference becomes negligible or when one of the Bessel terms disappears. This can
happen for several different reasons:

(a) the special case of n= 0, which is satisfied exactly;
(b) ΩL ≈ ΩU; the special case where both fluids rotate at the same rate is satisfied

exactly;
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(c) r0→∞;
(d) n→∞;
(e) |ω| is much greater than both |ΩL| and |ΩU|;
(f ) |ω| is much smaller than both |ΩL| and |ΩU|.
The last two follow since in both cases the two independent boundary conditions
(3.15) and (3.16) become independent of ΩL and ΩU (this can be seen by dividing
through by ΩL and ΩU, respectively). At least one of these six limits is assumed to
hold for each of the special cases analysed in § 4.

4. Solutions for special cases
4.1. The axisymmetric mode

In order to satisfy the conditions (3.35)–(3.37) for the existence of surface waves, as
opposed to internal waves, the axisymmetric mode, n = 0, requires that ω be real.
Therefore, the fundamental mode is always stable, as also reported by Bradford et al.
(1981). When considered geometrically, this is akin to rectilinear shear where there is
no initial disturbance in the direction of the flow.

Neglecting surface tension and fixing n= 0, the dispersion relation (3.32) becomes

γ g(1− χ)= ω
(√

ω2 − 4Ω2
L ± χ

√
ω2 − 4Ω2

U

)
. (4.1)

Expressing this in terms of the vertical scaling variables gives

ω2 = kLkUg(1− χ)
kU + kLχ

(4.2)

which for both uniform rotation as well as exact counter-rotation, that is ΩU = ±ΩL,
reduces to the familiar form for the dispersion relation,

ω =±
√

gk

(
1− χ
1+ χ

)
(4.3)

where k = kU = kL and the two forms of (3.13) are identical. In the high-frequency
limit in which the effects of rotation are negligible, there is no restriction on the
allowed frequencies.

4.2. The limit of large density contrast
Returning to the general solution, but again neglecting surface tension, we now
examine the limit as χ → 0, that is we assume that the upper fluid is much less
dense than the lower. For the lower fluid we recover relations which are the same as
for a single fluid, however the relation for the vertical scaling kU of the upper fluid
(3.29) does not disappear, which suggests a fundamental difference between the limit
and assuming the absence of the upper fluid to begin with. Taking the limit, equation
(3.32) then becomes

γ 2g2 − α2
L(α

2
L − 4Ω2

L)= 0, (4.4)

which is identical to what we get for a single fluid by substituting the dispersion
relation (equation (2.39)) into the expression for γ (equation (2.26)). The solutions are

ω =
√

4Ω2
L − i2gγ ±

√
4Ω2

L + i2gγ

2
+ nΩL (4.5)
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and

ω = −
√

4Ω2
L − i2gγ ±

√
4Ω2

L + i2gγ

2
+ nΩL. (4.6)

The two terms under the square roots are complex conjugates of one another, so two
solutions will be real, and two complex, which become pure imaginary if we shift
the frequency by twice the rate of rotation (being the Coriolis force). These complex
solutions again do not satisfy the relations (3.28) and (3.29), for the same reason
that they imply a negative real value for kL. For this configuration there is no inertial
instability for any mode, which is expected since in the limit of zero density the upper
fluid has zero momentum.

The dispersion relation (4.4) of course holds for the two remaining real solutions,
and can be expressed in terms of the relative wave angular frequency as

ω

n
−ΩL =±2ΩL

n

√√√√1
2
+ 1

2

√
1+

(
γ g

2Ω2
L

)2

. (4.7)

By inspection, for large values of the non-dimensionalized radial scaling γ g/Ω2
L the

non-dimensional relative angular wave frequency, which we define as

ω/n−ΩL

ΩL
, (4.8)

must be large as well. This is illustrated in figure 2 for various values of n. We may
therefore say that the waves rotate more rapidly as the radial scale is compressed near
the centre; this may be equivalently concluded from (3.13). Two important limits of
(4.7) are

ω = (n+ 2)ΩL as
gγ

Ω2
L

→ 0 (4.9)

and

ω =√gγ +ΩLn as
gγ

Ω2
L

→∞. (4.10)

The first implies that as the radial scaling variable becomes small relative to the
rate of rotation, the relative frequency varies only with the rate of rotation (and the
mode). The second implies that in the inverse case the relative frequency is dependent
only on the radial scaling. The approach to these limits can be seen in figure 2, in
which for each mode the dispersion relation is given by (4.9) for γ g/Ω2

L = 0 and by
(4.10) for γ g/Ω2

L →∞. Equation (4.10) has an interesting interpretation: consider a
wave rotating at a radius r. Then, by (3.13), as ΩL → 0, γ → k, and from (4.10)
ω→√gk, which is the dispersion relation for rectilinear deep water waves. Hence,
(4.10) provides a relationship for the short-crestedness of the gravity waves, in which
since for kr→∞ the Bessel function reduces to a trigonometric form with a radial
wavenumber k, the ratio of the crest length W = π/(2k) to the wavelength λ = 2π/k
is 1/4.

Observations of the rapidly rotating n = 2 mode were recently made in a series
of experiments described by Vladusic (2001), Bye, Hughes & Vladusic (2005) and
Bye & Ghantous (2012). In a tank of radius r0 = 0.19 m, a rotating disc drove a
column of air of 0.07 m depth which sat over water of depth 0.06 m. The rotation
rates were ω/n = 9.8 rad s−1 and ΩL = 1.5 rad s−1. This corresponds approximately
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FIGURE 2. Dispersion relation (4.7) (solid lines) for the non-dimensional radial scaling
γ g/Ω2

L as a function of the non-dimensional relative angular frequency (ω/nΩL) − 1. The
dotted lines are (4.9), applicable for γ g/Ω2

L → 0, and the dashed lines are (4.10), applicable
for γ g/Ω2

L →∞. The black circle is the observation for the n = 2 mode in the cylindrical
tank, and the thick black line the observations for the n = 11 mode. This line crosses several
modes on the graph, a reflection of both the closeness of the modes in this part of the solution
space and the fact that, as suggested by observations, the mode was not a purely n= 11 mode.

to a three-quarter-wavelength resonance for which by (3.15) the boundary condition,
uL(r0) = 0, yields γ r0 = 6.653 (when evaluated exactly, or 6.706 when applying the
large omega approximation valid here) and ω/n ≈ 10.82 rad s−1. The measured value
of ω/n is about 10 % lower, which we attribute to the effect of viscosity slowing the
motion. The high speed of the wave indicated that it was rotating close to the speed
of the air above, suggesting that this wave was being maintained by the direct pressure
resonance described by Phillips (1957).

At a range of other measured rotation rates in the lower fluid, between ΩL = 1 and
3.4 rad s−1, a less impressive n = 11 mode was observed, which was also a three-
quarter-wavelength radial response, with γ r0 ≈ 17.5 (17.6 when applying the large ω
approximation), rotating at an angular speed which increased with ΩL from ω/n= 2.8
to 6.5 rad s−1. This precludes pressure resonance, and the mode was probably driven
by nonlinear transfer from within the wave spectrum, which is also the main growth
mechanism in wind–wave generation in the ocean. A photograph of this mode is
shown in figure 3; note that it is not possible to definitively ascertain the mode.

In the experiments, the reflection of the wave at the rim of the cylinder (as a
Bessel function of the second kind or a Hankel function) gave rise to leading spiral
waveforms which for the n = 2 mode were strikingly beautiful to behold (Bye et al.
2005). The vertical scales were kL = 28 m−1 for the n = 2 mode and kL = 45 m−1 for
the n = 11 mode, indicating that the deep water approximation was well satisfied in
the experimental rig.

4.3. The limit of large n
Another response was observed in the cylindrical rig with a smaller air gap of 0.035 m,
in which the rather larger number of 50 wavelengths could be counted around the rim.
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FIGURE 3. (Colour online) An image of the n = 11 mode in the cylindrical tank. The image
was obtained by an overhead camera, with a light source situated centrally under the tank
directed upwards onto opaque paper on the tank’s base. The central boss is the electric motor
which drove the rotating disc (Vladusic 2001). The increase in angle 1θ in the leading
spiral over the radius is about a right angle, which is similar to the theoretical estimate of
1θ = γ r0/n for γ r� 1 which yields 88◦ (Abramowitz & Stegun 1964).

Such a system may be approximated by taking the limit as n→∞ in the dispersion
relation (3.32), which leads to

γ g(1− χ)+ σγ 3 =+(α2
L ± χα2

U) (4.11)

where σ is the specific surface tension with respect to the lower fluid. By comparing
this with the limiting forms of (3.28) and (3.29) we see that in the limit of large
n, γ = kL = kU (indeed, this can be seen directly by taking the limit in (3.13)). The
solutions to (4.11) are, taking the sign to be positive,

ω = n(ΩL + χΩU)

1+ χ ±
√

gγ (1− χ)
1+ χ + σγ 3

1+ χ −
n2χ(ΩL −ΩU)

2

(1+ χ)2 . (4.12)

This yields complex solutions when the difference in rotation rates of the fluids is
sufficiently high, according to the relation

(ΩL −ΩU)
2 >

gγ (1− χ 2)+ σγ 3(1+ χ)
χn2

, (4.13)
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which implies that there exist unstable waves which grow with time. These equations
may be related to the regular, rectilinear Kelvin–Helmholtz relations with the following
substitutions: k = γ , n= kr0, where r0 is the radius of the domain (the boundary of the
cylindrical tank), vL(r0)= r0ΩL, and vU(r0)= r0ΩU (see, for example, Thomson (1871)
or Proudman (1953)). Bye & Ghantous (2012) showed that the dispersion relation
(4.11) was satisfied by the experimental results, which appear to be the first detailed
demonstration of Kelvin–Helmholtz instability for a large density contrast system.

4.4. The limits of small contrast in density and rotation rate
Equation (3.32) can be applied to a system where the difference in solid-body rotation
rates between the fluids and the ratio of densities are small. We make the following
substitutions:

ΩL =Ω, ΩU =Ω − ε, ρL = ρ, ρU = ρ − µ, ε, µ > 0 (4.14)

where, on assuming quasi-geostrophic, baroclinic conditions, ε/Ω and µ/ρ are both
small. With these substitutions we replicate the experimental conditions of Bradford
et al. (1981), where the upper fluid is only slightly less dense and the lower fluid is
driven to rotate only slightly faster than the upper one. There are important differences,
however, between their approach and ours here, due to viscosity. In their theoretical
treatment they explore the limit of zero viscosity, but this is quite different to our
inviscid-from-the-start approach.

Taking the positive sign in (3.32) and making the substitutions we get, after some
rearranging,

γ 3σ + γ g(1− χ)

= α
√
α2 − 4Ω2 + αUχ

√
(α2 − 4Ω2)

(
1− 2ε(Ωn2 − ωn− 4Ω)

α2 − 4Ω2

)
(4.15)

where α = αL =Ωn−ω. Assuming small ε we may take a binomial expansion and the
right-hand side becomes√

α2 − 4Ω2

[
α + αUχ

(
1− ε(Ωn2 − ωn− 4Ω)

α2 − 4Ω2

)]
. (4.16)

Evaluating αU and eliminating terms of order ε2 gives

γ 3σ + γ g(1− χ)= α
√
α2 − 4Ω2

[
1+ χ − χε

(
Ωn2 − ωn− 4Ω

α2 − 4Ω2
+ n

α

)]
. (4.17)

We define the non-dimensional relative azimuthal wave frequency,

W =
ω

n
−Ω
Ω

(4.18)

and for convenience we make the transformation

W→−2
n
− φ, φ� 1. (4.19)

Substituting into (4.17) and eliminating the term of order φε,

φ −
[
γ 3σ + γ g

µ

ρ

] √
φ

4Ω2 (2− µ/ρ) −
(1+ µ/ρ) ε(n− 2)

2Ω (2− µ/ρ) = 0 (4.20)
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where we have also substituted for χ = 1 − µ/ρ. If we now take the limit where
µ/ρ→ 0, ignoring the terms of order µε and substituting for γ = x/r0 where r0 is the
cylinder radius leads us to

φ − a
√
φ − b= 0 (4.21)

where

a= x(1+ x2I)

4F (2− µ/ρ)
µ

ρ
(4.22)

and

b= A(n− 2)
2 (2− µ/ρ)

µ

ρ
. (4.23)

Here

A= ερ

Ωµ
(4.24)

is a modified Rossby number,

F = r0Ω
2

g
(4.25)

is a Froude number and

I = σρ

gr2
0µ

(4.26)

is the interfacial tension number. Solving (4.21) we find that

√
φ = a

2
±
√

a2

4
+ b (4.27)

which indicates that for n > 2 (i.e. b always positive)
√
φ is real and hence the mode

is stable, whereas for n< 2,
√
φ may be complex, indicating an imaginary component

to the frequency and an instability. This does not correspond to Bradford et al.’s
results, either numerical or experimental, which show that the n= 2 mode may also be
unstable. Neutral stability occurs for a2 =−4b, at which

AF2 = x2(1+ x2I)2(µ/ρ)

32 (2− µ/ρ) (2− n)
. (4.28)

When n = 2, AF2 is undefined, and we may conclude that the analysis is invalid
for such a mode; for n > 2 we would require that AF2 < 0, which contradicts our
assumptions. For φ � 0, on using (4.19) (leading to ω/Ω ∼ −1) and the boundary
condition (3.15) (applicable since ΩL ≈ΩU), we obtain

x=−J1(x)

J′1(x)
, (4.29)

the solution of which is x ≈ 2.40 for the first zero, corresponding to the first radial
mode observed by Bradford et al. (1981). Equation (4.28) may then be evaluated, and
we find that AF2 ≈ 0.0056, much less than the order ∼1 solutions found by Bradford
et al. A plot of the curve (4.28) is shown in figure 4.
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FIGURE 4. The neutral stability relation obtained from (4.28) in which AF2 ≈ 0.0056. Here A
is the modified Rossby number and F is the Froude number.

5. Conclusion
We have presented what is essentially a normal mode analysis for the interfacial

instability of the inviscid coupled differential and counter-rotation of two fluids, for
which the dispersion relation was found to be (3.32). We have explored the solution
space analytically where possible, and attempted to compare our results with those of
another study by Bradford et al. (1981).

The properties of the dispersion relation are diverse, as illustrated in § 4, and may
have application outside of the cylindrical rig in which the experimental observations
which inspired the study were made. In particular, the rotating waves have crests along
which the amplitude varies radially, in distinction to rectilinear capillary–gravity waves
in which there is no cross-wave variation in crest amplitude. An open question is
whether waves of this kind exist in the open ocean, where they may be generated by
the vorticity of the wind field. Equation (4.10) is an important limit in this regard
as it occurs when the angular velocity of the current (which we associate here with
the rotation rate ΩL) is small relative to the radial wavenumber (radial scaling) γ ,
which may be a relatively common feature in the wind–sea. This would give rise (see
§ 4.2) to a rotating wave in which the crest length is of similar magnitude to the
wavelength in a rectilinear wave of the same period. While it remains unclear how the
boundary conditions would be satisfied, we note that in the open ocean, and indeed
in nature in general, our familiar mathematical idealizations are never strictly true.
While it is improbable that a cylindrical system would be replicated in the ocean, it
is not inconceivable that a situation that is at least in part qualitatively similar might
eventuate.
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LE MÉHAUTÉ, B. 1976 An Introduction to Hydrodynamics and Water Waves. Springer.
MILES, J. W. 1963 Free-surface oscillations in a slowly rotating liquid. J. Fluid Mech. 18, 187–194.
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counter-rotating von Kármán swirling flow. J. Fluid Mech. 477, 51–88.

PHILLIPS, O. M. 1957 On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417–445.
PROUDMAN, J. 1953 Dynamical Oceanography. John Wiley & Sons.
THOMSON, W. 1871 The influence of wind on waves in water supposed frictionless. Phil. Mag. 42,

368–370.
VLADUSIC, J. C. 2001 Wind wave growth in a circular tank. BSc Honours thesis, The University of

Melbourne.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

24
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.248

	Interfacial instability of coupled-rotating inviscid fluids
	Introduction
	Waves on a rotating fluid
	Determining an expression for the pressure
	Finding the velocities, surface elevation and deriving the dispersion relation
	The effect of rotation

	Two fluids with horizontal shear
	Finding the surface elevation, being the shape of the interface between the fluids
	Equations for the vertical scaling and for A and B
	The dispersion relation
	Boundary condition for the cylinder wall

	Solutions for special cases
	The axisymmetric mode
	The limit of large density contrast
	The limit of large n
	The limits of small contrast in density and rotation rate

	Conclusion
	Acknowledgements
	References




