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Convectively driven exchange flow in a stratified
sill-enclosed basin
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(Received 4 June 1999 and in revised form 4 April 2000)

Laboratory experiments are used to investigate the processes governing steady convec-
tively driven circulation in a basin that communicates with a large external reservoir
over a shallow sill. The motion is maintained by a steady loss of buoyancy distributed
over the surface of the basin. Turbulent convection associated with the forcing pro-
duces a horizontal buoyancy gradient across the sill and the resulting mean flow
consists of a layer directed into the basin near the surface with a dense counterflow
below.

To first order, the magnitude of the exchange flow over the sill is determined by
the horizontal momentum balance within the basin. Measurements of the mean and
turbulent flow fields are used to show that inertia, buoyancy and friction may each
contribute significantly to the balance. The interior flow produces a horizontal pressure
gradient near the surface which must also contribute to the momentum balance. The
density of the lower layer at the sill reflects the cumulative effect of interior processes,
such as mixing, and these in turn influence the hydraulically controlled exchange
flow over the sill. The basin dynamics are therefore coupled in a nonlinear fashion
with the submaximal sill exchange. This coupling is investigated first by showing how
interior processes are affected by changes in the magnitude of the forcing, and then
by observing the associated variation of the flow state at the sill. The flow state is
defined in terms of its relative proximity to the theoretical maximal exchange limit.
Results show that the exchange flows are submaximal with flow rate approximately
85% of the maximal limit. This state appears to change very little in response to
increasing forcing.

For a stratified basin, which exhibits a deep stagnant layer under the convectively
driven near-surface exchange flow, the possibility of basin ventilation or erosion
of deep fluid exists in the long term. This process and its dependence on external
parameters is also explored.

1. Introduction
Physical processes in marginal seas and other semi-enclosed natural water bodies

have significant effects on both local and far-field environments (e.g. Nihoul 1982).
A horizontal buoyancy gradient, caused by localized atmospheric forcing or riverine
inflow, can drive circulation within the enclosure and maintain an exchange of fluid
with adjoining reservoirs. We consider the specific case of a basin (or sea), partially
separated from a large reservoir (or ocean) by a shallow sill, and forced by a steady

† Present address: Department of Oceanography, University of Hawaii at Manoa, HI 96813,
USA.
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Figure 1. Definition sketch for convectively driven flow in a sill-enclosed basin. (a) In the basin a
mean exchange flow (layers 1 and 2) is driven by the buoyancy flux Bo at the surface while there is
a deep stagnant layer (layer 3) below. Mixing regions are indicated by small opposing arrows. The
reservoir is assumed to extend indefinitely to the right. (b) Close-up view of the sill crest region
where the exchange flow is internally hydraulically controlled. The criticality is specified by the
value of the composite Froude number G2, defined in equation (1.1).

loss of buoyancy due to cooling and/or evaporation through the surface (see figure
1a). The limited horizontal extent of the forcing results in a buoyancy gradient across
the sill and an associated circulation. Fluid enters the basin near the surface, loses
buoyancy due to the flux through the surface and then descends near the closed
end of the basin. As depicted in figure 1, the finite volume of the enclosure requires
a compensatory stream of heavy fluid to exit the basin below the inflow. As an
initial condition in our experiments, we include a deep layer of stagnant water which
is trapped behind the sill inside the basin. Two prominent and frequently studied
examples of this configuration are the Red and Mediterranean Seas. For such systems
the topographic control on the flow due to the presence of the constriction plays an
important role in the overall dynamics and has been the topic of several studies (see,
for example, Armi & Farmer 1988; Garrett, Bormans & Thompson 1990; Bray, Ochoa
& Kinder 1995; Murray & Johns 1997; Smeed 1997). The coupling of the flow at
the constriction to the forced basin dynamics has been discussed by previous authors
(Stommel & Farmer 1953; Maxworthy 1997; Tragou & Garrett 1997; Finnigan &
Ivey 1999) but the details of this process are still not completely resolved.

For the present study, laboratory experiments have been conducted in an idealized
system as shown in figure 1(a) with the intention of determining the processes which
govern the steady basin circulation and exchange flow over the sill. While the volume
flux q and the density of the outflow at the sill are of interest, as we will show
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Convectively driven exchange flow in a basin 315

below, these parameters are not easily specified, being dependent on conditions both
in the basin and at the sill itself. In §§ 1.1–1.3 below, we introduce and review internal
hydraulic theory, submaximal exchange flows, and previous analytical models of
convectively driven basin circulation, all of which are relevant to the present study.
Following this, in § 1.4 we introduce the experiments using flow visualization and
outline the remainder of the paper.

1.1. Internal hydraulic control

Figure 1(a) shows how a steady, uniformly distributed loss of buoyancy from the
surface of the basin drives an inflow with volume flux q near the surface which, in
turn, requires a deeper outflow with equal volume flux. We delineate vertical layers by
the sign (+/−) of the mean horizontal velocity component (u). The common surface,
or interface, between layers therefore occurs where u = 0. The destabilizing surface
buoyancy flux produces convective turbulence in the upper layer (layer 1). As will be
shown below, the turbulence decays in the middle layer (layer 2) where the fluid is no
longer in contact with the forcing surface. Vertical mixing, defined here as the transfer
of mass across the interface between layers, may occur within the basin. Near the sill
we shall assume that mixing is negligible and that the sill exchange is composed of
two distinct layers.

Internal hydraulic theory provides a useful model for this two-layer flow over a
sill since it represents a closed-form solution to the inherently nonlinear problem.
The theory suggests that the flow is limited, or controlled, at the minimum depth of
the sill (the crest) where the phase speed of long internal waves equals the internal
convective velocity uI ≈ (u1h2 + u2h1)/h, and the composite Froude number (Armi
1986 and references therein)

G2 =
u2

1

g′h1

+
u2

2

g′h2

= 1, (1.1)

which is a unique condition termed critical flow. This condition relates the local
layer velocities un (n = 1, 2), thicknesses hn, and densities ρn at the sill crest, where
g′ = g(ρ2 − ρ1)/ρ2. In the derivation of (1.1) it is assumed the flow is inviscid,
pressure is hydrostatic, velocities are purely horizontal and g′/g � 1. Although these
assumptions are approximately satisfied in our experiments, we are not concerned
with the absolute accuracy of (1.1) but rather its ability to represent the essential
nonlinear dynamics of exchange at the sill. As discussed by Armi & Farmer (1987),
hydraulic theory and the concept of submaximal exchange (described below) are
generally applicable even when the assumptions are not strictly met.

For the present experimental configuration the flow is internally supercritical (G2 >
1) outside the basin and internally subcritical (G2 < 1) inside the basin (figure 1b). The
subcritical basin flow communicates via long internal waves with the hydraulic control
at the sill crest. The supercritical section, however, isolates the external reservoir from
the basin and sill flows since internal waves do not propagate upstream through it.

Recognizing that q = u1h1 = u2h2 at the sill, we rearrange (1.1) and express the
volume flux in each layer as

q =

[
g′
(

1

h3
1

+
1

(h− h1)3

)−1
]1/2

, (1.2)

where h = h1 + h2 is the minimum fluid depth at the sill. Conservation of buoyancy
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for the control volume of the basin at steady state further requires

qg′ = BoL, (1.3)

and therefore

q =

[
BoL

(
1

h3
1

+
1

(h− h1)3

)−1
]1/3

, (1.4)

where Bo is the surface buoyancy flux and L is the length of the forced basin. Equation
(1.3) states that, when the flow is steady, the buoyancy transported across the sill
is identical to the amount lost through the surface inside the basin. It follows from
(1.4) that the volume flux q, and therefore also g′, is known if the depth of the upper
layer at the sill is known. However, h1 is generally not known and is dependent on
conditions within the basin. Because of this, (1.4) is not a closed-form solution for q
in terms of external fixed parameters.

It is of interest to know how the processes within the basin influence the exchange
flow at the sill. The following questions naturally arise. What are the significant terms
in the momentum balance within the basin? How are interior conditions and the
sill exchange coupled and, therefore, how do h1 and q depend on Bo? Does interior
mixing influence the exchange and if so, what mechanism is responsible for this
mixing and how does it depend on external parameters?

In this paper we attempt to answer these questions using experimental observations.
To interpret our results concerning the controlled exchange we use the concept of
submaximal exchange, which is now reviewed in the context of our experimental
configuration.

1.2. Submaximal exchange flow

Stommel & Farmer (1953) recognized the ability of a constriction to control the flow
into and out of an estuary. They demonstrated the dependence of the exchange on
the density difference between layers at the constriction, and therefore, on mixing
conditions within the basin. In addition, Stommel & Farmer (1953) suggested that,
for a particular value of the density difference, or g′, there must exist a maximum
possible exchange rate. This special limit is commonly referred to as maximal exchange
and it is often associated with the so-called overmixed state of an estuary (e.g. Farmer
& Armi 1986; Garrett et al. 1990). Where the constriction is represented simply as
a sill (as in the present paper), Farmer & Armi (1986) indicated a range of possible
submaximal exchange flows. Within this range the thickness of the upper layer at the
sill crest h1 was shown to be in the range 0.625h < h1 < h. The maximal volumetric
exchange occurs at the lower bound (h1 = 0.625h) of this range, and from (1.4) it is
given by

qme = 0.35(BoL)1/3h, (1.5)

which is a theoretical prediction for the exchange rate between two basins, each having
an infinitely thick lower layer away from the sill region. In the experiments described
here the lower layer has finite thickness. In practice, this will produce slightly higher
exchange rates than predicted by the theory (Farmer & Armi 1986). Nevertheless, we
shall retain (1.5) and use it as a conservative estimate of the maximal exchange limit
for the experiments.

The proximity of the exchange to the maximal limit is determined by interior
processes. It is therefore convenient to refer to the exchange relative to the maximal
limit (for which h1 is known) rather than the absolute exchange q. We define the
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relative volumetric exchange

q∗ =
q

qme
=

[
0.35h

(
1

h3
1

+
1

(h− h1)3

)1/3
]−1

, (1.6)

which indicates the location of the flow state within the submaximal range 0 < q∗ < 1,
where the upper bound is the maximal exchange limit. Although the forcing parameter
Bo does not appear as an independent variable in (1.6) its effect is implicitly included
in the variable h1.

Finnigan & Ivey (1999) reported experiments in a basin similar to the one considered
here (except without a stagnant lower layer) and noted that the inflow velocity is
determined by the magnitude of Bo and the geometric scales of the system. Assuming
initially an inertia–buoyancy balance within the basin they showed how internal
processes, including friction, may be accounted for when the balance is applied at
the sill and coupled with the hydraulic control condition (1.1). Using experimental
results, Finnigan & Ivey (1999) demonstrated that a change in Bo results in a change
in h1 (and therefore q∗) and a shift to a new equilibrium state between the flow at
the sill and the basin interior conditions. In general q∗ was found to decrease with
increasing Bo and, although they noted that mixing processes influence the shift, they
did not provide detailed observations from within the basin.

1.3. Previous analytical models

The observed circulation of the Red Sea has initiated a few attempts to develop
a reasonably simple analytical model to describe the flow. While our study is not
necessarily concerned with the Red Sea, the configuration is similar in both cases, and
since these previous studies have explored possible momentum balances and mixing
situations, with and without hydraulic control, they are worth reviewing here in brief.

Phillips (1966) considered the circulation in an idealized basin similar to that
shown in figure 1 and derived similarity solutions for two-dimensional flow in a
vertical plane. The formulation was analogous to that for a turbulent boundary layer
and thus represented a three-way inertia–buoyancy–viscous balance in the horizontal
direction. The fluid buoyancy was defined as

b = −g
(
ρ− ρo
ρo

)
, (1.7)

where ρo is a constant reference density, typically taken as the density of fluid in the
deep stagnant layer. We shall adopt the same definition and refer to fluid buoyancy
rather than density for the remainder of the paper. In Phillips (1966), equations for
mean horizontal velocity u and buoyancy b were expressed as

u(x, z) = f (z/h)(Box)1/3, b(x, z) = g(z/h)
(Box)2/3

h
, (1.8)

where f (z/h) and g(z/h) are non-dimensional vertical shape functions. For the internal
turbulent stress, or Reynolds stress, to balance the inertia and buoyancy terms in the
momentum equation,

u′w′(x, z) = h(z/h)
B

2/3
o h

x1/3
, (1.9)

where h(z/h) is another shape function. Vertical buoyancy profiles recorded (by
previous researchers) at several locations along the Red Sea appeared to scale in
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accordance with the theory, thus providing an indication of the form of g(z/h). Since
the shape functions f , g and h are generally unknown, detailed comparisons with
field data were not possible.

Tragou & Garrett (1997) showed that a simple steady-state balance between the
longitudinal buoyancy gradient and inertia forces in the upper layer of the Red Sea
predicts a much larger mean flow speed than that observed. They thus concluded
that friction is of first-order importance in the momentum balance and, using the
same theory as Phillips (1966), they suggested a parameterization of the turbulent
momentum flux and buoyancy flux fields, allowing them to solve the analytical system.
They then extended the solutions to include such factors as sidewall drag and non-
uniform channel cross-section. By comparing results with observations from the Red
Sea, they showed how these external factors could influence the circulation. Although
the theory does not explicitly account for the presence of a sill, the probable effects
of one were discussed in context with the concept of maximal/submaximal exchange.

Maxworthy (1997) pointed out that it is essential to include the effects of an internal
hydraulic control at the entrance to the sea – a feature which is not accounted for in
the theory of Phillips (1966). This was included in a model developed by Maxworthy
(1997) which was based on a two-component force balance between buoyancy and
friction and an assumption of zero vertical mixing within the basin. The model
assumptions led to equations similar in form to (1.8) except with coefficient functions
(f , g and h) varying horizontally rather than vertically in each layer. The same
buoyancy data used to compare with the buoyancy scaling of the Phillips (1966)
model were shown also to be consistent with the scaling of Maxworthy’s (1997)
model despite the neglect of mixing. Significant mixing was actually observed in the
Red Sea data and Maxworthy (1997) suggested that the Richardson number was too
great everywhere along the length of the sea to expect local shear instabilities as a
possible mechanism for driving local vertical mixing. The detailed investigation of
processes which could be responsible for vertical mixing is one of the main goals of
the present study.

In summary, while there are fundamental differences in previous modelling ap-
proaches, it is generally agreed that a hydraulic control at the entrance and significant
friction within the sea both play an important role in the dynamics. It is also clear
that mixing affects the buoyancy of the outflowing layer and hence the control of the
flow at the sill.

1.4. The present experiments

The experiments reported herein are intended to simulate the buoyancy-driven sub-
maximal exchange in a general sill–basin system which is frictionally influenced,
hydraulically controlled at the sill, and exhibits some vertical mixing within the basin.
The experimental methods used are described in the following section. The horizontal
momentum balance which establishes the magnitude of the circulation in the basin
is described in § 3 where detailed measurements of the turbulence field allow us to
suggest a source of internal friction capable of balancing the effects of inertia and
buoyancy. In § 4 we investigate the process and effect (on the sill exchange) of vertical
mixing within the basin. This leads to a description of the inter-dependence between
the submaximal exchange at the sill and mixing within the basin, which combines
with the momentum balance in determining the overall equilibrium steady state of
the system.

An additional feature of the flows described here is the ability of the circulating
layers to slowly erode the deep stagnant fluid in layer 3. Turbulence energy, produced
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(a) Experiment 6

(b) Experiment 7

(c) Experiment 8

Figure 2. Photographs of three visualization experiments each subjected to a progressively larger
surface buoyancy flux Bo (applied over the surface region marked in blue). Each photograph was
taken at approximately the same time relative to the start of the experiment. The parameters for
each experiment are given in table 1.

by convective forcing at the surface, is advected downwards at the end of the basin
by the mean flow (see figure 1). This energy is available for entrainment of heavy
fluid from layer 3 into layer 2, but the process diminishes with horizontal distance
from the head of the basin as the turbulence intensity decays. In figure 2 we present
photographs of three visualization experiments which will be discussed further in
§ 5 below. Each experiment had a similar initial stratification but was forced with
a different value of Bo. The elapsed time since the beginning of the experiment is
approximately the same in each case. Some features worth noting at this stage are:
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Figure 3. Sketch of the experimental apparatus. For convenience the sill was attached to the upper
surface of the tank with the buoyancy flux applied over the bottom (shaded) surface within the
basin. All subsequent results are presented in the inverted, geophysically relevant, orientation.

evidence of hydraulic control at the sill (horizontal asymmetry at the crest and a
plunging outflow down the outside of the sill), convective turbulence in layer 1, and
erosion of the deep stagnant layer which is significantly enhanced with increasing
Bo. The erosion process is described in § 5 and the paper concludes with a general
discussion of the observations, their interpretation, and implications for other basins
(§ 6).

2. Experimental methods
2.1. Apparatus

The laboratory experiments were performed in an insulated rectangular tank 2 m
long, 0.5 m wide and 0.1 m deep using fresh water as the working fluid. The same
facility was previously described by both Sturman & Ivey (1998) and Finnigan & Ivey
(1999) who reported related experimental studies. For the present work, the sill was
located 0.26 m from one end of the tank and an outward buoyancy flux condition was
applied over the surface of the resulting basin (figure 3). The forced area covered the
width of the basin and extended 0.25 m from the endwall. For practical reasons the
experiments were performed ‘upside-down’ with the sill attached to the upper surface
and buoyancy forcing at the lower surface. Flows produced in this orientation are
exact inversions of those for the natural orientation except that buoyancy, as given
by (1.7), must be multiplied by −1. The vertical orientation is therefore irrelevant and
we shall present all further discussion and results in the usual orientation (as shown
in figure 1).

A thermally generated buoyancy flux was established by circulating heated water
through a manifold behind a copper plate acting as the basin surface. The temperature
difference ∆T = |Ttank − Tmanifold| between the tank and manifold fluids resulted in a
buoyancy flux through the copper plate. In general, ∆T varied in the range 5–20◦C
while the spatial variation of temperature along the inside surface was O(0.1∆T ). The
heat flux through the copper plate was therefore nearly spatially uniform in all cases.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

11
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112000001130


Convectively driven exchange flow in a basin 321

Experiment Bo × 106 Purpose q × 104 g′
(m2 s−3) (m2 s−1) (m s−2)

1 0.4 Q 0.39 0.0036
2 0.9 Q 0.56 0.0029
3 3.0 Q 0.82 0.0068
4 6.0 Q 1.02 0.0080
5 0.4 V — —
6 0.9 V — —
7 3.0 V — —
8 6.0 V — —

Table 1. List of experiments performed for both quantitative analysis (Q) and for flow visualization
(V). Volume flux q and reduced gravity g′ were measured at the sill crest. These measurements are
discussed in § 4.2.

Temperature was monitored at the manifold inlet Tin and outlet Tout along with
the flow rate Q through the manifold so that the average heat flux through the plate
could be determined as

H = ρCp|Tin − Tout|Q, (2.1)

and therefore the average buoyancy flux as

Bo =
αgH

ρCpA
, (2.2)

where A is the surface area of the plate, and the coefficient of thermal expansion
α, the specific heat Cp and the density ρ were determined at the average manifold
fluid temperature. Accounting for spatial variations and measurement resolution, we
estimate the reported Bo values to be accurate within ±10%.

2.2. Initial conditions and unsteady flow

Before each experiment the tank was filled with fresh water at the laboratory temper-
ature. To establish the initial stratification within the basin a relatively large surface
buoyancy flux Bs was applied until turbulent convection had mixed the basin and a
steady exchange with the external reservoir was established. The buoyancy flux was
then switched off and the system allowed to come to rest leaving ambient reservoir
fluid (b = ba) above the sill level in the basin and relatively dense fluid (b < ba)
trapped behind the sill.

An experiment was begun by applying a surface buoyancy flux Bo with magnitude
6Bs. The values of Bo used for each experiment are listed in table 1. Experiments
1–4 were intended primarily for data acquisition and experiments 5–8 for flow
visualization.

Initiation of the forcing was followed by the diffusive growth of a thermal boundary
layer adjacent to the forcing surface. Soon after, instability of the boundary layer
led to turbulent convection which rapidly penetrated the region of ambient fluid
above the height of the sill crest. As described in detail previously by Finnigan &
Ivey (1999), the buoyancy gradient established between this convecting fluid and the
external reservoir fluid outside the basin resulted in the initiation of an exchange
flow at the sill and the subsequent propagation of a velocity front across the basin.
The flow became approximately steady after the front reached the endwall of the
basin (x = 0). In this paper we are only concerned with the dynamics after this stage
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has been reached. For our analysis we consider the upper layers (1 and 2) of the
circulation to be steady although it may be more appropriate to refer to the flow as
quasi-steady due to the possibility of slow erosion of the deep stagnant layer below
(see figure 2 and § 5).

2.3. Measurements

2.3.1. Buoyancy

Measurements of temperature were made in order to determine the mean buoyancy
field b(x, z). A horizontal array of fast-response thermistors (labelled t1–t5 in the x-
direction in figure 3) was used periodically to sample the temperature of the fluid in
the basin and at the sill. The thermistors traversed the depth of the basin at regular
60 s intervals while sampling at 100 Hz, yielding spatial resolution of the temperature
field to 1 mm with accuracy ±0.003◦C. Temperature recordings were converted to
density units using a high-order empirical equation of state and buoyancy was then
calculated from (1.7).

2.3.2. Velocity

Velocity measurements were made in order to resolve both the mean and turbulent
flow fields. Measurements within a vertical (x, z)-plane oriented along the basin were
obtained using the digital particle tracking velocimetry (DPTV) technique developed
and described by Cowen & Monismith (1997). The method is similar to standard
particle image velocimetry (PIV) in that it derives an instantaneous two-dimensional
velocity field from a pair of images taken a short time duration apart. PIV techniques
typically use statistical methods to determine displacements (between two images) of
small patterns in a particle seeded flow (e.g. Raffel, Willert & Kompenhans 1998).
The DPTV technique employed here relies on a course-resolution PIV algorithm to
reveal the large-scale velocity field. This field is then used by the DPTV routine as
a guide in the identification and tracking of individual particles. The latter process
produces a vector field with significantly finer spatial resolution and with subpixel
spatial accuracy.

For the present experiments the fluid was seeded with pliolite particles which were
illuminated by a light sheet projected through the upper surface of the tank. The
light sheet was produced by a simple linear arrangement of halogen lamps which
were focused by a series of narrow slits (see figure 3). A 1024× 1024 pixel resolution
digital camera oriented at 90◦ to the light sheet captured pairs of particle images
at regular 3.9 s intervals with an inter-image delay of 0.12 s. A total of 506 image
pairs, transferred direct from camera to computer disk, were accumulated during each
experiment.

From the description of the method given by Cowen & Monismith (1997) we expect
the DPTV technique to resolve velocity structure to approximately 2 mm using our
image resolution (3.5 pixels mm−1) and inter-image delay. Close to the forcing surface
where convective turbulence is present (see § 3.2), we expect the rate of dissipation
ε of turbulent kinetic energy (TKE) to scale with the surface buoyancy flux Bo (e.g.
Shay & Gregg 1986). Mean values of ε/Bo obtained from field measurements lie in
the range 0.44–0.87 (Anis & Moum 1994) and we therefore estimate the Kolmogorov
length scale in the experiments as

η ∼
(
ν3

ε

)1/4

∼
(

ν3

0.6Bo

)1/4

, (2.3)

where ν is kinematic viscosity. For experiment 4, which has the largest Bo, η ∼ 1 mm.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

11
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112000001130


Convectively driven exchange flow in a basin 323

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

(a)

z
H

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

(b)

z
H

x/L

Figure 4. (a) A raw instantaneous DPTV vector field from experiment 1. (b) The mean velocity
field obtained by averaging the binned velocity data over the duration of the experiment (while at
steady state). A small portion of the domain has been segmented to illustrate the bin arrangement
used throughout the domain.

These scales are therefore nearly resolved by the DPTV method in theory. However,
imperfect particle seeding density, particle distribution and lighting conditions do
affect the measurements and we estimate that our system is capable of resolving
structures of≈ 4η. Since 99% of the dissipation spectrum takes place for wavenumbers
k < 5.5η−1, the smallest scales need not be resolved in order to fully characterize the
flow (Cowen & Monismith 1997).

In each velocity field individual vectors are located at the average (between the two
images) position of the tracked particle. An example of one such field (taken from
experiment 1) which contains approximately 1100 tracked particles (vectors) is shown
in figure 4(a). In order to obtain the mean and turbulent fields the flow domain was
first segmented into rectangular bins, each 10 mm wide by 2 mm high. This resulted
in 51 bins in the vertical direction and 28 bins in the horizontal. Data from up to
350 individual velocity fields per experiment (all acquired after the flow had reached
steady state) were sorted into the bins. Each bin then contained O(800) vectors and
the total number of accumulated vectors in the flow domain during an experiment
was O(5× 105).

The mean velocity at each bin location was computed as the ensemble average over
all the vectors located within the bin. The resulting mean velocity field for experiment
1 is shown in figure 4(b) where the tail of each vector marks the centre of a bin. In a
portion of the domain some of the bin boundaries are drawn for reference. Turbulent
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Figure 5. Vertical profiles of (a) mean horizontal velocity and (b) mean buoyancy for experiment
2 over the top half of the basin. Buoyancy profiles, referenced to the constant buoyancy of the
bottom layer (ρo), were measured along the vertical lines shown in (b) which indicate the thermistor
locations (labelled t1–t5). In both plots the interface between layer 1 and layer 2 is shown as a
dashed line.

fluctuating components u′ and w′ were obtained at each bin location by subtracting
the local mean velocity from the individual (total velocity) vectors. From these data
various quantities required for the following analysis, such as turbulent (Reynolds)
stress and r.m.s. velocity, were computed.

3. Momentum balance
The entire circulation in the basin is driven by the lateral buoyancy gradient within

the upper layer. This gradient, established and maintained by the surface buoyancy
flux through the process of turbulent convection, is what draws fluid in from the
external reservoir. The deeper return flow in layer 2 is a passive response required to
conserve volume in the basin. This return layer plays an active role in the exchange at
the sill crest where it is directly controlled (see Farmer & Armi 1986). In this section we
examine the horizontal and vertical structure of the upper layer. The observations are
then used to describe the horizontal momentum balance which dictates the magnitude
of the circulation and exchange rate q. The precise value of q is of course dependent
on the sill control and the associated equilibrium state which is described in § 4.2.

3.1. Non-dimensional scaling

In proceeding to explain the general structure of the upper layer we first wish to
note some features common to all of the experiments. Results from experiment 2 are
used as an example. Figures 5(a) and 5(b) show profiles of mean horizontal velocity
and mean buoyancy, respectively, where only the upper half of the basin is shown.
A dashed line indicates the interface (u = 0) between layer 1 and layer 2 within the
basin. Note that the magnitude of the velocity and buoyancy profiles varies gradually
along the basin (except near the endwall and the sill). The thickness of layer 1 exhibits
a small increase with decreasing x suggesting a slight divergence of the flow in the
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upper layer as the end region is approached. Similar behaviour was observed in all
of the experiments.

These observations suggest the existence of non-dimensional forms of the measured
variables, which essentially remove the dependence on Bo and x. Following the scaling
of Phillips (1966) and Finnigan & Ivey (1999) (based on an inertia–buoyancy–friction
balance) possible non-dimensional forms of mean horizontal velocity, mean buoyancy,
and Reynolds stress are

u∗ =
u

(Boxv)1/3
, (3.1)

b∗ =
bh

(Boxv)2/3
, (3.2)

u′w′∗ =
u′w′x1/3

v

B
2/3
o h

, (3.3)

respectively. Note that these quantities may still vary with z. The horizontal coordinate
xv is referred to a virtual origin which is defined below. For convenience, horizontal
and vertical position within the basin is represented non-dimensionally by

x∗ =
xv

L
, z∗ =

z

H
. (3.4)

Although the endwall of the basin (x = 0) is a physical boundary it does not
represent the origin for which the scaling associated with (3.1)–(3.3) applies. The
virtual origin (xv = 0) for the velocity scaling actually lies outside the basin, beyond
the endwall (see figure 6b). Figure 6(a) shows the variation along the basin of the
mean horizontal velocity (magnitude) |u| in the upper layer for experiments 1–4. The
velocity data were extracted along a horizontal line at about the mid-depth of the
upper layer. In the central region of the basin, away from endwall and sill effects,
u increases with x and in general, u also increases with Bo. From (3.1) we note that∣∣u3/Bo

∣∣ is expected to vary linearly along the basin. This scaling parameter is shown
in figure 6(b) where the data collapse reasonably well onto a straight line within a
section S in the central portion of the basin, in support of the scaling associated with
(3.1), and therefore (3.2)–(3.3), which are based on the same assumptions (Phillips
1966; Finnigan & Ivey 1999). The confirmation of this velocity scaling is in general
agreement with the results of Sturman & Ivey (1998) where a different basin geometry
without a sill was the subject of a similar laboratory experiment. In figure 6(b), a least-
squares linear fit to the data (solid line) within S locates the virtual origin (xv = 0)
at x/L = −0.22 or x = −0.06 m outside the basin (indicated by the dashed line).
This point therefore represents the average virtual origin location for velocity in the
four experiments. It does not correspond to the endwall location because that would
require the linear horizontal profile to intersect the x = 0 origin in figure 6(b), which
is a non-physical expectation. Similarly, a unique virtual origin location may also be
found for buoyancy† and measurements indicate that it lies at x/L = 0.1. Analogous
methods have been used by Phillips (1966) and Tragou & Garrett (1997) to locate
the virtual origin for buoyancy in the Red Sea and indeed they found xv = 0 some
160 km southeast of Suez, which translates to a point with x > 0, in agreement with
our experimental findings. It is not as easy to locate the virtual origin for Reynolds

† For notational simplicity we refer generally to horizontal distance xv with respect to the virtual
origin. The reader should note that each dynamic variable is actually associated with a unique
virtual origin location.
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Figure 6. (a) Along-basin variation of mean upper-layer horizontal velocity. (b) Variation of the
scaling parameter

∣∣u3/Bo
∣∣ along the basin. A solid line, fitted to the data within the interior section

S , indicates the scaling associated with equation (3.1) and is extended (dashed line) to the virtual
origin (xv = 0).

stress but we shall assume that it roughly coincides with that for the mean horizontal
velocity.

3.2. Structure of the upper layer

Scaled profiles of horizontal velocity, buoyancy and Reynolds stress are shown in
figures 7(a), 7(b), and 7(c) respectively. Only the portion of the flow above the sill
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Figure 7. Structure of the upper layer shown as profiles of (a) non-dimensional mean horizontal
velocity u∗, (b) non-dimensional mean buoyancy b∗, (c) non-dimensional Reynolds stress u′w′∗, and
(d) a sample photographic image from experiment 5. Thin dashed lines indicate ±σ. Note that only
the top quarter of the basin depth is shown here so that the structure of the upper layer may be
seen clearly. See text for further details.

crest (z∗> 0.75) is shown so that details of the upper layer may be seen clearly.
Each of the profiles shown (as large dots) represents the ensemble average of several
individual measured profiles obtained within section S . For example, there are 15
horizontal velocity bins within S . A single dimensional profile may be obtained from
each horizontal bin location. For each of experiments 1–4 there were 350 individual
velocity fields acquired at steady state so that

4 experiments× 350 fields

experiment
× 15 profiles

field
= 21× 103 dimensional profiles, (3.5)

contributed to the velocity profile shown in figure 7(a). The same number make up
the Reynolds stress profile (figure 7c) while the buoyancy profile resulted from 384
dimensional profiles. The thin dashed lines in figure 7 indicate ±σ, one standard
deviation about the mean profile. The fact that the data collapse reasonably well onto
single profiles for each of u∗, b∗ and u′w′∗ lends further support for the scaling proposed
in (3.1)–(3.3). The profiles introduced here represent data ranging over values of Bo
and xv and, as described in the next subsection, they may be used to evaluate terms
in the basin-scale momentum balance.
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A vertical dashed line at u∗ = 0 in figure 7(a) delineates the ensemble average of
the position of the interface between the upper layer (u∗ < 0) and the middle layer
(u∗ > 0). The temporally averaged interface position actually varies slightly with xv
and Bo (see figure 5). The intersecting horizontal dashed line at z∗ ≈ 0.83 indicates the
level of the ensemble-averaged interface position, which we denote by zo. This level
is also indicated in figures 7(b), 7(c), and 7(d), the last of which is a photographic
segment from the interior portion of experiment 5, where the fluid in the upper layer
has been dyed.

Looking at all four panels in figure 7, it is clear that within the upper layer there
are two distinct regions: (i) a mixed region (M) adjacent to the surface (zm < z∗ < 1)
and (ii) a gradient region (G) adjacent to the u∗ = 0 interface (zo < z∗ < zm). Referring
specifically to figure 7(d) we note that the gradient region consists of fluid from both
the upper and middle layers. From 7(c) it is apparent that turbulent stress decreases
with depth towards zo and is, on average, negligible for z∗ < zo (middle layer). It thus
appears that convective turbulence in the upper layer drives entrainment from the
middle layer into the mixed region of the upper layer with the gradient region acting
as a conduit. The details of this process, its similarity to previous one-dimensional
experiments, and its implications for the overall exchange flow are discussed in § 4.

3.3. Evaluation of the momentum balance

Along the upper layer in the basin we assume a mixed layer or slab model, reminiscent
of the one-dimensional models of, for example, Niiler & Kraus (1977) and Tennekes
& Driedonks (1981), except in this case we allow horizontal variations. Such models
rely on the existence of a well-mixed region (or slab) below the surface. Within this
region u and b do not vary vertically although u′w′ may. Referring to figure 7, we
recognize such a mixed region (M) within which we shall apply the model and assess
the momentum balance.

Conservation of horizontal momentum in the mixed region M may be expressed,
in dimensional variables, as

u
∂u

∂x
= − 1

ρo

∂P

∂x
− ∂u′w′

∂z
, (3.6)

where the effects of molecular viscosity are assumed negligible and P is the deviation
of the pressure from hydrostatic conditions in a fluid of uniform density ρo. In the
vertical direction the momentum equation has the form

1

ρo

∂P

∂z
= b− ∂w′w′

∂z
, (3.7)

which we differentiate with respect to x before integrating vertically, from within the
mixed region to the surface (z = H), leading to

1

ρo

∂P

∂x
=

db

dx
z − ∂w′w′

∂x
+

1

ρo

dPs
dx

, (3.8)

where the last term represents the horizontal pressure gradient at the surface. In the
laboratory this pressure gradient is supported by the rigid lid at z = H , which is
analogous to the field case where dPs/dx = ρog

′(dη/dx), due to the slope of the free
surface, η(x) = z −H . By combining (3.8) with (3.6) we obtain

u
du

dx
+

db

dx
z +

1

ρo

dPs
dx

= −∂u
′w′

∂z
+
∂w′w′

∂x
, (3.9)
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and, for the boundary layer flow of interest,

∂u′w′

∂z
� ∂w′w′

∂x
(3.10)

(Phillips 1966). Inserting the scaled forms (3.1)–(3.3) into the differential equation
(3.9) leads to a non-dimensional algebraic equation,

1

3
u2
∗ +

2

3

H

h
b∗z∗ +

1

ρo

dPs
dx

(x∗L)1/3

B
2/3
o

= − h
H

du′w′∗
dz∗

. (3.11)

Integrating (3.11) across the mixed region from z∗ = zm to z∗ = 1 leads to

1

3
u2
∗(1− zm)︸ ︷︷ ︸

I

+
1

3

H

h
b∗(1− z2

m)︸ ︷︷ ︸
B

+
1

ρo

dPs
dx

(x∗L)1/3

B
2/3
o

(1− zm)︸ ︷︷ ︸
P

= − h
H

∆u′w′∗︸ ︷︷ ︸
T

, (3.12)

where ∆u′w′∗ is the difference in u′w′∗ across the mixed region. From the profiles shown
in figure 7 it is clear that the first two terms in (3.11) are positive. The lateral buoyancy
gradient in the upper layer results in a negative pressure gradient in the middle layer
which drives the outflow. To conserve volume in the basin a corresponding inflow
is required and therefore a positive surface pressure gradient dPs/dx > 0 develops.
These results indicate that the term on the right-hand side must be positive. Indeed,
the measured profile of u′w′∗ (figure 7c) is negative across the mixed layer, which
confirms this.

Polarity of the Reynolds stress profile about the u′w′∗ = 0 line indicates a turbulent
flux of horizontal momentum directed downwards (u′w′∗ > 0) near the bottom of the
mixed region (z∗ . 0.93) and upwards (u′w′∗ < 0) at the top of the mixed region
(z∗ & 0.93). This occurs because momentum is lost to the counterflowing middle
layer below and to the thin viscous boundary layer at the surface (e.g. Tennekes &
Driedonks 1980).

Since buoyancy drives the flow we know that B must be an important term in (3.12).
To maintain the inflow we also expect term P to factor significantly in the momentum
balance. The question is, do the inertia and turbulent stress terms contribute to the
balance? Aside from P , terms in (3.12) may be estimated from the data shown in
figure 7, which gives I ∼ 0.1, B ∼ 0.3, and T ∼ 0.1. These terms are of similar
magnitude consistent with a balance having significant contributions from each of the
terms in (3.12). This balance is largely responsible for the magnitude of the volume
flux q at the sill. At a more detailed level, the value of q is subject to the constraint
imposed by hydraulic control and thus depends on recirculation within the basin, to
which we now turn our attention.

4. Recirculation and sill–basin equilibrium
In § 1.2 we described how the vertical transport of fluid across the u = 0 internal

boundary in the moving upper layers influences the exchange at the sill. The analysis
in § 3.2 showed that, in general, fluid is transported from the middle layer into the
upper layer. We now examine this transport to determine its dependence on the
forcing and basin geometry and its overall effect on the circulation.

4.1. Entrainment and recirculation

As noted above in § 3.2, fluid in the upper layer is stirred by convective turbulence,
while the middle return layer is essentially laminar. This is evidently due to the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

11
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112000001130


330 T. D. Finnigan and G. N. Ivey

rapid decay of the turbulence in the flow after it departs from the forcing surface.
At any location along the basin interior, and above the deep stagnant fluid, we
therefore observe an essentially two-layer system which is locally (over small horizontal
distances) similar in configuration to the one-dimensional mixing experiments of, for
example, Turner (1968); Deardorff, Willis & Stockton (1980); and Hannoun & List
(1988), among others. We therefore envisage the upper layers of our system as a
horizontal series of many narrow ‘one-dimensional’ mixing experiments, each joined
laterally. A general result of such experiments is that fluid is entrained, or transported,
from the lower non-turbulent layer into the upper turbulent layer. In our system, the
cumulative effect of this is a recirculation of fluid between the upper layers in the
basin.

In order to investigate the recirculation process quantitatively, we consider the
turbulent Richardson number, defined as

Rj =
∆bh

σ2
u

, (4.1)

where ∆b is the buoyancy difference between layers, h is the integral lengthscale of the
turbulence, here taken as the scale of the upper-layer thickness (also the sill depth),
and σu is the r.m.s turbulent horizontal velocity in the well-stirred upper layer. In
previous ‘one-sided’ (turbulence on only one side of the density interface) experiments,
results have generally shown that the normalized entrainment velocity scales with Rj
according to

ue

σu
∼ R−nj , (4.2)

which is valid in the range 1 . Rj . 100 (Hannoun & List 1988). In our case the
entrainment velocity ue may be interpreted as the average volume flux, per unit area,
across the interface from the middle layer to the upper layer. A brief summary of one-
dimensional mixing experiments is given by Fernando & Hunt (1999) who described
details of various entrainment mechanisms. They noted that several independent and
methodically varied studies have shown 1.2 < n < 1.75. In using (4.2) to provide a
first-order estimate for entrainment in our experiments, we shall take n = 3

2
, which

was shown to give close agreement between (4.2) and the experiments of Turner
(1968) and Hannoun & List (1988). Most one-dimensional mixing experiments are
conducted in the absence of shear and, while our experiments do include shear,
estimates (not presented here) indicate that turbulence in the vicinity of the interface
is completely dominated by convection.

Consistent with our results in § 3, we have

σ2
u = u′u′ ∼ B

2/3
o h

x
1/3
v

, (4.3)

and

∆b ∼ (Bxv)
2/3

h
. (4.4)

Combining (4.1), (4.3) and (4.4) we find,

Rj ∼ xv

h
, (4.5)

i.e. a linear variation of Rj along the basin. Measurements of σu obtained from DPTV
results, along with individual buoyancy profiles at the three thermistor locations (t2,
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Figure 8. The variation of Rj along the basin for experiments 1–4 (symbols). A solid line,
representing a least-squares fit to the measured data, indicates the linear scaling of equation (4.5).
Thermistors are labelled along the top.

t3, and t4) within S (see figure 6b), were used to calculate Rj and the variation, for
experiments 1–4, is shown in figure 8. While we have only a few points, the solid line
fitted to the data supports the linear variation predicted by the simple result in (4.5).
The equation for the solid line in figure 8 suggests a best fit Rj ≈ 19(xv/h) − 63 for
the experiments.

A scaling relationship for ue may be obtained by combining (4.2), (4.3) and (4.5)
which leads to

ue ∼ B
1/3
o h2

x
5/3
v

. (4.6)

By definition, the vertical buoyancy flux due to entrainment is Be = ∆bue or, from
(4.4) and (4.6),

Be = C

(
Boh

xv

)
, (4.7)

and C is a constant of order 1. The horizontal transport of buoyancy in the upper
layer,

Qb =

∫ H

zo

ub dz, (4.8)

varies horizontally, due to both the surface flux and entrainment, according to

∂Qb

∂x
= Bo + Be. (4.9)

The change ∆Qb between two horizontal locations (xa and xb) is obtained by inte-
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Figure 9. ∆Qb between thermistors t2 and t4 as a function of the surface buoyancy flux Bo. The solid
line, with slope ∆x, represents the expected variation in the absence of entrainment. The dashed
line, representing a least-squares linear fit to the measured data (symbols), indicates the actual ∆Qb
which includes the contribution from the entrainment flux Be.

grating (4.9),

∆Qb =

∫ xb

xa

(
Bo + C

Boh

xv

)
dxv = Bo

{
∆x+ Ch ln

(
xb

xa

)}
, (4.10)

where ∆x = xb − xa.
If the Richardson number is very large throughout the domain then there is

effectively zero entrainment and from (4.10), ∆Qb = Bo∆x, as shown in figure 9 as a
solid straight line with slope ∆x. By combining and integrating measured profiles of
u and b according to (4.8), we evaluated ∆Qb between thermistors t2 and t4, for each
experiment, and the results are shown as symbols in figure 9. The reader is reminded
that, although values from only four measurement locations are shown, each of these
represent the temporal average of O(103) individual measurements. From (4.10) the
slope of a line though the measured data should be ∆x+Ch ln(x4/x2). A least-squares
linear fit to the data (shown as a dashed line in figure 9) provides an estimate for the
constant C = 0.9. Equation (4.7) therefore suggests Be ≈ 0.9(Boh)/xv . Approximately
mid-way along the basin (xv = 0.06 + 0.25/2 ≈ 0.2 m) the entrainment buoyancy flux
Be ≈ 0.1Bo, or 10% of the surface flux. While this is relatively small, it does have an
affect on the final buoyancy of the outflow at the sill and therefore on the value of q∗.

4.2. Sill–basin equilibrium

As discussed in § 1, at steady state the exchange rate q across the sill is given by
(1.4) but related to the density contrast by the requirement (1.3), i.e. qg′ = BoL.
The maximal exchange condition was stated in equation (1.5) and the proximity of
submaximal flows to this theoretical limit is given by the relative volumetric exchange
q∗, defined in (1.6).
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Exp. 1
2
3
4

Equation (1.6)

Maximal
exchange1.0

0.9

0.8

0.7

0.6

0.5

0.4
0.60 0.65 0.70 0.75 0.80 0.85

h1/h

q*

Figure 10. The relationship between q∗ and h1/h at the sill crest. A solid curve, representing
equation (1.6), depicts the relationship over the submaximal range (1 > q∗ > 0, 0.625 < h1/h < 1).
Measured experimental values are shown as symbols.

The buoyancy scaling g′ ∼ (BoL)2/3/h suggests that g′ at the sill should increase
with Bo. This scaling argument lacks the influence of the variable layer depth at
the sill h1 and should therefore be tested. Measured values listed in table 1 confirm
the positive correlation between Bo and g′. The only anomalous value is that of
g′ for experiment 2 which is slightly lower than that for experiment 1, for reasons
unknown. Despite this, it appears that the absolute response of q and g′ is somewhat
predictable; however it is not clear a priori whether the relative exchange at the sill
moves towards or away from the maximal limit, or if it remains constant. Equation
(1.6) suggests that q∗ does not depend on the forcing Bo. However, we must examine
the relationship between q∗ and h1 to determine if this is entirely true.

The interior processes and sill control are inter-dependent and, when steady, the
system is therefore in equilibrium. By changing Bo and allowing the system to reach
equilibrium, we were able to observe any changes in the values of h1 and q∗. The solid
curve plotted in figure 10 represents equation (1.6) and it defines the submaximal
range. The theoretical maximal exchange limit occurs where q∗ = 1 and h1/h = 0.625.
The reader is reminded that this condition follows from an assumption of infinitely
deep reservoirs and the maximal exchange value of q∗ in the experiments may actually
be slightly greater than unity. Results derived from mean flow measurements of q
and h1 for experiments 1–4, between which only Bo varies, are shown as symbols in
figure 10.

At first glance, there appears to be little variation between the experiments. One is
led to the conclusion that q∗ is essentially constant with a value of approximately 0.85.
However, we note that the measurement of h1/h is significantly more accurate than
that of q∗ and any variation between experiments should therefore be sought along
the abscissa in figure 10. If a vertical line were extended from each data point to the
theoretical curve, then the intersections would mark out a consistent rightward shift
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Erosion

Layer 1

Layer 2

Layer 3

Bo

Figure 11. Schematic of the dynamics in the vicinity of the basin endwall. The size of the circular
arrows implies the relative strength of the turbulence.

along the curve with increasing Bo. The only anomalous point is again experiment
2 (although it is within error bounds of being in the expected order). We therefore
conclude that q∗ is approximately constant but subject to slight variations due to
changes in h1.

5. Long-term erosion of stagnant fluid
In addition to the issues dealt with in the preceding sections we wish to highlight

the potential for the circulating layers (1 and 2) to also slowly erode fluid from the
underlying stagnant layer 3 through the process of turbulent entrainment. Earlier we
introduced visual evidence of this behaviour in figure 2. It was observed that fluid
was eroded more rapidly with increasing Bo. Upon closer inspection it appears that
most of the entrainment occurs near the basin endwall where fluid from layer 1, with
energetic convective turbulence, is advected down and directly impinges upon layer
3, as shown schematically in figure 11. The turbulence subsequently decays through
dissipation and conversion to potential energy, as qualitatively apparent in figure 2
and as shown quantitatively above in § 3.3.

Again, we utilize the scaling suggested by previous one-dimensional mixing ex-
periments (e.g. Hannoun & List 1988) and assume that (4.2) is locally valid in the
vicinity of the interface between layers 2 and 3. Basin-scale estimates of σu and the
buoyancy difference between layers 2 and 3, ∆b23, are obtained from (4.3) and (4.4)
by substituting the length of the basin L for the horizontal coordinate x and by
introducing l as the average integral lengthscale of the turbulence in layer 2. The
average entrainment velocity is thus

uea ∼ B
1/3
o l2

L5/3
, (5.1)

which is simply a generalization of (4.6), where an upper bound on the scale l may
be taken as the average thickness of layer 2.

While our measurements from experiments 1–4 are not of sufficient resolution to
accurately assess the spatial and temporal variation of ue we may use experiments
5–8 to estimate the average value. Referring back to figure 2 we again note that, as
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Figure 12. Variation of the average entrainment velocity uea at the interface between layers 2 and

3, normalized by the maximum measured value uo, for experiments 5–8. The B
1/3
o scaling predicted

by equation (5.1) is shown as a dashed line.

Bo is increased, the volume of fluid V that has been eroded from layer 3 at the time
T of the photograph also increases. The measured basin-scale average entrainment
velocity associated with the erosion of layer 3 is given by

uea =
1

WL

V

T
, (5.2)

where W and L are the width and length of the basin respectively. This quantity
was measured from the photographs of experiments 5–8 and the measured values are

shown as symbols in figure 12. The B
1/3
o scaling associated with (5.1) is shown as a

dashed line, where we have assumed l is approximately constant. Despite the crudity
of the averaging procedure the measurements show a remarkable adherence to the
predicted trend. If we assume that l ∼ h then the result shown in figure 12 implies

uea ≈ 4(h2/L5/3)B
1/3
o although the h and L dependence has not been tested here. The

intersection of the curve with the abscissa suggests that entrainment virtually ceases
for Bo . 5× 10−7 m2 s−3.

6. Summary and discussion
Hydraulically controlled exchange over the sill at the mouth of a convectively driven

basin is dynamically linked with processes in the basin interior. This link requires
the two components of the system to be at equilibrium when the flow is steady and
the process by which this state is achieved may be thought of as follows. Turbulent
convection due to the destabilizing effect of the surface buoyancy flux sustains a mixed
region in the inflowing upper layer. A horizontal buoyancy gradient (increasing in the
positive x direction) exists within this region. As we have demonstrated, the effects
of this gradient are approximately balanced by inertia, Reynolds stress and surface
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pressure. The balance establishes the approximate location of the exchange rate
within the available submaximal range. The magnitude of the friction term reported
in § 3.3 comes directly from measurements of Reynolds stress. There may also be a
contribution from viscous drag at the upper and lower bounds of layer 1 but this has
been assumed small compared to the turbulent stress. In very weakly forced flows
this assumption becomes invalid.

Recirculation within the basin affects the density at the outflow and thus influences
the internal hydraulic control at the sill. As the control condition involves both
layers of the exchange, some of the influence of the recirculation is fed back into the
basin through the upper layer. When the system is at steady state the exchange q is
largely determined by the large-scale momentum balance. The exchange relative to
the maximal limit is however a result of the equilibrium between interior processes
and hydraulic control.

This study was performed in an effort to highlight the coupled dynamics of the
system. As entrainment and recirculation are essential to the process we used a
short basin which limited the vertical stratification while allowing significant levels
of turbulence intensity to be produced in the upper layer. The results indicated that
the buoyancy flux between the upper and middle layers may be up to 10% of the
surface forcing flux. An increase in friction or recirculation within the basin will shift
the exchange in the direction away from the maximal limit. Both recirculation and
friction appear to increase with Bo, leading to a decrease in the relative exchange q∗.

It is quite likely that in long basins there would be very little recirculation owing to
large values of Rj along a significant portion of the basin. Our experiments showed
that Rj ∼ xv/h and that values of Rj ∼ 100 were attained within the length of the basin
(for which L = 0.25 m and h = 0.025 m). Previous mixing experiments (e.g. Hannoun
& List 1988) have shown that turbulent entrainment ceases for Rj & 100, beyond
which transport occurs by molecular diffusion only. In our basin xv/h ∼ L/h = 10 and,
together with the above results, this suggests that turbulent entrainment diminishes
greatly or disappears for values of x greater than about 10h; however, more work
is needed to determine this cut-off value precisely. Recent experiments, conducted by
Grimm & Maxworthy (1999) in a relatively long basin (L = 2.5 m and h = 0.05 m),
showed that mixing was absent for x & H from the basin endwall (whereH = 0.1 m for
their experiments). In this case, our above argument predicts that entrainment occurs
only for x . 0.5 m which seems consistent with their observations. Such long basins
(L/h � 10) therefore represent a different class of systems within which different
scaling laws must prevail. As shown by Grimm & Maxworthy (1999), the scaling of
Maxworthy (1997) seems appropriate along most of the long basin. Interestingly, in
figure 7 of Grimm & Maxworthy (1999) there appears to be a slight change in the
slope of the scaled g′ (or b in our case) data within a relatively short region close to
the endwall (−0.2 < log(x/L) < 0). The actual scaling in this region could correspond
to that observed in our short basin. Owing to the absence of entrainment, variations
of the relative exchange q∗ in long basins, due to changes in Bo, would be dominated
by the effects of friction.

In addition to the dynamics of the upper layers we investigated the process of venti-
lation or removal of stagnant deep water. Basin-averaged estimates of the entrainment
rate of deep water into the middle outflowing layer were made from visual measure-
ments in four experiments across which Bo was varied. These estimates were found to
agree closely with a scaling relationship based on a B

1/3
o dependence. The results of

§ 5 suggest ventilation timescales for geophysical systems. For example, in a typical
lake or reservoir sidearm one might find h ∼ 5 m, L ∼ 1500 m, H ∼ 15 m, W ∼ 200 m,
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and Bo ∼ 10−7 m2 s−3 giving ∆b23 ∼ 0.001 m s−2. If these forcing conditions were main-
tained then our results imply uea ≈ 2× 10−6 m s−1 and therefore the deep water would
be completely removed from the basin on a timescale T ∼ (H − h)/uea ∼ 50 days.
While this seems quite short, conditions are never constant for this period of time,
and such purging of a sill-enclosed lake sidearm is unlikely. Nevertheless, the results
demonstrate that surface cooling can have a significant influence on the residence time
of deep basin water. Substantial volumes may even be removed on diurnal timescales
in strongly forced shallow systems.

In contrast, we consider the deep water in the Red Sea. This water is replenished
by excessively dense water which originates in the Gulf of Suez and drains down the
continental slope at the northern end of the sea (Woelk & Quadfasel 1996; Maxworthy
1997). In winter, the volume flux from the Gulf of Suez has been estimated at 0.12–
1.17×106 m3 s−1 (Woelk & Quadfasel 1996). Considering the lengthscales of the Red
Sea with Bo ≈ 4.4× 10−8 m2 s−3 (Phillips 1966) we estimate the entrainment flux of
bottom-layer fluid into the outflowing layer, due to the mechanism described in § 5,
to be several orders of magnitude less than the inflow from the Gulf of Suez. It is
indeed negligible. Therefore the excess deep water in the Red Sea must exit over the
sill at the strait of Bab al Mandab by some other means. In conclusion, it appears
that long basins, with relatively weak convective forcing, do not experience flushing
of deep water by the entrainment mechanism described above.
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