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This paper presents a new class of solutions for steady nonlinear capillary waves on a curved

sheet of fluid in the plane. The solutions are exact in that the free surfaces of the sheet and

the associated flow field can be found in closed form. The solutions are generalizations of

the classic solutions for finite amplitude waves on fluid sheets [5] to the case where the fluid

sheets are curved.

1 Introduction

The study of irrotational flows involving free capillary surfaces is a fluid dynamical

problem of classical interest. Lord Rayleigh [9] studied the effects of capillarity on jets

of fluid although his investigations were restricted to infinitesimal waves. In a recent

paper, Crowdy [2] described a new mathematical approach to the study of finding finite

amplitude solutions to free surface problems involving Euler flows with surface tension

and retrieved the classic exact results of Crapper [1] and Kinnersley [5] using a method

which is general enough in scope to produce many other classes of exact solutions to

related problems [3, 4].

This paper presents a new class of solutions for steady nonlinear capillary waves on

a curved sheet of fluid in the plane. These are obtained by generalizing some recently-

derived exact solutions for steady capillary waves on an annulus of fluid [4]. The solutions

are intimately related to the classic exact solutions for waves on fluid sheets derived by

Kinnersley [5] and indeed can be viewed as finite amplitude capillary waves on fluid

sheets which are not ‘straight’ (as in Kinnersley’s case) but ‘curved’.

The principal purpose of this paper is to present a new class of non-trivial exact

solutions to a highly nonlinear free boundary problem, variants of which have received

much attention in the literature. Only a few other exact solutions to this class of problems

are known besides those of Crapper [1], Kinnersley [5] and Crowdy [2, 14, 4]. In 1955,

McLeod [7] found an isolated exact solution for a bubble in a uniform flow, while Longuet-

Higgins [6] lists several other special cases. The solutions presented here represent a rare

example of exact solutions to a free boundary problem involving two interacting free

surfaces (the fluid regions considered here are doubly-connected and are bounded by two

disjoint free surfaces).

We are not currently aware of any physical problem in which the solutions in the

geometry considered here might have any direct application, so we concentrate here on

https://doi.org/10.1017/S0956792501004612 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792501004612


690 D. Crowdy

presenting the mathematical solutions as an example of the use of complex variable

methods in the study of free boundary problems. Given the highly nonlinear nature of

the problem, we feel that it is important to document any known exact solutions. The fact

that the solutions are non-trivial means that they can provide important benchmarks for

checking numerical codes designed to analyse problems where additional physical effects

are introduced and exact results not available. Note also that the equations solved here

are isomorphic to those relevant to the magnetic shaping of molten metal columns [10]

– an important paradigmatic problem in various industrial continuous casting processes.

Indeed, shapes of molten metal columns displaying qualitatively similar features to those

presented in this paper are computed numerically in Shercliff [10]. Our exact solutions

will also serve as benchmark solutions in that rather separate application.

2 Mathematical formulation

To obtain solutions for steady capillary waves on curved sheets, we proceed by supposing

that the sheet ‘closes’ so that it forms a region of fluid swirling in an annular configuration.

The problem of steady capillary waves on a fluid annulus has previously been considered

in Crowdy [4], where it is shown that the problem admits a (continuous) two-parameter

family of exact solutions. In what follows, it is shown that the solutions of Crowdy [4]

are just the first in a discrete infinity of such two-parameter families of exact solutions.

This generalization is important in that it results in a class of solutions to the problem

of capillary waves on fluid annuli which are much more diverse and flexible than those

already presented in Crowdy [4]. For example, by taking suitable choices of parameters

in the solutions presented here, it turns out that we can generate solutions for capillary

waves on very thin fluid annuli and, in § 4, we consider just half such an annulus (which

still constitutes a global equilibrium of the equations) as a model of a planar fluid ‘jet’

in equilibrium under the effects of surface tension. We point out that the exact solutions

presented in Crowdy [4] did not permit any solutions of this kind (i.e. solutions involving

very thin annuli). In addition, the solutions of Crowdy [4] correspond to situations in

which the coefficients of surface tension on the two free boundaries are rather different.

The generalized solutions herein include classes of solution where the ratio of the surface

tension coefficients can draw very close to unity – a much more physically-realistic

scenario.

Introduce a conformal map z(ζ) from the annulus ρ < |ζ| < 1 in a parametric ζ-plane

to the fluid annulus (see Figure 1). For convenience, the annulus ρ < |ζ| < 1 will be

referred to as C0. Because it will be needed later in the analysis, the annulus 1 < |ζ| < ρ−1

is denoted C1. The circle |ζ| = 1 is taken to map to the outer interface of the fluid annulus

while |ζ| = ρ maps to the inner interface.

The flow is assumed to be irrotational so that a complex potential w(z) can be introduced

in the usual way. Define the composite function

W (ζ) = w(z(ζ)). (2.1)

For steady equilibrium, the kinematic condition that the two boundaries of the annulus
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ρ 1

Figure 1. Parametric ζ-plane.

are streamlines can be written as

ψ ≡ Im[W (ζ)] = const. (2.2)

on |ζ| = ρ and |ζ| = 1. In what follows, we seek a class of solutions in which this complex

potential is given by the special form

W (ζ) = iγ log ζ, (2.3)

for some real constant γ, which will represent a measure of how fast the fluid is swirling

in the annulus. Note that (2.3) satisfies (2.2). The dynamic boundary condition states that

on each interface the fluid pressure is balanced by the surface tension, i.e.

p− p1 = T1κ, on |ζ| = 1;

p− pρ = −Tρκ, on |ζ| = ρ,
(2.4)

where κ is the interface curvature, and p1 and pρ represent the fluid pressure outside the

fluid annulus and in the enclosed bubble, respectively, and T1 and Tρ are the respective

(constant) coefficients of surface tension. Bernoulli’s Theorem states that the dynamic

pressure of the fluid p is given by

p+
1

2

∣∣∣∣dwdz
∣∣∣∣2 = H, (2.5)

where H is a constant. Nondimensionalizing the equations for the dynamic boundary

conditions using T1, on |ζ| = 1, the Bernoulli pressure conditions can be rewritten in the

form

− d

dζ

[
ζzζ(ζ)

ζ−1z̄ζ(ζ−1)

]1/2

+ Γ1zζ =
Wζ(ζ)Wζ(ζ

−1)

2z̄ζ(ζ−1)
, (2.6)

while on |ζ| = ρ it takes the form

β
d

dζ

[
ζzζ(ζ)

ρ2ζ−1z̄ζ(ρ2ζ−1)

]1/2

+ Γρzζ =
Wζ(ζ)Wζ(ρ

2ζ−1)

2z̄ζ(ρ2ζ−1)
. (2.7)
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β denotes the ratio of the surface tension coefficients on each interface

β ≡ Tρ

T1
. (2.8)

Γ1 and Γρ are constants which can be interpreted as governing the value of the constant

fluid pressures outside and inside the fluid annulus respectively. In a physical situation,

differences in the values of the surface tension parameters might be due to the presence

of different types/concentrations of surfactants on each interface or due to differences in

temperature inside and outside the annulus. Perhaps most physically useful, however, is

the case where both interfaces have the same coefficient of surface tension and we will

later show that for the ‘thin’ annuli within the class of solutions considered here, the value

of β can draw very close to unity.

To construct solutions, we follow the method presented in detail in Crowdy [4]. First

define the function S(ζ) to be a nonlinear function of z
1/2
ζ and its conjugate function z̄

1/2
ζ

by

S(ζ) ≡ − d

dζ

[
ζzζ(ζ)

ζ−1z̄ζ(ζ−1)

]1/2

+ Γ1zζ . (2.9)

In Theorem 3.1 of Crowdy [4], it is established that if, for given Γ1 and γ2, a conformal

map satisfying conditions (i)–(iv) below can be found, then a solution to the original free

boundary problem has been found. The four conditions are:

(i) z(ζ) is a univalent conformal map from C0 to the fluid region;

(ii) [zζ]
1/2 satisfies the functional equation

[zζ(ρ
2ζ)]1/2 = Ω [zζ(ζ)]

1/2, (2.10)

where Ω is some real, negative constant (to be determined);

(iii) [zζ]
1/2 is meromorphic in C1 with only simple pole singularities;

(iv) S(ζ) is analytic everywhere in C1 and satisfies the equation

S(1) =
γ2

2z̄ζ(1)
. (2.11)

These results are stated here without proof and the interested reader is referred to

Crowdy [4] for more complete details. If the solutions are such that the square root of

the derivative of the conformal map satisfies the functional relation (2.10) then in order

for (2.6) and (2.7) to be consistent, it is necessary that β and Γρ be given by the following

algebraic equations:

β = − 1

Ωρ
,

Γ1

Γρ
= ρ2Ω2.

(2.12)

Because β must be positive, it is clear from (2.12) that only solutions in which Ω is real

and negative are physically admissible.
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3 Exact solutions

We now use the conditions (i)–(iv) in a constructive way to produce solutions. Condition

(iii) dictates that [zζ]
1/2 has only simple pole singularities in C1 so we attempt to seek

a solution in which [zζ]
1/2 has a finite number N > 2 of simple poles where N is some

integer. Solutions in the special case N = 2 have already been found in Crowdy [4],

where the question of the existence of solutions in which N > 2 was left open. We

now demonstrate by explicit construction that such solutions exist. The new solutions

correspond to solutions in which each interface has an order-N rotational symmetry. The

question of existence of solutions without such symmetry is not addressed here and remains

open. The constructive methods of Crowdy [4] are, it is emphasized, still applicable to

solutions without symmetry.

Because we seek solutions with rotational symmetry, we expect the singularities and

zeros of the derivative of the conformal map to be distributed in the complex plane with

the same rotational symmetry. To exploit this symmetry maximally, it is convenient to

define two functions PN(ζ; ρ) and QN(ζ; ρ) via the infinite product expansions:

PN(ζ; ρ) = (1− ζN)

∞∏
k=1

(1− ρ2kNζN)(1− ρ2kNζ−N), (3.1)

QN(ζ; ρ) = (1 + ζN)

∞∏
k=1

(1 + ρ2kNζN)(1 + ρ2kNζ−N). (3.2)

These functions are analytic everywhere in the complex ζ-plane except at zero and infinity.

It can be shown by direct manipulation of these infinite product expansions that PN(ζ)

and QN(ζ) satisfy the functional equations:

PN(ζ−1) = PN(ρ2ζ) = − 1

ζN
PN(ζ),

QN(ζ−1) = QN(ρ2ζ) =
1

ζN
QN(ζ).

(3.3)

Now define the derivative of a conformal map by

zζ(ζ) = R̂

(
QN( ζ

αζ1
); ρ)

PN( ζ
ζ1

); ρ)

)2

, (3.4)

where α, R̂ and ζ1 are real constants and where 1 < ζ1 < ρ−1 while α is assumed to be

positive. Consider the singularity structure of this map in the annulus C1. The function

(3.4) has N second-order poles at points in C1 all having modulus ζ1 and with arguments

of the Nth roots of unity. Similarly, this function has precisely N zeros in C1 all having

modulus αζ1 (it will be assumed that α is such that 1 < αζ1 < ρ−1) and with arguments

of the Nth roots of −1.

It remains to find α. For any given ζ1, ρ and R̂, the constant α is chosen so that it is a

real solution of the nonlinear algebraic equation given by

Residue[zζ(ζ); ζ1] = 0, (3.5)

where the notation denotes the residue of zζ(ζ) at ζ = ζ1. This equation is clearly
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independent of R̂, but appears to depend upon all three of the remaining parameters ζ1, ρ

and N. In fact, solutions to this equation turn out to be independent of ζ1, but depend

only on ρ and N. This fact is most easily seen in the case when ρ = 0 (corresponding to a

simply-connected blob of fluid containing a line vortex – see Crowdy [3] for more details

of this problem) where it can be shown that the solution of (3.5) for α is

α =

(
N + 1

N − 1

)1/N

. (3.6)

In the general case, α is a function of ρ and N, i.e. α = α(ρ,N). The analytical solution (3.6)

will be used later to check the results of a Newton iterative procedure used to calculate

solutions for α when ρ� 0.

Now define an auxiliary function P̂N(ζ; ρ) via the infinite product expansion

P̂N(ζ; ρ) =

N−1∏
j=1

(1− ζωj
N)

∞∏
k=1

(1− ρ2kNζN)(1− ρ2kNζ−N), (3.7)

where ωN = e
2πi
N . Then, for any given ζ1, ρ and R̂ (with α given as a real solution of (3.5))

we set Γ1 to be given by the formula

Γ1 =
P̂N(1; ρ)

R̂QN(α−1; ρ)z̄
1/2
ζ (ζ−1

1 )
, (3.8)

and we set γ2 to be given by

γ2 = 2z̄ζ(1)S(1). (3.9)

Note that both quantities Γ1 and γ2 are real, as required. Provided (3.5) and (3.8) are

satisfied, it can be shown that the composite function S(ζ) is analytic at all the poles of zζ
in C1, i.e. the two conditions (3.5) and (3.8) together imply that the principal part of S(ζ)

at ζ1ω
j
N , j = 0, 1, . . . , N − 1 vanishes. This is a necessary condition for solution because

S(ζ) must be analytic at these points (see condition (iv) above). Using the properties (3.3),

it can further be shown that (3.4) satisfies the functional equation (2.10) with the choice

Ω = −αN. (3.10)

If α is real and positive (as supposed above) then Ω is real and negative as required

for a physically admissible solution. (We note in passing that functions satisfying the

multiplicative property (2.10) in the case where Ω = 1 are known as loxodromic functions

and the present analysis is based on ideas and generalizations of the general theory of

such functions. For a general discussion of loxodromic functions see Valiron [13] and a

useful appendix in Richardson [8]). Next, provided that γ2 is given by the formula (3.9)

then (2.11) will be satisfied, as also required for a consistent solution to the problem (see

condition (iv) above). Finally, given Γ1 and γ2, the relevant values of β and Γρ then follow

from (2.12).

We have now constructed a conformal map satisfying all the (necessary and sufficient)

conditions (ii)–(iv) for a consistent solution to the original problem. It only remains to

check condition (i), i.e. that the primitive of (3.4) is a univalent conformal map from C0 to

the annular fluid domain. Even if all the above equations can be solved for a given ζ1 and
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ρ, this final requirement may not hold and the solution for such a choice of parameters

ζ1 and ρ will therefore be physically inadmissible.

3.1 Primitive of (3.4)

To check for univalency of the mapping function and to actually plot the two interfaces,

it is necessary to integrate (3.4) to find z(ζ). Remarkably, a closed-form formula can be

found for the primitive of (3.4). Consider the conformal map z(ζ) given by

z(ζ) = Rζ
PN( ζ

α2ζ1
); ρ)

PN( ζ
ζ1

); ρ)
, (3.11)

where R is a real constant which is not independent of α, ζ1 and R but is given by the

equation

R̂ = −R
(
PN(α−2; ρ)P ′N(1; ρ)

[Q(α−1; ρ)]2

)
, (3.12)

where P ′N(ζ; ρ) denotes the derivative of PN(ζ; ρ) with respect to ζ. (3.11) is an analytical

expression for the primitive of (3.4).

Irrespective of the details of the method of construction of the solutions, the fact

that the formulae just obtained represent solutions of the original physical problem can

be verified directly by substitution of the exact formulae into the boundary conditions

(2.6)–(2.7). This was done (using Mathematica) as an explicit check on the solutions.

3.2 Summary of the exact solutions

Provided the area of the fluid annulus is specified, a continuous two parameter family

of exact solutions has thus been found for each integer N > 2. The solutions are most

conveniently parametrized by ζ1 and ρ. The conformal map from C0 is given by (3.11).

The parameter α is determined as the real solution to (3.5) (provided such a solution

exists). The constant R can be determined (as a function of ζ1, ρ and N) by (arbitrarily)

specifying the area of the blob to be π, i.e. by imposing that

π =
1

2
Im

[∮
|ζ|=1

z̄(ζ−1)zζ(ζ)dζ −
∮
|ζ|=ρ

z̄(ρ2ζ−1)zζ(ζ)dζ

]
. (3.13)

Given ζ1, ρ and N, and with R and α determined in the way just described, the corre-

sponding Γ1 and γ2 are given by the formulae (3.8) and (3.9). Γρ and β then follow from

(2.12) and (3.10).

4 Discussion of solutions

In Figure 2 the solution of (3.5) for α(ρ,N) as a function of ρ for N = 3, 4 and 10 are

plotted. These graphs are obtained by solving the nonlinear equation (3.5) using Newton’s

method. In the limit ρ → 0 the solutions are given by (3.6) as expected. The range of

ρ plotted in these graphs is approximately the range for which physically admissible
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Figure 2. Graphs of α against ρ for N = 3, 4, 10.

solutions exist – note that for given N, there appears to be a maximum value of ρ for

which (3.11) gives a univalent mapping (for any value of ζ1). It is found that for fixed

N, as ρ increases towards unity, the set of ζ1-values for which solutions exist decreases in

size until it eventually becomes empty. It is also found that, for fixed ρ, as N increases

the size of the interval of ζ1 for which solutions exist increases.
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Figure 3. N = 3, ρ = 0.5; ζ1 = 1.07, 1.15, 1.20, 1.24.

Some typical shapes of the fluid annulus are plotted in Figures 3–5 as ζ1 is altered for

fixed ρ = 0.5 in the cases N = 3, 4 and 10. It is found in general that for a given N and

ρ, there exists a range of ζ1 values for which physically admissible solutions exist. To 2

decimal places, the ranges of existence for ρ = 0.5 and N = 3, 4 and 10 are found to be

ζ1 ∈ [1.07, 1.24] (N = 3),

ζ1 ∈ [1.09, 1.43] (N = 4),

ζ1 ∈ [1.06, 1.81] (N = 10).

(4.1)

As is evident from the shapes in Figures 3–5, the cause of breakdown of the solutions

at either end of this range of existence for ζ1 is interesting: for ζ1 at the lower end of

the range of existence, solutions break down due to loss of univalency of the conformal
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Figure 4. N = 4, ρ = 0.5; ζ1 = 1.09, 1.20, 1.30, 1.435.

map in the outer interface, while for ζ1-values at the upper end of the range of existence,

breakdown is due to loss of univalency of the mapping in the inner interface. In all cases

calculated, loss of univalency occurs because separate parts of the same interface draw

together in an N-symmetric formation to enclose N small constant pressure bubbles – a

phenomenon analogous to the formation of an enclosed bubble at a critical wave-speed in

Crapper’s classic exact solution [1] for steady capillary waves on deep water. Note that, in

all cases calculated, it is never found that breakdown is due to the two different interfaces

coming into contact. We also note that, as might be expected, the shape of the enclosed

bubbles (inside the fluid annulus) exhibit the same qualitative features as observed in the

calculations of a constant pressure bubble situated in an ambient circulatory swirling flow

of infinite extent as studied in Crowdy [3] and Wegmann & Crowdy [14].
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Figure 5. N = 10, ρ = 0.5; ζ1 = 1.06, 1.20, 1.30, 1.65, 1.81.

Figure 6 shows graphs of Γ1

Γρ
and T1

Tρ
(i.e. β−1) as functions of ρ for N = 3, 4 and 10. An

important observation is that as ρ → 1−, both ratios get closer to unity. As ρ → 1−, in

general the annuli become thinner so that physically this result means that thinner annuli

of this kind can support equilibria where the surface tension coefficients and pressures on

either side of the sheet are commensurate. This important point is discussed again later.

In Figures 7–12, graphs of Γ1 and γ2 are plotted as functions of ζ1 for ρ = 0.5 and

N = 3, 4 and 10. In the case N = 3, the graph of γ2 is monotone increasing throughout

the range of existence of solutions while for N = 4 and N = 10 it is found that the graphs

of both Γ1 and γ2 have turning points at some critical ζ1 within the range of existence of

solutions (although not, in general, at the same critical value of ζ1). The turning points in
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Figure 6. Graphs of Γ1
Γρ

and T1
Tρ

against ρ for N = 3, 4, 10.

the graphs of γ2 suggest a non-uniqueness in the specification of solutions. For example,

it is physically sensible to specify the parameters β and γ2. Specifying the surface tension

ratio β is essentially equivalent, via equation (2.12), to specifying ρ. Specifying γ2 can be

considered equivalent to specifying a pole position ζ1. However, the graphs show that for

a specified γ2 there appears to exist two distinct equilbrium shapes (for a fluid annulus

https://doi.org/10.1017/S0956792501004612 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792501004612


Steady nonlinear capillary waves on curved sheets 701

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
1.7345

1.735

1.7355

1.736

1.7365

1.737

1.7375

1.738

1.7385

1.739

1.7395

Plot of Γ
1
 against ζ

1

ζ
1

Γ 1

Figure 7. Graph of Γ1 against ζ1 for ρ = 0.5, N = 3.

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Plot of γ2 against ζ
1

ζ
1

γ2

Figure 8. Graph of γ2 against ζ1 for ρ = 0.5, N = 3.

of area π) with any given order of rotational symmetry N > 4. Each of these two shapes

has its own value of Γ1.

Finally, in Figures 13–15 some typical streamlines inside the fluid annulus are shown.

In these diagrams the innermost and outermost streamlines (shown in bold) are the

boundaries of the fluid annulus.

https://doi.org/10.1017/S0956792501004612 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792501004612


702 D. Crowdy

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
2.02

2.03

2.04

2.05

2.06

2.07

2.08

2.09

ζ
1

Γ 1

Plot of Γ
1
 against ζ

1

N=4

Figure 9. Graph of Γ1 against ζ1 for ρ = 0.5, N = 4.
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Figure 10. Graph of γ2 against ζ1 for ρ = 0.5, N = 4.

4.1 Solutions with ρ = 0

In the case ρ = 0 we obtain exact solutions to a rather different physical problem in

which an irrotational swirling flow is induced in a simply-connected blob of fluid by

a line vortex singularity actually situated inside the droplet of fluid. This particular

mathematical problem was considered in Crowdy [3] as a model of circulation-induced

shape deformations in free drops and exact solutions found corresponding to the case
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Figure 11. Graph of Γ1 against ζ1 for ρ = 0.5, N = 10.
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Figure 12. Graph of γ2 against ζ1 for ρ = 0.5, N = 10.

N = 2. The question of existence of solutions to this problem for N > 2 was left open in

Crowdy [3]. Taking ρ = 0 in the solutions above provides an affirmative (and constructive)

answer to this open question of existence. Exact solutions to this problem exist for all

integers N > 2.
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Figure 13. Typical streamlines: N = 4, ρ = 0.5, ζ1 = 1.3.

Figure 14. Typical streamlines: N = 10, ρ = 0.5, ζ1 = 1.2.

Figure 15. Typical streamlines: N = 10, ρ = 0.5, ζ1 = 1.81.
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Figure 16. Streamlines of thin curved jet: N = 60, ρ = 0.9, ζ1 = 1.05.

4.2 Curved jets: ρ→ 1−

In the limit as ρ → 1−, the width of the fluid annulus becomes small. In this limit, the

solutions just found can be interpreted as ‘curved sheets of fluid’ or ‘curved jets’ in the

plane. We note here that a well-known example of curved sheets of fluid in equilibrium

where the effects of surface tension are important is the phenomenon known as a ‘water

bell’ [11, 12].

If we take N large in the solutions just obtained and plot only ‘half’ a fluid annulus (so

that the solutions more closely resemble ‘jets’ of fluid) then it turns out to be possible to

find solutions in which ρ gets close to unity and produces solutions for relatively thin jets

of fluid. Two example plots for the cases N = 60 and N = 100 are shown in Figures 16 and

17. The solutions shown in Figures 16 and 17 appear to be very close to the geometrically

trivial case of two concentric circles forming a thin annulus of fluid. Indeed, such a

configuration is perhaps a more obvious solution to the problem of a steady, thin, curved

planar jet with capillarity. Such a geometrically trivial configuration is indeed a possible

equilibrium solution of the governing equations. In this case, the relevant conformal map
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Figure 17. Streamlines of thin curved jet: N = 100, ρ = 0.97, ζ1 = 1.015.

from C0 is simply z(ζ) = ζ. The two dynamic boundary conditions require that

−1 + Γ1 =
γ2

2
,

β

ρ
+ Γρ =

γ2

2ρ2
.

(4.2)

These equations imply

Γ1 − ρ2Γρ = 1 + βρ, (4.3)

so that in the case where the surface tension coefficients on the two interfaces are the

same (i.e. β = 1) and the thickness of the annulus gets very small (i.e. ρ→ 1−) then

Γ1 − Γρ → 2, (4.4)

i.e. the two constant pressure regions on either side of the thin jet must have different

pressures if the annulus is to be in equilibrium.

On the other hand, for certain choices of the parameters, the geometrically nontrivial
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Figure 18. Conformal map (3.11) for N = 80, ρ = 0.9, ζ1 = 1.05: the shape is virtually

indistinguishable from two concentric circles of radii 0.9 and 1.0.

solutions just obtained become indistinguishably close to the annulus ρ < |ζ| < 1 in

the limit as N → ∞. In Figure 18 we plot the conformal map (3.11) for the choice

N = 80, ρ = 0.9 and ζ1 = 1.05. The resulting shape is virtually indistinguishable (at least

within a ‘picture norm’) from the trivial case of an annulus consisting of two concentric

circles of radius 0.9 and 1. Note the crucial point, however, that the curvature of the

interfaces in the nontrivial solutions (in Figure 18, for example) is not constant (as in the

annulus case consisting of two concentric circles), but is such that the ratios Γ1

Γρ
and T1

Tρ

are relatively close to unity. That this happens in general as N gets large is clear from

the graphs in Figure 6. Specifically, for the curved jet solution illustrated in Figure 16

for the parameter values N = 60, ρ = 0.9 and ζ1 = 1.05 the corresponding value of T1

Tρ

(correct to 2 decimal places) is 0.93 while Γ1

Γρ
= 0.87 (correct to 2 d.p.) while in Figure 17,

which shows the case where N = 100, ρ = 0.97, ζ1 = 1.015, the corresponding values are
T1

Tρ
= 0.99 and Γ1

Γρ
= 0.98 (to 2 d.p.) which are very close to unity.

The new solutions therefore seem to provide more satisfactory mathematical models

for planar fluid jets in equilibrium under the effects of surface tension than the trivial

concentric annulus solution. It might be concluded from our results that capillary waves

are a necessary feature for force balance on the surface of a thin fluid jet if it is to form

a steady structure on both sides of which the ambient pressures are commensurate.

5 Final remarks

Kinnersley [5] identified a class of ‘symmetric’ and ‘anti-symmetric’ waves on straight

fluid sheets which have no global radius of curvature (as in the solutions found here). As

discussed in Crowdy [4], the solutions here are the natural analogues of the ‘symmetric’

class of waves in Kinnersley [5]. It is likely (although, in a nonlinear problem of this kind,

by no means guaranteed) that there also exist analogues of the anti-symmetric solutions

in the case of curved fluid sheets. To find such solutions, allowance must be made for
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a possible ‘phase shift’ in the two surface waves. To incorporate this mathematically, it

might be more convenient to adopt an approach using elliptic function conformal maps

from a fundamental parallelogram in the spirit of Kinnersley’s original analysis. We have

not yet succeeded in finding any such anti-symmetric analogues for waves on fluid annuli.

The question of the linear stability of the new solutions is clearly important but requires

detailed numerical investigation and is beyond the scope of the present paper. Another

question is whether this problem admits any classes of unsteady, time-evolving exact

solutions. Such solutions might help in understanding the problem of inviscid capillary

pinch-off. Preliminary investigations show this to be unlikely, although research continues

into this interesting possibility.

Acknowledgements

The author gratefully acknowledges financial support from the Nuffield Foundation and

the National Science Foundation (Grant Numbers NSF-DMS-9803167 & NSF-DMS-

9803358). The author wishes to thank Dr A. J. Mestel for bringing reference [10] to his

attention.

References

[1] Crapper, G. D. (1957) An exact solution for progressive capillary waves of arbitrary amplitude.

J. Fluid Mech., 2, 532–540.

[2] Crowdy, D. G. (2000) A new approach to free surface Euler flows with surface tension. Stud.

Appl. Math., 105, 35.

[3] Crowdy, D. G. (1999) Circulation-induced shape deformations of drops and bubbles: exact

two-dimensional models. Phys. Fluids, 11(10), 2836–2845.

[4] Crowdy, D. G. (1999) Exact solutions for capillary waves on a fluid annulus. J. Nonlin. Sci.,

9, 615–640.

[5] Kinnersley, W. (1977) Exact large amplitude capillary waves on sheets of fluid. J. Fluid Mech.,

77, 229–241.

[6] Longuet-Higgins, M. S. (1988) Limiting forms of capillary-gravity waves. J. Fluid Mech., 194,

351.

[7] McLeod Jr., E. B. (1955) The explicit solution of a free boundary problem involving surface

tension. J. Rat. Mech. Anal., 4, 557.

[8] Richardson, S. (1996) Hele-Shaw flows with time-dependent free boundaries involving a

concentric annulus. Phil. Trans. Roy. Soc. Lond. A, 353, 2513.

[9] Rayleigh, Lord (1879) On the capillary phenomena of jets. Proc. Roy. Soc., 29, 71–97.

[10] Shercliff, J. A. (1981) Magnetic shaping of molten metal colunms. Proc. Roy. Soc. Lond., 375,

455.

[11] Taylor, G. I. (1953) The dynamics of thin sheets of fluid I; water bells. Proc. Roy. Soc. Lond.,

253, 289–295.

[12] Taylor, G. I. (1953) The dynamics of thin sheets of fluid II; waves on fluid sheets. Proc. Roy.

Soc. Lond., 253, 296–312.

[13] Valiron, G. (1947) Cours d’Analyse Mathematique: Theorie des Fonctions, 2nd Ed. Masson et

Cie, Paris.

[14] Wegmann, R. & Crowdy, D. G. (2000) Shapes of two-dimensional bubbles deformed by

circulation. Nonlinearity, 13, 2131.

https://doi.org/10.1017/S0956792501004612 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792501004612

