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Abstract Let G = SLn+1 be defined over an algebraically closed field of characteristic p > 2. For
each n ≥ 1, there exists a singular block in the category of G1-modules, which contains precisely n + 1
irreducible modules. We are interested in the ‘lift’ of this block to the category of G1T -modules. Imposing
only mild assumptions on p, we will perform a number of calculations in this setting, including a complete
determination of the Loewy series for the baby Verma modules and all possible extensions between the
irreducible modules. In the case where p is extremely large, we will also explicitly compute the Loewy
series for the indecomposable projective modules.
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1. Introduction

Let G = SLn+1 with n ≥ 1 be defined over an algebraically closed field k of characteristic
p > 2. We will also assume that p is a very good prime for G (i.e. p � n + 1 for SLn+1).
The setting of this paper is centered around the representation theory of the subgroups
G1 and G1T , where G1 is the Frobenius kernel and T ⊆ G is the subgroup of diagonal
matrices. More specifically, we will focus on an important class of representations known
as the baby Verma modules. These are certain finite-dimensional representations, which
are highly analogous to the ‘classical’ Verma modules for complex semisimple Lie algebras.
We are also interested in an important invariant known as the Loewy series (or the radical
series) of a module. The invariant provides a significant amount of information on the
submodule structure of a representation but is often impractical to compute.

Determining the Loewy series of baby Verma modules for G1T has been a particu-
larly important topic in the history of representation theory for algebraic groups. Major
progress was first made in the 1990s, when Andersen, Jantzen, and Soergel demonstrated
that for p � 0, the Loewy series of any baby Verma module whose highest weight is
p-regular can be expressed in terms of the periodic Kazhdan–Lusztig basis (see [4]).
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20 W. Hardesty

Recently, Abe and Kaneda in [1], building on a 2010 result by Riche [9], were able to
extend these results to include baby Verma modules of any highest weight. Their meth-
ods depend on the validity of Lusztig’s character formula, as well as some additional
assumptions from [9] (see [1, Theorem, p. 2]). Unfortunately, by the well-known result of
Williamson [11], these character formulas are often only valid for extremely large primes.
It is also worth mentioning that the periodic Kazhdan–Lusztig basis is highly difficult to
compute. So even in the case where p is sufficiently large, it remains challenging to obtain
precise information with these methods.

In this article, we take a more specialized approach and restrict ourselves to a particular
subcategory of G1T -modules, which is related to an interesting singular block of G1 (see
(2.12) for an explicit definition). The most significant result is Theorem 6.3 which gives
precise formulas for the Loewy series of every baby Verma module in this subcategory. A
key consequence is that these baby Verma modules are rigid (see Proposition 6.5). Our
formulas are independent of p, and thus agree with the results of [1], but our techniques
differ considerably from loc. cit. Another major result is Theorem 5.1, which gives a
complete determination of the extensions between the irreducible objects. Amazingly, we
are able to prove all of these results under the mild assumption that p is very good.

Finally, in §7, we impose an additional condition on p which is known to hold when p is
extremely large (see Remark 7.2). In this case, our methods also lead to an explicit descrip-
tion of the Loewy series for every indecomposable projective module in Theorem 7.3.
The strategy of our proof involves combining our baby Verma calculations with the results
of [1] and by adapting the techniques from [3] over to our setting.

To the author’s best knowledge, this paper gives the first known example of an infinite
family of non-trivial singular blocks for G1T with G = SLn+1 (as n ≥ 1 varies), in which
[1, Theorem, p. 2] holds for ‘reasonable’ primes.* By contrast, recall from [11] that if we
consider the corresponding family of principal blocks and let p(n) be the minimal prime
for each n such that [1, Theorem, p. 2] holds, then the growth rate of the function p(n)
is actually non-polynomial (see [5] for an explicit upper bound to p(n)).

As a consequence, we can see that even though the principal block is often poorly
behaved for smaller primes, there can still exist interesting singular blocks which are well
behaved under milder assumptions on the characteristic. These kinds of blocks have also
been the subject of a recent preprint [8], where the authors studied a family of singular
G1-blocks occurring in a categorified sl2(C) representation.

The case of general linear groups: It is important to note that the results of this
paper can be adapted to the case where G = GLn+1 (see Remark 2.3). Moreover, since
all primes are very good for GLn+1, it should also be straightforward to check that all of
our results from §2 to §6 extend to every odd p in this situation.

2. Notation and preliminaries

Maintaining the same assumptions as in the introduction, we let B ⊆ G denote the Borel
subgroup consisting of lower triangular matrices. The weight lattice of G is given by

X = Zn+1/ 〈e1 + · · · + en+1〉,

* Similar results for some low-rank groups already exist in the literature (cf. [10, 12, 13]).
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Explicit calculations in an infinitesimal singular block of SLn 21

where e1, . . . , en+1 are standard basis vectors. Set εi = ei ∈ X for i = 1, . . . , n + 1, and let
�i = ε1 + · · · + εi for i = 1, . . . , n be the fundamental weights. The root system is given
by

Φ = {εi − εj | 1 ≤ i, j ≤ n + 1, i 	= j}.

We take

Φ+ = {εi − εj | 1 ≤ i < j ≤ n + 1}

to be the set of positive roots with basis

S = {εi − εi+1 | 1 ≤ i ≤ n}.

We will set αi = εi − εi+1 for i = 1, . . . , n.
The Weyl group is W = Σn+1 (the group of permutations on n + 1 letters), and its

action on X is induced by the natural action of permuting coordinates. The longest
element w0 ∈ W is the permutation given by

w0 : i 
→ n + 2 − i (2.1)

for i = 1, . . . , n + 1.
The affine Weyl group is given by

Wp = W � pZΦ,

where ZΦ acts on X by translations (and hence pZΦ acts by translations of elements in
pZΦ ⊂ ZΦ). We similarly define the extended affine Weyl group

W ext
p = W � pX.

As usual, we set ρ = 1
2

∑
α∈Φ+ α and define the dot action of Wp (or W ext

p ) on X by
w · λ = w(λ + ρ) − ρ for any w ∈ Wp (or W ext

p ) and λ ∈ X. This extends to an action on
X ⊗ R and defines a system of facets for X ⊗ R.

For any group scheme H, let Rep(H) denote the category of finite-dimensional H-
modules, and let K(H) denote the Grothendieck group. For an H-module M , let [M ] ∈
K(H) denote its class, and for an H-module N , take [M ] ≤ [N ] to mean [M : L] ≤ [N : L]
for every irreducible H-module L (where [M : L] is the multiplicity of L in any Jordan–
Hölder filtration). In particular, the class of any H-module M has the unique expansion

[M ] =
∑

L∈Irr(H)

[M : L][L], (2.2)

where Irr(H) denotes the set of (isomorphism classes of) irreducible representations.

https://doi.org/10.1017/S0013091521000730 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000730


22 W. Hardesty

The radical of an H-module M , denoted radM , is defined to be the intersection of all
maximal submodules of M . For i ≥ 0, radi M is given by

rad0 M = M

radi M = rad(radi−1 M) for i ≥ 1.

The ith-radical layer of M is given by

radi M = radi M/radi+1 M.

Similarly, let socM denote the socle of M , which is the sum of all simple submodules of
M . For i ≥ 0, soci M is given by

soc0 M = 0,

soci M = π−1(soc(M/soci−1 M)) with π : M � M/soci−1 M for i ≥ 1.

The ith-socle layer is the subquotient

soci M = soci M/soci−1 M.

We will also set
capi M = M/radi M,

for i ≥ 0. Observe that cap1 M = rad0(M), this is often called the head of M .
Suppose N ⊆ M is any submodule, then it is easy to verify that for i ≥ 0,

soci N = (soci M) ∩ N, radi M/N =
radi M + N

N
, capi M/N =

M

radi M + N
. (2.3)

In particular, if π : M � M ′ is a surjection, then π(radi M) = radi M ′.
The Loewy length of M is defined to be the smallest integer r ≥ 0 such that radr(M) = 0

(or equivalently socr M = M); we will denote this by 		(M) (see [7, II.D.1]). For all
0 ≤ i ≤ 		(M),

[M ] ≤ [soci M ] + [cap��(M)−i M ]. (2.4)

The module M is said to be rigid whenever equality holds for all i (see [3, (4)] or [7,
D.9]).

Another useful observation is that if π : M � M ′ is surjective and 		(M ′) = r, then
there is an induced surjection

π : capr M � M ′. (2.5)

(Equivalently, any surjective map from M to a module of Loewy length r factors through
capr M .)

Remark 2.1. If M is a G1T -module, then

radi(M |G1) ∼= (radi M)|G1 , soci(M |G1) ∼= (soci M)|G1 .

So in particular, 		(M) = 		(M |G1).
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The irreducible representations of G1 are indexed by the set of p-restricted weights
X1 = {∑ ai�i | 0 ≤ ai < p} and will be denoted by L(λ) for λ ∈ X1. The irreducible
representations of G1T will be denoted by L̂(λ) for all λ ∈ X, where we recall that if we
write λ = μ + pν for some μ ∈ X1 and ν ∈ X, then

L̂(λ) ∼= L̂(μ) ⊗ pν. (2.6)

Let B+ denote the opposite Borel subgroup consisting of upper triangular matrices.
For any λ ∈ X, we define the baby Verma and dual baby Verma modules, respectively,
by

Ẑ(λ) = coindG1T

B+
1 T

λ, Ẑ′(λ) = indG1T
B1T λ

(see [7, II.9] for an overview). We also let Q̂(λ) denote the projective cover of L̂(λ) (see
[7, II.11]). The corresponding G1-modules are given by

Z(λ) = coindG1

B+
1

λ, Z′(λ) = indG1
B1

λ, Q(λ)

for any λ ∈ X1.
Let τ : G → G be the anti-automorphism given by matrix transposition. In this specific

case, it is obvious that τ fixes T and interchanges B and B+ (see [7, Corollary II.1.16] for
the more general statement). It is also well known that τ commutes with the Frobenius
map, and hence preserves G1 and G1T .

If H ≤ G is any subgroup scheme preserved by τ and M is any H-module, then the
twist τM is an H-module called the τ -dual of M (see [7, I.2.15]). We also have

τ (capi M) ∼= soci (τM), τ (radi M) ∼= soci+1(τM) (2.7)

for i ≥ 0, and in particular, 		(τM) = 		(M) for any H-module M .
If H = G1T , then by [7, II.9.3(5), II.9.6(13), II.11.5(5)],

τ Ẑ(λ) ∼= Ẑ′(λ), τ L̂(λ) ∼= L̂(λ), τ Q̂(λ) ∼= Q̂(λ) (2.8)

for any λ ∈ X. Consequently,

soci+1 Ẑ′(λ) ∼= radiẐ(λ), soci+1 Q̂(λ) ∼= radiQ̂(λ) (2.9)

for i ≥ 0. (Similar statements hold for H = G1.)
For any λ ∈ X, let Ĉ(λ) denote the block of Rep(G1T ) whose irreducible objects are

given by L̂(w · λ) for w ∈ Wp (cf. [7, II.9.22]). Let C ⊂ X ⊗ R denote the closure of the
bottom alcove C, and recall from [7, II.6.2(5)] that C ∩ X is a fundamental domain for
the dot action of Wp on X. Thus, since Ĉ(λ) = Ĉ(w · λ) for any w ∈ Wp, it follows that
C ∩ X forms an indexing set for the blocks of Rep(G1T ). For any facet F ⊂ C, and any
λ, μ ∈ F ∩ X, the G1T -translation functors Tλ

μ (−) and Tμ
λ (−) are mutually inverse and

induce an equivalence Ĉ(λ) ∼= Ĉ(μ) (see [7, II.9.4]).
For any λ ∈ X1, we similarly let C(λ) denote the block of Rep(G1) whose irreducible

objects are given by L(μ) for μ ∈ (W ext
p · λ) ∩ X1 (see [7, II.9.22(1)]). We also let C̃(λ)

denote the subcategory of Rep(G1T ) generated by blocks of the form Ĉ(λ′) where
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λ′ ∈ (W ext
p · λ) ∩ C. By (2.6), the L̂(μ) ⊗ pν for μ ∈ (W ext

p · λ) ∩ X1 and ν ∈ X (or equiv-
alently, the L̂(w · λ) for w ∈ W ext

p ), form the set of isomorphism classes of irreducible
objects of C̃(μ). We will refer to C̃(μ) as the lift of C(μ) to Rep(G1T ).

The subcategory C̃(λ0): We will now describe the subcategory under consideration
in this paper. For i = 0, . . . , n, set

μi = εi+1 − ρ. (2.10)

Each μi has a unique representative λi ∈ X1, which is given by

λi = μi + pρ − p�i+1 = εi+1 + (p − 1)ρ − pε1 − · · · − pεi+1 for 0 ≤ i ≤ n − 1,

λn = μn + pρ = εn+1 + (p − 1)ρ − pε1 − · · · − pεn+1.
(2.11)

It is easy to verify that

(W ext
p · λ0) ∩ X1 = {λ0, . . . , λn},

and thus C(λ0) is the block of Rep(G1) where {L(λ0), . . . , L(λn)} gives the complete set
of isomorphism classes of irreducibles. The lift C̃(λ0) is the full abelian subcategory of
Rep(G1T ) which is generated by the set{

L̂(λi + pν) | i ∈ {0, . . . , n}, ν ∈ X
} ⊂ Irr(G1T ). (2.12)

Remark 2.2. More generally, for 1 ≤ a ≤ p − 1, we can define the weights

λa
0 = (a − 1)�1 + (p − 1)�2 + · · · + (p − 1)�n,

λa
n = (p − 1)�1 + (p − 1)�2 + · · · + (p − 1)�n−1 + (p − a − 1)�n,

λa
i = (p − a − 1)�i + (a − 1)�i+1 +

∑
j �∈{i,i+1}

(p − 1)�j for 1 ≤ i ≤ n − 1,

(2.13)

and observe that λ1
i = λi for all i. Also, for any fixed i and ν ∈ X, the weights λa

i + pν
defined above are all contained in the same facet for any choice of a. It then follows from
[7, II.9.22(2), II.9.22(4)] that the translation functors Tλi+pν

λa
i +pν(−) and T

λa
i +pν

λi+pν (−) induce

equivalences Ĉ(λa
i + pν) ∼= Ĉ(λi + pν), and also C̃(λa

0) ∼= C̃(λ0).

Remark 2.3. All of our results extend to any group G whose derived subgroup is iso-
morphic to SLn+1. This includes the case where G = GLn+1. Another important example
is given by taking G to be the Levi factor LI ⊂ SLn+r+1 for any r ≥ 1, where

I = {ε1 − ε2, . . . , εn − εn+1}.

We can then let CI(λ0) denote the block of (LI)1 whose irreducible objects are given by
LI(λ0), . . . , LI(λn). (Notice that the weights ε1, . . . , εn+1 are linearly independent in this
situation.)
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3. Baby Verma modules for parabolic subgroups

In this section, we will review some key properties of baby Verma modules. We will also
consider an analogous family of modules associated with arbitrary parabolic subgroups.
All of the results in this section should be applicable to arbitrary (connected) reductive
algebraic groups.

Let P+
I ⊆ G be a (positive) parabolic with Levi decomposition P+

I = LI � U+
I for

I ⊆ S (cf. [7, II.1.8]). Also, let WI ⊆ W be the Weyl group of LI . (We will often write
P = PI and L = LI when the subset I is implicit.) Let L̂I(λ) and ẐI(λ) denote the
irreducible and baby Verma modules for L1T (or P+

1 T by inflation), respectively. For any
λ ∈ X, we define the G1T -module

M̂I(λ) = coindG1T

P+
1 T

L̂I(λ). (3.1)

If λ ∈ X1, then MI(λ) = coindG1

P+
1

LI(λ) is the restriction of M̂I(λ) to G1.

Remark 3.1. The duals of these modules are obtained by applying indG1T
P1T (−) to

L̂I(λ), and are denoted by M̂′
I(λ).

We now recall an alternative description of the baby Verma modules. Let U =
Dist(G1) ∼= U [p](g) and Û = Dist(G1T ) be two subalgebras of Dist(G), where U [p](g) is
the restricted universal enveloping algebra of G. Following [7, II.1.11], let {Xα}α∈Φ and
{Hi}i=1,...,n denote the Chevalley basis of gZ.

Now by [7, II.1.12], U ≤ Dist(G) is the subalgebra generated by Xαi
and Hi for i =

1, . . . , n. Similarly, Û ≤ Dist(G) is the subalgebra generated by Xαi
and

(
Hi

m

)
for i =

1, . . . , n and m ≥ 1, where(
Hi

m

)
=

Hi(Hi − 1) · · · (Hi − m + 1)
m!

.

For any λ = a1�1 + · · · + an�n ∈ X, let Iλ � U be the left ideal generated by Hi − ai · 1
and Xαi

for i = 1, . . . , n. There is a well-known isomorphism

Z(λ) ∼= U/Iλ.

Likewise, let Îλ � Û be the left ideal generated by [
(
Hi

m

)− (ai

m

)
] · 1 and Xαi

for i = 1, . . . , n
and m ≥ 1. We also have an isomorphism

Ẑ(λ) ∼= Û/Îλ.

By [7, II.9.2], the elements

Πα∈Φ+X
n(α)
−α · 1 (3.2)

for 0 ≤ n(α) < p give a basis of weight vectors for Ẑ(λ). (The weight corresponding to
the element Πα∈Φ+X

n(α)
−α is given by λ − (

∑
α∈Φ+ n(α)α).)
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To obtain a similar description of the M̂I(λ), let us first set

DI = Dist((UI)1) ∼= U [p](uI),

where Dist((UI)1) is the distribution algebra of (UI)1 and U [p](uI) is the restricted
enveloping algebra of uI . We also note that DI has the natural structure of a T -module
arising from the conjugation action of T on (UI)1. Following the notation of [7, II.1], the
elements

Πα∈Φ+\Φ+
I
X

n(α)
−α (3.3)

for 0 ≤ n(α) < p give a basis of weight vectors for DI with respect to this action. In
particular, the lowest weight of DI is given by

μI =
∑

α∈Φ+\Φ+
I

−(p − 1)α.

For any L1-module M (regarded as a P+
1 -module), the arguments from [7, II.3.6] give a

vector space isomorphism
coindG1

P+
1

M ∼= DI ⊗ M, (3.4)

which is compatible with the natural (UI)1 and L1 module structures on DI ⊗ M . Specif-
ically, (UI)1 acts on DI by the regular representation and acts on M trivially, while L1

acts on DI by the adjoint action (induced from conjugation) and on M by left multipli-
cation. Furthermore, these actions are compatible with the conjugation action of L1 on
(UI)1, and thus (3.4) is actually an isomorphism of P1-modules.

Likewise, if M is a L1T -module (regarded as a P+
1 T -module), then the arguments from

[7, II.9.2] give a P1T -module isomorphism

coindG1T

P+
1 T

M ∼= DI ⊗ M. (3.5)

Lemma 3.2. Let λ ∈ X.

1. M̂I(λ) is a quotient of Ẑ(λ).

2. The lowest weight of M̂I(λ) is given by μI + wI(λ), where wI ∈ W is the longest
element of WI .

Proof. The first claim follows from exactness of coinduction. (In particular, the sur-
jection Ẑ(λ) � L̂(λ) factors through M̂I(λ).) The second claim can be deduced from
(3.5). �

Remark 3.3. An immediate consequence of the first statement in this lemma is that

M̂I(λ)/rad1 M̂I(λ) ∼= L̂(λ).

In particular, M̂I(λ) has an irreducible head, and hence, is indecomposable.

We now prove an analogue to [7, Lemma II.2.11].
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Lemma 3.4. Let λ ∈ X be arbitrary and regard L̂(λ) as a P+
1 T -module, then there is

an L1T -module isomorphism

L̂(λ)(U
+
I )1 ∼= L̂I(λ).

Proof. Let M̂′
I(λ) = indG1T

P1T L̂I(λ) as in Remark 3.1. The ‘dual’ of (3.5) gives a P+
1 T -

module isomorphism

M̂′
I(λ) ∼= k[(U+

I )1] ⊗ L̂I(λ),

where, in particular, (U+
I )1 acts via the left regular representation on the first term and

trivially on the second term. Thus,

M̂′
I(λ)(U

+
I )1 ∼= k[(U+

I )1](U
+
I )1 ⊗ L̂I(λ) ∼= L̂I(λ),

where the last isomorphism follows from the fact that k[(U+
I )1](U

+
I )1 = k.

Moreover, the ‘dual’ of Lemma 3.2 gives an inclusion M̂′
I(λ) ↪→ Ẑ′(λ). Thus, there also

exists an inclusion L̂(λ) ↪→ M̂′
I(λ) since M̂′

I(λ) must contain the (simple) socle of Ẑ′(λ).
This implies

L̂(λ)(U
+
I )1 ⊆ M̂′

I(λ)(U
+
I )1 ∼= L̂I(λ).

Finally, since the first term is non-zero (because non-zero (U+
I )1 invariants always exist),

and the middle term is irreducible for L1T , then we must have equality. �

The next proposition will be essential to our Loewy series calculations.

Proposition 3.5. Let M be an arbitrary L1T -module (regarded as a P+
1 T -module

with a trivial (U+
I )1 action), and let N = coindG1T

P+
1 T

M, then

[rad0 N : L̂(μ)] = [rad0 M : L̂I(μ)]

for all μ ∈ X.

Proof. It suffices to show that dim HomG1T (N, L̂(μ)) = dim HomL1T (M, L̂I(μ)) for all
μ ∈ X. Observe,

HomG1T (N, L̂(μ)) ∼= HomP+
1 T (M, L̂(μ)) ∼= HomL1T

(
M, L̂(μ)(U

+
I )1
)

,

where the first isomorphism follows from [7, I.8.14(4)] and the second isomorphism holds
because (U+

I )1 acts trivially on M , so the image of any morphism must also be (U+
I )1-

invariant. Finally, by Lemma 3.4,

HomL1T

(
M, L̂(μ)(U

+
I )1
) ∼= HomL1T (M, L̂I(μ)).

Therefore, dim HomG1T (N, L̂(μ)) = dim HomL1T (M, L̂I(μ)). �
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4. Multiplicity and dimension formulas

We now fix two subsets I = {ε1 − ε2, . . . , εn−1 − εn} and J = {ε2 − ε3, . . . , εn − εn+1} of
S for the rest of this paper. Our first result gives a remarkable property of C(λ0).

Proposition 4.1. For i = 0, . . . , n,

V(λi)|G1
∼= L(λi),

where V(λ) denotes the Weyl module of highest weight λ ∈ X.

Proof. We will use Jantzen’s criterion for the simplicity of Weyl modules (cf. [7, II.8.21]
or [6]). Set νi = λi + ρ for i = 0, . . . , n. It will suffice to show that for any i = 0, . . . , n
and 1 ≤ k < j ≤ n + 1, the quantity

〈νi, εk − εj〉

satisfies the criterion. We will proceed by dividing this problem into the following cases:

Case 1 i = 0
1.1) k = 1, 2 ≤ j ≤ n + 1

1.2) 2 ≤ k < j ≤ n + 1

Case 2 i = n
2.1) 1 ≤ k ≤ n, j = n + 1

2.2) 1 ≤ k < j ≤ n

Case 3 1 ≤ i ≤ n − 1
3.1) 1 ≤ k < j ≤ i

3.2) i + 2 ≤ k < j ≤ n + 1

3.3) 1 ≤ k ≤ i, j = i + 1

3.4) k = i + 1, i + 1 < j ≤ n + 1

3.5) 1 ≤ k ≤ i < i + 2 ≤ j ≤ n + 1.

(Note that some of these sub-cases may be empty for certain choices of i and n.)
Let us first consider Case 1. We calculate 〈ν0, ε1 − ε2〉 = 1, and for 2 ≤ k ≤ n,

〈ν0, εk − εk+1〉 = p. In the situation of 1.1), first observe

〈ν0, ε1 − εj〉 = 1 + (j − 2)p,

for 2 ≤ j ≤ n + 1. Following the notation in [7, II.8.21], set a = 1, b = j − 2 and s = 0.
The criterion is satisfied by setting β0 = ε1 − ε2 and βr = εr+1 − εr+2 for r = 1, . . . , j − 2.
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Similarly, in the case of 1.2), first note that for 2 ≤ k < j ≤ n + 1,

〈ν0, εk − εj〉 = (j − k)p.

If we write j − k = aps−1 + bps for some s ≥ 1 and 0 < a < p, then 〈ν0, εk − εj〉 =
aps + bps+1. Finally, set β0 = εk − εk+aps−1 , and βr = εk+aps−1+(r−1)ps − εk+aps−1+rps for
r = 1, . . . , b.

Now we consider Case 2. Again, we calculate for 1 ≤ k ≤ n − 1, 〈νn, εk − εk+1〉 = p
and 〈νn, εn − εn+1〉 = p − 1. In the situation of 2.1), note that for 1 ≤ k ≤ n,

〈νn, εk − εn+1〉 = (p − 1) + (n − k)p,

so a = p − 1, b = n − k and s = 0. The criterion is satisfied by setting β0 = εn − εn+1 and
βr = εr+k−1 − εr+k for r = 1, . . . , n − k. In the situation of 2.2), we get

〈νn, εk − εj〉 = (j − k)p,

for 1 ≤ k < j ≤ n. If we write j − k = aps−1 + bps for some s ≥ 1 and 0 < a < p, then
〈νn, εk − εj〉 = aps + bps+1. Now set β0 = εk − εaps−1+k, and βr = εk+aps−1+(r−1)ps −
εk+aps−1+rps for r = 1, . . . , b as in 1.2).

Finally, we consider Case 3. For 1 ≤ k ≤ i − 1 and i + 2 ≤ k ≤ n + 1, we have 〈νi, εk −
εk+1〉 = p, 〈νi, εi − εi+1〉 = p − 1 and 〈νi, εi+1 − εi+2〉 = 1. To handle 3.1) and 3.2), note
that in both instances

〈νi, εk − εj〉 = (j − k)p.

These cases then follow by writing j − k = aps−1 + bps with 0 < a < p, and defining β0

and βr for r = 1, . . . , b as in 1.2) and 2.2), respectively. Similarly, the verifications of
3.3) and 3.4) are identical to the verifications of 2.1) and 1.1), respectively.

Thus, we only need to consider 3.5). We first observe

〈νi, εk − εj〉 = (j − k − 1)p,

and write j − k − 1 = aps−1 + bps where 0 < a < p. Now there are two further sub-
cases:

a) k + aps−1 ≥ i + 1,

b) k + aps−1 ≤ i.

In the situation of a), we set β0 = εk − εk+1+aps−1 and βr = εk+1+aps−1+(r−1)ps −
εk+1+aps−1+rps for r = 1, . . . , b. In the situation of b), we set β0 = εk − εk+aps−1 and

βr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εk+aps−1+(r−1)ps − εk+aps−1+rps if k + aps−1 + rps ≤ i

εk+aps−1+(r−1)ps − εk+1+aps−1+rps if k + aps−1 + (r − 1)ps ≤ i and
k + aps−1 + rps ≥ i + 1

εk+1+aps−1+(r−1)ps − εk+1+aps−1+rps otherwise

for r = 1, . . . , b. �
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Remark 4.2. If we assume p > n + 1, then the preceding proof can be dramatically
simplified since 〈νi, εk − εj〉 < p2 for all possible choices of i, j, k.

Corollary 4.3. The dimensions and characters of the irreducible modules in C̃(λ0) can
be deduced from Weyl’s dimension formula and Weyl’s character formula, respectively.

Observe now that

Φ+\Φ+
I = {ε1 − εn+1, ε2 − εn+1, . . . , εn − εn+1}

which implies dimk DI = pn, and that the lowest weight of DI is

μI = −(p − 1)(ε1 − εn+1 + ε2 − εn+1 + · · · + εn − εn+1)

= −(p − 1)(n + 1)�n.
(4.1)

The longest element wI ∈ WI is the permutation given by

wI : i 
→
{

n + 1 − i for 1 ≤ i ≤ n,

n + 1 for i = n + 1.
(4.2)

Analogously, the lowest weight of DJ is

μJ = −(p − 1)(n + 1)�1

and wJ ∈ WJ is given by

wJ : i 
→
{

1 for i = 1,

n + 3 − i for 2 ≤ i ≤ n + 1.
(4.3)

Our goal is to explicitly describe the modules M̂I(λi) and M̂J(λi). We begin with the
following dimension formula for the restrictions of these modules to G1.

Lemma 4.4.

1. For i = 0, . . . , n − 1,

dimk MI(λi) = dimk L(λi) + dimk L(λi+1).

2. For i = 1, . . . , n,

dimk MJ(λi) = dimk L(λi) + dimk L(λi−1).

Proof. It will be enough to prove (1), since (2) will follow from the exact same argu-
ments. For notational simplicity, set νi = λi + ρ for i = 0, . . . , n − 1. By Corollary 4.3, we
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can apply the Weyl dimension formula, which gives

dimk L(λi) =

∏
1≤k<j≤n+1〈νi, εk − εj〉∏
1≤k<j≤n+1〈ρ, εk − εj〉 ,

where ∏
1≤k<j≤n+1

〈ρ, εk − εj〉 = n!(n − 1)! · · · 2!1!.

By (3.4), the description of the weight basis of DI in (3.3), and the analogue of
Corollary 4.3 for the Levi factor LI (applied to LI(λi)), we can deduce

dimk MI(λi) =
pn
∏

1≤k<j≤n〈νi, εk − εj〉
(n − 1)! · · · 2!1!

.

Thus, the equation in the statement of the lemma is equivalent to∏
1≤k<j≤n+1

〈νi, εk − εj〉 +
∏

1≤k<j≤n+1

〈νi+1, εk − εj〉 = n!pn
∏

1≤k<j≤n

〈νi, εk − εj〉, (4.4)

for i = 0, . . . , n − 1. Notice that if we treat p as an indeterminate variable, then the
expressions

〈νi, εi+1 − εn+1〉 = (n − 1 − i)p + 1, 〈νi+1, ε1 − εi+2〉 = (i + 1)p − 1

are exclusive to the first and second terms appearing in (4.4), respectively. So it will be
helpful to introduce the notation

Γ = {(k, j) | 1 ≤ k < j ≤ n + 1}.
Claim. For i = 0, . . . , n − 1,∏

Γ\{(i+1,n+1)}
〈νi, εk − εj〉 =

∏
Γ\{(1,i+2)}

〈νi+1, εk − εj〉.

Suppose for now that this claim holds, then by the observation immediately preceding
the claim,∏

1≤k<j≤n+1

〈νi, εk − εj〉 +
∏

1≤k<j≤n+1

〈νi+1, εk − εj〉 = np
∏

Γ\{(i+1,n+1)}
〈νi, εk − εj〉.

Combining this with the following identity:∏
Γ\{(i+1,n+1)}

〈νi, εk − εj〉 =
∏

1≤k≤n, k �=i+1

〈νi, εk − εn+1〉
∏

1≤k<j≤n

〈νi, εk − εj〉

= (n − 1)!pn−1
∏

1≤k<j≤n

〈νi, εk − εj〉,

verifies (4.4).
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The remainder of the proof will be devoted to proving the preceding claim. Let

X = {(k, j) ∈ Γ | j = i + 1, i + 2, or k = i + 1, i + 2}.

It can be checked that |X| = 2n − 1 and that X is the subset of Γ consisting of all (k, j)
satisfying

〈νi, εk − εj〉 	= 〈νi+1, εk − εj〉.

In particular, the sets X\{(i + 1, n + 1)} and X\{(1, i + 2)} have precisely 2n − 2
elements. We get immediately that

∏
Γ\X

〈νi, εk − εj〉 =
∏
Γ\X

〈νi+1, εk − εj〉,

and we only have to check the (2n − 2)-fold products

∏
X\{(i+1,n+1)}

〈νi, εk − εj〉,
∏

X\{(1,i+2)}
〈νi+1, εk − εj〉.

If i = 0,

∏
X\{(1,n+1)}

〈ν0, εk − εj〉

=
((

p
)(

2p
) · · · ((n − 1)p

))((
p + 1

)(
2p + 1

) · · · ((n − 2)p + 1
))

=
∏

X\{(1,2)}
〈ν1, εk − εj〉,

and for i = n − 1,

∏
X\{(n,n+1)}

〈νn−1, εk − εj〉

=
((

(n − 1)p − 1
)(

(n − 2)p − 1
) · · · (p − 1

))
×
((

(n − 1)p
)(

(n − 2)p
) · · · (p))

=
∏

X\{(1,n+1)}
〈νn, εk − εj〉.
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Finally, suppose that 1 ≤ i ≤ n − 2, then

∏
X\{(i+1,n+1)}

〈νi, εk − εj〉

=
((

ip − 1
)(

(i − 1)p − 1
) · · · (p − 1

))((
ip
)(

(i − 1)p
) · · · (p))

×
((

p + 1
)(

2p + 1
) · · · ((n − 2 − i)p + 1

))
×
((

p
)(

2p
) · · · ((n − 1 − i)p

))
=

∏
X\{(1,i+2)}

〈νi+1, εk − εj〉. �

It will now be helpful to recall that if we let λ ∈ X be arbitrary, and write λ = μ + pν for
μ ∈ X1, ν ∈ X, then the lowest weight of L̂(λ) is unique to λ and is given by w0(μ) + pν.

Lemma 4.5.

1. For i = 0, . . . , n − 1, L̂(λi+1 − p�n) ⊂ M̂I(λi).

2. For i = 1, . . . , n, L̂(λi−1 − p�1) ⊂ M̂J(λi).

Proof. The proofs of (1) and (2) are identical, so we will only prove (1). It will be
sufficient to show that the lowest weights of M̂I(λi) and L̂(λi+1 − p�n) coincide. This is
because Lemma 4.4 will then imply that the modules L̂(λi+1 − p�n) and L̂(λi) account for
the complete set of composition factors (including multiplicity) of M̂I(λi). The fact that
L̂(λi) is the unique simple quotient of M̂I(λi) by Lemma 3.2 will then force L̂(λi+1 − p�n)
to be a submodule.

By Lemma 3.2 and (4.1), the lowest weight of M̂I(λi) is

−(p − 1)(n + 1)�n + wI(λi).

Likewise, the lowest weight of L̂(λi+1 − p�n) is

w0(λi+1) − p�n.

Hence, the result will follow if we can prove that

− (p − 1)(n + 1)�n + wI(λi) − w0(λi+1) = −p�n. (4.5)

(Recall the definitions (2.1), (4.2), and (4.3).)
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To verify this identity, let us first define

ρI =
1
2

∑
α∈Φ+

I

α ∈ 1
2
X,

then

ρ = ρI +
1
2
(ε1 − εn+1 + ε2 − εn+1 + · · · + εn − εn+1)

= ρI +
(n + 1)

2
�n.

Thus, w0(ρ) = −ρI − (n+1)
2 �n and wI(ρ) = −ρI + (n+1)

2 �n. We also observe that for
i = 1, . . . , n − 1, wI(�i) = �n − �n−1−i and, by recalling the μi from (2.10),

wI(μi) = εn−i + ρI − (n + 1)
2

�n,

w0(μi+1) = εn−i + ρI +
(n + 1)

2
�n,

for i = 0, . . . , n − 1. Finally, we verify (4.5) by substituting the preceding identities into
(2.11). �

The following proposition will give us some insight into the structure of the modules
M̂I(λi + pν) and M̂J(λi + pν).

Proposition 4.6. Let ν ∈ X.

1. For i = 0, . . . , n − 1, M̂I(λi + pν) is an indecomposable length 2 module where we

have rad0 M̂I(λi + pν) ∼= L̂(λi + pν) and rad1 M̂I(λi + pν) ∼= L̂(λi+1 + pν − p�n).
Also,

M̂I(λn + pν) ∼= Ẑ(λn + pν).

2. For i = 1, . . . , n, M̂J(λi + pν) is an indecomposable length 2 module where we have

rad0 M̂J(λi + pν) ∼= L̂(λi + pν) and rad1 M̂J(λi + pν) ∼= L̂(λi−1 + pν − p�1). Also,

M̂J(λ0 + pν) ∼= Ẑ(λ0 + pν).

3. Restricting to G1 gives similar descriptions for MI(λi) and MJ(λi).

Proof. Without loss of generality, we can assume ν = 0. Also, it will be enough to
prove (1), since (2) will follow from an identical argument.

The description of M̂I(λi) for i = 0, . . . , n − 1 follows immediately from Lemmas 4.4
and 4.5. On the other hand, the description of M̂I(λn) is a consequence of [7, Lemma
II.11.8]. Namely, since 〈λn + ρ, α∨〉 = p for all α ∈ I, then it follows that L̂I(λn) ∼= ẐI(λn).
By transitivity of coinduction, we obtain

M̂I(λn) ∼= coindG1T

(P+
I )1T

coind(P+
I )1T

B+
1 T

λn
∼= Ẑ(λn). �

https://doi.org/10.1017/S0013091521000730 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000730


Explicit calculations in an infinitesimal singular block of SLn 35

We can now compute the composition multiplicities of the baby Verma modules and
the indecomposable projective modules of C(λ0).

Proposition 4.7. For 0 ≤ i, j ≤ n,

[Z(λi) : L(λj)] =
(

n

j

)
.

Proof. We shall perform induction with respect to n, where G = SLn+1. For the base
case, when n = 1, we have

λ0 = 0, λ1 = p − 2.

In this case, C(λ0) is actually the regular block and the claim can be verified through
explicit computation (eg. [7, II.9.10]). Now suppose n ≥ 2 and that the formula holds
for SLr+1 with r ≤ n − 1. We set G′ = [LI , LI ] and note that G′ ∼= SLn. Similarly, set
B′ = B ∩ G′ ⊂ B ∩ LI and T ′ = T ∩ G′, where B′ is the (lower) Borel subgroup of G′

and T ′ is the torus of G′.
By the remark following [7, Proposition I.8.20],

ZI(λ)|G′
1
∼= coindG′

1
(B′+)1

(λ|T ′)

and by [7, II.2.10(2)]

LI(λ)|G′
1
∼= L(λ|T ′).

For i = 0, . . . , n − 1, set λ′
i = λi|T ′ . Applying the inductive hypothesis to G′ yields

[ZI(λi)|G′
1

: LI(λj)|G′
1
] = [coindG′

1
(B′+)1

(λ′
i) : L(λ′

j)] =
(

n − 1
j

)
for 0 ≤ i, j ≤ n − 1. The modules LI(λ0), . . . , LI(λn−1) form the entire set of irreducibles
of the Rep((LI)1) block CI(λ0). Now since ZI(λi) is an object of CI(λ0) and for each
i = 0, . . . , n − 1, LI(λi) is the only irreducible of CI(λ0) which satisfies LI(λi)|G′

1
∼= L(λ′

i),
then we must also have

[ZI(λi) : LI(λj)] =
(

n − 1
j

)
.

If we take any Jordan–Hölder filtration of ZI(λi) for 0 ≤ i ≤ n − 1 and apply the exact
functor coindG1

(PI)+1
(−), we will get a filtration whose layers are of the form MI(λj) for

0 ≤ j ≤ n − 1. Thus,

[Z(λi) : MI(λj)] = [ZI(λi) : LI(λj)] =
(

n − 1
j

)
, (4.6)

where [Z(λi) : MI(λj)] denotes the filtration multiplicity.
By Proposition 4.6, each MI(λj) contributes a single copy of L(λj) and L(λj+1). Thus,

[Z(λi) : L(λ0)] = 1 and [Z(λi) : L(λn)] = 1 since by (4.6), [Z(λi) : MI(λ0)] = 1 and [Z(λi) :
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MI(λn−1)] = 1. Likewise, for 1 ≤ j ≤ n − 1 the multiplicity

[Z(λi) : L(λj)] =
(

n − 1
j

)
+
(

n − 1
j − 1

)
arises from the

(
n−1

j

)
copies of MI(λj) and the

(
n−1
j−1

)
copies of MI(λj−1). The proposition

now follows from the well-known identity(
n

j

)
=
(

n − 1
j

)
+
(

n − 1
j − 1

)
.

Thus, we have verified the formula for Z(λi) when 0 ≤ i ≤ n − 1. The Z(λn) case can be
verified by replacing I with J and repeating the same arguments. �

Remark 4.8. An alternative argument is to simply apply Theorem 6.3, whose proof
is independent of this proposition.

If we let [Q(λ) : Z(μ)] denote the multiplicity of Z(μ) in any baby Verma filtration as
in [7, Proposition II.11.4], then the following identity

[Q(λ) : Z(μ)] = [Z(μ) : L(λ)]

is known as BGG reciprocity for baby Verma modules.

Corollary 4.9. For 0 ≤ i, j ≤ n,

[Q(λi) : L(λj)] = (n + 1)
(

n

i

)(
n

j

)
.

Proof. By BGG reciprocity,

[Q(λi) : L(λj)] =
n∑

k=0

[Q(λi) : Z(λk)][Z(λk) : L(λj)]

=
n∑

k=0

[Z(λk) : L(λi)][Z(λk) : L(λj)]

= (n + 1)
(

n

i

)(
n

j

)
,

where the last equality follows from Proposition 4.7. �

5. Extensions between irreducibles

The goal of this section is to prove the following theorem.
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Theorem 5.1. Let V = L(�1) be the standard representation for G, then for 0 ≤
i, j ≤ n

Ext1G1
(L(λi), L(λj))(−1) =

⎧⎪⎨⎪⎩
V if (i, j) = (i + 1, i),
V ∗ if (i, j) = (i, i + 1),
0 otherwise,

where (−)(−1) denotes the inverse Frobenius twist (see [7, I.9]).

It will be helpful to recall the identity

Ext1G1T (L̂(λ), L̂(μ − pν)) ∼=
(

Ext1G1
(L(λ), L(μ))

)
pν

(5.1)

for any λ, μ ∈ X1 and ν ∈ X, where the right-hand side denotes the pν-weight space of
the corresponding G-module† (cf. [7, I.6.9(4), (5)] and [7, II.9.19(3)]).

We also recall from §1 that our assumption of p being very good for SLn+1 (i.e. p �
n + 1) is equivalent to the condition that the quotient X/ZΦ contains no p-torsion. In
particular,

pX ∩ ZΦ = pZΦ. (5.2)

As a consequence, for any μ, ν ∈ X

pν ≤ pμ ⇐⇒ ν ≤ μ. (5.3)

Before proceeding to the proof of the theorem, we will record the following corollary.

Corollary 5.2. Let G = SLn+1 with n ≥ 1, then for 0 ≤ i ≤ n,

rad1 Q̂(λ0) =
n⊕

k=1

L̂(λ1 − p�n+1−k + p�n+2−k),

rad1 Q̂(λn) =
n⊕

k=1

L̂(λn−1 − p�k+1 + p�k),

and for i = 1, . . . , n − 1,

rad1 Q̂(λi) =

(
n⊕

k=1

L̂(λi−1 − p�k + p�k−1)

)

⊕
(

n⊕
k=1

L̂(λi+1 − p�n+1−k + p�n+2−k)

)
,

where we set �0 = 0 and �n+1 = 0 for notational simplicity.

† It also has the structure of a G/G1-module.
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Proof. First recall that for any λ, μ ∈ X,

[rad1 Q̂(λ) : L̂(μ)] = dim Ext1G1T (L̂(λ), L̂(μ)), (5.4)

which we obtain by applying HomG1T (−, L̂(μ)) to the short exact sequence

0 → rad1 Q̂(λ) → Q̂(λ) → L̂(λ) → 0.

On the other hand, if we combine Theorem 5.1 with (5.1), then we can deduce that the
dimensions

dim Ext1G1T (L̂(λi), L̂(λj − pν)),

for 0 ≤ i, j ≤ n and ν ∈ X are given by the appropriate weight multiplicities of V and
V ∗. �

Determining the top two radical layers of the Z(λi) will also be essential to our Ext1-
calculation. Before stating this result, we will introduce some additional notation.

First fix I, J ⊂ S as in §4, and for 0 ≤ i ≤ n − 1, set

Fj
I(λi) = coindG1

(P+
I )1

(radj ZI(λi)). (5.5)

Similarly, for 1 ≤ i ≤ n, set

Fj
J(λi) = coindG1

(P+
J )1

(radj ZJ(λi)). (5.6)

We also set F
j

I(λi) = Fj
I(λi)/Fj+1

I (λi) and F
j

J (λi) = Fj
J (λi)/Fj+1

J (λi).
The exactness of coinduction implies

F
j

I(λi) =
coindG1

(P+
I )1

(radj ZI(λi))

coindG1

(P+
I )1

(radj+1 ZI(λi))
∼= coindG1

(P+
I )1

(radj ZI(λi)), (5.7)

with a similar statement for PJ .

Lemma 5.3. Set λ−1 = λn+1 = 0 and declare that M⊕0 = 0 for any module M, then

rad1 Z(λi) = L(λi−1)⊕i ⊕ L(λi+1)⊕n−i.

Proof. The case for n = 1 follows from [7, II.9.10] and the n = 2 case follows from
[12, Theorems 2.4-2.5]. Now suppose n > 2 and that the statement of the lemma holds
for SLr+1 whenever 1 ≤ r < n. By the same argument as in the proof of Proposition 4.7,
we can assume the statement also holds for ZI(λi) with 0 ≤ i ≤ n − 1 (respectively, for
ZJ (λi) with 1 ≤ i ≤ n).
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The inductive hypothesis gives

rad1 ZI(λi) = LI(λi−1)⊕i ⊕ LI(λi+1)⊕n−1−i (5.8)

for 0 ≤ i ≤ n − 1, and

rad1 ZJ (λi) = LJ(λi−1)⊕i−1 ⊕ LJ(λi+1)⊕n−i

for 1 ≤ i ≤ n. Now we coinduce to get

F
0

I(λi) = coindG1

(P+
I )1

(rad0 ZI(λi)) = MI(λi),

and

F
1

I(λi) = coindG1

(P+
I )1

(rad1 ZI(λi)) = MI(λi−1)⊕i ⊕ MI(λi+1)⊕n−1−i (5.9)

for 0 ≤ i ≤ n − 1. (The formulas for F
0

J(λi) and F
1

J(λi) are similar.)
Let us focus on I for now. By Proposition 4.6,

rad0 F
0

I(λi) = L(λi), rad1 F
0

I(λi) = L(λi+1). (5.10)

We also have

rad0 F1
I(λi) = L(λi−1)⊕i ⊕ L(λi+1)⊕n−1−i = rad0 F

1

I(λi) (5.11)

for 0 ≤ i ≤ n − 1, where the first isomorphism is a consequence of (5.8) and Proposi-
tion 3.5 and the second isomorphism is deduced from (5.9) and Proposition 4.6. It then
follows that the surjective map

rad0 F1
I(λi) � F1

I(λi)
rad1 F1

I(λi) + F2
I(λi)

= rad0 F
1

I(λi)

is an isomorphism since the left- and right-hand sides have the same dimension.
Consequently,

F2
I(λi) ⊆ rad1F1

I(λi). (5.12)

Now let M = rad1 Z(λi)/rad1F1
I(λi) and observe

[M ] = [rad1 Z(λi)] − [rad1F1
I(λi)] = [Z(λi)] − [L(λi)] − [F1

I(λi)] + [rad0 F1
I(λi)]

= [F
0

I(λi)] − [L(λi)] + [rad0 F
1

I(λi)].

Thus, if we combine this with (5.10) and (5.11), we deduce the formula

[M ] = i[L(λi−1)] + (n − i)[L(λi+1)].

Now observe that rad1 F1
I(λi) ⊆ rad2 Z(λi) since F1

I(λi) ⊆ rad1 Z(λi). As a consequence,

rad1 M =
rad2 Z(λi) + rad1 F1

I(λi)
rad1 F1

I(λi)
=

rad2 Z(λi)
rad1 F1

I(λi)
,
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and hence,

rad0 M =
rad1 Z(λi)
rad1 F1

I(λi)

/
rad2 Z(λi)
rad1 F1

I(λi)
= rad1 Z(λi).

Moreover, rad0 F1
I(λi) = F1

I(λi)/rad1F1
I(λi) ↪→ M. Thus by (5.11), there exists an injec-

tive map

ι : L(λi−1)⊕i ⊕ L(λi+1)⊕n−1−i ↪→ M,

whose image must account for every irreducible factor of M except for a single copy of
L(λi+1). Consequently, M fits into a short exact sequence of the form

0 −→ L(λi−1)⊕i ⊕ L(λi+1)⊕n−1−i ι−→ M −→ L(λi+1) −→ 0.

Now let N = ι(L(λi−1)⊕i) so that [M/N ] = (n − i)[L(λi+1)]. From [7, Proposition II.12.9],
we know that any G1-module with precisely one isotypic component must be semisimple.
It follows that M/N ∼= L(λi+1)⊕n−i. In particular, we get a surjection

rad1 Z(λi) � M/N ∼= L(λi+1)⊕n−i.

Finally, since every map from rad1 Z(λi) to a semisimple module factors through
rad1 Z(λi) (recall that the latter is the head of the former), we get a surjection

rad1 Z(λi) � L(λi+1)⊕n−i. (5.13)

(Recall that rad0 M = rad1 Z(λi).) Observe now that if i = 0, then the preceding map
must be an isomorphism since every possible factor of rad1 Z(λi) has been accounted for
and we are done.

On the other hand, if 1 ≤ i ≤ n, then by replacing I with J and repeating the same
arguments, we also obtain a surjection

rad1 Z(λi) � L(λi−1)⊕i. (5.14)

Therefore, the lemma follows by combining (5.13) and (5.14) which account for every
possible factor of rad1 Z(λi). �

We can now compute the top two radical layers of Ẑ(λi).

Lemma 5.4. Let us set �0 = 0 and �n+1 = 0 for notational simplicity. We then have

rad1Ẑ(λ0)

= L̂(λ1 − p�n) ⊕ L̂(λ1 − p�n−1 + p�n) ⊕ · · · ⊕ L̂(λ1 − p�1 + p�2),

rad1Ẑ(λn)

= L̂(λn−1 − p�1) ⊕ L̂(λn−1 − p�2 + p�1) ⊕ · · · ⊕ L̂(λn−1 − p�n + p�n−1),
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and for i = 1, . . . , n − 1,

rad1 Ẑ(λi) =

(
i⊕

k=1

L̂(λi−1 − p�k + p�k−1)

)

⊕
(

n−i⊕
k=1

L̂(λi+1 − p�n+1−k + p�n+2−k)

)
.

Proof. The n = 1 case follows from [7, II.9.10], and the n = 2 case is given in [12,
Theorems 2.4-2.5]. Suppose now that n > 2, and that the statement holds for SLr+1

with 2 ≤ r < n. The inductive hypothesis can be applied to LI and LJ as in the proof of
Proposition 4.7. More precisely, for LI and i = 0, . . . , n − 1, [7, Lemma II.9.2(3)] implies
that the highest weight of every composition factor of ẐI(λi) is of the form λi − γ for
various γ ∈ ZI.

If we set G′ = [LI , LI ] ∼= SLn, and T ′ = T ∩ G′, we get

ẐI(λi)|G′
1T ′ ∼= Ẑ(λi|T ′), L̂(λi − γ)|G′

1T ′ ∼= L̂(λi|T ′ − γ|T ′),

with [ẐI(λi) : L̂(λi − γ)] = [Ẑ(λi|T ′) : L̂(λi|T ′ − γ|T ′)]. Furthermore,

γ|T ′ =
n−1∑
i=1

ai(εi − εi+1)|T ′ ⇐⇒ γ =
n−1∑
i=1

ai(εi − εi+1). (5.15)

So the inductive hypothesis is applied to LI by first expressing the irreducibles occurring
in the inductive hypothesis for SLn as L̂(λi|T ′ − γ|T ′) for various uniquely determined
γ, and then employing (5.15) to obtain the corresponding formulas for rad1 ẐI(λi). (The
case for LJ with i = 1, . . . , n is similar.)

Thus, the inductive hypothesis gives

rad1 ẐI(λ0) = L̂I(λ1 − p�n−1 + p�n) ⊕ L̂I(λ1 − p�n−2 + p�n−1)

⊕ · · · ⊕ L̂I(λ1 − p�1 + p�2).

So the formula for rad1 Ẑ(λ0) follows from Proposition 4.6 and the proof of Lemma 5.3.
For i = 1, . . . , n − 1, the hypothesis also gives

rad1 ẐI(λi) =

(
i⊕

k=1

L̂I(λi−1 − p�k + p�k−1)

)

⊕
(

n−1−i⊕
k=1

L̂I(λi+1 − p�n+1−k + p�n+2−k)

)
.

Now once again, the formula for rad1 Ẑ(λi) is obtained by applying Proposition 4.6 and
then proceeding as in the proof of Lemma 5.3.
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Finally, the formula for rad1 Ẑ(λn) is verified by first applying the inductive hypothesis
to LJ , which gives

rad1 ẐJ (λn) = L̂J(λn−1 − p�2 + p�1) ⊕ L̂J(λn−1 − p�3 + p�2)

⊕ · · · ⊕ L̂J(λn−1 − p�n + p�n−1),

and then proceeding as above. �

The following lemma helps characterize modules which admit a surjective map from a
baby Verma module.

Lemma 5.5. If E ∈ Ext1G1T (L̂(λ), L̂(μ)) for λ, μ ∈ X is non-trivial and λ 	≤ μ, then E

is a quotient of Ẑ(λ).

Proof. By definition, E is an indecomposable length 2 module with head L̂(λ) and
socle L̂(μ). In particular, E is a cyclic module for Û which is generated by some λ-weight
vector vλ. Now every weight γ occurring with non-zero multiplicity in L̂(μ) satisfies γ ≤ μ,
and hence, λ 	≤ γ. On the other hand, any weight γ occurring with non-zero multiplicity in
L̂(λ) with γ 	= λ must also satisfy γ < λ, and thus, λ + αi 	≤ γ for i = 1, . . . , n. Therefore,
λ + αi cannot occur as a weight of E which forces Xαi

· vλ = 0 for all i. As a result, the
surjective map

Û � E

X 
→ X · vλ

(5.16)

factors through the ideal Îλ, and so it follows that E is a quotient of Ẑ(λ) ∼= Û/Îλ. �

Lemma 5.6. If M = Ext1G1
(L(λi), L(λj)) is non-zero for |i − j| ≥ 2, then there exists

ν ∈ X+ such that pν ≤ λj − λi.

Proof. The G/G1-module M is non-zero if and only if Mpν 	= 0 for some ν ∈ X+. By
Lemma 5.3, we know that there does not exist an extension E ∈ M which is isomorphic to
a quotient of Z(λi). Hence, there are no extensions E ∈ Mpν = Ext1G1T (L̂(λi), L̂(λj − pν))
which occur as a quotient of Ẑ(λi). Thus, by Lemma 5.5, we must have λi ≤ λj − pν if
Mpν 	= 0. �

The vanishing portion of Theorem 5.1 will follow provided that if |i − j| ≥ 2, then there
does not exist any ν ∈ X+ which satisfies

pν ≤ λj − λi.

Lemma 5.7. If 0 ≤ i, j ≤ n are such that |i − j| 	= 1, then

Ext1G1
(L(λi), L(λj)) = 0.
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Proof. We begin by noting that the i = j case immediately follows from [7, Proposition
II.12.9]. So we only have to consider the case when |i − j| ≥ 2. By the comments imme-
diately preceding this lemma, it suffices to show that there exist no dominant weights ν
such that

pν ≤ λj − λi,

whenever |i − j| ≥ 2. Applying (2.11), we compute

λj − λi =

⎧⎪⎨⎪⎩
εj+1 − εi+1 + p(−�j+1 + �i+1) if 0 ≤ i, j ≤ n − 1,

εj+1 − εn+1 − p�j+1 if 0 ≤ j ≤ n − 1 and i = n,

εn+1 − εi+1 + p�i+1 if j = n and 0 ≤ i ≤ n − 1.

First suppose that j > i, then we can see that

λj − λi <

{
p(−�j+1 + �i+1) if j < n,

p�i+1 if j = n.
(5.17)

The j = n case is now obvious since �i+1 is minuscule, and thus pν ≤ λn − λi implies
pν < p�i+1. Hence by (5.3), ν < �i+1 which is impossible for ν ∈ X+. On the other
hand, for i < j < n,

λj − λi < p(−�j+1 + �i+1) < p�n+1−(j−i),

where the rightmost inequality comes from the fact that �n+1−(j−i) = w(−�j+1 + �i+1)
for some w ∈ W . Now by applying (5.3) as above, we can see that if pν ≤ λj − λi, then
ν < �n+1−(j−i), which is also impossible for ν ∈ X+.

Suppose now that j < i. When i = n, we can see that λj − λn 	∈ pX so if pν < λj − λn

(and thus (λj − λn) − pν ∈ Z≥0Φ
+), then

(λj − λn) − pν = (εj+1 − εn+1) + (−p�j+1 − pν).

If we set γ = −�j+1 − ν and then compare both sides of the preceding equation, we can
deduce that pγ ∈ pX ∩ ZΦ = pZΦ, where the equality follows from (5.2). So we can write
pγ =

∑n
k=1 pckαk where ck ∈ Z for all k. Moreover, γ ∈ Z≥0Φ

+ since

(εj+1 − εn+1) + pγ =
j∑

k=1

pckαk +
n∑

k=j+1

(pck + 1)αk,

and thus if ck < 0 for some k, then pck + 1 < 0. But this contradicts the assumption that
(λj − λn) − pν ∈ Z≥0Φ

+.
Hence,

pν ≤ −p�j+1 < w0(−p�j+1) = p�n−j

and so by (5.3), ν < �n−j , which is impossible for ν ∈ X+. For j < i < n, the same
reasoning shows that if pν ≤ λj − λi, then pν ≤ p(−�j+1 + �i+1) < p�i−j−1. This forces
ν < �i−j−1, which again is impossible for ν ∈ X+. �
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We now have enough information to complete our Ext1-calculation. However, before
we get to the proof of Theorem 5.1, it will be helpful to recall [2, Lemma 5.1]. First, for
any λ ∈ X+, we introduce the notation

λ0 = 2(p − 1)ρ + w0(λ).

Now suppose M = Ext1G1
(L(λ), L(μ))(−1) for some λ, μ ∈ X1 and suppose there exists an

element ν ∈ X such that Mν 	= 0, then the aforementioned lemma implies

pν ≤ μ0 − λ.

This gives the following lemma.

Lemma 5.8. Let M = Ext1G1
(L(λ), L(μ))(−1) for some λ, μ ∈ X1. If ν, ν′ ∈ X are such

that Mν 	= 0 and Mν′ 	= 0, then ν − ν′ ∈ ZΦ.

Proof. By the observation immediately preceding the lemma, we know that if Mν 	= 0
and Mν′ 	= 0, then both pν and pν′ are in the same root coset since they are both
comparable to the weight μ0 − λ. Thus by (5.2),

pν − pν′ ∈ pX ∩ ZΦ = pZΦ.

Therefore, ν − ν′ ∈ ZΦ and we are done. �

We will also need the following technical lemma.

Lemma 5.9. Any ν ∈ (�1 + ZΦ) ∩ X+ satisfies �1 ≤ ν.

Proof. Let ν = �1 +
∑n

i=1 aiαi, where ai ∈ Z is arbitrary for all i. The lemma will
follow if we can show that

ν ∈ X+ =⇒ ai ≥ 0 for all i.

(Note that if n = 1, then the claim is immediate since ν = �1 + a1α1 = (2a1 + 1)�1,
where 2a1 + 1 ≥ 0 implies a1 ≥ 0 because a1 is an integer.)

In general, write ν = c1�1 + c2�2 + · · · + cn�n, and observe that c1 = 2a1 − a2 + 1,
cn = −an−1 + 2an and ci = −ai−1 + 2ai − ai+1 for i = 2, . . . , n − 1. Thus, the condition
ν ∈ X+ is given by

0 ≤ −an−1 + 2an

0 ≤ −an−2 + 2an−1 − an

...

0 ≤ −an−(k+1) + 2an−k − an−(k−1)

...

0 ≤ −a1 + 2a2 − a3

−1 ≤ 2a1 − a2.
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From the above list of inequalities, we can deduce that an ≥ 1
2an−1, an−1 ≥ 2

3an−2, and
generally, that

an−k ≥ k + 1
k + 2

an−(k+1) for k = 0, . . . , n − 2,

a1 ≥ −n

n + 1
.

Now since a1 ∈ Z and −1 < −n
n+1 ≤ a1, we get a1 ≥ 0. But then a1 ≥ 0 implies a2 ≥

n−1
n a1 ≥ 0, which then implies a3 ≥ n−2

n−1a2 ≥ 0. Proceeding in this way, we conclude that
ai ≥ 0 for all i. �

Proof of Theorem 5.1. By Lemma 5.7, we only have to determine

Ext1G1
(L(λi), L(λj))(−1),

in the case where |i − j| = 1.
Before proceeding, we note that a G-module M satisfies M ∼= L(�1) if and only if the

following two conditions hold:

a) dimk M	1 = 1,

b) Mν = 0 for any ν ∈ X+ with ν 	= �1.

To justify this, first note that if M ∼= L(�1), then a) and b) can be verified by con-
sidering the (well-known) weight space multiplicities of L(�1) and by recalling the fact
that �1 is minuscule. Conversely, if M is any module satisfying both conditions, then b)
ensures that �1 is the only possible highest weight, and a) ensures that it must occur
with multiplicity one. In particular, these two conditions force M to have the same weight
space dimensions as L(�1), and thus, M ∼= L(�1).

We now begin by setting

M = Ext1G1
(L(λi+1), L(λi))(−1).

We will first prove that M satisfies a). By (2.5), we know that any length two quotient
of Ẑ(λi) factors through the module

cap2 Ẑ(λi) = Ẑ(λi)/rad2 Ẑ(λi),

whose Loewy series is explicitly described in Lemma 5.4. In fact, from this description,
we deduce that there exists (up to isomorphism) precisely one G1T -module E which is a
quotient of Ẑ(λi+1) and which fits into a non-split‡ short exact sequence of the form

0 −→ L̂(λi − p�1) −→ E −→ L̂(λi+1) −→ 0.

By (5.1), it then follows that dimk M	1 ≥ 1.

‡ Since E is a quotient of Ẑ(λi+1), then it must be indecomposable which forces the short exact
sequence to be non-split.
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On the other hand, suppose E′ is an arbitrary G1T -module which fits into a short
exact sequence as above. Now since we can deduce from (5.17) that

λi+1 	≤ λi − p�1,

then by Lemma 5.5, E′ is also a quotient of Ẑ(λi+1). Hence E′ ∼= E, and therefore,
dimk M	1 = 1. So we have verified a).

We will now verify b) by contradiction. Suppose there exists ν ∈ X+ with ν 	= �1

and Mν 	= 0. By Lemma 5.8, we know that ν ∈ (�1 + ZΦ) ∩ X+, and hence, �1 < ν by
Lemma 5.9. In addition, we must also have pν 	≤ λi − λi+1 since p�1 	≤ λi − λi+1. So by
Lemma 5.5, there exists a quotient E′ of Ẑ(λi+1), which fits into a short exact sequence
of the form

0 −→ L̂(λi − pν) −→ E′ −→ L̂(λi+1) −→ 0.

In particular, L̂(λi − pν) must occur as a factor of rad1 Z(λi+1). But from Lemma 5.4,
we can see that there are no such factors (i.e. there are no factors of the form L̂(λi − pν)
with ν > �1). It follows that Mν = 0 and we have reached a contradiction.

Similarly, if we set

N = Ext1G1
(L(λi), L(λi+1))(−1),

then by the same reasoning as above, we get N ∼= L(�1)∗. �

6. The Loewy series for Ẑ(λi + pν) and Ẑ′(λi + pν)

In this section, we will determine Loewy series for Ẑ(λi + pν) and Ẑ′(λi + pν). We will
also deduce the Loewy lengths and establish the rigidity of these modules. We now begin
by considering the easier problem involving Z(λi) and Z′(λi).

Lemma 6.1. Let n ≥ 2, then for 0 ≤ i ≤ n and j ≥ 0,

[L(λk)] ≤ [radj Z(λi)] =⇒ k ≡ i + j mod 2. (6.1)

Moreover, for 0 ≤ i ≤ n − 1,

Fj
I(λi) + rad1 Fj−1

I (λi) ⊆ radj Z(λi), radj Z(λi) = rad0 F
j

I(λi) ⊕ rad1 F
j−1

I (λi). (6.2)

Also, for 1 ≤ i ≤ n,

Fj
J (λi) + rad1 Fj−1

J (λi) ⊆ radj Z(λi), radj Z(λi) = rad0 F
j

J(λi) ⊕ rad1 F
j−1

J (λi). (6.3)

(We set F
−1

I (λi) = 0 and F
−1

J (λi) = 0.)

Proof. As in the proof of Lemma 5.3, we will proceed by induction on n ≥ 2. The base
case again follows from the explicit formulas given in [12, Theorems 2.4-2.5]. Suppose
n > 2 and assume the statement of the lemma holds for all SLr+1 with 2 ≤ r < n. The
argument in the proof of Proposition 4.7 implies that the statement also holds for the Levi
factor LI with ZI(λi) and 0 ≤ i ≤ n − 1 (respectively, LJ with ZJ (λi) and 1 ≤ i ≤ n).
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For simplicity, let us begin by fixing i ∈ {0, . . . , n − 1}. The inductive hypothesis gives

radj ZI(λi) =
⊕

0≤k≤n−1

LI(λk)⊕mj
ik ,

where mj
ik 	= 0 implies k ≡ i + j mod 2. Thus,

F
j

I(λi) =
⊕

0≤k≤n−1

MI(λk)⊕mj
ik .

By Proposition 4.6,

rad0 F
j

I(λi) =
⊕

0≤k≤n−1

L(λk)⊕mj
ik , rad1 F

j

I(λi) =
⊕

0≤k≤n−1

L(λk+1)⊕mj
ik . (6.4)

From the inductive hypothesis, we can see that (6.1) will hold on the factors of radj Z(λi),
provided we verify (6.2). We will proceed by induction on j ≥ 0. The base case, j = 0,
is obvious since rad0 Z(λi) = L(λi). Also, the j = 1 case follows from Lemma 5.3. Now
assume j ≥ 2 and that (6.2) holds for 0 ≤ l < j.

The inductive hypothesis for j gives Fj−1
I (λi) ⊆ radj−1 Z(λi), and thus,

rad1 Fj−1
I (λi) ⊆ radj Z(λi).

Now if we apply the inductive hypothesis for LI and reason as we did in the portion of
the proof of Lemma 5.3 between (5.11) and (5.12), we can deduce

Fj
I(λi) ⊆ rad1 Fj−1

I (λi) ⊆ radj Z(λi),

and hence, the first claim of (6.2). Moreover, by imitating the arguments immediately
following (5.12), we can also show that radj Z(λi) is the head of the module

M =
radj Z(λi)
rad1 Fj

I(λi)
,

which fits into a short exact sequence of the form

0 −→ rad0 F
j

I(λi) −→ M −→ rad1 F
j−1

I (λi) −→ 0.

But now, by the inductive hypothesis and (6.4), we can see that every factor L(λk) of M
occurring with non-zero multiplicity must satisfy k ≡ i + j mod 2. In particular, if L(λs)
and L(λt) are two non-zero factors of M , then |s − t| 	= 1. Thus, Theorem 5.1 implies the
preceding short exact sequence is split, and hence (6.2) holds for all j ≥ 0.

So we have verified (6.1) and (6.2) for 0 ≤ i ≤ n − 1 and j ≥ 0. On the other hand, if
we replace I with J and fix any i ∈ {1, . . . , n}, then the same argument as above also
verifies (6.1) and (6.3) for all j ≥ 0. �
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Before getting to the main results of this section, we recall a simple combinatorial
identity obtained from Pascal’s triangle. Namely, for any 0 ≤ j ≤ n and 0 ≤ i ≤ j,(

n

j

)
=
∑

0≤k≤i

(
i

k

)(
n − i

j − k

)
, (6.5)

where we assume
(
n
j

)
= 0 unless 0 ≤ j ≤ n.

Proposition 6.2. Let n ≥ 1, then for 0 ≤ i ≤ n and j ≥ 0,

radj Z(λi) = socj+1 Z′(λi) =
⊕

0≤k≤i

L(λi+j−2k)⊕(i
k)(n−i

j−k). (6.6)

In particular, 		(Z′(λi)) = 		(Z(λi)) = n + 1 and radj Z(λi) has precisely
(
n
j

)
factors.

Proof. By (2.9), we are reduced to determining the radical layers of Z(λi). As usual,
we will prove (6.6) by induction on n ≥ 1. The base case, n = 1, is trivial. Now assume
by induction that the formula holds for SLr+1 with 1 ≤ r < n and apply this to LI . If
we fix i ∈ {0, . . . , n − 1}, then by Lemma 6.1 and Proposition 4.6,

radj Z(λi) = rad0 F
j

I(λi) ⊕ rad1 F
j−1

I (λi)

=
⊕

0≤k≤i

L(λi+j−2k)⊕(i
k)(n−i−1

j−k ) ⊕
⊕

0≤k≤i

L(λi+j−2k)⊕(i
k)(n−1−i

j−k−1)

=
⊕

0≤k≤i

L(λi+j−2k)⊕(i
k)((n−i−1

j−k )+(n−1−i
j−k−1))

=
⊕

0≤k≤i

L(λi+j−2k)⊕(i
k)(n−i

j−k).

Similarly, we can verify (6.6) for i ∈ {1, . . . , n} by applying the inductive hypothesis to
LJ . �

Using the same methods as above, we can determine the radical layers of Ẑ(λi + pν)
(or equivalently the socle layers of Ẑ′(λi + pν) by (2.9)) for 0 ≤ i ≤ n.

For any i ≤ j, set
[i, j] = {i, i + 1, . . . , j},

and for any subset X ⊆ [1, n + 1], we define

εX =
∑
k∈X

εk,

where ε∅ = 0. The λ0 and λn formulas are now easily obtained by applying Lemma 6.1
and Proposition 4.6. In particular, for any ν ∈ X,

radj Ẑ(λ0 + pν) =
⊕

{X⊆[2,n+1] | |X|=j}
L̂(λj + pν + pεX), (6.7)

radj Ẑ(λn + pν) =
⊕

{X⊆[1,n] | |X|=j}
L̂(λn−j + pν − pεX). (6.8)
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To handle the 0 < i < n case, we introduce the subsets Ii = {ε1 − ε2, . . . , εi − εi+1}.
We then apply (6.8) to ẐIi

(λi) and get

radk ẐIi
(λi) =

⊕
{X⊆[1,i] | |X|=k}

L̂Ii
(λi−k − pεX),

with 0 ≤ k ≤ i (it is zero otherwise). The radical layers of Ẑ(λi) are computed by
repeatedly applying Lemma 6.1 and Proposition 4.6 to each radical layer of ẐIr

(λi) for
i < r ≤ n. In particular, applying this procedure to each L̂Ii

(λi−k − pεX) produces an
object ‘Mi−k,X ’, whose non-zero radical layers are given by

rads Mi−k,X =
⊕

{Y ⊆[i+2,n+1] | |Y |=s}
L̂(λi−k+s − pεX + pεY ),

with 0 ≤ s ≤ n − i. The radical layers of Ẑ(λi) are actually built out of various ‘k-shifted’
copies of rads Mi−k,X , where we have

rads Mi−k,X ⊆ rads+k Ẑ(λi).

Altogether, we get

radj Ẑ(λi) =
i⊕

k=0

⊕
{X⊆[1,i] | |X|=k}

radj−k Mi−k,X .

Thus, we have proven the following theorem.

Theorem 6.3. Let n ≥ 1, then for 0 ≤ i ≤ n, ν ∈ X and any j ≥ 0,

radjẐ(λi + pν) = socj+1 Ẑ′(λi + pν)

=
i⊕

k=0

⊕
{(X,Y ) | |X|=k, |Y |=j−k, X⊆[1,i],Y ⊆[i+2,n+1]}

× L̂(λi+j−2k + pν − pεX + pεY ).

Remark 6.4. Compare with [1, Theorem, p. 2].

The arguments used in Proposition 6.2 and Theorem 6.3, can also be adapted to
compute socj Ẑ(λi) for j ≥ 1 (or equivalently radj Ẑ′(λi) for j ≥ 0).

Proposition 6.5. Let n ≥ 1, then for 0 ≤ i ≤ n, ν ∈ X and any j ≥ 1,

socj Ẑ(λi + pν) ∼= radn+1−j Ẑ(λi + pν), socj Ẑ′(λi + pν) ∼= radn+1−j Ẑ′(λi + pν).

In particular, Ẑ(λi + pν) and Ẑ′(λi + pν) are rigid modules.
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7. The Loewy series for Q̂(λi + pν)

We will now show that the results for Ẑ(λi + pν) from the preceding sections enable
us to adapt the arguments from [3] to our setting and determine Loewy series for the
Q̂(λi + pν). From now on, we will additionally assume that p is large enough so that the
following conjecture holds.

Conjecture 7.1. Let n ≥ 1, then for 0 ≤ i ≤ n and ν ∈ X, 		(Q̂(λi + pν)) = 2n + 1.

Remark 7.2. This is known to hold for extremely large p by [1, Theorem, p. 10].

The remainder of the section will be devoted to proving the following theorem.

Theorem 7.3. Suppose Conjecture 7.1 holds. Let n ≥ 1, then for 0 ≤ i ≤ n and ν ∈ X,
Q̂(λi + pν) is rigid and for any j ≥ 0

[radj Q̂(λi + pν)] =
∑
μ∈X

j∑
k=0

[radk Ẑ(μ) : L̂(λi + pν)][radj−k Ẑ(μ)]. (7.1)

Remark 7.4. Obviously, [radk Ẑ(μ) : L̂(λi + pν)] = 0 unless μ = λt + pη for some 0 ≤
t ≤ n and η ∈ X. So by combining the preceding theorem with Theorem 6.3, we can
completely determine the Loewy series of the Q̂(λi + pν).

For the remainder of the section, we will fix I, J ⊂ S as in §4. Let us first observe that
from the identities (2.7), (2.8) and (2.9), it can be shown that (7.1) holds for all j ≥ 0 if
and only if

[socj Q̂(λi + pν)] =
∑
μ∈X

j∑
k=1

[sock Ẑ′(μ) : L̂(λi + pν)][socj+1−k Ẑ′(μ)] (7.2)

for all j ≥ 1 (compare with [3, Theorem 7.2(ii)]).
It turns out that the preceding identity is always ‘partially’ true by the following lemma

(adapted from [3, Proposition 3.7]).

Lemma 7.5. For any λ ∈ X and j ≥ 1,

[socj Q̂(λ)] ≤
∑
μ∈X

j∑
k=1

[sock Ẑ′(μ) : L̂(λ)][socj+1−k Ẑ′(μ)].

Proof. We first note that the Lemmas occurring in [3, 3.5 and 3.6] can be adapted to
our setting. This is because their proofs essentially consist of the same types of arguments
employed in the proof of [7, Proposition II.11.2], as well as certain general results on
socle filtrations of modules, and on the basic properties of Ẑ′(λ) (e.g. the highest weight
structure). In particular, there is no dependence on the p-regularity of λ ∈ X, or even
on the prime p. The proof of our result follows by applying the more general versions of
these lemmas to imitate the proof of [3, Proposition 3.7]. �
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Next, we observe that results from §6 imply the following analogue to [3, Lemma 7.1].

Lemma 7.6. Let n ≥ 1, then for 0 ≤ i ≤ n and ν ∈ X,

∑
μ∈X

j∑
k=1

[sock Ẑ′(μ) : L̂(λi + pν)][socj+1−k Ẑ′(μ)]

=
∑
μ∈X

j∑
k=1

[sock Ẑ′(μ) : L̂(λi + pν)][capj+k−n−1 Ẑ′(μ)],

for all j ≥ 1.

Proof of Theorem 7.3. To verify (7.2) (which is equivalent to (7.1)), we will proceed
as in the proof of [3, Theorem 7.2]. Namely, observe that

τ Q̂(λi + pν) ∼= Q̂(λi + pν)

implies
[socj Q̂(λi + pν)] = [capj Q̂(λi + pν)]

for all j ≥ 1. Applying Lemma 7.5, Lemma 7.6, and Proposition 6.5, we get

[socj Q̂(λi + pν)] + [cap2n+1−j Q̂(λi + pν)]

= [socj Q̂(λi + pν)] + [soc2n+1−j Q̂(λi + pν)]

≤
∑
μ∈X

∑
k

[sock Ẑ′(μ) : L̂(λi + pν)]
(
[socj+1−k Ẑ′(μ)] + [soc2n+1−j−k Ẑ′(μ)]

)
=
∑
μ∈X

∑
k

[sock Ẑ′(μ) : L̂(λi + pν)]

× ([socj+1−k Ẑ′(μ)] + [Ẑ′(μ)] − [capj+k−n−1 Ẑ′(μ)]
)

=
∑
μ∈X

∑
k

[sock Ẑ′(μ) : L̂(λi + pν)][Ẑ′(μ)]

= [Q̂(λi + pν)] (by [6, Proposition II.11.4]).

Combining this with Conjecture 7.1 and (2.4), then gives

[Q̂(λi + pν)] = [socj Q̂(λi + pν)] + [cap2n+1−j Q̂(λi + pν)],

and hence the rigidity result follows. We are also forced to have both

[socj Q̂(λi + pν)] =
∑
μ∈X

∑
k

[sock Ẑ′(μ) : L̂(λi + pν)][socj+1−k Ẑ′(μ)],

[soc2n+1−j Q̂(λi + pν)] =
∑
μ∈X

∑
k

[sock Ẑ′(μ) : L̂(λi + pν)][soc2n+1−j−k Ẑ′(μ)],

by Lemma 7.5. Therefore, (7.2) must also hold. �
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