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Abstract
The purpose of this paper is developing an efficient flight control strategy in terms of time 
response characteristics, robustness with respect to both parametric uncertainties and 
un-modeled nonlinear terms, number of required measurements, and computational burden. 
The proposed method is based on combination of a classic controller as principal section of 
the autopilot and a multi-objective genetic algorithm-based fuzzy output sliding mode control 
(FOSMC). FOSMC not only modifies robustness of the classic controller against uncertainties 
and external disturbances, but also modifies its time response for wide range of commands. 
FOSMC is a single input-single output controller that is based on the system output instead 
of the system states. In this situation, the proposed autopilot does not require measurement 
of other variables and observer, and also it is practicable because of considerable reduction in 
rule inferences then computational burden. As a critical application, the proposed method is 
applied to design the altitude hold mode autopilot for an UAV which is non-minimum phase, 
uncertain, and nonlinear.
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Nomenclature
E	 output error vector
ei 	 ith output error
EA	 evolutionary algorithm
C**	 a parameter that is constant and known as the stability and control (or aerodynamics) 	
	 derivatives
FLC	 fuzzy logic control
FOSMC	fuzzy output sliding mode control
FSMC	 fuzzy sliding mode control
GA	 genetic algorithm
h 	 altitude
he 	 command altitude
I.	 a parameter that is constant and is function of the inertial characteristics of UAV
MOCF	 multi objective cost function
MOGA	 multi objective genetic algorithm
N	 the number of rules
Nkeep	 the number of kept chromosome for mating
Npop	 the number of chromosome population
Nvar	 the number of chromosome variables
p	 roll angle rate
PID	 proportional, integral and derivative
Q	 pitch angle rate
R 	 yaw angle rate
ri	 relative degree of system
s 	 sliding function
S 	 sliding surface
stow 	 fuzzy input variable lower boundary
Sm 	 linguistic value of fuzzy input variable (s)
sup 	 fuzzy input variable upper boundary
SMC	 sliding mode control
U 	 forward velocity
utow	 fuzzy output variable lower boundary
Um	 linguistic value of fuzzy output variable (dE)
uup 	 fuzzy output variable upper boundary
UAV	 unmanned aerial vehicle
V 	 lateral velocity
Vt 	 total velocity
W 	 vertical velocity
X 	 state vector
X1 	 state vector of longitudinal channel
X2	 state vector of lateral-directional channel
Y 	 output vector
Yc 	 desired output vector
liy	 a constant number
h	 a constant number
dE	 elevator control variable
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dR 	 rudder control variable
dA 	 aileron control variable
f	 roll angle
q	 pitch angle
y	 heading angle
fc 	 command heading angle
a 	 command roll angle
a	 angle-of-attack
b	 side slip angle
s	 the standard deviation of the normal distribution
x	 damping ratio
wn 	 natural frequency
mA(x)	 MF (membership function) of A set at x value

1.0 Introduction
Autonomous unmanned aerial vehicles (UAVs) have become increasingly attractive for 
mission where human presence is dangerous or difficult. UAVs have demonstrated various 
civil and military applications such as urban traffic control, communication relay, border patrol, 
and battlefield deployment. Among many issues in the development of autonomous UAVs, 
the modelling and autopilot design are important tasks. In practice, the dynamic of UAVs is 
nonlinear, time varying, and uncertain; this may lead to performance degradation. Therefore, 
one of the major problems in designing autopilot is to regard the uncertainties such as param-
eters variations and unknown nonlinear dynamics. These uncertainties have been driven the 
researchers to robust methods. 

In this paper, the altitude hold mode autopilot is planned for an UAV which is aerodynami-
cally controlled by the elevator control surface, and the considered uncertainties are due to both 
parametric uncertainties and un-modelled nonlinear terms. This mode is practically important 
for unmanned aerial vehicles due to flying in vicinity of terrain by terrain following maneuver in 
a wide range of altitudes. The altitude hold mode is used to maintain a reference altitude which 
is specified by the trajectory planning algorithm. In linear procedure of the altitude hold mode 
autopilot design, it is assumed that the longitudinal and lateral-directional motions are independent. 
But, for non-zero roll angle in turn manoeuvres, this assumption is not valid because decreasing 
the lift force leads to decreasing the altitude. This effect is based on the nonlinear behaviour of 
UAVs. Although the altitude hold mode reacts with respect to this effect, it is still necessary to 
compensate furthermore in order to obtain desirable performances in presence of nonlinear effects. 
In Refs 1-4, UAV altitude has been controlled. The altitude hold mode autopilot has been designed 
based on the uncertain linear model in Refs 1-3, and based on the uncertain nonlinear model in 
Ref. 4. In Ref. 4, the desirable autopilot has been achieved by combination of the classic control 
and the conventional fuzzy logic control (FLC). The classic controller is considered as a principal 
section of autopilot, and FLC is used to increase the robustness. Here, it is tried to follow the 
problem and general procedure in Ref. 4.

Most nonlinear methods such as the feedback linearisation and the sliding mode control(5) 
are heavily based on the knowledge of vehicle mathematical model, and these methods cannot 
also handle the non-minimum phase systems such as the altitude (output) to elevator (input) 
dynamic. Here, in order to get rid of the exact model restrictions, FLC is applied to design the 
robust altitude autopilot because fuzzy logic control does not require accurate model of UAV. The 
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previous researches(2-4,6-13) show that the fuzzy logic control gives desirable performance in terms 
of time response characteristics and robustness with respect to the uncertainties in parameters and 
un-modeled dynamics. This is a significant advantage because achieving an accurate mathematical 
model that is associated with uncertainties is difficult, time-consuming, and expensive (for example, 
the wind tunnel tests to obtain the aerodynamic coefficients are time-consuming and expensive). 

Although the conventional fuzzy logic control is very promising for several applications, they 
suffer two main problems:

1.	 The long computational time because of complex decision making processes due to the large 
set of rules and

2.	 Incapability of stability analysis.

As the purpose of this paper, we are going to take advantage of FLC together minimising 
computational burden and increasing capability of stability analysis as follows:

1.	 For solving the first problem, the fuzzy sliding mode control (FSMC) is proposed. The 
FSMC can reduce the conventional two-inputs FLC (error and error rate) to a single-input 
FLC (sliding function). Therefore, FSMC offers significant reduction in rule inferences then 
control parameters (reduction in number of inputs leads to considerable reduction in the 
number of rules). This simplification leads to reduction the computational burden and closing 
to the practical autopilot. Also, the processing time of controller optimisation and complexity 
will be reduced. FSMC method has recently been used for various applications, such as Refs 
14-21. Furthermore, the discouraging problem beside FSMC is defining the sliding surface 
based on the state vector. In this situation, measurement of several variables and observer are 
required. Defining the sliding surface based on the outputs leads to the simple fuzzy sliding 
mode control entitled fuzzy output sliding mode control (FOSMC)(18). Thus, according to 
these discussions, we exploit FOSMC as the proposed method to design altitude hold mode 
autopilot.

2.	 For solving the second problem, similar to Refs 1 and 4, the classic controller is initially 
designed based on the nominal linear model. It is expected that the closed-loop performance 
is desirable in absence of uncertainties. In the next step, for improving the robustness with 
respect to the uncertainties, FOSMC is accompanied with the classic controller. According 
to this method, we have the two-section controller: classic controller as the major section 
(with stability analysis capability) and FOSMC (with simple implementation and robustness 
improving capability). 

Designing fuzzy systems requires sufficient experience and expertness. In this case, it is necessary 
to use/provide an automatic tool for optimal design of fuzzy systems. In recent years, evolutionary 
algorithms (EAs) have been demonstrated as a suitable alternative technique for optimization of 
fuzzy systems so that they have been widely used in different applications(4,8-13). In Refs 8 and 12, the 
missile acceleration that includes non-minimum phase property has been indirectly controlled 
(lateral velocities are controlled) by FLC and a multi-objective GA. In Ref. 9, the GA- based 
fuzzy PID controller has been presented to eliminate undershoot of non-minimum phase linear 
systems. In Ref. 10, a GA-based fuzzy logic controller has been designed to stabilise satellite 
attitude. Here, the multi-objective genetic algorithm (MOGA) is used to mechanise the optimal 
determination of FOSMC parameters as well. The objectives include undershoot, overshoot, 
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rise time, settling time, steady state error and stability. We expect that the solution derived 
based on this MOGA is desirable because of considering various time-response criteria.

The rest of the paper is organised as follows: Section 2 presents the nonlinear and linear model of 
the UAV. The proposed strategy will be discussed in Section 3. After the simulation of the proposed 
strategy, several results are presented in Section 4. Finally, conclusions are drawn in Section 5.

2.0 Unmanned Aerial Vehicle Model
The UAV equations of motion can be separated into rotational and translational equations. 
The rotational motion of UAV is equivalent to yaw, pitch, and roll motions about the centre of 
mass. Other components of the motion are translation of centre of mass in 3D space. Therefore, 
the UAV model used here will be a six-degree-of-freedom model(22). We utilise the derived 
nonlinear and linear model in Ref. 4, as follows.

2.1 Nonlinear model
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where, Ii’s and Cij’s are respectively inertial properties and stability and control derivatives of 
the UAV that their values are presented in Table 1. These equations are nonlinear and highly 
coupled. Concerning Equations (1)-(14), there is coupling between the lateral-directional 
channel and the longitudinal channel that will be canceled in the linearisation procedure. 
For example, in turn manoeuvre, the lift force then the altitude is decreased due to non-zero 
roll angle. This effect is cancelled during the linearisation process. Nonlinearity may cause 
performance degradation of the nominal linear model-based autopilot after applying it to the 
nonlinear model. 

2.2 Nominal linear model

									                 . . . (15)

The nominal linear model is considered as the available mathematical model that the autopilot 
is designed based on it. Concerning Equation (15), it is obvious that the altitude output and the 
elevator input relation is non-minimum phase. This is a fact for altitude-elevator dynamics of 
aircrafts.

2.3 Degraded linear model

									                . . . (16)	

The degraded linear model is considered to investigate the parametric robustness. Degraded 
linear model has been derived by applying 50% error in the effective stability derivatives. 
Reduction in the effective stability derivatives causes moving an unstable zero further to the 
right, and degradation of both phugoid and short period flight modes.

Table 1
The constants in Equations (1)-(6)
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3.0	� Altitude Hold Mode Autopilot Design 
(Proposed Strategy)

In this section, the proposed strategy to design the altitude autopilot of the UAV is discussed 
as follows.

1.	 The classic control methods include advantages such as the capability of stability analysis and 
simplicity of implementation. For these reasons, the classic methods have practical interests 
in automatic flight control systems. Therefore, autopilot is initially designed by using classic 
methods based on the nominal linear model herein. This autopilot can be desirable in absence 
of uncertainties and nonlinearities.

2.	 The sliding mode control (SMC) is a robust design methodology using a systematic scheme 
based on a sliding mode surface and Lyapunov stability theorem. The main advantage of SMC 
is that the system uncertainties and external disturbances can be handled under the invariance 
characteristics of system’s sliding mode state with guaranteed system stability. One of major 
problem associated with SMC is dependency on the plant mathematical model. Conjunction 
of SMC concept and FLC can help to introduce FSMC that is independent of the plant model. 
Fuzzy systems are knowledge-based or rule-based systems. The heart of a fuzzy system is 
knowledge consisting of the so-called fuzzy IF-THEN rules. A fuzzy IF-THEN rule is an 
IF-THEN statement in which some words are characterized by proper membership functions. 
As a disadvantage, it is known that the stability analysis of FLC is difficult and insecure while 
it can be accomplished for model-based procedures.

3.	 Based on the above discussions, fuzzy output sliding mode control is proposed to improve 
the basic autopilot (the classic controller) performance. FOSMC is independent of the plant 
model, is a single input fuzzy system, and is based on the system output. Consequently, the 
efficient strategy is proposed to design the altitude hold mode autopilot by combination of 
classic control and FOSMC. In Fig. 1, this strategy is illustrated while u is the contribution 
of FOSMC in control of the UAV augmented with classic controller. 

In short, the presented strategy has some advantages comparing to the conventional FLC:

1.	 The controller includes considerable low number of rules because of presence of single input-
single output FOSMC. This leads to considerable reduction in computational time.

2.	 The controller has two portions: (A) classic controller with stability analysis capability and 
(B) FOSMC without stability analysis capability. The classic controller is the principal portion 
of controller. In absence of uncertainties and nonlinearities, the role of FOSMC is low while 
in presence of them, the contribution of FOSMC is highlighted.

Figure 1. The proposed strategy scheme based on the combination of FOSMC and classic controller.
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3.1 Fuzzy output sliding mode control

SMC theory uses discontinuous control action to drive state trajectories toward a specific 
surface (sliding surface) until stable equilibrium states are reached (5). This principle provides 
guidance to design a fuzzy logic controller.

Consider the following nth order nonlinear system:

 									                 . . . (17)

where X = [x1, x2 . . . xn]
T is the state vector, and U is the control input. If the desired output 

vector is defined as Yc = [yc1, yc2 . . . ycl]
T , then the output error vector E = [e1, e2 . . . el]

T can be 
written as follows.

. . . (18)

A linear function entitled sliding function                    is defined as

. . . (19)

where

. . . (20) 

In this equation, Di(d/dt) is linear function of derivative operators         ,       , …,         as 
following equation.

									                . . . (21)	
 

where, liy is a constant that can lead to a stable dynamic. Based on these definitions, the sliding 
surface can be represented as follows.

. . . (22)

To design the control input U(t) so that the output trajectories are driven and attracted toward 
the sliding surface and then remain on it, the following inequality must be satisfied.

. . . (23)

The idea behind Equation (23) is in the sense of Lyapunov function. If we treat s as a scalar 
function and the Lyapunov function n is defined as Equation (24), together with (23), we can 
ensure that the asymptotic stability of the system is guaranteed.

. . . (24)
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. . . (25) 

where                        ,                                  ,                                    ,                      ,                  ,
2 [ ]TA Rd = d d . In this equation, D(X2, d2) called the coupling term is contribution of lateral-direc-

tional variables. Specially, the term D is nearly zero when yc and fc are zero. Besides, F(X), 
f(X1),  G(X), and g(X1) are the continuous linear or the nonlinear functions that are derived by 
using Equations (1)-(12).

According to Equation (25), the sliding function is defined as the following equation (ri = 2  
and l = 1):

. . . (26)

Where, e = – hc is tracking error in the control loop. Based on Equation (26), the sliding surface 
is presented as follows:

. . . (27)

By concerning the Equations (23) and (25), we have the following Equation.

. . . (28)

where, the coupling term is assumed to be bounded by some known function (                                                    ). 
Based on Equations (23) and (28), the following inequality must be satisfied.

. . . (29)

By focusing on the left-hand side second-term of the inequality (29), we can achieve the 
following results:

1.	 The control input on the two sides of the sliding surface are opposite in sign and its magnitude 
is proportional to the sliding function (26).

2.	  For stability of the system, if the term g be negative then it is required sign (dE) = sign(s).

Therefore, we can conclude that dE ∝ s for negative g (the proportional ratio must be suffi-
ciently large to satisfy the inequality (29)). This discussion can be used to derive FOSMC as 
the following rule:

. . . (30)

where Sm is the linguistic value of s, and Um is the linguistic value of dE in the mth -fuzzy rule. 
Based on this rule, the rules base is presented in Table 2 for FOSMC. Seven membership 
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POSITIVE BIG (see Fig. (2). Here, the Gaussian membership function is used for input (the 
sliding function).

Suppose that the fuzzy set Um and Sm in (30) are normal with centre u
_

m and  s
_

m. Then the fuzzy 
system with rule base (30), product inference engine, singleton fuzzifier, and center average 
defuzzifier has the following form (23): 

. . . (31)

Here, M = 7.

Table 2
FOSMC rules

			   Rule No.	 Rule
			   1	 IF s NB THEN u IS NB
			   2	 IF s NM THEN u IS NM
			   3	 IF s NS THEN u IS NS
			   4	 IF s ZE THEN u IS ZE
			   5	 IF s PS THEN u IS PS
			   6	 IF s PM THEN u IS PM
			   7	 IF s PB THEN u IS PB

Figure 2. Membership functions for sliding mode function and control variable.
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3.2 Optimisation of FOSMC

Conventionally, fuzzy systems are designed by the expert’s knowledge and experience. In 
general, it is difficult to decide about control parameters as the system gets complex. To solve 
this problem, the determination of FOSMC parameters can be mechanised by GA to comport 
various criteria such as time response characteristics and robustness.

GA is a search algorithm that is theoretically and empirically proven to provide a robust search in 
complex spaces. Here, the continuous or real-valued GA is used as following procedure (Fig. 3)(24):

1.	 Next to defining cost function (fitness function) and design parameters, a chromosome 
population (Npop) is randomly generated. 

2.	 Each chromosome specifies a candidate solution of the optimisation problem. The fitness of 
all individuals with respect to the optimisation task is then evaluated by the cost function. 
The cost function generates an output from the set of input variables (the chromosome). The 
object is to modify the output in some desirable fashions by finding the appropriate values 
for the input variables. 

3.	 If the chromosome has Nvar variables given by p1, p2, ... , pNvar
 then the chromosome is written 

as an Nvar element row vector. Now, it is the time to decide which chromosomes in the initial 
population are fit enough to survive and possibly reproduce offspring in the next generation. 
The Npop costs and associated chromosomes are ranked from lowest cost to the highest one. 

Figure 3. The framework of genetic algorithm.
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Between the Npop chromosomes in a given generation, only the top Nkeep are kept for mating 
(process of natural selection) and the rest are discarded to make room for the new offspring. 

4.	 Subsequently, one mother and one father in some random fashions are selected. Each pair 
produces two offspring (crossover) that contain traits from each parent. A single offspring 
variable value, pnew, comes from a combination of the two corresponding offspring variable 
values. 	

5.	 If care is not taken, GA can converge too quickly into one region of the cost surface. If this 
area is in the region of the global minimum, that is good. However, some functions have many 
local minima. If this tendency to converge quickly is not solved, the local minimum rather 
than the global minimum is attained. To avoid this problem, it is forced to explore other areas 
of the cost surface by randomly introducing changes, or mutations, in some of the variables. 
Most users of the continuous GA add a normally distributed random number to the variable 
selected for mutation.

For desirable design of FOSMC by GA, presentation of an efficient cost function is of great 
importance. Defining a proper cost function leads to desirable design for FOSMC. Here, 
the multi-objective cost function (MOCF) is presented based on the improving undershoot, 
overshoot, settling time, steady state error, and unstable behaviour as follows: 
 

. . . (33)

where wi s are weights for MOCF, t1 is the time associated with the first intersection of the 
altitude time response and the step altitude command, t2 is the time associated with second 
intersection of the altitude time response and the step altitude command, and T is the final time 
of simulation. If the intersections are not created, the t1 parameter is considered zero. In MOCF 
(33), the first term covers rise time and undershoot, the second term includes overshoot value, 
and the third term includes settling time, steady state error, and unstable effects. In this alter-
native form of the cost function, the computation of all objectives is not individually required, 
and we can easily consider several important objectives in the simple cost function. 

Next to definition of the cost function, the GA-based optimisation of FOSMC is implemented 
as following procedure:

Due to the computational burden composed by GA, FOSMC is generally evolved off-line based 
on the available mathematical model of the controlled process. For this reason, the nominal linear 
model, as the available mathematical model of UAV, is utilised to achieve the FOSMC parameters. 
Then, by applying the degraded linear model and the nonlinear model in the simulation procedure, 
the robustness of controller against uncertainties that are not considered in GA is investigated.

4.0 Autopilot Design Results
In this section, the proposed strategy is implemented for the UAV presented in Section 2. 
This work is done in three steps: (1) design and evaluation of classic autopilot, (2) design and 
evaluation of fuzzy output sliding mode autopilot, and (3) formation of proposed strategy by 
combination of the results obtained in Step 1 and Step 2 (of course, the FOSMC designed in 
Step 2 needs re-designing to match with the classic autopilot).

1 2

1 2
1 2 3

0
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t t T
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4.1 Classic autopilot design

The classic autopilot is designed through the nominal linear model for y and h variables (the 
-autopilot that is not presented here has desirable performances, and it is assumed that there 
are not uncertainties in the directional-lateral channel). By considering a trade-off procedure 
between the time response characteristics and the robustness, the following compensator is 
designed through root locus techniques(4).
 

2

2

0 0068( + 0 1) ( + 2 12S + 98 4)

( + 20) ( + 6 94S + 13 1)C
S S

G
S S

× × × ×
=

× ×
 . . . (34)

For closed loop system, dominant desirable characteristics are attained by applying this autopilot 
to nominal linear model (15) as x = 0·79, wn = 1·36. To evaluate this autopilot, it is applied to 
nominal linear model, degraded linear model and nonlinear model (it should be noted that the 
elevator trim angle, dEtrim = 1·92°, must be added to the control input in the nonlinear simulation 
procedure because the controllers have been designed based on nominal linear model) then the 
simulation results are investigated in terms of time response characteristics and robustness. 
The commands are considered as yc = 0 and 10 degree and hc = 10m. The simulation results 
are illustrated in Fig. 4. Concerning Fig. 4(a), the desirable response is expectantly seen for 
nominal linear model, but low parametric robustness is obtained for the degraded linear model. 
By inspection of Fig. 4(b), the time response of classic autopilot has been degraded for the 

Figure 4. Linear and nonlinear model time response with classic autopilot.
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UAV nonlinear model because of appearing the nonlinear coupling terms. Clearly, increasing 
the y–command value (the turn manoeuvre) leads to increasing degraded coupling nonlinear 
effects (the tendency to lessening altitude). Therefore, in presence of parametric uncertainties 
and un-modelled dynamics, the compensators cannot meet the requirements. Now, elimination 
of the nonlinear terms effects is necessary to achieve the desirable tracking. Furthermore, 
autopilot should not be very sensitive to the variations of system parameters. Due to these 
reasons, the knowledge-based FOSMC is utilised to overcome the compensator shortcomings.

4.2 FOSMC autopilot design

Subsequently, FOSMC is designed by GA. The input variable boundaries are considered as sup 
= 100, slow = –100 and for the output variable, these are uup = 12 deg and ulow = –12 deg. Also, 
the centres of output membership functions (u

_
m), variances (si) of input membership functions, 

and l are considered as the chromosome. The GA with the following properties is used to 
determine the FOSMC parameters: 

Chromosome population, Npop = 50
The number of generation = 50
Mutation rate = 2%
Nkeep = 50%

Table 3
Optimal properties of FOSMC autopilot

Figure 5. Mean fitness value of generations in evolution of FOSMC autopilot.
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By considering a trade-off procedure between time response characteristics and robustness, the 
weights are then chosen as w1 = 1, w2 = 1·4, w3 = 1·3. The results are presented in Table 3. The 
mean fitness value in each generation is also shown in Fig. 5.

Simulation results for nominal linear, degraded linear and nonlinear models are shown in Fig. 
6. Concerning Fig. 6(a), FOSMC autopilot gives the desirable time response (solid line) and 
inadequate parametric robustness (dotted line). The desirable nonlinear time response is known 
in Fig. 6(b) due to eliminating the nonlinear effects. Therefore, the robustness against un-modeled 
dynamics can be remarkably achieved by the FOSMC autopilot.

4.3 Classical and FOSMC autopilot design

Now, it is tried to implement the proposed strategy by combination of the above autopilots. 
FOSMC associated with the proposed strategy against FOSMC autopilot requires re-designing 
because of presence of classic controller contribution. The control variable boundaries are 
chosen uup = 30, ulow = –30 and these are sup = 100, slow = –100 for the sliding function. The 
weights are considered as w1 = w2 = w3 = 1, the population size is considered 30, and the 
other properties of GA are selected similar to FOSMC autopilot. Furthermore, to improve 
the autopilot performance in the presence of nonlinear effects, Rules 3 and 5 are modified as 
follows:

Figure 6. Linear and nonlinear models time response with FOSMC autopilot.
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Rule 3:  IF s IS NS, THEN L · u IS NS, …

In fact, FOSMC output contribution is multiplied by L (here, it is chosen 2) to improve the 
FOSMC performance in presence of the nonlinear coupling effects in the vicinity of command 
(small sliding function). The GA results based on the UAV nominal linear model are presented 
in Table 4, and the mean fitness value in each generation is shown in Fig. 7. The simulation 
results, for the linear and nonlinear model, are illustrated in Fig. 8. This figure displays that the 
time response characteristics and parametric robustness have been highly improved (Fig. 8(a)). 
Besides, this strategy leads to the acceptable elimination of nonlinear effects (see Fig. 8(b)).

4.4 Comparison of the autopilots

Subsequently, it is tried to investigate these autopilots in terms of some practical criteria such as 
effect of the autopilot on other longitudinal variables and the autopilot performance in presence 
of large commands.

Figure 7. Mean fitness value of generations in evolution of FOSMC in the proposed strategy.

Table 4
Optimal properties of the FOSMC in the proposed strategy

3768.indd   854 01/08/2013   09:35:26

https://doi.org/10.1017/S0001924000008484 Published online by Cambridge University Press

https://doi.org/10.1017/S0001924000008484


Bebaei et al	     Robust and computational efficient autopilot design: A hybrid approach ...	 855  

Longitudinal variables: In the altitude autopilot design procedure, it is required to concen-
trate on the other longitudinal variables such as pitch angle, pitch rate, and elevator angle 
because controlling the altitude may lead to degradation of them (altitude variable is important 
in phugoid mode, and pitch angle and pitch rate are dominant in short period mode). Due to this 
reason, these variables are illustrated in Fig. 9 for three designed autopilots. As it is clear, the 
time response of these variables for classic autopilot is better than the others. Classic autopilot 
has been designed based on improving both short period mode and phugoid mode. Fuzzy 
output sliding mode autopilot has led to improving only phugoid mode through altitude hold 
mode autopilot. The proposed strategy not only leads to improving phugoid mode, but also 
leads to sufficiently improving short period mode because of contribution of classic controller.
Large commands: For large commands, it is necessary using a trajectory generation algorithm 
to avoid the large input and the large load factor. Trajectory generation algorithm leads to 
constructing a smooth command based on the dynamics limitations. Formation of trajectory 
generation algorithm is sufficiently complex task. By proper selection of the lower and upper 
bounds of the FOSMC input and output, the acceptable load factor can be applied to UAV without 
saturation of the control input. This relaxes us to construct trajectory generation algorithm. 
According to Fig. 10, the elevator is saturated (the maximum elevator angle is considered 
25deg) and the applied load factor is high for classic autopilot due to the large commands 
(250m). However, FOSMC causes time response to adapt itself with large commands so that 
the elevator may not be saturated and the applied load factor is acceptable (furthermore, we can 

Figure 8. Linear and nonlinear models time response with the proposed autopilot.
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regulate the rate of climb by much focusing on FOSMC parameters). Fortunately, the proposed 
strategy is better than the fuzzy output sliding mode autopilot in terms of this advantage. In 
fact, FOSMC confines the control input for large errors, and it returns to the normal conditions 
for lower errors.

In summary, the three autopilots are compared as follows.

1.	 The proposed strategy performances are very better than the others in terms of the time 
response characteristics. 

2.	 The parametric robustness of the proposed strategy is high. This capability depends on the 
classic controller quality and FOSMC. 

3.	  FOSMC has led to suitable elimination of the coupling nonlinear effects. This capability for 
FOSMC autopilot is more evident than the proposed strategy.

Figure 9. The time response of the dominant variables in the short period mode and control input.
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4.	  FOSMC has led to the adaptation of autopilot for large commands so that the control input 
avoids saturation, and the applied load factor is acceptable. This capability is achieved by 
proper selection of the boundaries of input and output in FOSMC. Thus, for relatively low 
errors, proposed strategy provides sufficient inputs for actuator then desirable time response 
(see Item 1) while the input is limited for large errors because of maximum load factor and 
elevator requirements.

5.	  Unlike classic autopilot, FOSMC autopilot is not able to improve short period mode. This is 
critical for a UAV with weak short period mode. The proposed strategy has improved short 
period mode by exploitation of the classic controller.

6.	 GA has mechanised the optimal design of FOSMC. According to Figs 5 and 7, the proposed 
strategy is evolved in lower generation and lower cost function than FOSMC autopilot. This 
capability may lead to the evolution of the proposed strategy by an online manner that is an 
important advantage.

7.	 Finally, in absence of the uncertainties, classic method is recommended to design the autopilot, 
and in presence of uncertainties, the presented strategy is proposed. 

Figure 10. Nonlinear model responses with large command.
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5.0 Conclusions
In this paper, the combination of classic controller as the principal section of the autopilot and 
GA-based fuzzy output sliding mode control to increase robustness is applied to the altitude 
hold mode autopilot for an UAV which is non-minimum phase, and its model includes both 
the parametric uncertainties and the un-modeled nonlinear terms. The proposed autopilot 
contains desirable properties: (1) it exploits the classic method with simple implementation 
and stability analysis capability, and FLC with independency on the system model capability; 
(2) the processing time composed by FOSMC is lower than the conventional FLC because it is 
single input fuzzy system; (3) it is based on system output and does not require estimation of 
system states; (4) optimality of  the autopilot is attained by applying the multi-objective genetic 
algorithm; (5) the simulation results illustrate the capabilities of the proposed strategy in terms 
of different criteria that are important in practice.  Finally, this simple strategy is recommended 
for the applications that include uncertainties.  
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