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SUMMARY
A new measurement device is proposed for the calibration
of parallel manipulators that can be used to indentify all
kinematic parameters with partial pose measurements. The
device while restricting the motion of the end-effector to five
degree-of-freedom measures three components of posture.
A study is performed for a six degree-of-freedom fully
parallel Hexa Slide Manipulator. Intrinsic inaccuracies of
the measurement device are modeled with two additional
identification parameters. Computer simulations show that
all parameters, including the additional parameters, can be
identified. Results show a significant error reduction, even
with noisy measurements, and reveal that the identification
is robust against errors in initial guess.

KEYWORDS: HexaSlide manipulator; Identification para-
meters; Kinematic calibration; Measurement devices;
Parallel robots

1. INTRODUCTION
Parallel manipulators are preferred to serial manipulators for
their better dynamic capabilities, increased rigidity and high
positioning accuracy. The latter, however, may deteriorate
by factors like manufacturing tolerances, installation errors
and link offsets resulting in different kinematic parameters
from those of the nominal model. Kinematic calibration
is a process by which the actual kinematic parameters are
estimated and later used by the manipulator’s controller. This
compensates for the above sources of geometric errors and
hence improves accuracy significantly. Without calibration,
the significance and veridicality of results for experimental
robotics cannot be gauged. One may expect to spend most of
experimental effort in calibration and less in actually running
the experiments in control.1

Kinematic calibration requires redundant sensory
information. This information can be acquired by using
external sensors,2−7 or by adding extra sensors to the
system,8−10 or by restraining the motion of the end-effector
through some locking device.11−17 The latter two are
categorized as self-calibration schemes.

Classical methods of calibration require measurement
of complete or partial postures using some external
measurement devices. Numerous devices have been used

for calibration of parallel manipulators. Zhuang et al.2 used
electronic theodolites for the calibration of the Stewart
platform along with standard measurement tapes. For a 3
degree-of-freedom (DOF) redundant parallel robot, Nahvi
et al.3 employed LVDT sensors. Laser displacement sensors
were used to calibrate a delta-4 type parallel robot by
Maurine.4 Ota et al.5 performed calibration of a parallel
machine tool, HexaM, using a Double Ball Bar system.
Takeda et al.6 proposed the use of a low order Fourier
series to calibrate parallel manipulators involving the
Double Ball Bar system. Besnard et al.7 demonstrated
that the Gough-Stewart platform could be calibrated using
two inclinometers. All of the kinematic parameters can
be identified when the Cartesian posture is completely
measured. However, measuring all components of the
Cartesian posture, particularly the orientation, can be
difficult and expensive. With partial pose measurements, the
experimental procedure is simpler but some of the parameters
may not be identified. This may result in a significant
variation of accuracy within the workspace.

Self-calibration schemes provide economic, automatic,
non-invasive and fast data measurement and are therefore
preferred over classical calibration methods. Zhuang8,9

proposed two rotary sensors at each universal joint of
alternate legs of the Stewart platform and discussed the
formulation of a measurement residual and identification
Jacobian in detail. Wampler et al. calibrated the Gough-
Stewart platform using 5 sensors at passive joints of one
leg.10 Khalil and Besnard11 showed that locking
universal and/or spherical joints, with appropriate locking
mechanisms, could calibrate the Stewart mechanism
autonomously. Maurine et al.12−14 extended the idea to
calibrate HEXA-type parallel robot. Meggiolaro et al.15

presented a calibration method using a single end-point
contact constraint for a serial manipulator that has elastic
effects due to end-point forces and moments. Rauf and
Ryu,16 and Ryu and Rauf17 proposed calibration procedures
for parallel manipulators by imposing constraints on the
end-effector. The problem of non-identifiable parameters
becomes severe for the self-calibration schemes, particularly
for the fully autonomous calibration schemes that rely on
imposing constraints.

Zhuang et al.12 formulated the cost function in terms
of the inverse kinematic residuals that results in a block
diagonal identification Jacobian matrix, and the identification
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procedure can be implemented without solving forward
kinematics. Fassi et al.18 proposed a procedure for obtaining
a minimum, complete, and parametrically continous model
for the geometrical calibration of parallel robots. Iurascu
and Park19 formulated the kinematic calibration problem for
closed chain mechanisms in a coordinate-invariant fashion
and solved directly the nonlinear constrained optimization
problem of calibration. Daney et al.20 presented variable
elimination technique to improve the effectiveness of
identification procedure when only partial pose information
is available. Khalil et al.21 presented an algorithm to calculate
the identifiable parameters for robots with tree structures.
Oilivers et al.22 used singular value decomposition for
the identification process and showed that this provides
immunity to numerical redundancies that may result from
partial pose measurements. Based on QR analyses of
the identification Jacobian matrix, Besnard and Khalil23

analyzed numerical relations between the identifiable and
the non-identifiable parameters for different calibration
schemes with a case study on the Gough-Stewart platform
that has 42 identification parameters. They showed that
3 parameters couldn’t be identified when only position
is measured, 7 parameters are non-identifiable when
two inclinometers are used, and the maximum number
of identifiable parameters with self-calibration schemes
realized by imposing constraints is 30.

The partial pose measurement schemes studied so far
considered only position or only orientation components
and, therefore, cannot identify all parameters. Measuring
component(s) of position and orientation simultaneously
may identify all parameters. This paper presents a new
measurement device for calibration of parallel manipulators
that can measure two components of position along with a
rotation. Note that the position components are measured in
terms of angle and thus the cost function and the Identification
Jacobian are homogenous. A study is performed for a 6-DOF
fully parallel Hexa Slide manipulator. The device, however, is
general and can be employed for other parallel manipulators.
Two additional identification parameters are defined to model
intrinsic inaccuracies of the device. Computer simulations
show that all parameters can be identified with the
measurements from the proposed device. QR analysis verifies
the results of simulations. Measurement of postures can
be automated, thereby making the experimental procedure
simple.

This paper is organized as follows: Hexa Slide Manipulator
(HSM) and its kinematics are described in Section 2. Section
3 discusses the calibration device along with measurement
procedure and formulation. Results of computer simulations
are presented in section 4. Section 5 concludes the study.

2. KINEMATICS OF THE MECHANISM
This section introduces the parallel robot, HSM, to which
the proposed calibration scheme is applied and presents its
kinematics. The schematic of the HSM is shown in figure 1
and the geometric parameters are defined in figure 2. It is a 6
DOF fully parallel manipulator of the PRRS type. In figure 2,
Aio and Ail denote the start and the end points of the ith
(i = 1,2, . . . ,6) rail axis. Ai denotes the center of ith universal

Fig. 1. Schematic of the HSM.

Fig. 2. Geometric parameters of the HSM.

joint and it lies on the line segment AioAil. Rail axes are
identical and the nominal link length, �, is equal for all
kinematic chains. The articular variable, λi , is the distance
between the points Aio and Ai. Bi denotes the center of ith
spherical joint at the mobile platform.

The posture of the mobile platform is presented by the
position of the mobile frame center in the base frame and
three Euler angles as

X = [x y z ψ θ φ] (1)

The Euler angles are defined as: ψ rotation about the global
X-axis, θ rotation about the global Y-axis and φ rotation
about the rotated local z-axis. Orientation is thus given by
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R = RY,θRX,ψRZ,φ .

R =



CθCφ + SθSφSψ −CθSφ + SθSψCφ SθCψ

CψSφ CψCφ −Sψ

−SθCφ + CθSψSφ SθSφ + CθSψCφ CθCψ




(2)

where C and S represent the cosine and sine, respectively.
The problem of inverse kinematics is to compute the

articular variables for a given position and orientation of
the mobile platform. For the HSM, the problem of inverse
kinematics is simple and unique and is solved individually
for each kinematic chain. Considering a single link chain, the
inverse kinematics relation can be expressed as

λ = aTA0B −
√

�2 − ‖A0B‖2 + (aTA0B)2. (3)

where a represents the direction vector of the slider.
In forward kinematics, posture (position and orientation)

of the mobile platform is computed for given values of
articular variables. Forward kinematics may yield multiple
solutions and is solved numerically using an iterative
procedure.24

Xk+1 = Xk + Jf (λ − λk) (4)

where Jf is the inverse Jacobian of Euler angles.

3. CALIBRATION DEVICE AND PROCEDURE

3.1. The measurement device
A measurement device is proposed to measure simultan-
eously components of the position and orientation of the
end-effector. The proposed device consists of a link having
U joint at both ends. At one end, after the U joint, a
rotary sensor is attached such that its axis of rotation passes
through the U joint center. At the other end, a flange is
provided for mounting. The device is also equipped with
a biaxial inclinometer that measures rotations about X
and Y-axes. Inclinometers are inertial devices and provide
measurements with respect to “true vertical” – the direction of
gravity. Biaxial inclinometers provide measurements about
two mutually perpendicular axes. Figure 3 shows the labeled
schematics of the proposed device.

The device provides position information of the end-
effector in terms of the angles measured by the inclinometers.
Note that although all three components can be computed
for given angles, only two are independent. Rotary sensor
directly measures rotation of the end-effector about the local
z-axis when it is attached to the end-effector. Alternately, it
can be coupled to the base and measure the rotation about
the global Z-axis. Note that it is better to define orientation
of the end-effector in terms of the measured angle or a
transformation would be required.

3.2. Frames and identification parameters
The origin of the base frame, O, is located at the center of
the U joint near the base plate. The global Z-axis is directed

Fig. 3. Schematic of the proposed measurement device.

along the negative direction of the gravity acceleration and
the global X-axis is defined parallel to the first measurement
axis of the biaxial inclinometer. OXYZ system forms a right-
handed system. The origin of the mobile frame, P, is located
at the center of the U joint with Z-axis being collinear with
the rotation axis of the rotary sensor. PX’Y’Z’ also forms a
right-handed system.

The number of identification parameters depends on
the way the reference frames are assigned. By assigning
the reference frames properly, the complexity of the
calibration problem can be significantly reduced. Fassi
et al.18 discussed the manipulator under consideration for
their study and concluded that the minimum, complete and
parametrically continuous model for geometrical calibration
can be described by 54 parameters, which is the same as
considered in this study. The minimum and independent
identification parameters for a kinematic chain of the HSM
are as follows:

S joints’ location (B) − 3 parameters/chain

Slider axis start point (A0) − 3 parameters/chain

Slider’s direction vector (a) − 2 parameters/chain

Link length (�) − 1 parameter/chain

Note that the direction vectors of the sliders’ are specified by
two components; say x and y. This makes 9 parameters for
each kinematic chain and a total of 54 parameters. Note also
that all parameters are measured in the units of length.

In addition to the parameters of the HSM, the following
two identification parameters are defined to model the
inaccuracies of the proposed measurement device

Angle between the measurement axes of the biaxial

inclinometer − γ

Length of the proposed Link − L
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3.3. Measurement data
Mobile platform can only execute 5 DOF motions while
the device is attached. It can then be positioned over a
spherical surface with arbitrary orientation. For each posture,
the rotation of the rotary sensor and two angles of the biaxial
inclinometer are measured. If L is the length of the device,
the distance between the U joint centers, and α and β are the
measured rotations about X and Y-axes, then position of the
end-effector can be obtained as

x = −L cos(α) sin(β)

y = L sin(α) (5)

z = −L cos(α) cos(β)

For values of x, y, and z, computed from forward
kinematics for given articular variables, angles α and β can
be computed as

α = sin−1(y/L)
(6)

β = tan−1(x/z)

Note that the forward kinematics may converge to other than
the desired solution. Therefore, each measurement needs to
be checked, say by its Euclidian distance to the nominal
posture, before using it for the calibration. Note also that
position of the end-effector is represented in terms of angles
in (6), which results in a homogenous cost function and
identification Jacobian.

Equation (6) provides computed values of α and β when
the two measurement axes are exactly perpendicular. If
γ is the actual angle between the measuring axes of the
inclinometer (nominal value = π/2), the system of equations
presented in (6) can be rewritten as

x = −LSγ ((Cβ − 1)CγSα + CαSβ)

y = L(CγCαSβ + Sα(C2γCβ + S2γ )) (7)

z = −L(CαCβ − CγSαSβ)

Equation (7) is solved numerically with initial guess from (6)
to compute α and β.

3.4. The identification loop
Typically, solving the following system of equations with
least squares performs the identification for the calibration
schemes

du = J−1dX (8)

where J is the identification Jacobian, dX is the vector of
error residuals, i.e. the cost function to be minimized, and
du is the vector to update the nominal parameters. The
termination criterion is specified either on du or dX, to
solve (8) iteratively. Figure 4 shows the typical flow chart to
implement (8), where Vm is the vector of articular variables,
Xm is the vector of measured variables, and Xk is the vector
of computed variables at kth iteration.

Fig. 4. Typical identification loop.

Three rows of the cost function and the identification
Jacobian are computed for each measurement as




Xi1

Xi2

Xi3


 =




αi
m − αi

c

βi
m − βi

c

φi
m − φi

c


 (9)




Ji1

Ji2

Ji3


 =




∂αi

∂u1

∂αi

∂u2
· · · ∂αi

∂u55

∂βi

∂u1

∂βi

∂u2
· · · ∂βi

∂u55

∂φi

∂u1

∂φi

∂u2
· · · ∂φi

∂u55




(10)

where the subscripts m and c correspond, respectively,
to the measured and the computed values. Note that the
Identification Jacobian is computed for 55 parameters. The
length of the measurement device, L, should also be treated
as an identification parameter because of its fabrication
tolerance. However, when added to the Identification
Jacobian, it makes the matrix rank deficient. QR analyses also
reveal that L cannot be treated as an independent parameter.
Therefore, L is treated as a dependant identification
parameter and is computed separately. The fact that the
distance of the end-effector from origin of the base frame
remains the same for each measured posture is exploited
to compute the updated value of L. Postures are computed
with updated identification parameters and then L is updated
by minimizing the error in computed lengths. The loop of
figure 4 is modified to update L at later stage as shown in
figure 5. The nonlinear optimization function, “lsqnonlin”,
of the MATLAB optimization toolbox is used to find the
updated value of L.

4. SIMULATIONS AND RESULTS
To study the validity and effectiveness of the proposed
calibration device and procedure, computer simulations have
been performed. For simulations, four sets of geometrical
parameters are used. The first set defines the exact geometric
parameters and is used to generate the measurement data.
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Fig. 5. Modified identification loop.

The other sets are used as nominal geometric parameters that
should be calibrated. Table I gives the exact values of the
geometric parameters and Table II shows the errors in the

Table I. The Exact geometric parameters.

# 1 2 3 4 5 6

Aox −735.9 −841.8 −110.1 110.2 839.7 729.7
Aoy −552.2 −358.9 899.1 897.2 −355.6 −546.3
Aoz 261.4 259.9 253.4 251.8 256.3 253.9
Bx −61.1 −170.8 −110.2 109.8 173.8 63.7
By −161.7 28.8 137.1 137.2 28.8 −161.7
Bz −16.1 −16.2 −16.1 −15.8 −16.1 −016.2
� 994.7 994.8 994.6 994.7 994.8 994.7
ax 750.2 749.8 0.2 −0.2 −749.7 −750.3
ay 433.2 432.7 −866.2 −866.3 432.9 432.7

Table II. Errors in the nominal parameters.

Parameters Maximum Mean σ

Nominal Set 1 1.8 0.8 0.87
Nominal Set 2 2.8 1.33 1.45
Nominal Set 3 9.2 4.99 5.28

nominal sets used. Note that all dimensions in Table I and
Table II are linear and are measured in millimeters. Exact
values for the L and γ used are 750 mm and 90◦. Nominal
values of L used for three nominal sets are 749.3, 750.8, and
748.7 mm respectively and the nominal values of γ used are
89.5◦, 90.7◦, and 89◦.

Postures were generated with ranges along X and Y-
axes, being ±350 millimeters from the origin. The range for

Fig. 6. Identification without noise (Nominal Set 3).
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Fig. 7. Errors comparison for kinematic chains (with measurement noise).

rotations was chosen to be ±30◦. 30 postures were selected
for calibration computations when the measurement noise
was not considered, and 60 postures were used for the
case of noisy measurements. Postures were selected from
randomly generated valid set of postures by minimizing the
condition number of the Identification Jacobian. Note that
all parameters, except the angle between the measurement
axes of the inclinometer, are linear. The condition number
for the selected postures was around 900. QR analyses of
the identification Jacobian showed that all of the parameters
were identifiable.

Figures 6 shows the initial and the final errors for individual
parameters for the third nominal set when measurement noise
is not considered. In the figure, initial and final errors are
represented, respectively, by the distance of ‘�’ and ‘×’ from
the datum (0-line). Note that the final errors’ marks appear on
the datum line revealing that all parameters are identifiable.
Identification with other nominal sets shows the same trend.
Therefore, it can be concluded that identification is robust
against the initial errors.

Uniformly distributed random noise was added to the exact
measurements, including the articular variables, the rotary
sensor measurements and the angles measured by inclino-
meters, to study noise effects. For angular measurements,
a noise of 0.005 degree was added to the exact values.
Note that this value of measurement noise is higher than
the values considered in references [9] and [11]. For the
articular variables, different levels of measurement noise
were simulated. Figure 7 compares errors in the kinematic
chains before and after calibration for different values of

Table III. Effects of measurement noise.

Error after Calibration

Initial Error 5 µ 10 µ 50 µ 100 µ

Position 2.39 mm 27.45 µ 53.6 µ 157.8 µ 241.4 µ
Orientation 0.61◦ 0.013◦ 0.012◦ 0.044◦ 0.069◦

measurement noise, and Table III compares the mean values
of the errors in position and orientation for 50 randomly
selected postures. Note that the height of bar in figure 7
represents norm of the errors for the corresponding kinematic
chain. The nominal set 2 was used for the results shown
below. Results show that even with high values of measure-
ment noise, 100 micron, the improvement in accuracy is
about 10 times.

5. CONCLUSIONS
A new measurement device is proposed for the calibration
of parallel manipulators that can identify all kinematic
parameters with partial pose measurements. The formulation
for the calibration scheme, using the proposed device, is
discussed for a six degree-of-freedom fully parallel Hexa
Slide manipulator. The device, however, is general and can be
used for other parallel manipulators. Computer simulations
show that the calibration results are robust against errors in
the initial guess and that errors can be significantly reduced
by the proposed calibration device and procedure.
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