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Abstract

We consider positive zero-sum stochastic games with countable state and action spaces.
For each player, we provide a characterization of those strategies that are optimal in every
subgame. These characterizations are used to prove two simplification results. We show
that if player 2 has an optimal strategy then he/she also has a stationary optimal strategy,
and prove the same for player 1 under the assumption that the state space and player 2’s
action space are finite.
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1. Introduction

Zero-sum stochastic games are two-player dynamic games in which the two players have
completely opposite interests and in which the actions chosen by the players in each period
influence not only the reward in the period but also a state variable. A zero-sum stochastic game
is called positive if the reward function is nonnegative and player 1 tries to maximize while
player 2 tries to minimize the sum of the rewards during play.

We examine optimal strategies in positive zero-sum stochastic games with countable state and
action spaces. For each player, we provide a characterization of those strategies that are optimal
in each subgame. By using these characterizations, we prove the following simplification
results. We show that if player 2 has an optimal strategy then he/she also has a stationary
optimal strategy. We prove the same for player 1 under the restriction that the state space and
player 2’s action space are finite. Our construction does not require the knowledge of an optimal
strategy, only its existence. The results directly transfer to negative zero-sum stochastic games
when the roles of the players are reversed.

1.1. Related literature

For an overview of the literature on positive stochastic games and negative stochastic games,
we refer the reader to the recent survey by Jaśkiewicz and Nowak (2016). For further reading,
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see, in particular, Maitra and Parthasarathy (1971), Parthasarathy (1971), (1973), Frid (1974),
Nowak (1985), Nowak and Raghavan (1991), and Maitra and Sudderth (1996).

Simplification results similar to those presented in this paper have appeared in the context
of zero-sum stochastic games with average payoff (see Flesch et al. (1998)), limsup payoff
and liminf payoff (see Flesch et al. (2016)), but also in the literature of gambling and dynamic
programming. Dubins and Savage (1965) showed that for a (one-person) gambling problem
with a finite state space and limsup payoff, the existence of an optimal strategy implies the
existence of a stationary optimal strategy. Blackwell (1970) proved the same result for positive
dynamic programming with a countable state space. There is also a generalization to a Borel
measurable setting by Orkin (1974). In the context of negative dynamic programming, Strauch
(1966) presented such a simplification. Recently, Sudderth (2016) showed that for gambling
problems with a countable state space and limsup payoff as well as for gambling problems with
a finite state space and liminf payoff, the existence of an optimal strategy implies the existence
of a Markov optimal strategy. A strategy is called Markov if the prescribed mixed actions
depend only on the current state and on the current time period, but not directly on the past
states and actions.

The paper is organized as follows. In Section 2 we introduce the model, and in Section 3
we discuss some preliminaries. In Section 4 we summarize the results. The proofs are stated
in Section 5. An example and some final remarks are contained in Section 6.

2. The model

2.1. Positive zero-sum stochastic games

We consider positive zero-sum stochastic games with countable state and action spaces.
Such a game is played by two players, and has the following properties:

• a nonempty and countable state space S,

• for each state s ∈ S, nonempty and countable action spaces A(s) and B(s) for player 1
and player 2, respectively,

• for each state s ∈ S and actions a ∈ A(s), b ∈ B(s), a probability measure p(s, a, b) =
p(s′ | s, a, b)s′∈S on S, and

• a nonnegative reward function r : Z → [0, ∞), where Z = {(s, a, b) | s ∈ S, a ∈
A(s), b ∈ B(s)}.

The game is played at periods in N = {0, 1, . . .} and begins in an initial state s0 ∈ S. At every
period t ∈ N, the play is in a state st ∈ S. In this state, player 1 chooses an action at ∈ A(st )

and simultaneously player 2 chooses an action bt ∈ B(st ). Then, with zt = (st , at , bt ), player 1
receives reward r(zt ) from player 2, and state st+1 is drawn in accordance with the probability
measure p(zt ). Thus, play induces an infinite sequence (z0, z1, . . .) in Z. The payoff is

u(z0, z1, . . .) =
∞∑
t=0

r(zt ).

The payoff takes values in [0, ∞] and is paid by player 2 to player 1. Player 1’s objective is to
maximize the expected value of the payoff given by u, and player 2’s objective is to minimize it.
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2.2. Strategies

The set of histories at period t is denoted by Ht . Thus, H0 = S and Ht = Zt × S for every
period t ≥ 1. Let H = ⋃

t∈N
Ht denote the set of all histories. For each history h, let sh denote

the final state in h.
A mixed action for player 1 in state s ∈ S is a probability measure x(s) on A(s). Similarly, a

mixed action for player 2 in state s ∈ S is a probability measure y(s) on B(s). The respective sets
of mixed actions in state s are denoted by X(s) and Y (s). The support of a mixed action x(s),
denoted by supp(x(s)), is the set of actions that are played with positive probability by x(s),
i.e. supp(x(s)) = {a ∈ A(s) | x(s)(a) > 0}. The support of a mixed action for player 2 is
defined similarly.

A strategy for player 1 is a map π that assigns to every history h ∈ H a mixed action
π(h) ∈ X(sh). Similarly, a strategy for player 2 is a map σ that to each history h ∈ H assigns
a mixed action σ(h) ∈ Y (sh). The set of strategies is denoted by � for player 1 and by � for
player 2. A strategy is called pure if it places probability 1 on one action after each history.

A strategy is called stationary if the assigned mixed actions only depend on the history
through its final state. Thus, a stationary strategy for player 1 can be seen as an element x

of X := xs∈SX(s). Similarly, a stationary strategy for player 2 can be seen as an element y

of Y := xs∈SY (s). A pair of stationary strategies (x, y) induces a Markov chain on the state
space S. A nonempty set E ⊆ S is called ergodic with respect to (x, y) if starting in any state
in E, the probability that the Markov chain eventually visits every state in E and never leaves E

is 1.
An initial state s ∈ S and a pair of strategies (π, σ ) ∈ � × � determine the distribution

Ps,π,σ of the stochastic process (z0, z1, . . .). We denote the expected payoff Es,π,σ [∑∞
t=0r(zt )]

by u(s, π, σ ).

2.3. Value and optimality

The game is said to have a value for initial state s ∈ S if

sup
π∈�

inf
σ∈�

u(s, π, σ ) = inf
σ∈�

sup
π∈�

u(s, π, σ ).

If the value exists for initial state s ∈ S, we denote it by v(s). In that case, for ε ≥ 0, a strategy
π ∈ � for player 1 is called ε-optimal for initial state s if u(s, π, σ ) ≥ v(s) − ε for every
strategy σ ∈ � for player 2. Similarly, a strategy σ ∈ � for player 2 is called ε-optimal for
initial state s if u(s, π, σ ) ≤ v(s)+ε for every strategy π ∈ � for player 1. A strategy is called
ε-optimal if it is ε-optimal for every initial state. Note that if the value exists for every initial
state, each player has an ε-optimal strategy for every ε > 0. A 0-optimal strategy is simply
called optimal.

As is well known, the value in general does not exist, with a typical example being as follows:
there is a state with action space N for each player, in which the reward function is 1 if player 1’s
action is greater than player 2’s action and is 0 otherwise. From this state, regardless of the
chosen actions, the transition is to an absorbing state where the reward is 0.

Since we are interested in optimal strategies, and since we can only speak of optimality if
the value exists, we make the following assumption.

Assumption 1. Value v(s) exists and is finite for every initial state s ∈ S.
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2.4. Subgame optimality

Consider a strategy π ∈ � for player 1 and a sequence g ∈ Zt for some t ∈ N (for t = 0,
g is the empty sequence). The continuation strategy π [g] is the strategy in � given, for every
history h ∈ H , by π [g](h) = π(gh), where gh denotes the concatenation of g and h.

A strategy π ∈ � for player 1 is called subgame optimal if π [g] is optimal for every g ∈ Zt

and t ∈ N. Continuation strategies and subgame-optimal strategies for player 2 are defined
analogously.

Note that every subgame-optimal strategy is optimal. The converse holds for stationary
strategies: a stationary optimal strategy is always subgame optimal.

For a history h ending with a state s, we can also define in an obvious way the continuation
strategy π [h] for the state s.

2.5. Negative zero-sum stochastic games

Negative zero-sum stochastic games are defined similarly, but with a nonpositive reward
function r : Z → (−∞, 0].

3. Preliminaries

3.1. The one-day games

For each state s ∈ S, we consider a matrix game M(s) with countable action spaces.
This matrix game is fundamental and frequently used in the analysis of stochastic games.

Let s ∈ S. The matrix game M(s) is defined as follows. The sets of actions are A(s) and B(s)

for players 1 and 2, respectively, and the payoff for each pair of actions (a, b) ∈ A(s)×B(s) is

uM(s, a, b) := r(s, a, b) +
∑
s′∈S

p(s′ | s, a, b) · v(s′).

Intuitively, uM(s, a, b) is the sum of the current reward and the expectation of the value after
transition in the original game G, when the players play actions a and b in state s. For mixed
actions x(s) ∈ X(s) and y(s) ∈ Y (s), as usual, uM(s, x(s), y(s)) denotes the expected payoff
in the matrix game M(s).

The following property of the matrix game M(s) is well known, but for completeness we
provide a short proof.

Claim A. Let ε ≥ 0. If π is an ε-optimal strategy for player 1 in game G for the initial state s

then uM(s, π(s), y(s)) ≥ v(s)− ε holds for every y(s) ∈ Y (s), where π(s) is the mixed action
that π prescribes for the initial state s. Similarly, if σ is an ε-optimal strategy for player 2 in
game G for the initial state s then uM(s, x(s), σ (s)) ≤ v(s) + ε holds for every x(s) ∈ X(s).

Proof. We only prove the first part of the claim, the proof of the second part being similar.
Let π be an ε-optimal strategy for player 1 in game G for the initial state s = s0. Take any
y(s) ∈ Y (s). Let δ > 0, and let σ be a strategy for player 2 such that σ(s) = y(s) and let the
continuation strategy σ [s, a, b] beδ-optimal for every a ∈ A(s) and b ∈ B(s). Then

v(s) − ε ≤ u(s, π, σ )

= Es,π,σ [r(s0, a0, b0)] + Es,π,σ

[ ∞∑
t=1

r(st , at , bt )

]

≤ Es,π,σ [r(s0, a0, b0)] + Es,π,σ [v(s1) + δ]
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= Es,π,σ [r(s0, a0, b0) + v(s1)] + δ

= uM(s, π(s), y(s)) + δ.

Since δ > 0 is arbitrary, we have proved uM(s, π(s), y(s)) ≥ v(s) − ε. �
Since each player has an ε-optimal strategy in game G for every ε > 0, it follows from

Claim A that the value of the matrix game M(s) exists and is equal to v(s), i.e.

v(s) = sup
x(s)∈X(s)

inf
y(s)∈Y (s)

uM(s, x(s), y(s)) = inf
y(s)∈Y (s)

sup
x(s)∈X(s)

uM(s, x(s), y(s)).

In the matrix game M(s), we define

X∗(s) := {x(s) ∈ X(s) | uM(s, x(s), y(s)) ≥ v(s) for all y(s) ∈ Y (s)},
Y ∗(s) := {y(s) ∈ Y (s) | uM(s, x(s), y(s)) ≤ v(s) for all x(s) ∈ X(s)}.

The sets X∗(s) and Y ∗(s) consist of all mixed actions for player 1 and player 2, respectively,
that are optimal in the matrix game M(s). The set X∗(s) is convex. Furthermore, it is nonempty
if A(s) is finite, but it may be empty if A(s) is infinite. Similar properties hold for the set Y ∗(s).

Whenever X∗(s) 
= ∅, we define

A∗(s) := {a ∈ A(s) | x(s)(a) > 0 for some x(s) ∈ X∗(s)} =
⋃

x(s)∈X∗(s)
supp(x(s)),

and
X∗∗(s) := {x(s) ∈ X∗(s) | x(s)(a) > 0 for all a ∈ A∗(s)}

= {x(s) ∈ X∗(s) | supp(x(s)) = A∗(s)}.
The set A∗(s) consists of all actions in A(s) that are used by some mixed action in X∗(s), and
the set X∗∗(s) consists of all mixed actions in X∗(s) which put positive probability on each
such action.

Claim B. If X∗(s) is nonempty then the set X∗∗(s) is also nonempty.

Indeed, suppose that X∗(s) is nonempty, then A∗(s) is nonempty. Since A∗(s) is countable,
we can list its elements in a finite or countably infinite sequence a1, a2, . . . .

Proof of Claim B. Assume that the sequence is infinite. The proof for the finite case is
similar. For each action an, choose a mixed action xn(s) ∈ X∗(s) such that xn(s)(an) > 0.
Then define the mixed action x∗(s) by setting

x∗(s)(a) =
∞∑

n=1

1

2n
xn(s)(a) for all a ∈ A(s).

Clearly, x∗(s)(a) > 0 for all a ∈ A∗(s). Also, x∗(s) ∈ X∗(s) since, for all y(s) ∈ Y (s),

uM(s, x∗(s), y(s)) =
∞∑

n=1

1

2n
uM(s, xn(s), y(s)) ≥

∞∑
n=1

1

2n
v(s) = v(s).

Hence, x∗(s) ∈ X∗∗(s) and X∗∗(s) is nonempty. �
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3.2. Specific types of strategies

Define X∗∗ = xs∈SX∗∗(s). Thus, the set X∗∗ consists of all stationary strategies for player 1
that use a mixed action in X∗∗(s) in every state s ∈ S. These stationary strategies are called
maximally mixed strategies.

In our results and analysis, a crucial role is played by the so-called locally optimal strategies.
For player 1, we call a strategy π locally optimal if, for every history h ∈ H , we have
π(h) ∈ X∗(sh). Intuitively, π is locally optimal if it only uses mixed actions optimal in the
corresponding matrix games. Clearly, every maximally mixed strategy for player 1 is locally
optimal. Locally optimal strategies are defined similarly for player 2.

Example 1. As mentioned earlier, it is known that in a positive zero-sum stochastic game, even
if the state and action spaces are finite, player 1 may have no optimal strategy; see Kumar and
Shiau (1981), Maitra and Sudderth (1996), and Jaśkiewicz and Nowak (2016). Consider the
following game.

10

01

T

B

L R

In this game, there is only one nontrivial state. In this state, player 1’s actions are T and B,
and player 2’s actions are L and R. The rewards for the corresponding action combinations
are given in the matrix. The transitions are as follows: if action combination (T , L) is chosen
then the state remains the same, but after any other action combination transition occurs to an
absorbing state where the reward is equal to 0. Clearly, player 1 can guarantee an expected
payoff of 1− ε, for any ε ∈ (0, 1), by playing the stationary strategy (1− ε, ε). Thus, the value
is equal to 1 for the nontrivial state. Yet, player 1 has no optimal strategy.

The stationary strategy (1, 0) is the unique locally optimal strategy for player 1 and, therefore,
also the unique maximally mixed strategy for him/her. This means that a locally optimal strategy
or a maximally mixed strategy for player 1 is not necessarily optimal. An additional and crucial
property is needed to ensure optimality, and this property appears as condition (ii) in Theorem 1.

4. Results

In this section we discuss our results. Recall Assumption 1 that we imposed on the positive
zero-sum stochastic game.

We start with a characterization of the strategies for player 1 that are optimal in each subgame.

Theorem 1. (Characterization of subgame-optimal strategies for player 1.) Consider a positive
zero-sum stochastic game. A strategy π for player 1 is subgame-optimal if and only if the
following two conditions are satisfied:

1. π is locally optimal, and

2. for every history h and every strategy σ for player 2, either

(a) limk→∞ Esh,π [h],σ [h][v(sk)] = 0,

(b) u(sh, π [h], σ [h]) = ∞.
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The first condition is quite intuitive. The second condition requires that, in each subgame,
the value of the state converges to 0 with probability 1, which guarantees that π accumulates
good rewards for player 1, or that the expected payoff is infinite. In view of our assumption
that the value of the game is finite for every initial state, the expected payoff will be infinite
only if player 2 chooses a bad strategy.

The two conditions on strategy π are analogous to the conditions Dubins and Savage (1965)
called ‘thrifty’ and ‘equalizing’ in their study of one-person gambling problems. We refer the
reader to Blackwell (1970) and Puterman (1994) for the connection of these two properties and
optimal strategies in Markov decision processes.

Based on the above characterization, we will prove the following simplification result for
player 1.

Theorem 2. (Simplification of optimal strategies for player 1.) Consider a positive zero-sum
stochastic game. Assume that the state space S and player 2’s action space B(s) in every
state s ∈ S are finite. If player 1 has an optimal strategy then he/she also has a stationary
optimal strategy.

In the proof we show that, under the assumptions of Theorem 2, player 1 has a maximally
mixed stationary strategy, and each such strategy is optimal. Our construction does not require
the knowledge of an optimal strategy, only its existence.

If player 2 is a dummy with only one action available at each state, the positive stochastic
game becomes a positive dynamic programming problem. For such problems, Blackwell (1970)
proved the result corresponding to Theorem 2 for countably infinite state spaces. However, the
claim of Theorem 2 is not valid in general for positive stochastic games if S is countably infinite,
as we demonstrate in Example 2 of Section 6. In that game, player 1 has an optimal strategy
but no subgame-optimal strategy, and, in particular, no stationary optimal strategy. We do not
know whether the claim of Theorem 2 remains valid in games in which the action space for
player 2 is countably infinite.

Now we turn to player 2 and provide a simple characterization of strategies of player 2 that
are optimal in each subgame. This result for player 2 is related to the work of Strauch (1966)
on negative dynamic programming.

Theorem 3. (Characterization of subgame-optimal strategies for player 2.) Consider a positive
zero-sum stochastic game. A strategy σ for player 2 is subgame-optimal if and only if σ is
locally optimal.

As we shall see, the following result is an easy corollary.

Theorem 4. (Simplification of optimal strategies for player 2.) Consider a positive zero-
sum stochastic game. If player 2 has an optimal strategy then he/she also has a stationary
optimal strategy.

Our results directly translate to negative zero-sum stochastic games. Indeed, consider a
negative zero-sum stochastic game. In this game, player 1 maximizes the sum of the nonpositive
rewards

∑∞
t=0rt . This is equivalent to minimizing

∑∞
t=0(−rt ). Since −r is a nonnegative

function, player 1 can be seen as the minimizing player in a positive zero-sum stochastic game.
Similarly, player 2 can be seen as the maximizing player in a positive zero-sum stochastic game.

https://doi.org/10.1017/jpr.2018.47 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.47


Optimal strategies in positive stochastic games 735

5. Proofs

In the following proofs we make use of two processes. We define the process {Rn}∞n=0 by
setting

Rn =
n∑

k=0

r(sk, ak, bk)

and the process {Qn}∞n=0 by setting

Q0 = v(s0), Qn = Rn−1 + v(sn) for all n ≥ 1,

where sk , ak , bk denote the state and the actions at period k, respectively.

Lemma 1. 1. Assume that strategy π for player 1 is locally optimal. Then, for any state s ∈ S

and any strategy σ for player 2, the process {Qn}∞n=0 is a submartingale with respect to Ps,π,σ .

2. Assume that the strategy σ for player 2 is locally optimal. Then, for any state s ∈ S and any
strategy π for player 1, the process {Qn}∞n=0 is a supermartingale with respect to Ps,π,σ .

Proof. We only prove the first statement, since the proof of the second statement is similar.
So, assume that strategy π for player 1 is locally optimal. Take any state s = s0 and any strategy
σ for player 2. Let n ∈ N and hn = (s0, a0, b0, . . . , sn). As π is locally optimal, π(hn) is
optimal in M(sn) and, hence,

Es,π,σ [r(sn, an, bn) + v(sn+1) | hn] ≥ v(sn).

This implies

Es,π,σ [Qn+1 | hn] = Es,π,σ [Rn + v(sn+1) | hn]
= Rn−1 + Es,π,σ [r(sn, an, bn) + v(sn+1) | hn]
≥ Rn−1 + v(sn)

= Qn.

Thus, {Qn}∞n=0 is a submartingale with respect to Ps,π,σ . �
Lemma 2. Consider an initial state s ∈ S, a strategy π for player 1, and a strategy σ for
player 2. Assume that π is locally optimal and

lim
n→∞ Es,π,σ [v(sn)] = 0. (1)

Then u(s, π, σ ) ≥ v(s).

Proof. In view of Lemma 1, the process {Qn}∞n=0 is a submartingale with respect to Ps,π,σ .
Also {Rn}∞n=0 converges to R∞ = ∑∞

k=0r(sk, ak, bk). From the submartingale property, (1),
and the monotone convergence theorem it follows that

v(s) = Q0 ≤ lim
n→∞ Es,π,σ [Qn] = lim

n→∞ Es,π,σ [Rn−1 + v(sn)] = Es,π,σ [R∞] = u(s, π, σ ),

which completes the proof. �
Lemma 3. Assume that π is a subgame-optimal strategy for player 1. Suppose that for some
initial state s = s0 ∈ S, strategy σ for player 2, positive integer n, and λ > 0, the inequality
Es,π,σ [v(sn)] > λ holds. Then there is a positive integer m > n such that Es,π,σ [∑m

t=nrt ] > λ.
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Proof. By the subgame-optimality of π , it holds that

Esn,π [hn],σ [hn]
[ ∞∑

t=0

rt

]
≥ v(sn)

for every history hn = (s0, a0, b0, . . . , sn−1, an−1, bn−1, sn). Hence,

Es,π,σ

[ ∞∑
t=n

rt

]
= Es,π,σ

[
Esn,π [hn],σ [hn]

[ ∞∑
t=0

rt

]]
≥ Es,π,σ [v(sn)].

Since
∑m

t=nrt increases to
∑∞

t=nrt as m → ∞, the conclusion follows from the monotone
convergence theorem. �

Proof of Theorem 1. The proof comprises two parts.
Part 1. Assume that conditions 1 and 2 of Theorem 1 hold. Then, for every history h and

every strategy σ for player 2, the inequality u(sh, π [h], σ [h]) ≥ v(sh) follows from Lemma 2
under condition 2(a) and is obvious under condition 2(b). Hence, π is subgame-optimal.

Part 2. Now assume that π is subgame-optimal for player 1. Condition 1 of Theorem 1
follows directly from Claim A. It remains to check that condition 2 also holds.

We assume without loss of generality that h = ∅. Suppose that, by way of contradiction,
condition 2 fails. Then there exists a state s ∈ S, a strategy σ for player 2, and a positive
number λ such that

u(s, π, σ ) < ∞ and lim sup
k→∞

Es,π,σ [v(sk)] > λ. (2)

By (2), there exists a positive integer n1 such that Es,π,σ [v(sn1)] > λ. So, by Lemma 3,
there exists m1 > n1 such that Es,π,σ [∑m1

t=n1
rt ] > λ. By (2), again there exists n2 > m1 such

that Es,π,σ [v(sn2)] > λ, and by Lemma 3, there exists m2 > n2 such that Es,π,σ [∑m2
t=n2

rt ] > λ.
We continue in this way choosing sequences {nk} and {mk} so that, for all k ∈ N, nk <

mk < nk+1 and Es,π,σ [∑mk
t=nk

rt ] > λ. But then

u(s, π, σ ) = Es,π,σ

[ ∞∑
t=0

rt

]
≥ λ + λ + · · · = ∞,

which is in contradiction to (2). �
Proof of Theorem 2. Assume that the state space S and player 2’s action space B(s), for

every s ∈ S, are finite, and assume that player 1 has an optimal strategy π . Then, for every
state s, we have π(s) ∈ X∗(s) by Claim A. By Claim B, the set X∗∗(s) is nonempty for every
state s ∈ S. This implies that player 1 has a maximally mixed stationary strategy x ∈ X∗∗.
We now prove that x is optimal.

Since S and B(s) for every s ∈ S are finite, player 2 has a stationary best response y to x.
Indeed, when playing against x, player 2’s best responses can be found by solving a negative
Markov decision problem with finite state and action spaces, and in such problems the player
has a stationary optimal strategy (see Strauch (1966) or Puterman (1994)).

Therefore, it suffices to show that, for every state s ∈ S,

u(s, x, y) ≥ v(s). (3)

https://doi.org/10.1017/jpr.2018.47 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.47


Optimal strategies in positive stochastic games 737

Note that, since y is a best response to x,

u(s, x, y) = inf
σ∈�

u(s, x, σ ) ≤ v(s) < ∞ (4)

by Assumption 1. To prove (3), we will apply Lemma 2. So we need to prove that x is locally
optimal and that

lim
n→∞ Es,x,y[v(sn)] = 0. (5)

As x(s) ∈ X∗∗(s) ⊆ X∗(s) for every state s ∈ S, strategy x is locally optimal. Thus, it suffices
to prove (5). Note that, since the state space S is finite, the value function v is uniformly
bounded. Thus, (5) is a consequence of the dominated convergence theorem and the equality

Ps,x,y

[
lim

n→∞ v(sn) = 0
]

= 1. (6)

Now we prove (6). The pair (x, y) of stationary strategies induces a Markov chain on the
finite state space S. Hence, under (s, x, y), an ergodic set will be reached almost surely. Let E

be an ergodic set with respect to (x, y). We need to show that

v(s′) = 0 for each s′ ∈ E. (7)

The proof of (7) comprises three steps.
Step 1. It holds that r(s′, a, b) = 0 for each s′ ∈ E, each a ∈ supp(x(s′)), and each

b ∈ supp(y(s′)).
This follows as a result of (4) and the fact that, starting from any state in E, every state in E

is visited infinitely often with probability 1.
Step 2. The value is constant on the set E.
Let vE = maxs′∈E v(s′) and E′ = {s′ ∈ E | v(s′) = vE}. Suppose that the initial state s0

of the Markov chain induced by (x, y) is an element of E′ ⊆ E. It follows from the inclusion
x(s0) ∈ X∗(s0) and step 1 that

vE = v(s0) ≤ Es0,x,y[r(s0, a0, b0) + v(s1)] = Es0,x,y[v(s1)].
Now, under (s0, x, y), state s1 belongs to the ergodic set E almost surely and, for the expectation
to have the maximum value vE , state s1 must be in E′ almost surely. Iterating this argument,
we can conclude that if the initial state is in E′, the play under (s0, x, y) never leaves the set
E′, almost surely. Since E′ ⊆ E and E is an ergodic set, we have E′ = E and, consequently,
v(s′) = vE for every s′ ∈ E. That is, the value is a constant on E.

The intuition behind the third step is as follows: suppose that player 1 plays the optimal
strategy π , that player 2 plays y, and that the initial state is some state s0 ∈ E. Then, at every
period, π only places a positive probability on actions that also receive positive probability
from x. Hence, the play under (s0, π, y) stays inside E almost surely. Since the value is
constant on E, in any subgame that is reached with a positive probability, the continuation
strategy of π has to be optimal. Formally, our third step is as follows.

Step 3. Let s0 ∈ E. Then under (s0, π, y) it holds almost surely that for every n ∈ N:

• rn = 0, sn ∈ E, and v(sn) = vE ,

• the continuation strategy π [z0, . . . , zn] is optimal for the state sn+1.
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Since π is optimal and, in particular, optimal for the initial state s0 ∈ E, the initial mixed
action π(s0) belongs to X∗(s0). Since x is maximally mixed, every action that is used by π(s0)

with positive probability is also used by x(s0) with positive probability, i.e. supp(π(s0)) ⊆
supp(x(s0)). Thus, under (s0, π, y), we have r0 = 0, s1 ∈ E, and v(s1) = vE with probability 1.

We now argue that, for every h1 = (s0, a0, b0, s1) = (z0, s1) that can arise with positive
probability under (s0, π, y), the continuation strategy π [z0] must be optimal for state s1.
Suppose that, to have a contradiction, there is a history h′

1 = (s0, a
′
0, b

′
0, s

′
1) = (z′

0, s
′
1) that

has probability p > 0 and π [z′
0] is not optimal for state s′

1. Then there must exist ε > 0 and
a strategy σ ′ such that u(s′

1, π [z′
0], σ ′) < vE − ε. Let δ > 0 and consider a strategy σ ∗ for

player 2 that has σ ∗(s0) = y(s0), continues after z′
0 with σ ∗[z′

0] = σ ′, and continues after every
z0 
= z′

0 with a δ-optimal strategy for player 2. Then, since r0 = 0,

u(s0, π, σ ∗) = Es0,π,y[u(s1, π [z0], σ ∗[z0])] ≤ p(vE − ε) + (1 − p)(vE + δ) < vE

for δ < pε/(1 − p), which is in contradiction to the optimality of π .
Now since π [z0] is optimal for state s1 almost surely under (s0, π, y), the initial mixed

actions π [z0](s1) must belong to X∗(s1) and, therefore, belong to supp(x(s1)). Hence, r1 = 0,
s2 ∈ E, and v(s2) = vE . By an argument similar to that in the previous paragraph, we find
that, almost surely under (s0, π, y), the continuation strategy π [z0, z1] is optimal for state s2.

The result follows by iterating the argument.
Step 3 clearly implies that for s0 ∈ E, we have u(s0, π, y) = 0. But since π is optimal,

v(s0) = 0. Therefore, (7) is valid, and the proof of (3) is complete. �

Proof of Theorem 3. Consider a strategy σ for player 2.
First assume that σ is subgame optimal. Then, for every history h, the continuation strategy

σ [h] is optimal and, hence, σ(h) ∈ Y ∗(sh) by Claim A. Hence, σ is locally optimal.
Now assume that σ is locally optimal. We will show that σ is optimal for the initial state s.

The proof for a general history h is the same since the continuation strategy σ [h] is also locally
optimal in the subgame at h.

Take any state s = s0 ∈ S and any strategy π for player 1. In view of Lemma 1, the process
{Qn}∞n=0 is a supermartingale with respect to Ps,π,σ . By the supermartingale property, the
monotone convergence theorem, and the fact that v(sn) ≥ 0 for every n ∈ N, we obtain

v(s) = Q0

≥ lim
n→∞ Es,π,σ [Qn]

= lim
n→∞ Es,π,σ [Rn−1 + v(sn)]

≥ lim
n→∞ Es,π,σ [Rn−1]

= Es,π,σ [R∞]
= u(s, π, σ ).

Thus, σ is optimal for the initial state s, as desired. �

Proof of Theorem 4. Assume that player 2 has an optimal strategy σ . Then, for every state
s ∈ S, we have σ(s) ∈ Y ∗(s) by Claim A. So we consider the stationary strategy y for player 2
that uses the mixed action σ(s) in every state s ∈ S, i.e. y = (σ (s))s∈S . The strategy y is then
locally optimal and, hence, by Theorem 3 it is also optimal. �
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6. Concluding remarks

6.1. A counter example to the claim of Theorem 2 when the state space is infinite

The following game is a variant of an example in Flesch et al. (2016). In this game, player 1
has an optimal strategy, but he/she has no subgame-optimal strategy and, in particular, no
stationary optimal strategy. We do not know whether the result of Theorem 2 holds when the
state space is finite and actions sets are allowed to be infinite.

Example 2. Consider the following game. The state space is

S = {(0, c), (1, c), . . .} ∪ {(0, s), (1, s), . . .} ∪ {s∗}.

The states can be described as follows.

• In each state (n, c), where n is even, player 1 has two actions c and s, and player 2 has
only one action. If player 1 chooses action c then the reward is 0 and the play moves to
state (n + 1, c). If player 1 chooses action s then the reward is 0 and the play moves to
state (n, s).

• In each state (n, c), where n is odd, player 2 has two actions c and s, and player 1 has
only one action. If player 2 chooses action c then the reward is 0 and the play moves to
state (n + 1, c). If player 2 chooses action s then the reward is 0 and the play moves to
state (n, s).

• In each state (n, s), the reward is n/(n + 1) and the play moves to state s∗.

• State s∗ is absorbing with reward 0.

Note that this game has perfect information, i.e. in every state only one player has more than
one action (we can assume that each player has only one action in states (n, s) and s∗). In fact,
this game is equivalent to the centipede game presented in Figure 1.

Take an initial state (n, c), where n is even. Player 1 is the active player at this state. We can
easily verify for this initial state that

• the value is (n + 1)/(n + 2),

• it is optimal for player 1 to play action c in state (n, c) and action s in state (n + 2, c),

• it is optimal for player 2 to play action s in state (n + 1, c).

Note that any optimal strategy of player 1 requires him/her to play action c in state (n, c) with
probability 1.

0P1 P2 P1 P2 P1

s s s s s

c c c c c

0 2
1

3
2

4
3

5
4

Figure 1: The centipede game for player 1 (P1) and player 2 (P2) with actions c and s.

https://doi.org/10.1017/jpr.2018.47 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.47


740 J. FLESCH ET AL.

Consequently, player 1 has an optimal strategy in the game. However, player 1 has no
subgame-optimal strategy, as playing action c in every state (n, c), where n is even, only yields
payoff 0 against the strategy of player 2 that always chooses action c.

6.2. An alternative way of attempting to prove Theorem 2

Flesch et al. (2016) showed that in a zero-sum stochastic game with finite state and action
spaces, with respect to the limsup payoff, if player 1 has an optimal strategy then he/she also
has a stationary optimal strategy. This suggests an alternative, albeit less direct, approach to
proving Theorem 2.

Consider a positive zero-sum stochastic game G with a finite state space S. Assume that
player 1 has an optimal strategy π . There is a natural way to transform game G into game G∗
with the limsup payoff.

Let R denote the set of numbers that can arise as a finite sum of rewards in game G. For
example, if rewards 0, 3, and 7 are possible in G, then R consists of 0, 3, 6 = 3 + 3, 7, 9 = 3 +
3+3, 10 = 3+7, and so on. The set R is countable, as G has countably many different payoffs.

We now consider game G∗: the state space is R × S, which is countable. The interpretation
of state (r, s) is that during play in game G we are now in state s and the sum of the past rewards
is r . So, in state (r, s), the set of actions is A(s) for player 1 and B(s) for player 2, i.e. the sets
of actions in state s in the original game G. The transitions are defined according to the above
interpretation. The reward in state (r, s) is defined to be r . The payoff is the limsup payoff u∗,
defined for each play p∗ = ((r0, s0), a0, b0, (r1, s1), a1, b1, . . .) as

u∗(p∗) = lim sup
t→∞

rt .

The strategy π for player 1 in game G has a corresponding strategy π∗ in game G∗, which
remains optimal. It is likely that the proof of Flesch et al. (2016) can be extended to this case
to show that player 1 has an optimal strategy in G∗. In game G∗, under any pair of stationary
strategies, we have the following important observations.

• If E is an ergodic set then E is finite. Indeed, if (r, s) and (r ′, s′) are both in E then
either state will be visited from the other one, so r = r ′. As we assumed that S is finite,
E is also finite.

• With probability 1, an ergodic set is eventually reached, as a result of Assumption 1.

• Against any fixed stationary strategy of player 1, for any ε > 0, player 2 has a stationary
ε-best response, provided that player 2’s action set is finite.

• For every r, r ′ ∈ R and s ∈ S, the one-day matrix games in states (r, s) and (r ′, s) are
identical up to adding a constant and, hence, player 1 has the same optimal mixed actions
in these matrix games, say X∗(s).

6.3. Extensions

It seems likely that Theorems 1, 3, and 4 can be extended to a Borel measurable setting such
as in Nowak (1985). No such extension is possible for Theorem 2 as we see from Example 2.
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