
J. Fluid Mech. (2009), vol. 632, pp. 301–327. c© 2009 Cambridge University Press

doi:10.1017/S0022112009007198 Printed in the United Kingdom

301

Drop impact of yield-stress fluids
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The normal impact of a drop of yield-stress fluid on a flat rigid surface is investigated
experimentally. Using different model fluids (polymer microgels, clay suspensions)
and impacted surfaces (partially wettable, super-hydrophobic), we find a rich variety
of impact regimes from irreversible viscoplastic coating to giant elastic spreading
and recoil. A minimal model of inertial spreading, taking into account an elasto-
viscoplastic rheology, allows explaining in a single framework the different regimes
and scaling laws. In addition, semi-quantitative predictions for the spread factor
are obtained when the measured rheological parameters of the fluid (elasticity, yield
stress, viscosity) are injected into the model. Our study offers a means to probe the
short-time rheology of yield-stress fluids and highlights the role of elasticity on the
unsteady hydrodynamics of these complex fluids. Movies are available with the online
version of the paper (go to journals.cambridge.org/flm).

1. Introduction
Yield-stress fluids (e.g. mud, pastes, emulsions) are often modelled, from a fluid

mechanical point of view, using simple steady flow rules such as the Bingham or
Herschel–Bulkley model (Balmforth & Frigaard 2007). However, these constitutive
laws are usually a significant simplification of their true rheological behaviour, which
may display elasticity, ageing, shear localization, wall slip and the like (Barnes,
Hutton & Walters 1989; Pignon, Magnin & Piau 1996; Meeker, Bonnecaze &
Cloitre 2004; Coussot 2005). The extent to which such rheological features affect the
hydrodynamics of yield-stress fluids in complex configurations remains an important
issue for many applications. The objective of the present paper is to study the
dynamics of a drop of yield-stress fluid impacting a solid surface. This configuration
provides an unusual test for the rheology, as it involves large deformations and highly
elongational flows on short time scales. Our main intent is to get insight into the
short-time behaviour of yield-stress fluids, in flow conditions difficult to achieve with
conventional rheometers.

Drop impact dynamics on solid surfaces is a classical subject of interfacial
hydrodynamics, which occurs in many industrial and environmental situations such as
inkjet printing, coating, motor jet, rain drop and pesticides (Rein 1993; Yarin 2006).
The most recent research on this subject is directed towards the understanding of
fingering instabilities and the splashing transition (Thoroddsen & Sakakibara 1998;
Xu, Zhang & Nagel 2005), the receding and bouncing dynamics on super-hydrophobic
surfaces (Renardy et al. 2003) or the direct three-dimensional numerical modelling
(Rieber & Frohn 1999; Bussmann, Chandra & Mostaghimi 2000). So far, most of
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the studies have concerned Newtonian fluids. More recently, non-Newtonian effects
(e.g. normal stresses, elasticity) have also been investigated by adding polymers or
surfactants in the fluid (Cooper-White, Crooks & Boger 2002; Bartolo et al. 2007).
However, in some practical circumstances, the fluid used is more complex and may
display a flow threshold: at low stresses the fluid behaves like a solid, but above a
critical stress, it yields and flows. A few examples are spray painting and inkjet printing
of three-dimensional structures, using colloidal gels (Lewis 2006). On the other hand,
the study of impacts of yield-stress fluids may be regarded as a laboratory model for
investigating high-speed collision of solids, such as ballistic impact (Yarin, Rubin &
Roisman 1995), impact crater formation (Melosh 1989) and explosive welding
(Crossland 1982). In this case, an important parameter is the ratio of the impacting
dynamic pressure ρV 2

0 (ρ is the object density and V0 is the impacting velocity) to
the material yield stress τc (Johnson 1985). Since typical yield-stress fluids (gels, clays,
emulsions) have strengths millions of times below those of metals or soils (few tens
of Pa compared to few tens of MPa), their impact at low velocities (V0 ∼ ms−1)
could mimic the extreme collision speeds (V0 ∼ km s−1) for which the classical solid
flows (Awerbuch & Bodner 1974).

To date, there have been very few controlled studies of drop impacts involving
threshold fluids. In a recent paper, Nigen (2005) has investigated the spreading
dynamics of droplets of Vaseline impacting a smooth Plexiglas surface. However,
the experimental conditions were such (small drop diameter, high viscosity, low
yield stress) that viscous effects mostly dominated the spreading dynamics. Yet, an
interesting observation was that the yield stress could inhibit the capillary recoil
and ‘freeze’ the drop shape at its maximal deformation. This suggests that, unlike
Newtonian fluids, the impact dynamics of a yield-stress fluid may be mainly controlled
by its intrinsic rheology rather than by capillary effects or surface wetting properties.

To test this, we will study drop impacts of yield-stress fluids for a wide range of rhe-
ological parameters (elasticity, yield stress, viscosity) and impacted surfaces (partially
wetting, super-hydrophobic). We will mainly focus on the physical mechanisms that
control the maximal spread factor, defined as the maximal drop extension during the
impact Lm divided by the drop initial size L0. For Newtonian fluids, empirical scaling
laws have been proposed, depending on whether the initial kinetic energy is mostly
converted into surface energy or dissipated by viscosity (Chandra & Avedisian 1991;
Clanet et al. 2004). For yield-stress fluids, two obvious complications arise. First, the
existence of a threshold introduces an additional plastic-like dissipation mechanism.
Second, these fluids usually display a non-Newtonian shear-rate-dependent viscosity,
which should modify the classical viscous-spreading laws.

A more complex issue concerns the role of the elastic deformations in the spreading
dynamics. For most flow problems involving yield-stress fluids, elasticity is neglected
as soon as the material is above the flow threshold. However, this is far from
being obvious in the case of impacting drops in which highly time-dependant and
elongational flows are considered. This interplay between flow, elasticity and viscosity
is well known in polymer fluid mechanics (Bird, Armstrong & Hassager 1987) but has
been less investigated for yield-stress fluids. Recently, elasto-viscoplastic constitutive
laws have been proposed that consistently take into account this coupling for soft
disordered materials such as foams, emulsions and polymer pastes (Takeshi &
Sekimoto 2005; Marmottant & Graner 2007; Saramito 2007; Bénito et al. 2008).
They have proven promising in capturing interesting features of soft viscoplastic
fluids such as normal stress, transient flows and localization in Couette geometries
(Cheddadi et al. 2008).
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In this paper, we gain from these approaches to understand, within a single
framework, the different regimes and scaling laws that control the drop impact
dynamics of a yield-stress fluid. We first present the experimental set-up and yield-
stress fluids used in § 2. The different impact regimes observed on partially wetting
and super-hydrophobic surfaces are presented in § 3. We show that elasticity may
play a crucial role in the spreading dynamics, even when the drop deformations are
far above the flow threshold. To explain this observation, a minimal temporal model
of spreading is built, where drop inertia is balanced by an elasto-viscoplastic basal
stress (§ 4). The comparison between experiments and the simplified model is given in
§ 5, focusing more specifically on the maximal spread factor. A discussion and some
questions raised by this study are given in the conclusion (§ 6).

2. Experimental methods
2.1. Yield-stress fluids

Three different kinds of yield-stress fluids were used to perform the experiments:
two colloidal suspensions of clay (kaolin and bentonite; van Olphen 1977) and one
polymer micro-gel suspension (Carbopol dispersion; Oppong et al. 2006; Piau 2007).
These fluids are known to present a yield stress above a critical concentration and are
widely used as model viscoplastic fluids in the literature (Coussot 1994; Osmond &
Griffiths 2001; de Bruyn, Habdas & Kim 2002; Peixinho et al. 2005; Tabuteau,
Coussot & de Bruyn 2007; Chambon, Ghemmour & Laigle 2008). In addition, they
allow spanning a broad range of mechanical and rheological parameters by changing
the concentration of the suspension. In the following, we will focus on the elastic
and viscoplastic properties of clays and Carbopol suspensions. We will disregard
other rheological features that may affect these fluids close the flow threshold, such
as creeping, thixotropy and microstructural orientation effects (Pignon, Magnin &
Piau 1997; Coussot 2005; Piau 2007). We will see that the knowledge of the elasto-
viscoplastic parameters indeed is sufficient to describe the main features of the drop
impact dynamics observed in our experiments.

The slurries of kaolin (supplied by Miniere Kaolins Morbihan, France) and
bentonite (supplied by VWR Prolabo) were prepared by gradually adding a given
mass of clay powder with de-ionized water under continuous and active mixing. The
suspensions were then stored for 72 h to ensure a complete hydration and dispersion
of the clay particles. Prior to any test, the slurries were mixed again for 1 h. Note that,
compared to kaolin, benonite suspensions are strongly thixotropic, meaning that their
mechanical properties (elasticity, yield stress) evolve at rest. In this study, we used
two different concentrations of kaolin and bentonite suspensions (see table 1, where
the weight percentage gives the ratio between the total mass of particles to the total
mass of particles and water initially mixed). Carbopol dispersions (Carbopol ETD
2050 supplied by Noveon) were prepared by adding slowly Carbopol powder into
de-ionized water at 50◦C, under continuous stirring during several hours at 500 rpm.
Sodium hydroxide solution at 18 % was then progressively added to bring the pH
up to 7. A post-mixing at 700 rpm during 9 h was required to eliminate lumps and
air bubbles, resulting in a transparent gel. For the experiments, we used six different
concentrations of Carbopol from 0.2 % to 3 % in weight (see table 1). In all cases, the
final suspension density was measured by weighting 10 syringes of 30 ml accurately
filled with the fluid (table 1; accuracy better than 1 %). Finally, the surface tension σ

of the fluids, which are aqueous dispersions without any surfactant, was assumed to be
equal to that of pure water, σ =0.07 N m−1. We did not determine directly the surface
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Weight
Fluid (%) τc (Pa) K (Pa sn) n G (Pa) G′′ (Pa) ρ (kg m−3) L0 (mm) D (mm)

Carbopol
C02 0.2 3.9 3.2 0.50 28 5.0 1010 7.6 8
C035 0.35 8.4 5.1 0.50 47 7.3 1010 8.0 8
C05 0.5 14 8.0 0.50 61 8.9 1020 8.7 8
C1 1 24 11 0.50 85 12 1020 12 12
C2 2 52 18 0.50 135 21 1020 17.5 17
C3 3 92 32 0.50 270 36 1020 25 27
Bentonite
B13 13 68 0.12 0.96 2400 60 1090 16 14
B15 15 124 0.16 0.96 3800 120 1090 29.5 27
Kaolin
K51 51 50 36 0.36 37 000 6500 1630 20 20
K55 55 91 68 0.36 200 000 69 000 1630 26.5 27

Table 1. Properties of the fluids, drop size L0 and syringe diameters D.

tension because most measurement methods are corrupted by the fluid yield stress
and elasticity. However, recent measurements in agar gels using surface-deformation
spectroscopy confirm that the surface tension of aqueous gels is close to (but
slightly lower than) that of water (Yoshitake et al. 2008). The value σ = 0.07 Nm−1

should therefore be taken as an upper bound for the real surface tension of our
fluids.

Bulk rheological measurements of each fluid were made in a rotational Anton Paar
MCR 501 controlled-stress rheometer. The samples were contained within a plate-
and-cone geometry 5 cm in diameter. The tool surfaces were roughened to minimize
wall slip, and special care was taken to avoid evaporation during the tests (Magnin &
Piau 1990). We performed both steady-state shear and oscillatory measurements.
In the steady-state measurements, the shear stress τ was measured as function of
the applied shear rate γ̇ , by decreasing the shear rate step-by-step in the range
10−1–103 s−1 and averaging the measured shear stress over 100 s. In the oscillatory
measurements, a small sinusoidal shear strain was applied and the resulting shear
stress measured. The in-phase and out-of-phase components of the response give the
elastic shear modulus G and the viscous loss modulus G′′, respectively.

Figure 1 presents typical steady-state flow curves for the three kinds of fluids. Each
point represents an average over two samples (see § 2.2). We observe that all fluids
display a yield stress and are shear-thinning above the flow threshold. The flow curves
are fairly well represented by a Herschel–Bulkley model: τ = τc + Kγ̇ n, where τc is
the fluid yield stress, K the fluid consistency and n the flow index (Barnes et al.
1989). For bentonite, the Herschel–Bulkley model is less accurate, especially at low
shear rates at which the stress appears to increase when the shear rate decreases.
This stress minimum in the flow curve has been documented before and is likely
related to the thixotropic nature of this fluid, which may cause flow inhomogeneities
inside the sample at low shear rates (Pignon et al. 1996). Determinations of the
Herschel–Bulkley parameters were obtained using a nonlinear parameter fitting, by
fixing the value of n for each fluid. For bentonite, only the monotonic part of the
flow curve has been fitted. We have checked that fitting the whole flow curve only
results in small changes of the rheological parameters that do not modified the main
results of the study. Values of the rheological parameters obtained for all fluids are
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Figure 1. Examples of steady-state flow curves for each fluid in semi-log coordinates:
kaolin 51 % (�), Carbopol 1 % (©), bentonite 13 % (�). The continuous lines give the
Herschel–Bulkley fit (see table 1). Inset: same data in lin–lin coordinates.

collected in table 1. As expected, both the yield stress and the consistency increase
with the material concentration. All fluids show a similar yield stress, bentonite being
less ‘viscous’ than kaolin and Carbopol. Note that the overall uncertainty on τc and
K is about 10 % due to material reproducibility and fitting procedure.

The elastic shear modulus G obtained from the oscillatory measurement is also
given in table 1. It was shown to depend only weakly on the applied frequency (in
the range 0.1–10 Hz) and strain amplitude, up to a critical strain γc corresponding
to the flow threshold. Below the threshold, we may thus assume the shear modulus
constant for each fluid and define the critical strain by γc ≡ τc/G. Both the shear
modulus and critical strain strongly depend on the material. Carbopol is very soft
and typically remains elastic up to 25 % strain, whereas bentonite is more rigid and
starts to flow above 3 % strain. The kaolin slurry is the most rigid material with a
critical strain less than 0.1 %. Values for G in table 1 are obtained at frequency 1
Hz and amplitude strain 1 % (Carbopol) or 0.01 % (kaolin, bentonite). Uncertainties
for G are about 7 % for Carbopol and 20 % for kaolin and bentonite. Note that
below the flow threshold, the loss modulus G′′ for all fluids was 3–40 times smaller
than the elastic shear modulus, showing that these materials are essentially elastic at
low stresses (table 1; the values for the loss modulus are given at the same strain
amplitudes and frequency than for the elastic modulus).

In the following, we will use the mechanical and rheological properties given in
table 1 to analyse our impact experiments. However, for complex fluids, it is not
obvious a priori that parameters deduced from simple shear flows are sufficient to
describe more complex flow configurations such as drop impacts, which involve both
shear and elongational flows. We have not performed elongational measurements of
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Figure 2. (a) Sketch of the experimental set-up and typical image obtained on the smooth
glass surface. Scale bars, 12 mm. (b) Close-up view of the super-hydrophobic surface, made by
gluing one layer of hydrophobic sand on the glass plane. The plot gives the distribution over
460 sand particles of the effective diameter, defined as

√
4a/π, where a is the projected area of

the grain. Scale bars, 0.4 mm.

our fluids. However, several studies on clays and Carbopol suggest that rheological
parameters measured in simple shear and uniaxial extension closely agree for these
yield-stress fluids (O’Brien & Mackay 2002; Yarin et al. 2004; Mohamed Abdelhaye,
Chaouche & Van Damme 2008).

2.2. Impact experimental set-up

The experimental set-up of drop impact is sketched in figure 2(a). Drops are slowly
extruded from a cut plastic syringe (inner diameter D = 8−27 mm), using a motorized
translation stage (1 mm s−1). After a fall height 1–145 cm (giving an impacting velocity
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V0 = 0.4−5.6 m s−1), drops impinge on to a 1 cm thick and 50 cm wide rigid horizontal
glass plate. The impact dynamics are visualized using a high-speed camera (Photron
Fastcam APX RS, 5000 Hz, 512 × 1024 pixels) with a microlens (Sigma 24–70 mm
1:2.8 EX DG). An inclined mirror settled under the glass surface allows monitoring
both the side and bottom views at the same time. The drop is backlighted using
an LED lighting screen (Phlox) and a 500 W spotlight through a diffusing paper.
A typical image obtained with Carbopol 1 wt % is shown in figure 2(a). From the
bottom view, the instantaneous drop’s contact area A(t) is extracted using standard
threshold and edge-detection algorithms (software ImageJ, http://rsbweb.nih.gov/ij/).

It is worth noting that in most experiments the Laplace pressure due to the surface
tension σ/D is small compared to the fluid yield stress τc. In this case, the shape
and size of the extruded drop are not controlled by the surface tension but given
by a complex balance between gravity, yield stress and extrusion speed (Coussot &
Gaulard 2005), resulting in bottle-shaped drops (figure 2a). To define the initial drop
size L0, we thus averaged over 20 launches the drop weight m and defined L0 as
the diameter of the equivalent sphere of same volume: L0 ≡ (6m/πρ)1/3 (table 1; the
dispersion for each value ranges from 3 % to 13 %). Note that this quantity gives no
information about the drop shape. In all the experiments, we have adjusted for each
fluid the syringe diameter D, in order to get an aspect ratio L0/D always close to 1
(table 1).

We performed experiments using two kinds of impacted surfaces: a partially wetting
surface and a super-hydrophobic surface. The partially wetting surface was made of
smooth float glass, with a water static contact angle of about 42◦. The super-
hydrophobic surface was made by gluing one layer of hydrophobic sand (supplied
by the toys fabricant Tobar under the name ‘Underwater Sculpting Sand’) with a
transparent spray on the glass surface (figure 2b). The sand-grain size distribution
measured with a digital imaging system was observed to be approximately Gaussian
with a mean effective diameter of 265 ± 55 μm (the error corresponds to the standard
deviation; see figure 2b). The compactness of the glued granular layer, defined as the
ratio between the projected area of the grains to the total area, was about 0.8 ± 0.05.
The resulting textured surface was highly hydrophobic with a water contact angle
close to 180◦. It was also highly non-adhesive for all the yield-stress fluids used.

In this study, we adopted the following procedure in order to obtain reproducible
measurements: First, to restrain structural ageing and/or external contamination,
fluids were used by the week following their making and thoroughly mixed before the
experiments. Their rheological properties were then averaged before and after each
set of experiments, with typical fluctuations less than 10 %. Finally, for experiments
with bentonite, which is thixotropic, suspensions were mixed and allowed to rest 1
min before filling the syringe and releasing the drop. Note that we did not change the
resting time before the experiments systematically. The main effect of increasing the
resting time is to increase the stress needed to start the flow and hence to modify
the size and shape of the extruded bentonite drop (Coussot & Gaulard 2005). The
interplay between this ageing and the rapid fluid rejuvenation during the impact is
an interesting question that we leave for future studies.

3. Main observations
3.1. Spreading dynamics and maximal drop deformation

Typical impact regimes observed with Carbopol drops on the smooth glass surface
are shown in figure 3, where the impact velocity increases from top to bottom.
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(a)

(b)

(c)

Figure 3. Typical impact sequences on a glass surface with Carbopol drops: (a) 1 wt%,
V0 = 0.5 m s−1; (b) 1 wt%, V0 = 2.1 m s−1; (c) 0.2 wt%, V0 = 4.3 m s−1. Time interval between
the pictures: (a) 4 ms, (b) 5.6 ms, (c) 0.7 ms. Scale bars, 5 mm.

At low velocities, the drop only weakly deforms, and one observes elastic ringing
waves propagating along the free surface after the impact (figure 3a). For higher
velocities, the drop spreads out radially along the surface. A thin liquid layer first
jets out sideways from beneath the drop, while the rest of the drop keeps collapsing
downward. After a few ms, the drop shape takes the form of a flattened disc that
continues to spread until it reaches a maximal diameter Lm (figure 3b). The free surface
of the drop then flows back and oscillates, while the contact line remains anchored
to the plane (figure 3b). Note that for kaolin and bentonite, similar behaviours are
observed, except that the drops abruptly ‘freeze’ as soon as they reach their maximal
deformation. Finally, for the largest velocities and/or lowest fluid concentrations, the
spreading lamella may undergo a front instability that eventually yields to a splash
of the drop (figure 3c). For Newtonian fluids, the splashing transition is complex
and depends on many features such as surface roughness, wetting properties, fluid
viscosity and even surrounding gas pressure (Rein 1993; Yarin 2006). Understanding
this transition for yield-stress fluids is beyond the scope of this study. In the following,
we rather focus on the stable spreading regime, where the drop has an axisymmetric
shape. Note that in some cases, a slight asymmetry of the spreading layer is observed
because the drop is tilted when impacting the surface (see for example figure 6).
This initial inclination may promote the splashing transition but does not modify the
spread factor. In the following, the instantaneous spread diameter of the drop L(t)
will be accurately computed by L(t) ≡

√
4A(t)/π, where A(t) is the measured drop’s

contact area from below.
Although the spreading scenario is common to all fluids used, the maximal extent

reached by an impinging drop does depend on the fluid characteristics and not only
on the impact velocity. Figure 4 presents the maximal spread factor, Lm/L0, as a
function of impact velocity V0 for all fluids, drop sizes and impacted surfaces studied.
The maximal spread factor varies from approximately 1.2 to 6 for the velocity range
investigated. For a given material and velocity, the spread factor tends to decrease
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Figure 4. Maximal spread factor as a function of impact velocity for all fluids and impacted
surfaces investigated: g, glass smooth surface; sh, super-hydrophobic surface. The error bars
represent the dispersion over three drops. The dotted line gives a lower bound for the
maximal spread factor limited by capillarity: Lmax/L0|cap = [(4 +We/3)/(1 − cos θ )]1/2, where

We = ρV 2
0 L0/σ is the Weber number and θ the contact angle (Chandra & Avedisian 1991).

To compute this theoretical limit, we take L0 = 7.6 mm, ρ =1020 kg m−3 and θ = 180◦, which
correspond to the lowest values of Lmax/L0|cap in our case.

when the suspension concentration increases. This concentration dependance is clear
for Carbopol (see also figure 12a) but less obvious for clays, for which variations
are within the experimental errors at low velocities (V0 < 2 m s−1). In figure 4, we
also plot the maximal spread factor predicted when capillarity is the only mechanism
that balances the initial kinetic energy (Chandra & Avedisian 1991). All data are well
below this capillary limit, suggesting that bulk rheological properties, and not the
surface tension, are controlling the arrest of drop spreading in our case. To confirm
this hypothesis, we have performed further experiments using super-hydrophobic
surfaces.

3.2. Viscoplastic coating versus giant elastic recoil

Figure 5 presents a typical dynamical sequence of a kaolin and a Carbopol drop
impacting a super-hydrophobic surface at moderate velocity. We first observe that
the spreading dynamics are very similar to the one observed on the smooth glass
surface. In particular, the maximal drop deformation is identical in both cases. This
result is general: as long as impact velocity is not too large, the spreading phase is
independent of the impacted surface. For larger velocities, differences arise between
the adhesive and non-adhesive surfaces; in particular, on super-hydrophobic surfaces,
the splashing transition occurs sooner, and larger maximal deformations are observed
(figure 4). We leave this point for future investigations.
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(a)

(b)

Figure 5. (a) Viscoplastic coating versus (b) giant elastic recoil on a super-hydrophobic
surface: (a) 55 wt% kaolin drop, time interval between the pictures 7 ms; (b) 1 wt% Carbopol
drop, time interval between the pictures 6 ms. In both cases, the impact velocity is V0 = 2.8
m s−1. Scale bar, 1 cm.

Figure 6. Bouncing of a 2 wt% Carbopol drop on a super-hydrophobic surface (V0 = 2.4
m s−1). Time interval between the pictures is 8 ms. Scale bars, 10 mm.

Although the spreading phase weakly depends upon the impacted surface and fluid
used, the receding dynamics on super-hydrophobic surfaces reveal striking differences
between the clay and Carbopol drops. For clay drops, we observe no receding at
all, as shown in figure 5(a) (see online movie 1, go to journals.cambridge.org/flm).
Once it has reached its maximal extension, the drop maintains its flattened shape
and irreversibly coats the plane, even though the surface is super-hydrophobic. This
viscoplastic coating is peculiar to yield-stress fluids and confirms that in our cases the
flow threshold is high enough to prevent the capillary retraction of the drop. However,
impacts with Carbopol drops strongly contrast with this behaviour as shown in figure
5(b) (see online movie 2). In this case, after the spreading phase, strong and rapid
recoil is always observed, which may even be followed by a complete rebound (figure 6
and online movie 3). A first possibility for this recoiling mechanism is the surface
tension, as for Newtonian fluids. However, this is unlikely, since Carbopol drops
have yield stresses comparable to those of the clays. A more appealing hypothesis
is that Carbopol drops deform and retract elastically, much like a bouncing ball
of gel (Tanaka, Yamazaki & Okumura 2003). However, within the range of impact
velocity considered, the drop deformations are between 100 % and 500 %, which is
much beyond the flow threshold deduced from the steady rheological measurements
(γc ≈ 25 %). This suggests that for Carbopol drops, viscoelastic effects occur: during
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Figure 7. (a) Sketch of the experiment used to support the viscoelastic behaviour of Carbopol.
A drop of Carbopol is quasi-statically squeezed between two super-hydrophobic surfaces and
released by suddenly removing the upper plate. (b) Time evolution of the diameter of the
drop during the experiment. The arrow indicates the sudden motion of the upper plate. For
comparison, we give in the inset the dynamics of the same Carbopol drop (1 wt%) impacting
a super-hydrophobic surface and reaching an identical maximal spread factor (V0 = 2.8 m s−1).

G

η εel

γ(t)

τc

Figure 8. Mechanical representation of an elasto-viscoplastic fluid.

the rapid spreading phase, flow is faster than the fluid relaxation time, yielding giant
elastic deformations on short time scales.

Further experiments on quasi-static squeezed drops supported this mechanism. To
this end, Carbopol drops were slowly compressed between two super-hydrophobic
surfaces up to a given spread factor (figure 7a). The upper plate was then suddenly
removed, and the subsequent dynamics were recorded. We observe that, unlike
impinging drops, these flattened drops never retract and keep their final shape
(figure 7b). This experiment confirms that the surface tension alone cannot overcome
the yield stress to recoil the drop. Besides, it highlights the crucial role of viscoelasticity
in the case of Carbopol.

A simple mechanical analogue to this elasto-viscoplastic behaviour is presented in
figure 8, where the fluid is represented by an elastic spring together with a solid
friction and viscous elements in parallel. When displacements γ (t) occur on time
scales much larger than the relaxation time scale η/G, the response is either purely
elastic (below the threshold) or fully viscoplastic (above the threshold). By contrast,
when γ (t) varies on time scales much shorter than the relaxation time, the response
is always dominated by the elastic component, even far beyond the flow threshold.
In the following, we extend this simple model to predict the different impact regimes
and spreading laws observed.
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4. Elasto-viscoplastic model of inertial spreading
Our experimental observations imply that in order to predict the drop impact

dynamics for all yield-stress fluids used, both the viscoplasticity and the elasticity
of the material have to be taken into account within a time-dependant framework.
Our aim in this section is to build a minimal model containing these ingredients.
To this end, we will substitute the complex spatio-temporal impact dynamics for a
much simpler, purely temporal model, where drop inertia is balanced by an elasto-
viscoplastic basal stress inspired by recent works on the rheology of soft materials.

4.1. Inertial spreading of a shallow disc

Most theoretical descriptions of Newtonian drops impacting a solid surface rely
either on semi-empirical energy balances or on direct numerical simulations (Rein
1993; Yarin 2006). Simplified spatio-temporal models have also been proposed, based
on lubrication equations (Yarin 2006) or variational methods (Kim & Chun 2001).
To our knowledge, no such model exists in the case of yield-stress fluids.

Here, we consider the simplest time-dependent model of inertial spreading. The drop
is modelled by a shallow disc (thickness h(t), radius R(t)) that spreads radially along
the surface. Assuming the disc aspect ratio to be small (lubrication approximation)
and integrating the mass and radial momentum balance across the depth gives
(Appendix A)

dh

dt
+ 2

Uh

R
= 0, (4.1)

ρh
dU

dt
= −τb, (4.2)

where U ≡ dR/dt is the front velocity and τb is the basal shear stress between the
spreading drop and the solid plane. The first equation is the mass conservation for
an incompressible disc. The second equation is the radial momentum balance, where
the drop inertia is simply balanced by the basal shear stress. Here both the gravity
spreading term and the surface tension force arising at the circumferential surface of
the disc have been neglected. Those assumptions are reasonable in our case of high
Froude numbers and high values of viscosity, yield stress and elasticity compared
with the surface tension. We have also neglected any wetting phenomenon, such as
hysteresis and dissipation at the contact line, that may affect the receding dynamics.
We will return to this point in the conclusion.

Within this simple model, the spreading dynamics are mainly controlled by the
expression of the basal shear stress, while the contribution of the radial and hoop
stress is neglected. This is valid as long as the spreading drop is thin (lubrication
approximation) and does not slip at the solid plane, such that the dominant shear
is across the layer. For complex fluids, the no-slip assumption could be addressed,
as these fluids often exhibit a slip velocity on smooth surfaces (Meeker et al. 2004).
However, slip velocities usually reported in yield-stress fluids (about 0.1 mm s−1) are
much smaller than the impact velocities (about 1 m s−1). This means that the shear
rate at the base scales as γ̇ ≈ U/h, which is much larger than the elongation rate
U/R in the shallow limit. In the following, we thus assume the shear across the layer
to be the dominant mode of the flow and discuss the choice of the basal shear stress,
which embodies the fluid rheology.
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4.2. Choice of the rheology

Constitutive laws for viscoplastic fluids that incorporate elasticity have been the
subjects of several studies in the past (e.g. Schwedoff 1890; Tyabin & Trusov
1970; White 1979). Recently, there has been a renewal of such elasto-viscoplastic
formulations applied to the rheology of soft disordered materials such as foams,
emulsions and gels (Takeshi & Sekimoto 2005; Marmottant & Graner 2007; Saramito
2007; Bénito et al. 2008). The most classical way to introduce elasticity in a yield-
stress fluid is to suppose a purely elastic behaviour below the yield stress and a
purely viscoplastic behaviour above the yield stress (see for example Mujumdar,
Beris & Metzner 2002 and the references therein). However, this description does not
account for viscoelastic-like effects allowing the material to transiently store large
elastic deformations, as observed in our case of drop impacts with Carpobol. To
circumvent this, several studies have extended the classical description of viscoelastic
fluids used in polymers solutions (Bird et al. 1987) to yield-stress materials. The
most advanced models are those of Saramito 2007 and Bénito et al. 2008. In these
approaches, the constitutive law is composed of two parts. First, the stress tensor
is given by an elastic law. Secondly, there is a transport equation for the elastic
deformation, stipulating that the deformation relaxes only when it is above a critical
strain (i.e. a yield stress). These equations constitute a tensorial generalization of the
mechanical model given in figure 8. In addition, Saramito’s (2007) model is built to
recover a Bingham constitutive law in the rigid limit. The great advantage of these
full tensorial approaches is that they properly account for nonlinear effects such as
finite deformations, elongational flows and normal stresses. They have been applied
to simple unidirectional flows, such as uniaxial flows and simple or oscillatory shear
flows (Saramito 2007; Bénito et al. 2008). However, these are difficult to solve in
higher dimensions, even in basic configurations (Cheddadi et al. 2008). Moreover,
they do not describe the Herschel–Bulkley shear-thinning observed in steady shear
with our fluids.

Here we use a simple scalar version of Saramito’s (2007) model for the basal shear
stress, which we modify in order to recover a Herschel–Bulkley behaviour for steady
flows. The basal shear stress τb is written as

τb = Gεel, (4.3)

with

⎧⎪⎨
⎪⎩

dεel

dt
= γ̇ if |εel | < γc,

= γ̇ − 1

λ

|εel | − γc

|εel | εel if |εel | > γc.

(4.4)

The first equation assumes that the basal shear stress is given by an elastic Hooke
law, where G is the elastic shear modulus and εel the elastic shear deformation
at the base; γ is the total shear strain such that γ = εel + εvp , where εvp is the
irreversible (viscoplastic) part of the total deformation. The second equation is a
transport equation for the elastic deformation, where γ̇ ≈ U/h is the basal shear rate.
It indicates that as long as the elastic deformation is below the critical strain given
by γc = τc/G, the fluid behaves like an elastic solid. On the other hand, above the
flow threshold, the evolution of the stored elastic deformation is decomposed into an
advection term and a creeping term, where λ is a relaxation time scale.

This scalar law constitutes a straightforward extension to shear flows of the
mechanical model presented in figure 8. For γc = 0 (no yield stress), one recovers
the usual Maxwell model for viscoelastic fluids: τ̇b + (G/η)τb = Gγ̇ , where η ≡ Gλ
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is the fluid viscosity. On the other hand, for a steady flow (d/dt = 0, εel > γc),
γ̇ =(εel − γc)/λ, and the basal shear stress reduces to a simple viscoplastic flow
rule: τb = Gγc + (Gλ)γ̇ = τc + ηγ̇ . For a constant relaxation time λ, the viscosity is
constant, and one recovers a Bingham flow rule for steady flows (Saramito 2007).
However, our fluids exhibit a Herschel–Bulkley behaviour for steady shear flows, such
that η = Kγ̇ n−1. This is possible if the relaxation time satisfies Gλ=K((εel −γc)/λ)

n−1.
To be compatible with the Herschel–Bulkley rheology of our fluids in steady shear,
we therefore choose the following expression for the relaxation time:

λ = (K/G)1/n(|εel | − γc)
(n−1)/n

if |εel | > γc, (4.5)

where K is the fluid consistency and n is the flow index deduced from steady-state
shear measurements. This choice is reminiscent of the White–Metzner model for
describing shear-thinning in polymer solutions (Bird et al. 1987), where the relaxation
time scales as λ= (K/G)γ̇ n−1.

The full impact model is therefore given by the mass and momentum equations
((4.7) and (4.8)) together with the elasto-viscoplastic law ((4.3)–(4.5)). To integrate this
system of ordinary differential equations, we assume that the drop is initially stress
free, εel |0 = 0, with an initial shape R|0 =L0/2 and h|0 = (2/3)L0 (to ensure volume
conservation). Assuming that the initial drop vertical velocity is equal to the impact
velocity, dh/dt |0 = V0, and using the mass balance (4.7) gives the initial lateral velocity
U |0 = (R|0/2h|0)V0 = (3/8)V0. In the following, we non-dimensionalize the equations
using the dimensionless variables

R = L0R̂, h = L0ĥ, t =
L0

V0

t̂ , U = V0Û . (4.6)

After dropping the hats, the dimensionless model is written as

dh

dt
+ 2

Uh

R
= 0, (4.7)

h
dU

dt
= − εel

M2
, (4.8)

⎧⎪⎨
⎪⎩

dεel

dt
=

U

h
if |εel | < γc,

=
U

h
− 1

De
(|εel | − γc)

1/n εel

|εel | if |εel | > γc,

(4.9)

εel |0 = 0, R|0 = 1/2, h|0 = 2/3, U |0 = 3/8, at t = 0. (4.10)

We note that the drop dynamics are entirely governed by three dimensionless
numbers, plus n, given by

M =
V0√
G/ρ

, γc =
τc

G
, De =

V0(K/G)1/n

L0

. (4.11)

The elastic Mach number M gives the ratio of the impact velocity V0 to the speed
of the elastic shear waves

√
G/ρ. The critical strain γc is the ratio of the fluid yield

stress to the elastic shear modulus. Finally, the Deborah number De is the ratio
of a characteristic fluid relaxation time (K/G)1/n to a characteristic impact time
L0/V0. In the limit of small Deborah numbers, the elastic deformations relax on
time scales much shorter than the impact time, meaning that the flow behaviour is
mainly viscoplastic. On the other hand, in the limit of large Deborah numbers, elastic
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deformations have no time to relax during the impact. In this case, the behaviour is
mainly elastic, even above the flow threshold.

Our model of inertial spreading therefore contains the main physical ingredients
that control the drop impact dynamics of a yield-stress fluid: the balance between
inertia and bulk stresses, together with an elasto-viscoplastic rheology. However, we
emphasize that this purely temporal approach constitutes a very rough simplification
of the complex spatio-temporal dynamics observed during the drop impact. In
particular, the assumed cylindrical drop shape and the shallow-water hypothesis
are not satisfied at early times, where strong thickness gradients and finite aspect
ratios occur. Another crude simplification concerns the expression for the basal stress.
We estimated all flow fields at the plane in a dimensional way (e.g. γ̇ ≈ U/h), without
solving the flow within the spreading layer. In addition, when computing the rate
of elastic deformations, we have omitted the nonlinear time derivatives (e.g. upper-
convected) arising at finite deformations (Bird et al. 1987; Saramito 2007; Bénito
et al. 2008). These points will be briefly addressed in the conclusion.

4.3. Predicted dynamics and impact regimes

Before comparing our model with the experimental results, we discuss in this section
its main predictions. For simplicity, the flow index is fixed to n= 0.6. Figure 9(a–c)
presents three typical time evolutions of the normalized drop diameter predicted by
the model and obtained for different values of the elastic Mach number M , critical
strain γc and Deborah number De. These dynamics correspond to the three main
impact regimes predicted by the model. In figure 9(a), the elastic Mach number is
small and the critical strain is large, so that the yield stress is never reached during the
spreading dynamics (γ = εel , εvp = 0). In this case, the drop remains in the solid–elastic
regime and undergoes small oscillations about its initial diameter. These oscillations
do not decay, since no damping exists in the model below the threshold. At the other
extreme, figure 9(b) illustrates a large irreversible spreading of the drop obtained
when the elastic Mach number is large, the critical strain small and the Deborah
number small. In this case, the shear stress far exceeds the yield stress, and most
of the initial kinetic energy is dissipated by viscoplasticity (γ ≈ εvp 
 εel). The last
regime is presented in figure 9(c). In this case, the elastic Mach number is large as
well, so that the shear stress exceeds the yield stress during the spreading phase.
However, the Deborah number is no longer small. As a consequence, the drop no
longer stops once it reaches its maximal extension but strongly recoils up to its initial
diameter, before oscillating with a smaller amplitude. This situation corresponds to
the case in which the spreading time is short compared to the relaxation time, so that
elastic deformations dominate the flow even above the yield stress. (In figure 9c, the
maximal elastic deformation εel

m =270 % is larger than the irreversible deformation
at the maximal drop extension εvp

m = 150 %.) This regime is called the liquid–elastic
regime in the following. Note that in this case of large elastic recoils, the drop
diameter may reach negative values during the receding phase for some parameters.
This unphysical prediction of the model results from the lubrication assumption,
which neglects the terms that prevent the drop collapsing when R → 0.

A closer investigation of the model shows that the transition between the different
regimes are controlled by two important dimensionless groups (figure 9d). First,
as long as the ratio between the elastic Mach number and the critical strain,
M/γc = V0

√
ρ G/τc, is below a critical value (solid line in figure 9d), the drop is

below the flow threshold, and the behaviour is purely elastic (solid-elastic regime). On
the other hand, for M/γc > 2, the basal stress overcomes the yield stress during
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Figure 9. Time evolutions of the normalized drop diameter (a–c) and impact regimes
(d) predicted by the model (n= 0.6). (a) Solid–elastic regime: M = 0.2, γc = 1, De = 0.1.
(b) Viscoplastic regime: M = 1, γc =0.01, De = 10−6. (c) Liquid–elastic regime: M = 10, γc = 0.1,
De = 4. (d) The solid line is the solid–liquid transition (below this line, εvp =0). The dotted
line is the boundary between the viscoplastic and liquid–elastic regime given by εel

m = ε
vp
m .

the spreading phase. The viscoplastic or liquid–elastic regime observation then
depends on the ratio between the Deborah number and the elastic Mach number:
De/M = K1/n/(ρL2

0 G2−n/n)1/2. For small De/M , the impact kinetic energy is mostly
dissipated by the fluid viscoplasticity, yielding irreversible spreading and coating
(viscoplastic regime). By contrast, for large De/M , the drop deformations remain
elastic and reversible above the flow threshold due to viscoelastic effects (liquid–elastic
regime). In figure 9(d), the boundary between the viscoplastic and liquid–elastic regime
is plotted for n= 0.6 (dotted line). In this case, the boundary does not depend on the
value of the critical strain γc. For other values of n, the previous discussion remains
valid, but the boundary depends upon γc (see § 5.1 and figure 11).

Our analysis shows that the transition between the viscoplastic and liquid–elastic
regime is essentially controlled by De/M , which does not depend on the impact
velocity. This number may be interpreted as the ratio between the viscous relaxation
time (K/G)1/n and the elastic mode of vibration of the drop L0/

√
G/ρ. In this

sense, this number is an elastic analogue to the so-called Ohnesorge number
Oh= η/(ρσL0)

1/2, which compares the viscous damping time to the capillary period
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Figure 10. Comparison between the spreading dynamics predicted by the model (a, c) and the
experimental measurements (b, d) for two set of parameters: M = 0.357, γc = 0.0014, De = 3.7
10−7, n= 0.36 (a and b, kaolin 51 wt%, V0 = 1.7 m s−1) and M =7.95, γc =0.28, De = 3.26,
n= 0.5 (c and d , Carbopol 1 wt%, V0 = 2.3 m.s−1).

of oscillation of a drop. The Ohnesorge number is well known to play an important
role in characterizing the recoiling motion of Newtonian drops (Kim & Chun 2001;
Yarin 2006). It is therefore not surprising that De/M plays a similar role for the
irreversible coating versus receding transition in our case.

5. Comparison with experiments
In this section, we compare the previous model with the experimental measurements.

To this end, the elastic Mach number M , the critical strain γc, the Deborah number
De and the flow index n introduced in the model are computed from the measured
impact velocity V0 and fluid properties given in table 1. Therefore, no fitting parameter
exists when we compare the model with the experimental results.

5.1. Typical dynamics and phase diagram

Typical comparisons between the model and the experiments for the spreading
dynamics are given in figure 10 for two sets of dimensionless parameters.
Experimentally, the first set of parameters corresponds to the impact of a kaolin drop,
while the second corresponds to the impact of a Carbopol drop, both measured on the
super-hydrophobic surface (to avoid wetting issues not included in the model). The
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main result is that the model captures both kinds of dynamics when the experimental
values of the dimensionless numbers are introduced in the simulations. For the kaolin
case, the drop spreads up to a maximum radius and no longer evolves: all the initial
kinetic energy has been dissipated by the viscoplastic friction at the base (figure
10a, b). By contrast, for the Carbopol drop, strong recoil is predicted and observed
(figure 10c, d). This corresponds to the liquid–elastic regime, where most of the initial
kinetic energy has been converted into elastic energy; though the stress far exceeds
the yield stress in this case (the maximal total deformation is γm ≈ 330 %, while the
maximal elastic deformation is εel

m ≈ 220 %, to be compared with the critical strain for
Carbopol γc = 28 %). Despite this similitude between the model and the experiments,
the prediction is not quantitative. In particular, the spreading time is systematically
overestimated in the theory. The model also lacks a damping mechanism to suppress
the elastic ringing below the flow threshold (figure 10c, inset). Nevertheless, the
agreement may be regarded as reasonable, considering the simplicity of the model
and the fact that no free parameters exists.

In figure 11, we present the phase diagrams predicted by the model for the three
kinds of fluids used. In all cases, the solid–liquid transition is the same; however the
boundary between the viscoplastic and liquid–elastic regime differs due to different
values of γc and n. In these diagrams, we also indicate the values of M/γc and De/M

for all fluids and impact velocities investigated experimentally. We first observe that all
experiments (except one) occur above the solid–liquid transition. This means that the
impact velocity is always large enough to overcome the yield stress in our experimental
conditions. In addition, we observe that kaolin and bentonite drop impacts all belong
to the viscoplastic regime, whereas most of the experiments with Carbopol belong to
the liquid–elastic regime.

5.2. Liquid–elastic regime: Carbopol

The previous phase diagrams suggest that Carbopol impacts are mainly controlled
by elasticity. To test this, we present in figure 12 the maximal spread factor measured
for Carbopol impacts on the glass surface as a function of the elastic Mach number
M = V0/

√
G/ρ, for all concentrations and impact velocities investigated. The main

result is that all data collapse on a master curve. This demonstrates the crucial role of
elasticity in the case of Carbopol, even though the flow threshold is greatly exceeded
during the impacts. In addition, we observe a rather good quantitative agreement
between the model prediction and the experiments.

We can understand the relation between the maximal spread factor and the elastic
Mach number M , using simple dimensional arguments and energy conservation.
Assuming that the initial kinetic energy is entirely converted into elastic energy, we

obtain ρL3
0V

2
0 ∼ GL3

0ε
el
m

2
, where εel

m ∼ Lm/h is the elastic shear strain at the maximal
deformation and h the thickness of the maximal drop. Using volume conservation
(L3

0 ∼ hL2
m) yields

Lm ∼ L0M
1/3. (5.1)

The predicted scaling is close to the one obtained experimentally and in the model:
Lm ∼ L0M

0.35 ± 0.01 (dashed line in figure 12b). The slight difference with the ideal elastic
prediction likely results from viscous dissipation. (The Carbopol domain is close to
the viscoplastic/liquid–elastic transition; see figure 11.) However, this is difficult to
assess owing to the limited range of elastic Mach numbers experimentally accessible.

It is worth noting that the M1/3 law is a priori valid when the elastic deformations
are dominated by the thickness of the drop h, i.e. for a material that adheres to the
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Figure 11. Impact regimes predicted by the model in the (M/γc–De/M) plane together with
experimental values of M/γc and De/M for kaolin, bentonite and Carbopol (symbols). The
boundary between the viscoplastic and liquid–elastic regime (dotted line) is computed for
each fluid using: γc = 0.001, n= 0.36 (kaolin); γc = 0.03, n= 0.96 (bentonite); γc = 0.25, n= 0.5
(Carbopol).

plane and for large deformations (M 
 1). For smaller deformations (M ∼ 1) and/or
large slip velocity, the elastic deformation should rather scale as εel

m ∼ (Lm − L0)/L0,
yielding (Lm − L0)/L0 ∼ M (Tanaka et al. 2003). Finally, in the low-velocity limit
(M � 1), elastic deformations are localized within the contact area, and impact
dynamics strongly depend on the precise geometry of the object (Johnson 1985).

5.3. Viscoplastic regime: clays

Unlike Carbopol, experiments with clays and the phase diagrams in figure 11 suggest
that during the spreading phase all the initial kinetic energy is irreversibly dissipated.
For Newtonian fluids, this ‘viscous’ regime of spreading is controlled by the Reynolds
number, Re ≡ ρV0L0/η (η is the fluid viscosity), and the maximal spread factor is
predicted to scale as Lm ∼ L0Re1/5 (Chandra & Avedisian 1991; Rein 1993). In our
case, this classical viscous law of spreading should be modified because the fluids are
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Figure 12. (a) Relative deformation (Lm − L0)/L0 versus the elastic Mach number M , for
Carbopol drops on glass smooth surface, measured in experiments (symbols) and predicted by
the model (lines). Inset : relative deformation as a function of impact velocity. (b) Same data
for the maximal spread factor versus the elastic Mach number in log–log. The solid line is the
experimental data fit giving the law Lm ∼ L0M

0.35 ± 0.01.

shear-thinning above the threshold. Assuming η = Kγ̇ n−1 ∼ K(V0/h)n−1, where h is
the thickness of the maximal drop, and using volume conservation (L3

0 ∼ hL2
m) yields

Lm ∼ L0Ren
1/(2n+3), (5.2)

where Ren ≡ ρV 2−n
0 Ln

0/K is a generalized Reynolds number.
In figure 13, we present the maximal spread factor as a function of Ren

1/(2n + 3)

for kaolin and bentonite drops, together with previous (see Clanet et al. 2004) and
new experiments with Newtonian fluids. The main result is that both kaolin and
Newtonian fluid data present a straight line of slope 1 in log–log, showing the
relevance of the generalized viscous law (5.2). However, they do not collapse on the
same curve, the maximal spread factor of kaolin drops being systematically higher
( ∼ 25 %) than those of Newtonian drops. A similar discrepancy is obtained when
one compares the model predictions to the experiments with kaolin. Again, the
model underestimates the spreading by 30 % but predicts the correct scaling law
with the generalized Reynolds number. This quantitative difference could result from
the model approximations. However, the fact that the model quantitatively agrees
with Newtonian fluids suggests a more fundamental explanation. In particular, kaolin
viscosity during impact could be actually lower than the one we measured in steady-
state rheometry, due to transient effects such as coupling between microstructure
orientation and flow (Pignon et al. 1997).

The second main observation in figure 13 is that bentonite does not follow the
generalized viscous law (5.2). In this case, the velocity dependence of the maximal
spread factor ( ∼ V

0.50 ± 0.1
0 ) is much higher than the one expected for a spreading

limited by viscosity ( ∼ V
2−n/2n + 3
0 ∼ V 0.21

0 with n= 0.96). A plausible explanation for
this behaviour is that, unlike kaolin, impacts with bentonite are dominated by the yield
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Figure 13. Maximal spread factor versus Ren
1/(2n + 3), for kaolin and bentonite clays (open

symbols) and for Newtonian drops (filled symbols) of two glycerol aqueous solutions
concentrated at 75 % (η = 44 mPa s, G75) and 98 % (η =472 mPa s, G98), and results
imported from Clanet et al. 2004. The dashed lines are the model predictions for the kaolin.
The solid lines are power law fit of the experiments for kaolin (slope 1.0 ± 0.05) and bentonite
(slope 2.1 ± 0.1).

stress, leading to a shear-rate-independent dissipation mechanism. Such hypothesis is
supported by the estimation of the impact Bingham number Bi ≡ τcL

n
0/KV n

0 for both
fluids, which compares the yield stress to the typical impact viscous stress. For kaolin
drops, we always have Bi < 0.5, whereas for bentonite drops Bi > 3. For a spreading
controlled by the yield stress (‘plastic’ regime), the maximal spread factor can simply
be predicted by balancing the initial kinetic energy with the plastic work (of order
τcL

3
m), yielding

Lm ∼ L0Y
2/3, (5.3)

where Y ≡ V0/
√

τc/ρ.
The number Y (or its square) is well known in strength-dominated impact of solids

and compares the typical impact pressure to the material yield stress (Johnson 1985).
In figure 14, we plot the data for bentonite as a function of this new dimensionless
number together with the model prediction. The agreement between the model and
the experiments is reasonable. Moreover, the spread factor velocity dependence is
closer to the ideal plastic regime predicted by (5.3).

We expect the transition between the plastic and viscous regimes to occur when the
spread factor predicted by the plastic law (5.3) equates the one given by the viscous
law (5.2) (by analogy with the capillary/viscous transition discussed by Clanet et al.

2004). This defines a critical velocity Vc ≡ τ (2n +3)/7n
c L

3/7
0 K−3/7nρ−2/7 above which the

spreading is limited by viscosity and below which it is limited by plasticity. The
transition between the plastic and viscous regimes is shown in figure 15, where we

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

71
98

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009007198


322 L.-H. Luu and Y. Forterre

1

2

1 10

3

4

5

Y

2/3

Experimental model

B13

B15

Lm

L0

Figure 14. Maximal spread factor versus the number Y ≡ V0/
√

τc/ρ for bentonite drops,
measured (symbols) and predicted (dashed lines). The solid line is the power law fit of the
experimental data (slope 0.5 ± 0.1).
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Figure 15. Dimensionless viscous extension (where the maximal spreading Lm is normalized
by the maximal spreading in the viscous regime L0Ren

1/(2n + 3)) versus the impact velocity
normalized by the critical viscoplastic velocity V0/Vc , for kaolin and bentonite drops. The
transition occurs for V0 ≈ 4Vc .
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plot the dimensionless viscous extension Lm/(L0Ren
1/(2n +3)) as function of V0/Vc

for all experiments with bentonite and kaolin. We observe that the transition is well
defined and occurs for V0/Vc ≈ 4. As expected, data corresponding to bentonite belong
to the plastic regime (V0 < 4Vc), whereas data for kaolin all belong to the viscous
regime (V0 > 4Vc).

6. Conclusion
In this paper, the dynamics of drops of yield-stress fluids impacting solid surfaces

have been investigated using different model fluids (clay suspensions, Carbopol
microgel) and impacted surfaces (partially wetting, super-hydrophobic). We first show
that very different impact regimes may be observed, depending on the rheological
and mechanical properties of the fluids. For ‘stiff’ materials (clays), viscoplastic effects
dissipate most of the initial kinetic energy during the spreading phase. If the yield
stress is large enough to overcome the surface tension, the spreading drop irreversibly
coats the surface, irrespective of its wetting property. By contrast, for ‘soft viscous’
materials (Carbopol), deformations during the impact remain elastic even far above
the yield stress, leading to giant elastic spreading and recoil on the super-hydrophobic
surfaces. The second main result is that a simple temporal model of spreading
combining the drop inertia with an elasto-viscoplastic rheology allows predicting the
different regimes observed within a single framework. In addition, semi-quantitative
agreements between theory and experiments have been obtained for the maximal
spread factor without any fitting parameter, when the measured impact velocity, drop
size and fluid rheology were introduced in the model. Our results could therefore be
useful to design applications involving the drop impact of yield-stress materials, such
as coating processes and solid inkjet printing (Lewis 2006).

Impact experiments with Carbopol have shown that elasticity may play a crucial
role in the hydrodynamics of yield-stress fluids, even when the flow deformations
are far above the yield stress. This is caused by the highly unsteady flow during the
impact, which prevents the elastic deformations to relax. Such viscoelastic-like effects,
typical of polymer solutions, are quite difficult to measure for yield-stress fluids in
standard rheometers. In this sense, our study of drop impacts has offered a means
to probe the short-time rheology of these complex fluids. It is worth noting that the
coupling between elasticity and flow deformation is not restricted to transient flows.
Normal stresses and extensional viscosity are other consequences of this interplay that
could affect the flow of yield-stress fluids in complex configurations. Recent works
have begun to investigate this issue in confined geometries (Cheddadi et al. 2008). It
would be interesting to extend these studies to free surface flows, such as avalanches
down inclined planes and free surface instabilities.

Among the different issues raised by our study, the first one concerns the
improvement of the model used to describe the drop impact dynamics. Our first
approach intended to capture the main physical ingredients. However, it oversimplified
the complex spatio-temporal dynamics observed during impact. In particular, the
assumed cylindrical drop shape and the shallow-water hypothesis are not valid at
early stages, where high vertical velocities and strong thickness gradients are observed.
A first improvement of the model could be to split the collapsing drop into a central
zone, where the vertical velocity dominates, and a lateral zone, where the shallow-
water hypothesis applies (Roisman, Rioboo & Tropea 2002; Larrieu, Staron & Hinch
2006). Another possibility could be to use modified depth-averaged equations that
take into account the vertical momentum balance (Boussinesq-type models). However,
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all these approaches eventually require the knowledge of the internal velocity field,
which may be obtained only by direct numerical simulations. The second improvement
concerns the rheology. In this study, we used the simplest elasto-viscoplastic scalar
law compatible with a shear-thinning behaviour. However, this approach does not
take into account the nonlinear (e.g. upper-convected) derivatives arising in a full
tensorial formulation (Bird et al. 1987; Saramito 2007). These terms generate a
coupling between the shear flow and extensional flow that could strongly affect the
impact dynamics. In addition, more complicated choices for the elastic tensor law
and the relaxation term could be foreseen (Bénito et al. 2008). Finally, we have not
considered other rheological features such as thixotropy and coupling between flow
and microstructure orientation, which may affect the dynamics of unsteady flows
(Coussot et al. 2005; Balmforth, Forterre & Pouliquen 2008). Clearly, incorporating
all these rheological refinements in a full numerical simulation represents a serious
challenge. However, we believe that the relative success of our simple model constitutes
an encouragement to test more realistic constitutive laws in precise numerical
modelling.

Another question brought up by this study concerns the influence of wetting
properties on the interfacial flows of yield-stress fluids. In the beginning of the
paper, we suggested that these properties might play a minor role due to the flow
threshold. However, our results undermine this assertion. First, the receding dynamics
of Carbopol impacts are clearly affected by the wetting properties of the impacted
surface. On super-hydrophobic surfaces we observe a strong elastic recoil, whereas on
partially wetting surfaces this elastic recoil is inhibited by the contact line dynamics,
which remains anchored at the plane. This extra dissipation at the contact line could
be enhanced for such a complex fluid due to a subtle interplay between the contact
line hysteresis and normal stress differences (Bartolo et al. 2007). Secondly, we observe
that the spreading dynamics at high impact speeds are also affected by the wetting
properties of the impacted surface. Besides promoting the splashing transition as in
classical Newtonian fluids, impacts on super-hydrophobic surfaces show a striking
phenomenon with Carbopol: above a critical speed, the spread factor becomes much
larger than on the glass surface. To our knowledge, this behaviour has never been
reported with Newtonian fluids, for which the impact spread factor is unaffected
by the use of textured hydrophobic surfaces (Clanet et al. 2004). Is this ‘super-
spreading’ the signature of a giant slip velocity between the yield-stress fluid and
the super-hydrophobic surface? Does it result from the stabilization of the splashing
instability due to viscoelastic effects? We will address these questions in a future
work.

Finally, it would be interesting to extend the present study to yield-stress fluid
impacts on soft surfaces made of the same material. In this case, both the projectile
and the hitting ground may liquefy during the collision, before solidifying again
once the kinetic energy is dissipated. This behaviour is reminiscent of impact crater
formation in geophysics or in ballistic impact, although other phenomena such as
heating, melting and fracture complicate the picture (Melosh 1989). Assuming an
impacting body of size L0 ≈ 1 km and speed V0 ≈ 1 km s−1 striking a surface planet
of density ρ ≈ 3000 kg m−3, yield-strength τc ≈ 107 Pa, Young modulus G ≈ 109 Pa
and viscosity η ≈ 109 Pa s (Melosh 1989) gives an elastic Mach number M ≈ 20, a
critical strain γc ≈ 10−2 and a Deborah number De ≈ 1. In this study, we have seen
that such parameters are easily obtained with standard yield-stress fluids. Investigating
the hydrodynamics of crater formation with those materials could therefore help to
get insight into the complex process of impact cratering in planetary science.
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Appendix A. Derivation of the inertial spreading model
The axisymmetric Saint-Venant mass and momentum conservation equations for

an incompressible flow read (without gravity and surface tension)

∂h

∂t
+

1

r

∂ruh

∂r
= 0, (A 1)

ρ

(
∂hu

∂t
+

1

r

∂rhu2

∂r

)
= −τb, (A 2)

where h(r, t) is the local thickness, u(r, t) the depth-averaged velocity and τb the
basal shear stress (de Saint-Venant 1871; Witham 1974; Larrieu et al. 2006). The
main assumption to derive these equations is that the drop aspect ratio h/R is small
(shallow-water hypothesis). This allows to neglect both the inertial pressure terms
and the radial and hoop stresses. In addition, the acceleration term is simplified

assuming (1/h)
∫ h

0
ũ2(r, z, t)dz ≈ u2(r, t), where ũ(r, z, t) is the depth velocity profile.

In this paper, we model the spreading drop by a disc of radius R(t) and uniform
thickness h(t). In this case, the mass conservation equation implies (since there is no
divergence of velocity at r = 0)

u(r, t) = − r

2h

dh

dt
. (A 3)

Substituting this expression into the Saint-Venant equations (A 1)–(A 2) at r = R(t)
yields

dh

dt
+ 2

hU

R
= 0, (A 4)

ρh
dU

dt
= −τb, (A 5)

where U = u(R(t), t) is the front velocity.
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