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Asymptotic analysis for the propagation and
arresting process of a finite dry granular mass

down a rough incline
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This work presents an asymptotic analysis for the propagation and arresting process
of a two-dimensional finite granular mass down a rough incline in a shallow
configuration. Bulk shear stress and arresting mechanism are formulated according
to the coherence length model that considers momentum transport at a length scale
over which grains are spatially correlated. A Bagnold-like streamwise velocity and
a non-zero transverse velocity are solved and integrated into a surface kinematic
condition to give an advection–diffusion equation for the bulk surface profile, h(x, t),
that is solved using the matched asymptotic method. These flow solutions are further
employed to determine composite solutions for a flow-front trajectory and a local
coherence length, l(x, t), which reveals smooth growth of h(x, t) and l(x, t) from zero
at the propagating front with l(x, t)� h(x, t). At the rear, h(x, t) vanishes but l(x, t)
asymptotes to a constant that depends on inclination angle. According to the arresting
mechanism, the location where l(x, t)∼ h(x, t) is solved to the leading order to locate
the deposition front so that its propagation dynamics can be derived. A finite flow
arrest time, Td, and the corresponding finite run-out distance, Ld, are evaluated when
all the flowing mass has passed the deposition front and are employed to construct
a modified front trajectory with the deposition effect. The predicted run-out distance
and front trajectory profile compare reasonably well with experimental data in the
literature on inclinations at angles higher than the material repose angle.

Key words: geophysical and geological flows, granular media, shallow water flows

1. Introduction
Dry granular flows down a solid surface at an inclination angle θ have been

extensively studied due to their frequent appearance in industrial processes, geophysical
events and rheology tests. Under the action of gravity, constituent grains move towards
the base into a dense configuration with multiple enduring contacts so that the flow
is often dense and frictional in nature. For a continuous steady dense flow of
uniform thickness, experiments and numerical simulations have revealed a minimum
flow depth, hstop, below which the flow stops en masse. This critical thickness is
a function of θ , hstop(θ), that diverges at a lower threshold, θ1, and diminishes
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Asymptotic analysis for finite dry granular mass flow down a rough incline 235

monotonically to zero at an upper limit, θ2 (Daerr & Douady 1999; Pouliquen 1999;
Silbert, Landry & Grest 2003; GDRMidi 2004; Borzsonyi, Halsey & Ecke 2008;
Staron 2008). These findings suggest a complex rheological behaviour regarding
the manner in which a moving bulk halts upon changes of flow condition. On the
other hand, the motion of a finite granular mass is often unsteady, non-uniform
and exhibits a finite run-out distance and flow arrest time. For example, Pouliquen
& Forterre (2002) released finite glass beads down a roughened bed and observed
a flow-to-no-flow arresting transition that first developed at the rear and moved
towards the front so that the whole bulk formed a solid deposit in a certain period.
Similar to most gravity-driven flows, granular incline flows often propagate in a
shallow configuration and the small height-to-length aspect ratio can be exploited
together with the dense nature of the flow to simplify the conservation equations
of mass and momentum into an incompressible shallow flow model. The resulting
equations govern the flow depth and depth-averaged streamwise velocity with a
phenomenological model for basal friction (Savage & Hutter 1989; Daerr 2001;
Pouliquen & Forterre 2002; Hogg 2007). In addition, the influence of fluid-to-solid
transition on bulk dynamics has also been accounted for by incorporating a deposition
scheme in terms of flow depth and internal friction angle (Bouchaud et al. 1994),
or with further dependence on transition interface velocity (Boutreux, Raphael & de
Gennes 1998; Tai & Kuo 2008; Gray & Ancey 2009). Owing to the flow-dependent
basal friction and deposition scheme, a numerical solution is often required and has
been shown to reproduce many flow features observed in laboratory experiments of an
inclined flows (Mangeney-Castelnau et al. 2010) or flows due to a column collapse
(Balmforth & Kerswell 2005; Mangeney-Castelnau et al. 2005).

Such a feasible simplification via depth averaging, nonetheless, causes information
loss in the method for how a fluid–solid interface may develop across a layer during
the deposition process, consequently necessitating further modelling efforts. A two-
dimensional non-depth-averaged Coulomb–viscoplastic sliding law with pressure and
rate dependence has been proposed and integrated to a shallow flow model so that the
temporal and spatial evolution of a solid–liquid interface can be numerically solved
(Domnik & Pudasaini 2012; Domnik et al. 2013). Different theories have also been
proposed to address the hstop phenomenon for a continuous steady flow with a uniform
thickness. Kinetic theory of a dense gas has been employed to show that solid phase
develops when the fluctuation energy generated by particle collisions is insufficient
to compensate for the energy dissipated due to inelastic or frictional contact (Louge
2003; Jenkins 2006; Kumaran 2008). In the non-local self-activation theory (Pouliquen
& Forterre 2009), a flow coming to a halt is explained by grain-level local avalanche
events in a thin layer being too rare to self-trigger a continuous flow. Another class
of models based on the Ginzburg–Landau phase transition theory, which introduces an
order parameter to describe the extent of fluidization of a bulk, can also reproduce the
hstop phenomenon (Aranson & Tsimring 2002; Kamrin & Henann 2015).

Nonetheless, it is noted that the hstop phenomenon is first captured by the coherence
length model developed by Ertas & Halsey (2002) considering how bulk dynamics
depends on the spatial correlation between grains over a length scale of l owing to
their multiple enduring contacts. This coherence length l should evolve with the flow
and the authors match the time scale of growth by inelastic interaction between grains,
(l|∂yu|/g)f (e), to that of destruction, (l|∂yyu|)−1, when the motions of those spatially
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correlated grains are no longer compatible with bulk shear. A dynamic equation for l
is then formulated as

l2

∣∣∣∣∣ ∂∂y

[(
∂u
∂y

)2
]∣∣∣∣∣= âgf (e), (1.1)

where u(y) is the downslope velocity profile, with y measuring the perpendicular
distance to the base, g represents gravity, f (e) = (1 − e)/e is a proposed function
that decreases monotonically with the grain coefficient of restitution, e, and â is a
constant of order unity. When l is sufficiently smaller than the flow height, momentum
transport across a viscous transport length lv, which is associated with l, during a
shear time (∂yu)−1 can result in a stress as

τ = ρl2
v

(
∂u
∂y

)2

. (1.2)

This is formulated following the concept of how eddy-induced stress in turbulent
flows is modelled in Prandtl’s mixing-length theory. Since the viscous transport
length should approach a grain diameter D to recover the Bagnold stress ρD2(∂yu)2
(Bagnold 1954) in the rapid collisional regime where the correlation between grains
diminishes, Ertas & Halsey (2002) proposed the following asymptotic relation:

l2
v = l2

(
1+ b̂

D
l
+ · · ·

)
, (1.3)

where b̂ represents a constant accounting for the first-order correction of such a
finite-size effect. Although this constitutive relation is developed via scaling arguments,
Ertas & Halsey (2002) demonstrated that its application to steady uniform-thickness
flows can qualitatively capture the Bagnold velocity profile (GDRMidi 2004) and
Pouliquen’s flow rule (Pouliquen 1999). In particular, the coherence length is solved to
be l∼D/[sin θ − sin θr(e)], which qualitatively captures the monotonically increasing
hstop(θ) when l(θ) in a decelerating bulk approaches the flow thickness as θ is
diminished towards the predicted repose angle θr(e) = sin−1[âf (e)] corresponding
to the measured angle θ1 (Ertas & Halsey 2002). The speculated correspondence
between hstop and spatially correlated grain motions has been evidenced in experiments
(Pouliquen 2004) and numerical simulations (Baran et al. 2006; Staron 2008). Even
more encouraging, the concept of coherence length has also been integrated with
the well-accepted µ(I) constitutive relation for shear stress for a gentle slope with
smooth particles so that the hstop(θ) function can be analytically solved for steady
uniform flows by simply replacing τ in (1.2) (GDRMidi 2004).

Hence, this work attempts to apply the coherence length model for the propagation
of finite granular mass down a straight rough incline to examine whether the finite
run-out distance and arrest time can be captured. This will test if the fluid-to-solid
transition across the layer can be effectively inferred by the associated arresting
mechanism, which is the primary objective of this work. The second aim is to
formulate a theoretical framework on which analytical solutions may be sought
to complement the findings from experiments and the numerical solution to a
depth-averaged shallow layer model. We focus on the dynamics of a shallow layer in
the long run-out down a mild incline so that the influences of initial condition and
bulk inertia may be negligible and the small aspect ratio permits asymptotic solutions.
The governing equations are formulated in § 2 and the asymptotic flow solutions are
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Asymptotic analysis for finite dry granular mass flow down a rough incline 237

x

y

FIGURE 1. Illustration and nomenclature of the problem. The black solid and dashed lines
depict possible surface profiles of the flow and solid deposit, while an initial packing
is shown by the grey solid line. The symbol h(x, t) represents the instantaneous flow
surface, xf (t) the location of the flow front, and xd(t) and hd(t) represent the location and
surface height at the deposit front, respectively. The local coherence length among spatially
correlated grains is l. An undetermined solid–liquid interface depth profile is presented by
both the concave and convex dashed lines.

derived in § 3 at a fully flowing state (with l� h) and exploited to estimate how l
grows in the flow. A dynamic model is developed to describe how the front of a
solid deposition wave propagates downstream in § 4, which is further modified to
correct the errors in assuming that the propagation dynamics is decoupled from the
deposition process. The final model is then evaluated by comparing the predictions
of a transient front trajectory at θ = 23◦ and the final run-out distances on different
slopes to those measured by Pouliquen & Forterre (2002). Finally, a summary and
discussions on the limitations of the current analysis are given in § 5.

2. Governing equations
2.1. Problem description

Consider a two-dimensional granular material of total mass M being released down a
rough incline at a mild angle θ from the horizontal as shown in figure 1. A Cartesian
coordinate system Oxy is defined at the rear end of the mass upon initiation, with
x and y being the downslope and the slope-normal coordinates, respectively. The
corresponding velocity components are u(x, y, t) and v(x, y, t), the free-surface
profile normal to the base is h(x, t), and the location of the flow front is xf (t). From
experimental observations, a static deposit may form in the rear and a flow-to-no-flow
transition occurs midstream to create a fluid–solid interface that moves downstream.
When the interface eventually reaches the flow front, the entire mass stops at finite
run-out distance of Ld and arrest time Td (Pouliquen & Forterre 2002). Here, we
use the coherence length model developed by Ertas & Halsey (2002) and their
arresting mechanism to determine if these observed flow features may be reproduced
analytically.
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2.2. Model formulation
When the flow coherence length is sufficiently small, bulk motion may be approximated
by a shallow, isotropic and incompressible flow with a constant bulk density ρ
(Pudasaini & Hutter 2007; Andreotti, Forterre & Pouliquen 2013). The conservation
equations of mass and momentum are

∂u
∂x
+ ∂v
∂y
= 0, (2.1)

ρ

(
∂u
∂t
+ u

∂u
∂x
+ v ∂u

∂y

)
= ∂σxx

∂x
+ ∂σyx

∂y
+ ρg sin θ, (2.2)

0= ∂σyy

∂y
− ρg cos θ. (2.3)

The y-momentum equation in (2.3) has been simplified, under the condition of flow
shallowness, into a balance between the gradient of the normal stress component
and the y-component of gravity (Pudasaini & Hutter 2007; Andreotti et al. 2013).
The assumption of flow isotropy gives σxx = σyy and the shear component, σyx, is
described by the coherence length model using (1.1)–(1.3). These governing equations
are subject to stress-free and kinematic conditions on the free surface,

σxx = σyy = σyx = 0, at y= h(x, t), (2.4)
∂h
∂t
+ u

∂h
∂x
− v = 0, at y= h(x, t), (2.5)

and to no-penetration and no-slip boundary conditions at the base,

v = 0, at y= 0, (2.6)
u= 0, at y= 0. (2.7)

Flow variables are non-dimensionalized by characteristic flow height and length, H
and L, downstream flow speed, U, and bulk density, ρ, into

(x, y, h, xd, hd, Ld, l, lv,D)= L(x̃, εỹ, εh̃, x̃d, εh̃d, L̃d, ε l̃, ε l̃v, εD̃),

(u, v)=U(ũ, εṽ), (t, Td)= (L/U)(t̃, T̃d), σyx = ρU2σ̃yx, M = ρHLM̃,

}
(2.8)

with a small flow aspect ratio, ε ≡ H/L� 1. Flow Froude number, Fr ≡ U/
√

gH, is
defined consistently as that used by Ertas & Halsey (2002) on uniform flows and
by Pouliquen & Forterre (2002), whose experimental results are adopted later to
evaluate our model. We have also worked with the conventional and extended Froude
number with reduced gravity,

√
gH cos θ (Borzsonyi et al. 2008; Domnik et al.

2013; Edwards & Gray 2014), so that the resulting equations and the corresponding
asymptotic solutions possess complex coefficients with multiple appearances of cos θ .
Since cos θ is of order unity on milder slopes, removing cos θ from these coefficients
does not change the nature of the equations, which supports the current Fr. The
dimensionless continuity and x-momentum equation become

∂ ũ
∂ x̃
+ ∂ṽ
∂ ỹ
= 0, (2.9)

εFr2

(
∂ ũ
∂ t̃
+ ũ

∂ ũ
∂ x̃
+ ṽ ∂ ũ

∂ ỹ

)
= ε cos θ

∂ h̃
∂ x̃
+ Fr2 ∂σ̃yx

∂ ỹ
+ sin θ, (2.10)
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where the normal stress has been obtained from the y-momentum equation to give a
hydrostatic profile, σyy=σxx=ρg cos θ(h− y), and applied in (2.10). The corresponding
constitutive equations (1.1)–(1.3) become

Fr2 l̃2

∣∣∣∣∣ ∂∂ ỹ

(
∂ ũ
∂ ỹ

)2
∣∣∣∣∣= âf (e), (2.11)

σ̃yx = l̃2
v

(
∂ ũ
∂ ỹ

)2

, (2.12)

l̃2
v = l̃2

(
1+ b̂

D̃

l̃

)
. (2.13)

The dimensionless dynamic and kinematic boundary conditions from (2.4) to (2.7) are

σ̃xx = σ̃yy = σ̃yx = 0, at ỹ= h̃(x̃, t̃), (2.14)

∂ h̃
∂ t̃
+ ũ

∂ h̃
∂ x̃
− ṽ = 0, at ỹ= h̃(x̃, t̃), (2.15)

ṽ = 0, at ỹ= 0, (2.16)
ũ= 0, at ỹ= 0. (2.17)

Note that we have adopted the gravity wave speed,
√

gH, to scale the propagating
velocity down mild slopes as in Gray & Edwards (2014), which is different from
the fast scale,

√
gL, used by Savage & Hutter (1989) for motions on steep slopes.

Limiting to flows with Fr of order unity, the corresponding coherence length scale
would also be of order unity by (2.11) so that the essential deposition mechanism can
be revealed. As a result, the inertial term in (2.10) scaled by εFr2 becomes negligible
when ε→ 0. Such a simplification has been justified for the depth-averaged model
adopted in Pouliquen & Forterre (2002) where the propagating inertia was reported to
drop faster than the other terms shortly after the onset of an avalanche. Although the
gradient of normal stress is also scaled by ε, it can be a non-negligible mechanism for
local momentum balance when ∂ h̃/∂ x̃ is large and hence it is kept. So, for non-inertial
and critical (Fr∼ 1) flows, (2.10) becomes

0' ε cos θ
∂ h̃
∂ x̃
+ ∂σ̃yx

∂ ỹ
+ sin θ. (2.18)

When a flow accelerates on a steep incline with θ > θ2, equation (2.18) is no longer
valid and the fast velocity scale,

√
gL, should be adopted so that Fr∼ ε−1 to preserve

the inertial term in the leading-order momentum balance. Based on (2.11), the
coherence length scale in such an accelerating flow would be greatly reduced (∼ ε2)
so that the arresting mechanism is weak and the bulk propagates downstream without
any deposit.

Equations (2.11)–(2.13) and (2.18) with the boundary conditions (2.15) can be
solved jointly to determine the coherence length (see appendix A),

l̃= sin θr b̂D̃

F(θ, θr, h̃)
, (2.19)

and the shear rate
∂ ũ
∂ ỹ
= F(θ, θr, h̃)√

sin θr b̂D̃
(h̃− ỹ)1/2, (2.20)
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with

F(θ, θr, h̃)= sin θ − ε cos θ
∂ h̃
∂ x̃
− sin θr where sin θr = âf (e). (2.21)

The solution of the shear rate from (2.20) is further integrated with the no-slip
condition, equation (2.17), to give the following Bagnold-like streamwise velocity
profile:

ũ= 2
3

F(θ, θr, h̃)√
sin θr b̂D̃

[h̃3/2 − (h̃− ỹ)3/2]. (2.22)

The dimensionless continuity equation, equation (2.9), can then be integrated along ỹ
with (2.22) to give the velocity component normal to the slope:

ṽ =−2
3
∂

∂ x̃

{
F(θ, θr, h̃)√

sin θr b̂D̃

[
h̃3/2ỹ− 2

5
(h̃− ỹ)5/2 − 2

5
h̃5/2

]}
. (2.23)

The dependence of streamwise velocity and its dependence on h̃ are similar to that
derived for steady uniform flows (GDRMidi 2004), but the terms ∂ h̃/∂ x̃ and ṽ are
non-zero for the current flow of varying thickness. The factor F(θ, θr, h̃) in u and
v represents the local driving force after the gravity component is balanced by the
hydraulic pressure gradient and the inelastic resistance force âf (e). For a steady flow
of uniform thickness, ∂ h̃/∂ x̃= 0 and F= 0 (when ũ= 0) determines θr = sin−1[âf (e)],
which should be correlated to the lowest threshold angle θ1 for a continuous uniform
surface flow observed in recovering the experimental phenomenon in Pouliquen (1999),
as discussed in § 1. It should be noted that (2.22) and (2.23) and the following analysis
are valid only when F(θ, θr, h̃) > 0; otherwise, a back-flow with negative ũ and ṽ can
occur, for which the current scaling needs re-examination. In the limit of vanishing ε,
the requirement of positive F(θ, θr, h̃) may be simplified to θ > θr.

Substitution of (2.22) and (2.23) into the free-surface kinematic condition,
equation (2.15), leads to a nonlinear advection–diffusion equation for h̃ as

∂ h̃
∂ t̃
+C (h̃)

∂ h̃
∂ x̃
= ε ∂

∂ x̃

[
D(h̃)

∂ h̃
∂ x̃

]
, (2.24)

where

C (h̃)= α(θ)h̃3/2 with α(θ)= sin θ − sin θr

b̂
√

sin θr D̃
,

D(h̃)= 2
5
γ (θ)h̃5/2 with γ (θ)= cos θ

b̂
√

sin θr D̃
.

 (2.25)

Such a wave equation has been derived for surface debris flow in a more general
conservation form with its solution in Pudasaini (2011) and for water surface flows
(Ancey, Cochard & Andreini 2009). An alternative treatment with a nonlinear
Burgers equation has also been attempted (Whitham 1974; Borzsonyi et al. 2008). In
(2.25), both the kinematic wave speed C (h̃) and the diffusion coefficient D(h̃) vary
nonlinearly with local flow thickness, where the wave speed increases with θ above
the repose angle θr. The small aspect ratio ε in front of the diffusion term makes
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it negligible under the general flow condition, as already described in earlier works
(Savage & Hutter 1989; Iverson 1997; Gray, Wieland & Hutter 1999; Pudasaini &
Hutter 2003; Pudasaini, Wang & Hutter 2005; Pudasaini & Hutter 2007). However,
it is shown in § 3 that local dissipation may become important when a shock forms
near the front.

The advection–diffusion equation can be solved by the method of characteristic lines
as follows:

dh̃
dt̃
= ε ∂

∂ x̃

[
D(h̃)

∂ h̃
∂ x̃

]
along

dx̃
dt̃
=C (h̃), (2.26a,b)

which specifies the temporal evolution of the surface profile with the diffusive term
in a reference moving along the trajectory characteristic lines, x̃(t̃).

3. Asymptotic solutions for flow dynamics and coherence length
Under the assumption that a static deposit does not modify the shear stress model

and hence the predicted flow motion, the same governing equations remain valid for
x̃> x̃d. Since (2.24) degenerates when ε→ 0, the solution is sought by the matched
asymptotic method (Hunt 1994; Ancey et al. 2009) in terms of an outer and an inner
solution that will be distinguished by the subscripts ‘o’ and ‘i’ hereinafter.

3.1. Outer solution
As ε → 0, equation (2.24) is degenerated into the following nonlinear advection
equation,

∂ h̃o

∂ t̃
+ α(θ)h̃3/2

o
∂ h̃o

∂ x̃
= 0, (3.1)

which can be transformed into

dh̃o

dt̃
= 0 along

dx̃
dt̃
= α(θ)h̃3/2

o . (3.2.a,b)

An implicit solution is thus found, h̃o being a constant along the characteristic lines,
x̃ = x̃0 + α(θ)h̃3/2

o t̃, with x̃0 denoting the initiation location. If the mass propagates a
sufficiently long distance downstream, the influence of the initial condition is degraded
and the leading-order flow surface profile can be approximated by

h̃o =
(

x̃− x̃0

α(θ)t̃

)2/3

'
(

x̃
α(θ)t̃

)2/3

for x̃� x̃0. (3.3)

The result is dynamically equivalent to equation (9) in Pudasaini (2011) derived in a
more general context. The flow front in the outer solution is located by considering
the conservation of total mass, M̃ = ∫ x̃fo(t̃)

0 h̃(x̃, t̃) dx̃, which gives

x̃fo(t̃)= ( 5
3)

3/5α(θ)2/5M̃3/5 t̃2/5, (3.4)

and a front depth, determined by using (3.4) in (3.3), as

h̃fo(t̃)= ( 5
3)

2/5α(θ)−2/5M̃2/5 t̃−2/5. (3.5)
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0.5
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0.3

0.4

10 2 3 4 5 6

FIGURE 2. Scaled surface profile by the outer solution, h̃, the composite solution, h̃c, and
the composite coherence length, l̃c, at t̃= 2, 4 and 6 (θ = 23◦, θr= 21◦, ε= 0.1, D̃= 0.01).

A bulk flow down an incline at θ = 23◦ with ε = 0.1 and D̃= 0.01, h̃o(x̃, t̃) at t̃= 2,
4 and 6 is plotted by the dashed line in figure 2. It shows monotonic growth with x̃
and a shock-like front where h̃0 drops abruptly to zero to generate an unrealistically
high slope gradient. A similar height drop at the front has also been reported for
more general flow settings in Pudasaini (2011) that later smoothed out by further
considering the diffusion term that produced more realistic solutions.

3.2. Inner solution and the composite surface profile
According to the matched asymptotic method, the inner solution is sought on a
stretched coordinate system moving with x̃fo(t̃) as sketched in figure 3(a). The
dimensionless inner variables are denoted by a subscript i as

x̃i = x̃− x̃fo(t̃)
ε

and h̃i = h̃. (3.6.a,b)

The advection–diffusion equation (2.24) in terms of the inner variables becomes

ε
∂ h̃i

∂ t̃
+ [α(θ)h̃3/2

i − ˙̃xfo(t̃)]∂ h̃i

∂ x̃i
= 2

5
∂

∂ x̃i

(
γ (θ)h̃5/2

i
∂ h̃i

∂ x̃i

)
, (3.7)

which appears quasi-steady on the moving reference frame to the leading order as
ε→ 0. Integration with respect to x̃i leads to{

2
5

[
α(θ)− γ (θ)∂ h̃i

∂ x̃i

]
h̃3/2

i − ˙̃xfo(t̃)

}
h̃i =G(t̃), (3.8)

for which G(t̃)= 0 is required to ensure a vanished flow height at the front. Excluding
the trivial solution of h̃i = 0, we obtain (2/5)[α(θ) − ∂ h̃i/∂ x̃i]h̃3/2 − ˙̃xfo(t̃) = 0.
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Outer profile

Inner profile

Composite profile

(a) (b)

FIGURE 3. (a) Schematic diagram of the inner coordinate system and the inner
free-surface profile. (b) The illustration of the outer, inner and composite free-surface
profiles (θ = 25◦, t̃= 2, θr = 21◦, ε = 0.1, D̃= 0.01).

If expressing ˙̃xfo(t) in terms of h̃fo(t̃) by (3.4) and (3.5), we obtain

∂ h̃i

∂ x̃i
= α(θ)
γ (θ)

1−
(

h̃fo(t̃)

h̃i

)3/2
 . (3.9)

Another integration of (3.9) with respect to the stretched coordinate yields an implicit
solution for the inner flow surface profile, with Z = h̃i/h̃fo(t̃) and X = x̃i/h̃fo(t̃), as

Z + 2√
3

arctan

(
1+ 2
√

Z√
3

)
+ 1

3
ln

[
(1−√Z)2

1+√Z + Z

]
= α(θ)
γ (θ)

X +C0. (3.10)

The integration constant C0 is determined by the mass redistribution condition with
respect to x̃i = 0 (Huang & Garcia 1998) as∫ 0

−∞
(h̃fo − h̃i) dx̃i =

∫ δ

0
h̃i dx̃i, (3.11)

where δ denotes the displaced inner flow front as marked in figure 3(a). By changing
the integration variable from h̃i(x̃i, t̃) to x̃i(h̃i, t̃), equation (3.11) becomes

∫ h̃fo(t̃)
0 x̃i dh̃i=

0 or, equivalently,
∫ 1

0 X(Z) dZ = 0, which determines C0 =−3/2+π/
√

3.
Next, a composite solution is constructed by patching the outer and the inner

solutions and then removing their overlap. From (3.11), it is straightforward to show
that the inner solution asymptotes to h̃fo(t̃), so that it automatically matches the outer
solution,

lim
x̃i→−∞

h̃i = lim
x̃→x̃fo(t̃)

h̃= h̃fo(t̃). (3.12)

Hence, their overlap is simply h̃fo(t̃) and the final composite solution, denoted by a
subscript ‘c’, is found as

h̃c(x̃, t̃)= h̃o(x̃, t̃)+ h̃i(x̃, t̃)− h̃fo(t̃), (3.13)

as illustrated for a typical flow case in figure 3(b). The composite surface profile
exhibits smoother variation across the spreading length than the outer solution.
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FIGURE 4. Comparison of the scaled flow-front trajectory by the outer, composite and
modified solutions as x̃f , x̃fc and x̃fm, respectively. The deposit-front trajectory, x̃d, is also
shown with the run-out, L̃d, and the arrest time, T̃d, marked (θ = 23◦, θr = 21◦, ε = 0.1,
D̃= 0.01).

The modified flow-front composite trajectory is determined by adding the shifted
inner flow front to the outer solution as x̃fc(t̃)= x̃fo(t̃)+ εδ, with δ being determined
specifically by where the inner flow surface diminishes smoothly to zero, δ= x̃i(h̃i=0),
to obtain

x̃fc(t̃)=
(

5
3

)3/5

α(θ)2/5 t̃2/5 + ε
(

3
2
+ 2π

3
√

3

)(
5
3

)2/5

α(θ)−7/5γ (θ)t̃−2/5. (3.14)

The composite solution for the front trajectory is compared to the outer solution in
figure 4 for the motion studied in figure 2. The composite front x̃fc(t̃) is found to
advance x̃fo(t̃) at a seemingly too drastic manner at small times due to the diverging
nature of δ ∼ t̃−2/5 when t̃→ 0. Such a singularity is inevitable since the assumption
of ε� 1 is seldom met shortly after the onset of motion and is degraded when the
mass propagates into a shallow configuration at later times.

3.3. Local coherence length and flow regimes
The composite flow solution is now employed to investigate how the coherence length,
l, develops with the flow. In the limit of ε→ 0, equations (2.19) and (2.21) give

l̃o = sin θr b̂D̃
sin θ − sin θr

, (3.15)

which is the outer solution of the coherence length valid for x̃� x̃f (t̃). When x̃ ∼
x̃f (t̃), equation (2.19) gives l̃i = sin θr b̂D̃(sin θ − cos θ ∂ h̃i/∂ x̃i − sin θr)

−1 in the inner
coordinate system and the local ∂ h̃i/∂ x̃i can be replaced by (3.9) to give

l̃i =
√

sin θr

α(θ)

(
h̃i

h̃fo

)3/2

. (3.16)
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It is straightforward to show that the inner coherence length asymptotes to the outer
solution, limx̃i→−∞ l̃i= l̃o, so that the overlap solution is, again, the outer solution and
the composite solution can be found readily as l̃c = l̃o + l̃i − l̃o = l̃i. By expressing
(3.16) in terms of l̃o, we obtain

l̃c = Z3/2 l̃o, (3.17)

clearly showing that the profile of l̃c is governed by the implicit solution of Z =
h̃i/h̃fo from (3.10) near the front but asymptotes to constant l̃o when x̃� x̃f (t̃). When
the instantaneous coherence length profile for the flow cases examined in figure 2
are shown by the solid grey lines on the same plot, l̃c(x̃, t̃) is found to increase
monotonically from zero at the flow front onto a plateau of l̃o in the rear.

The relative magnitude of l̃c(x̃, t̃) and h̃c(x̃, t̃) can be utilized to categorize bulk
motion into different regimes as follows. When h̃c� l̃c in the front, the majority of
the material is in the flowing state and the diminished l̃c at the front signals free
and agitated grain motions therein, which agrees qualitatively with the experimental
observations at a surging front (Pouliquen & Forterre 2002; Kokelaar et al. 2014).
When l̃c grows comparable to h̃c in the rear, effective spatial correlation across the
layer develops to transmit the bulk-arresting decelerating impulse due to basal friction,
so that the deposit develops from the base as shown by Pudasaini (2011). Such a
fluid-to-solid transition first takes place in the rear where h̃c(t̃) ∼ l̃c and propagates
towards the front as h̃c diminishes when the mass evolves downstream (see figure 1).
Such a deposition wave phenomenon has been observed in experiments (Borzsonyi
et al. 2008; Edwards & Gray 2014).

4. Propagation of the deposit front and the arrested state
4.1. Leading-order solutions

As stated in § 3, the current model assumes that a static deposit develops from
the base when l̃ becomes comparable to h̃ at x̃d. Hence, the flow solutions remain
unaffected for x̃ > x̃d and the local flow height as well as the propagation speed of
the deposition front at x̃d can be described by (2.26) as

dh̃d

dt̃
= ε ∂

∂ x̃

[
2
5
γ (θ)h̃5/2 ∂ h̃

∂ x̃

]∣∣∣∣∣
x̃=x̃d(t̃)

, (4.1)

˙̃xd(t̃)= α(θ)h̃3/2
d (t̃), (4.2)

assuming that x̃d is known a priori. Hence, we follow Ertas & Halsey (2002) to
determine an instantaneous x̃d(t̃) by

h̃d(t̃)= ĉl̃(x̃d(t̃), t̃). (4.3)

Here, the coefficient constant ĉ is set to the value in the dimensional relation hstop(θ)=
ĉl(θ) used by Ertas & Halsey (2002) to specify the relationship between the coherence
length in a uniform surface flow and the thickness threshold hstop. This is because
the two relations in uniform steady and non-uniform unsteady flows are conceptually
equivalent and only differ in how the flow-to-no-flow transition develops with the
flow. For steady flows of uniform thickness, the transition takes place immediately
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across the layer and the flow stops en masse. When the bulk surface is non-uniform
and changes with time, a static layer can develop gradually from the bed to the free
surface although in a manner yet unresolved from the current model. That is why the
solid–fluid interface is sketched schematically by both a concave and another convex
dashed line in figure 1 to show its undetermined nature. Nonetheless, a leading-order
estimation of the total mass run-out and arrest time can still be attempted using the
assumed unaffected flow solutions above the just-formed deposit at x̃= x̃d as follows.

Firstly, an arrest time, T̃d, for the total mass to halt can be estimated by requiring
total mass conservation,

M̃ =
∫ T̃d

0

˙̃xd(t̃)h̃d(t̃) dt̃, (4.4)

where ˙̃xd(t̃)h̃d(t̃) is the mass flux across a normal plane at x̃d(t̃). We now seek
the leading-order solution of the above deposit-front model. In the limit of ε → 0,
equation (4.1) gives

dh̃d

dt̃
= 0, (4.5)

and hence a time-invariant constant may be estimated to the leading order using the
outer constant solution in (3.15) as

h̃d = ĉl̃o. (4.6)

This in turn gives a constant speed for the deposition front by (4.2). Hence, the
integrand in (4.4) is independent of t̃, to the leading order, so that it is straightforward
to obtain

T̃d = M̃b̂−3/2ĉ−3/2D̃−3/2
√

sin θr (sin θ − sin θr)
3/2. (4.7)

With ˙̃xd and T̃d, a leading-order estimation of the total run-out distance can be found
readily as

L̃d =
∫ T̃d

0

˙̃xd(t̃) dt̃= M̃b̂−1D̃−1(sin θ − sin θr). (4.8)

4.2. Modified flow-front solution

It is apparent that the finite L̃d given by (4.8) is inconsistent with the front trajectory
profiles found in the outer and the composite solution in (3.4) and (3.14) that give an
unstoppable solution and hence an infinite run-out as also found in Pudasaini (2011).
The discrepancy is attributed to the assumptions that the solid deposit does not affect
the flow solutions. The current stress model may underestimate flow resistance since
internal friction at the fluid-to-solid interface is not considered and neither is the
possible momentum loss during the deposition process. To construct a more realistic
front trajectory profile within the current framework, we try to adapt the asymptotic
solution to meet the requirement that the flow front arrests as soon as it travels over
L̃d at t̃ = T̃d. For simplicity, such a modification is proposed for the outer solution
(3.4) by imposing an ad hoc prefactor to generate the modified front trajectory as

x̃fm(t̃)=
[

1− f̂
(

t̃

T̃d

)ĝ
]

x̃fo(t̃), (4.9)
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FIGURE 5. Comparison of the modified front trajectory x̃fm (thick solid line) with x̃d

(thin solid line) for θ = 23◦, 24◦, 25◦, where θr = 21◦, ε = 0.1, D̃= 0.01.

with two unknown constants f̂ and ĝ. By requiring x̃fm(T̃d) = L̃d and ˙̃xfm(T̃d) = 0,
f̂ = 1− (3/5)3/5 and ĝ= (2/5)(1− f̂ )/f̂ . A similar solution may be constructed using
the composite front trajectory (3.14), which leads to more complex results. When the
modified front trajectory is presented on figure 4, x̃fm(t̃) is observed to asymptote to
x̃fo(t̃) at early times but decelerate smoothly to the run-out L̃d at the intersection of
x̃fm(t̃) and x̃d(t̃) at t̃= T̃d. The trajectories of x̃fm(t̃) and x̃d(t̃) for flows under different
θ are plotted in figure 5, showing longer deposits and arrest time on steeper inclines.

4.3. Comparison with experimental data
The current results of the modified flow front in (4.9) and the leading-order arrest time
and run-out in (4.7) and (4.8) are evaluated by comparison with the experimental data
reported in Pouliquen & Forterre (2002). Those authors studied the spreading of finite
glass beads (D= 0.5 mm) from spherical caps of different sizes down a rough incline
at different inclination angles, and the results for the medium cap are considered here.
Since the current analysis is two-dimensional, justification and explanations are given
below for how we interpreted the three-dimensional experimental data in the reference.

Judging from figures 5(a), 6 and 7(a) in Pouliquen & Forterre (2002) for the top
view of a granular mass down an incline at θ = 23◦, the instantaneous flow width
in the consecutive snapshots shortly after the release remains nearly constant. The
final deposit widths for releases on different slopes are also close to each other.
Both observations suggest that the lateral spreading mechanism is rather insensitive
to changes in the examined flow conditions and hence is assumed here to be much
weaker than streamwise propagation. As a result, the flow can be fairly regarded as
quasi-two-dimensional with a total volume per unit width of M/ρ ' 13 cm2. This
value is estimated here by the projection area of the deposit at θ = 23◦ shown in
their figure 6(c), which may be overestimated since the transverse surface curvature is
neglected. A closer look at the surface contour lines provided therein reveals that such
approximation of a quasi-two-dimensional block mass is more feasible at later times.
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FIGURE 6. Comparison of the current prediction with the experimental data reported in
Pouliquen & Forterre (2002): (a) front trajectory at θ = 23◦ with xf = 25, 30, 35, 40 and
45 cm extracted here for t = 0.24, 0.48, 0.96, 2.4 and 6 s. (b) Run-out distance under
different inclination angles, where θr = 21◦ is taken to be θ1 in Pouliquen & Forterre
(2002).

However, the effect of the varying degree of an overestimated mass falls beyond the
scope of this work and is not further addressed.

As suggested by Ertas & Halsey (2002), bulk material constants are evaluated by
comparing the model prediction for uniform flows with Pouliquen’s flow rule and hstop

in the limit of θ→ θr to yield

θr = θ1, b̂= 2L (tan θ2 − tan θ1) cos θ1

5β
√

sin θ1 D
, ĉ= 5β

2
√

sin θ1
, (4.10a−c)

where β = 0.136, θ1 = 21◦, θ2 = 30.7◦, L = 0.65 mm and D = 0.5 mm. Equations
(4.9), (4.7) and (4.8) are expressed in dimensional forms as

xfm(t)=
(

5
3

)3/5 (M
ρ

)3/5 (√ g
sin θr

sin θ − sin θr

b̂D

)2/5
[

1− f̂
(

t
Td

)ĝ
]

t2/5, (4.11a)

with

Td(θ)=
(

M
ρ

)√
sin θr

b̂3ĉ3D3g
(sin θ − sin θr)

3/2 (4.11b)

and

Ld(θ)=
(

M
ρ

)
b̂−1D−1(sin θ − sin θr). (4.12)

Focusing on the flow-front dynamics at θ = 23◦ (in the valid range θr < θ < θ2 for
the current model), the successive front locations are extracted from figure 5(c) in
Ertas & Halsey (2002) and compared to the prediction by (4.11a) in figure 6(a).
Qualitative agreement on the nonlinear front trajectory is observed and the predicted
arrest time, Td = 6.27 s, is within a 4.5 % overestimation from the measured 6 s. A
shorter Ld is therefore predicted throughout the process, which may further result
from the following reasons. First, the ad hoc modification is constructed on the outer
solution for order consistency and hence does not incorporate the inner flow-front
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advancement by δ in (3.14). Further, the current flow solution neglects the influence
of the initial boundary condition on the characteristic line in the derivation of h̃o in
(3.3). Inclusion of x̃0 therein should give a greater x̃fo(t̃) and hence Ld to reflect the
influence of initial packing shape, especially on the slower motion near θr with shorter
run-outs. Finally, the run-outs on different slopes reported in figure 7(b) of Ertas &
Halsey (2002) and from the current predictions are also compared in figure 6(b),
showing satisfactory agreement when θ > 23◦. The growing degree of underestimation
when θ → θr clearly illustrates the limitation of the current shear stress model in
(1.2) and is further discussed in § 5.

5. Summary and discussion
The coherence length model of shear stress and the arresting mechanism proposed

by Ertas & Halsey (2002) for steady uniform granular flows down a rough inclined
surface are adopted to theoretically solve the propagation dynamics of a finite dry
granular mass in a shallow configuration down an incline. The analysis focuses on
the dynamics in long run-outs so that the influences of initial packing shape and
bulk inertia are both neglected. The free-surface height, h(x, t), is governed by a
nonlinear advection–diffusion equation for which the matched asymptotic solution
is derived with respect to a small height-to-length aspect ratio. The solutions are
used to determine the flow-front trajectory under a total mass conservation condition.
The streamwise velocity component shows a Bagnold-like depth profile with a
magnitude varying with the net driving force after the gravity component along the
incline is balanced by internal resistance and the normal pressure force induced by
∂h/∂x. Variation of surface flow height further induces a non-zero normal velocity.
According to Ertas & Halsey (2002), the arresting impulse acts across a coherence
length scale l(x, t) that varies with h(x, t) and is found to grow from zero at the
flow front to a constant. It is then postulated that the local flow is arrested when
hd(x, t) = ĉlo(x, t), with ĉ evaluated from uniform flow dynamics, and the deposit
front, xd(t), is determined and found to propagate in time towards the flow front when
the finite mass spreads in time into thinner shapes. However, since we assume that a
solid deposit has a negligible decelerating effect on the flow solution obtained when
it is applied to derive a front trajectory profile, the xf (t) obtained is overestimated.
Modification into xfm(t) is proposed using the outer solutions so that it meets xd(t)
when the entire running mass is brought to a halt at the finite arrest time Td. With
the modified model, the predictions of the transient front trajectory and the run-out
distance show satisfactory agreement with the measurements in Pouliquen & Forterre
(2002) for θ > 23◦.

It should be noted that the present analysis is valid for θr < θ < θ2. When θ > θ2,
the coherence length is degraded to approximately one particle diameter and the flow
can accelerate downstream as mentioned in § 1, invalidating the inertia-free kinematic
wave equation in (2.18), which necessitates a fast velocity scaling to preserve the full
x-momentum equation. On the other hand, when θ decreases to approximately θ1, the
model prediction underestimates the experimental data as shown in figure 6(b) to give
a zero velocity and run-out right at θr. This latter phenomenon shows that no flow is
possible for θ < θr, which contradicts the common observation that an avalanche can
occur on any slope. This discrepancy results from the fact that the shear stress model
(1.2) only accounts for the long-range collisional momentum transfer across the length
scale lv(l,D). When lv, or equivalently the coherence length, approaches h, the direct
and hence more effective pathway to transmit decelerating impulse through contacting
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grains is not taken into account in the current formulation. This also explains why
the current analysis cannot provide an unsteady fluid-to-solid transition process for
x < xd(t), which requires a more refined stress model that addresses the effects of
flow thickness through a rate- and pressure-dependent Coulomb–viscoplastic model
(Domnik & Pudasaini 2012; Domnik et al. 2013) or size-dependent boundary effect
that is also known as the non-local effect (GDRMidi 2004; Aranson et al. 2008;
Pouliquen & Forterre 2009; Staron et al. 2010; Reddy, Forterre & Pouliquen 2011;
Kamrin & Koval 2012; Bouzid et al. 2013). There is also a different approach that
directly accounts for the transient configuration of force chains and their interaction
with the ambient flow in formulating bulk shear stress (Mills, Loggia & Tixier 1999).

Although the numerical solution of the depth-averaged model by Pouliquen &
Forterre (2002) can capture actual run-outs over a range of slope angles close to the
angle of repose, the current analysis provides an explicit formula with fair accuracy
while suggesting two distinct deposition mechanisms in view of the flow height scale
H and the maximum coherence length lo(θ) in (3.15). When H/lo(θ)� 1 often at
θ > θr, the deposition process appears as consecutive jamming of weakly correlated
structure. In contrast, when H/lo(θ)∼ 1 at θ > θr or when lo(θ) diverges at θ 6 θr, an
avalanche may be interpreted as a local event on steeper internal structure formed by
the strongly correlated grain motions near the base. It will be an interesting extension
to incorporate size dependence or boundary effect into the coherence length model
in both the stress formulation and the arresting mechanism. However, it is likely that
the governing equations obtained would require numerical solutions like most studies
in the literature.
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Appendix A. Derivation of equations (2.19) and (2.20)
Integration of (2.18) with respect to ỹ with the boundary condition in (2.14) gives

the shear stress profile across the depth as

σ̃yx =
(

sin θ − ε cos θ
∂ h̃
∂ x̃

)
(h̃− ỹ). (A 1)

By eliminating l̃v using (2.12) and (2.13), we obtain

σ̃yx = l̃2

(
1+ b̂

D̃

l̃

)(
∂ ũ
∂ ỹ

)2

. (A 2)

When (A 2) is employed to express ∂ ũ/∂ ỹ in terms of l̃, equation (2.11) can be
rewritten as

l̃2

∣∣∣∣ ∂∂ ỹ

(
σ̃yx

l̃2 + b̂D̃l̃

)∣∣∣∣= âf (e). (A 3)

Equation (A 1) is then substituted into (A 3) to find the equation for l̃ and ỹ as

2l̃+ R

(S− A)l̃2 + (S− 2A)Rl̃− AB2

∂ l̃
∂ ỹ
= S−1(h̃− ỹ)−1, (A 4)
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with

S= sin θ − ε cos θ
∂ h̃
∂ x̃
> 0, A= âf (e) and R= b̂D̃. (A 5a−c)

Equation (A 4) is then integrated with respect to ỹ to give

(l̃+ R)[(S− A)l̃− AR](S+A/S−A)(h̃− ỹ)=C, (A 6)

for which we determine C = C(x̃, t̃) = 0 by requiring ỹ = h̃. Since l̃ > 0, the terms
within the square brackets must vanish in (A 6) so that l̃= AR/(S− A), or

l̃= âf (e)b̂D̃

sin θ − ε cos θ ∂ h̃/∂ x̃− âf (e)
. (A 7)

Substitution of (A 1) and (A 7) to (A 2) returns the shear rate in (2.20) after some
straightforward manipulations.
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BARAN, O., ERTAŞ, D., HALSEY, T. C., GREST, G. S. & LECHMAN, J. B. 2006 Velocity correlations
in dense gravity-driven granular chute flow. Phys. Rev. E 74, 051302.

BORZSONYI, T., HALSEY, T. C. & ECKE, R. E. 2008 Avalanche dynamics on a rough inclined
plane. Phys. Rev. E 78, 011306.

BOUCHAUD, J. P., CATES, M., PRAKASH, J. R. & EDWARDS, S. F. 1994 A model for the dynamics
of sandpile surfaces. J. Phys. (Paris) I 4, 1383–1410.

BOUTREUX, T., RAPHAEL, E. & DE GENNES, P. G. 1998 Surface flows of granular materials: a
modified picture for thick avalanches. Phys. Rev. E 58, 4692–4700.

BOUZID, M., TRULSSON, M., CLAUDIN, P., CLÉMENT, E. & ANDREOTTI, B. 2013 Nonlocal rheology
of granular flows across yield conditions. Phys. Rev. Lett. 111, 238301.

DAERR, A. 2001 Dynamical equilibrium of avalanches on a rough plane. Phys. Fluids 13, 2115–2124.
DAERR, A. & DOUADY, S. 1999 Two types of avalanche behaviour in granular media. Nature 399,

241–243.
DOMNIK, B. & PUDASAINI, S. P. 2012 Full two-dimensional rapid chute flows of simple viscoplastic

granular materials with pressure-dependent dynamic slip-velocity and their numerical simulations.
J. Non-Newtonian Fluid Mech. 173, 72–86.

DOMNIK, B., PUDASAINI, S. P., KATZENBACH, R. & MILLER, S. A. 2013 Coupling of full two-
dimensional and depth-averaged models for granular flows. J. Non-Newtonian Fluid Mech.
201, 56–68.

EDWARDS, A. N. & GRAY, J. M. N. T. 2014 Erosion–deposition waves in shallow granular free-
surface flows. J. Fluid Mech. 762, 35–37.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

59
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.590


252 K.-L. Lee and F.-L. Yang

ERTAS, D. & HALSEY, T. C. 2002 Granular gravitational collapse and chute flow. Eur. Phys. Lett.
60, 931–937.

GDRMIDI 2004 On dense granular flows. Eur. Phys. J. E 14, 341–365.
GRAY, J. M. N. T. & ANCEY, C. 2009 Segregation, recirculation and deposition of coarse particles

near two-dimensional avalanche fronts. J. Fluid Mech. 629, 387–423.
GRAY, J. M. N. T. & EDWARDS, A. N. 2014 A depth-averaged µ(I)-rheology for shallow granular

free-surface flows. J. Fluid Mech. 755, 503–534.
GRAY, J. M. N. T., WIELAND, M. & HUTTER, K. 1999 Gravity-driven free surface flow of

granular avalanches over complex basal topography. Phil. Trans. R. Soc. Lond. A 455 (1985),
1841–1874.

HOGG, A. J. 2007 Two dimensional granular slumps down slopes. Phys. Fluids 19, 093301.
HUANG, X. & GARCIA, M. H. 1998 A Herschel–Bulkley model for mud flow down a slope. J. Fluid

Mech. 374, 305–333.
HUNT, B. 1994 Newtonian fluid mechanics treatment of debris flows and avalanches. J. Hydraul.

Engng ASCE 120, 1350–1363.
IVERSON, R. M. 1997 The physics of debris flows. Rev. Geophys. 35 (3), 245–296.
JENKINS, J. T. 2006 Dense shearing flows of inelastic disks. Phys. Fluids 18, 103307.
KAMRIN, K. & HENANN, D. 2015 Modeling the nonlocal behavior of granular flows down inclines.

Soft Matt. 11, 179–185.
KAMRIN, K. & KOVAL, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev.

Lett. 108, 178301.
KOKELAAR, B. P., GRAHAM, R. L., GRAY, J. M. N. T. & VALLANCE, J. W. 2014 Fine-grained

linings of leveed channels facilitate runout of granular flows. Earth Planet. Sci. Lett. 385,
172–180.

KUMARAN, V. 2008 Dense granular flow down an inclined plane: from kinetic theory to granular
dynamics. J. Fluid Mech. 599, 121–168.

LOUGE, M. Y. 2003 Model for dense granular flows down bumpy inclines. Phys. Rev. E 67, 061303.
MANGENEY-CASTELNAU, A., BOUCHUT, F., VILOTTE, J. P., LAJEUNESSE, E., AUBERTIN, A. &

PIRULLI, M. 2005 On the use of Saint Venant equations to simulate the spreading of a
granular mass. J. Geophys. Res. 110 (B9), B09103.

MANGENEY-CASTELNAU, A., ROCHE, O., HUNGR, O., MANGOLD, N., FACCANONI, G. & LUCAS,
A. 2010 Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. 115
(F3), F03040.

MILLS, P., LOGGIA, D. & TIXIER, M. 1999 Model for a stationary dense granular flow along an
inclined wall. Eur. Phys. Lett. 45, 733–738.

POULIQUEN, O. 1999 Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11,
542–548.

POULIQUEN, O. 2004 Velocity correlations in dense granular flows. Phys. Rev. Lett. 93, 248001.
POULIQUEN, O. & FORTERRE, Y. 2002 Friction law for dense granular flows: application to the

motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151.
POULIQUEN, O. & FORTERRE, Y. 2009 A non-local rheology for dense granular flows. Phil. Trans.

R. Soc. Lond. A 367, 5091–5107.
PUDASAINI, S. P. 2011 Some exact solutions for debris and avalanche flows. Phys. Fluids 23,

043301.
PUDASAINI, S. P. & HUTTER, K. 2003 Rapid shear flows of dry granular masses down curved and

twisted channels. J. Fluid Mech. 495, 193–208.
PUDASAINI, S. P. & HUTTER, K. 2007 Avalanche Dynamics, Dynamics of Rapid Flows of Dense

Granular Avalanches. Springer.
PUDASAINI, S. P., WANG, Y. & HUTTER, K. 2005 Modelling debris flows down general channels.

Nat. Hazards Earth Syst. Sci. 5 (6), 799–819.
REDDY, K. A., FORTERRE, Y. & POULIQUEN, O. 2011 Evidence of mechanically activated processes

in slow granular flows. Phys. Rev. Lett. 106, 108301.
SAVAGE, S. B. & HUTTER, K. 1989 The motion of a finite mass of granular material down a rough

incline. J. Fluid Mech. 374, 305–333.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

59
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.590


Asymptotic analysis for finite dry granular mass flow down a rough incline 253

SILBERT, L., LANDRY, J. & GREST, G. 2003 Granular flow down a rough inclined plane: transition
between thin and thick piles. Phys. Fluids 15, 1–10.

STARON, L. 2008 Correlated motion in the bulk of dense granular flows. Phys. Rev. E 77, 051304.
STARON, L., LAGRE, P.-Y., JOSSERAND, C. & LHUILLIER, D. 2010 Flow and jamming of a two-

dimensional granular bed: toward a nonlocal rheology? Phys. Fluids 22 (11), 113303.
TAI, Y. & KUO, C. Y. 2008 A new model of granular flows over general topography with erosion

and deposition. Acta Mechanica 199, 71–96.
WHITHAM, G. B. 1974 Linear and Nonlinear Waves. Wiley.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

59
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.590

	Asymptotic analysis for the propagation and arresting process of a finite dry granular mass down a rough incline
	Introduction
	Governing equations
	Problem description
	Model formulation

	Asymptotic solutions for flow dynamics and coherence length
	Outer solution
	Inner solution and the composite surface profile
	Local coherence length and flow regimes

	Propagation of the deposit front and the arrested state
	Leading-order solutions
	Modified flow-front solution
	Comparison with experimental data

	Summary and discussion
	Acknowledgement
	Appendix A. Derivation of equations (2.19) and (2.20)
	References




