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We define what it means for a formal topology to be spatial, and investigate properties

related to spatiality both in general and in examples.

1. Introduction

The development of the theory of locales provides substantial evidence that much of

classical topology can be developed assuming open sets rather than points as the primary

object of study (Johnstone 1982). Apart from its conceptual elegance, the point-free

approach has led to important applications in the context of topos theory (Joyal and

Tierney 1984). This is because large parts of the theory of locales can be developed

without the assumption of the axiom of choice, and hence can be internalised in any

elementary topos (Johnstone 1983; Johnstone 1991). The point-free and the point-wise

approaches are related by the adjunction between the category of locales and the category

of topological spaces (Fourman and Scott 1979; Johnstone 1982). This adjunction restricts

to an adjoint equivalence between the category of spatial locales and the category of sober

topological spaces, so that one might say that the point-free and point-wise approach are

essentially equivalent on these subcategories. For the precise history of this adjunction,

see Johnstone (1982, page 76).

In many examples of interest, the statement expressing the spatiality of a locale cannot

be proved within the internal logic of an elementary topos (Fourman and Grayson 1982;

Fourman and Hyland 1979). An extreme example of this situation is given by the spectrum

of prime ideals of a commutative ring endowed with the Zariski topology. The existence

of a prime ideal in an arbitrary non-trivial commutative ring is equivalent to the Boolean

ultrafilter theorem (Banaschewski 1983; Rav 1977). Accordingly, the prime spectrum

might not have any point at all within an elementary topos (Johnstone 1977). In these

circumstances, it is generally the locale, rather than the topological space, that exhibits

the desired topological properties. For example, the space of Dedekind reals cannot be

shown to be locally compact constructively, while its point-free counterpart is a locally

compact locale (Fourman and Grayson 1982; Johnstone 1982).
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Our aim here is to begin a systematic study of spatiality for formal topologies. The

notion of a formal topology, which was originally introduced in Sambin (1987), may be

understood as a reformulation of the notion of a locale that makes it convenient for

developing point-free topology within foundational settings that are even more restrictive

than that of an elementary topos. The study of formal topologies can be carried

out within the dependent type theories of Martin-Löf (Martin-Löf 1984; Nordström

et al. 2000) and their variants (Gambino and Aczel 2006; Maietti and Sambin 2005),

or within the constructive set theories of Myhill (Myhill 1975) and Aczel (Aczel and

Rathjen 2001). Despite the constraints necessary to work within these settings, parts

of locale theory have already been reconstructed (Aczel 2006; Gambino 2006; Maietti

and Valentini 2004; Sambin 1987). Furthermore, interesting connections to the theory

of inductive and coinductive definitions have begun to emerge (Coquand et al. 2003;

Fox 2005; Sambin 2003; Schuster 2006).

In the following, we work within Constructive Zermelo–Fraenkel set theory (Aczel

and Rathjen 2001). This allows us to exploit the usual set-theoretic notation that is

used in common mathematical practice, as well as to give a careful treatment of some

predicatively meaningful distinctions. Mathematics in Constructive Zermelo–Fraenkel set

theory (CZF) differs substantially from both classical mathematics in Zermelo–Fraenkel

set theory and constructive mathematics in either Intuitionistic Zermelo–Fraenkel set

theory or in an elementary topos. This is because the axiom system of CZF does not

include the Power Set axiom, and assumes the Restricted Separation axiom instead of

the Full Separation axiom. As a consequence of this, it is also essential to work with

proper classes when developing constructive mathematics in CZF. For example, the class

of points of a formal topology is sometimes too large to form a set. Nevertheless, since

the language of CZF contains unrestricted quantifiers, we are allowed to use quantifiers

ranging over the elements of a class (Aczel and Rathjen 2001). In particular, we can

quantify over the class of points of a formal topology.

The starting point for our study is the definition of the notion of spatiality for a formal

topology. Thanks to Aczel’s reformulation in CZF of the adjunction between topological

spaces and locales (Aczel 2006), which we review in Section 2, it is possible to provide

a definition of spatiality for formal topologies that is completely analogous to the one

for locales (Fourman and Scott 1979; Johnstone 1982). We will then show how this

conceptually clear definition relates to the definition of spatiality for a formal topology

already existing in the literature (Sambin 1987). The rest of the paper is devoted to the

study of various concepts related to spatiality, and several examples. In particular, we

will extend the results in Schuster (2006) concerning the spatiality of the formal Zariski

topology. We will also rephrase in the context of formal topologies the characterisations of

the spatiality for the point-free counterparts of the Baire space and the Cantor space that

have been obtained for locales in Fourman and Grayson (1982). In the context of formal

topologies, the link between the spatiality of the formal Baire space and the principle of

monotone bar induction has already been described in Sambin (1987).

Remark. The notion of category that we assume in this paper allows for objects and

maps to have the size of classes. See Aczel and Rathjen (2001) for background on CZF.
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2. Point-free and point-wise topology in constructive set theory

Formal topologies

We begin by recalling some terminology and abbreviations concerning ordered structures

that will be used throughout the paper. By a preordered class we mean a class A equipped

with a class relation � on A: that is, a subclass � of A × A that is a preorder. If A is

a set, we assume implicitly that the preorder relation is actually a subset of A × A. By

the Restricted Separation axiom of CZF, this is always the case when the preorder is

defined by a restricted formula: that is, a formula in which all bound variables range

over sets. If (A,�) is a preordered class, for a ∈ A, let ↓ a =def {x ∈ A | x � a}, and

for a, b ∈ A, let a ↓ b =def ↓ a ∩ ↓ b. We can extend these definitions to subsets of A as

follows: for U ⊆ A, let ↓U =def

⋃
x∈U ↓ x, and for U,V ⊆ A, let U ↓V =def ↓U ∩ ↓V . A

subset U ⊆ A is said to be downward closed if ↓U ⊆ U, and hence U = ↓U.

A formal topology consists of a preordered set (A,�) equipped with a class relation,

called the cover relation of the formal topology, a � U between elements a ∈ A and

subsets U ⊆ A such that for every subset U ⊆ A the class j(U) =def {x ∈ A | x�U} is a

set, and the following axioms hold:

↓U �U (Reflexivity)

a�U, U � V =⇒ a� V (Transitivity)

a�U1, a�U2 =⇒ a�U1 ↓ U2, (Stability)

where we use the standard abbreviation U �V =def (∀x ∈ U) (x� V ). A continuous map

p : A → B between formal topologies is a relation, given by a subset p ⊆ A×B, satisfying

four axioms. To express these axioms, we define, for U ⊆ A and V ⊆ B,

p∗(U) =def {y ∈ B | (∀x ∈ U)p(x, y)}, p∗(V ) =def {x ∈ A | (∃y ∈ V )p(x, y)}.

The relation p ⊆ A× B is a continuous map if the following hold:

p(a, b), b� V =⇒ a� p∗(V )

a�U, b ∈ p∗(U) =⇒ p(a, b)

A� p∗(B)

a� p∗(V1), a� p∗(V2) =⇒ a� p∗(V1 ↓ V2).

We write FTop for the category of formal topologies and continuous maps. The identity

map iA : A → A is the relation iA(a, b) =def a � {b}. The composition of p : A → B

and q : B → C is the relation q · p : A → C defined by

(q · p)(a, c) =def a� {x ∈ A | (∃y ∈ B)p(a, y) ∧ q(y, c)}.

As shown in Aczel (2006, Section 4) working in CZF, the category FTop is equivalent

to the category Loc of set-generated locales and continuous maps. Given a formal

topology A, following Sambin (1987), we say that a subset U ⊆ A is saturated if

j(U) ⊆ U, so that U = j(U). The restriction of j to the set-generated frame of downward

closed subsets of A is a nucleus (Johnstone 1982; Simmons 1978); whence the class

Sat(A) of saturated subsets of A, preordered by inclusion, acquires the structure of a
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set-generated frame. For a continuous map p : A → B of formal topologies, there is a

continuous map Sat(p) : Sat(A) → Sat(B) of set-generated locales, given by the frame

homomorphism mapping a saturated subset V ⊆ B into j
(
p∗(V )

)
⊆ A. These definitions

determine a functor Sat : FTop → Loc, which is part of an equivalence of categories

FTop � Loc. (1)

For more information concerning the structure of the category FTop, see Maietti and

Valentini (2004) and Palmgren (2005b).

Constructive topological spaces

We will work here with the category Top of constructive topological spaces and continu-

ous functions (Aczel 2006, Definition 4). Following Sambin and Gebellato (1999) and

Vickers (1989), a constructive topological space is given by a class X of points, a set A

of neighbourhood indices, and a class relation between points ξ ∈ X and neighbourhood

indices a ∈ A, written ξ � a, that expresses the idea that a point ξ lies in the neighbourhood

indexed by a. This relation is subject to both topological and set-theoretical axioms: the

former express structural properties; the latter require appropriate classes to be sets. If

we define Xa =def {ξ ∈ X | ξ � a}, for a ∈ A, and XU =def

⋃
a∈U Xa, for U ⊆ A, there is a

preorder on A defined by letting

a � b =def Xa ⊆ Xb . (2)

This definition allows us to use the notation for preorders introduced earlier. The

topological axioms for a constructive topological space can then be expressed as follows:

X = XA

Xa1
∩Xa2

= Xa1↓a2
.

The set-theoretical axioms for a constructive topological space state that, for ξ ∈ X, the

classes Aξ =def {a ∈ A | ξ � a} and {ψ ∈ X | Aξ = Aψ} are sets.

It is then possible to define a functor Pt : FTop → Top that maps a formal topology A

into the constructive topological space of its formal points. Recall that a formal point of

a formal topology A is defined to be a continuous map p : 1 → A, where 1 is the formal

topology on the singleton set 1 =def {∗}, preordered by the equality relation, with cover

a�U =def a ∈ U. It can be seen immediately that a formal point can be identified with

a subset ξ ⊆ A such that, defining ξ � a =def a ∈ ξ and ξ � U =def (∃x ∈ U)ξ � x, the

following three properties hold:

ξ � A

ξ � a, ξ � b =⇒ ξ � a ↓ b
ξ � a, a�U =⇒ ξ � U.

These properties imply that there is a constructive topological space with the class Pt(A) of

formal points of A as its class of points, and the set A as its set of neighbourhood indices.

As we will see, it is possible to define formal topologies whose associated constructive
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topological spaces are homeomorphic to the Baire space, the Cantor space and the Zariski

spectrum.

The fundamental adjunction

The notion of a standard constructive topological space and that of a standard continuous

function are strengthenings of the notions of a constructive topological space and of a

continuous function that are obtained by imposing further set-theoretical axioms. A

constructive topological space is said to be standard if, for each subset U ⊆ A, the

class {a ∈ A | Xa ⊆ XU} is a set (Aczel 2006, Definition 5). In this way, one obtains

the subcategory Top′ of Top consisting of standard constructive topological spaces and

standard continuous maps.† The main reason for the interest in these notions is that they

allow the definition of a functor

Top′ Ω �� FTop.

Indeed, for a standard constructive topological space with class of points X and set of

neighbourhood indices A, the set A, equipped with the preorder defined in (2) and the

cover relation defined by a�U =def Xa ⊆ XU , is a formal topology.

Using these notions, Aczel was able to reformulate in CZF the familiar adjunction

between topological spaces and locales. He considered the subcategory FTop′ of FTop

consisting of those formal topologies and continuous maps that are mapped by the functor

Pt : FTop → Top into standard constructive topological spaces and standard continuous

functions, respectively. The functor Ω : Top′ → FTop factors through the inclusion of

FTop′ into FTop, and so, as proved in Aczel (2006, Section 5), it is possible to obtain an

adjunction of the form

Top′
Ω′

⊥
��
FTop′.

Pt′
�� (3)

Furthermore, assuming the Power Set and Full Separation axioms of IZF, the categories

Top′ and FTop′ are equivalent to the usual categories of topological spaces and of locales,

respectively (Aczel 2006, Theorem 9 and Proposition 13). It is straightforward to define a

subcategory Loc′ of Loc such that the equivalence in (1) restricts to an equivalence:

FTop′ � Loc′. (4)

We can define Loc′ as the category of standard set-generated locales and standard

continuous maps, where a set-generated locale and a continuous map are said to be

standard if the formal topology and continuous map corresponding to them via the

equivalence in (1) are standard.

† Note that Top′ does not seem to coincide with the full subcategory of Top consisting of standard constructive

topological spaces. This is because it does not seem possible to show that an arbitrary continuous function

between standard constructive topological spaces is standard (Aczel 2006).
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3. Spatial formal topologies

Spatiality

We will now focus on the comonad on FTop′ induced by the adjunction in (3). We write

Sp : FTop′ → FTop′ for its functor part. Unfolding the relevant definitions, we get that

for a standard formal topology A, the standard formal topology Sp(A), called the spatial

coreflection of A, has underlying set A with preorder given by

a �Sp(A) b =def (∀ξ ∈ Pt(A))(ξ � a =⇒ ξ � b).

The cover relation is defined by

a�Pt(A) U =def (∀ξ ∈ Pt(A))(ξ � a =⇒ ξ � U). (5)

The component at A of the counit of the adjunction is the standard continuous map of

formal topologies εA : Sp(A) → A defined by

εA(a, b) =def a�Pt(A) {b}.

Note that, for U ⊆ A, the definition of the notion of a formal point implies that

(∀a ∈ A)
(
a�U =⇒ a�Pt(A) U

)
. (6)

This fact can be used to prove that the relation εA is indeed a continuous map of formal

topologies. We can now define the notion of spatiality for formal topologies analogously

to the way it is defined for locales (Fourman and Scott 1979; Johnstone 1982).

Definition 3.1. A standard formal topology A is spatial if εA : Sp(A) → A is an

isomorphism.

If a formal topology is spatial, it is isomorphic to the formal topology associated with

a constructive topological space, namely the constructive topological space of its formal

points. In Section 4 we will study logical equivalents of the statements asserting that

various examples of formal topologies are spatial. In order to do so, it is convenient to

characterise spatial formal topologies purely in terms of their cover relations. The converse

implication to (6), which does not necessarily hold, allows us to characterise spatial formal

topologies as follows.

Proposition 3.2. A standard formal topology A is spatial if and only if

(∀a ∈ A)
(
a�Pt(A) U =⇒ a�A U

)
(7)

for all subsets U ⊆ A.

Proof. We assume that (7) holds for all U ⊆ A, and define a relation δA between A

and Sp(A) by letting δA(a, b) =def a�A {b}. The assumption (7) implies that this defines a

continuous map δA : A → Sp(A). The definition of composition and of identities in the

category FTop′ imply that δA and εA are mutually inverse.

For the converse implication, we assume that εA : Sp(A) → A is an isomorphism. Via the

equivalence of categories between standard formal topologies and standard set-generated

locales, we have that the frame homomorphism Sat(εA) : Sat(A) → Sat(Sp(A)) is an
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isomorphism. Unfolding the definitions and using the axioms for a formal topology, it

can be seen immediately that this frame homomorphism maps a saturated subset U ⊆ A

into {x ∈ A | x�Pt(A) U}. The statement in (7) follows from the fact that this map, being

an isomorphism, is a monomorphism.

Note that the formula in (7) also makes sense for formal topologies that are not

standard. In the following, we will therefore assume, as in Sambin (1987), that the

statement in (7) is the definition of spatiality for formal topologies that are non-standard.

Variants of spatiality

The property in (6) for the empty subset � ⊆ A can easily be shown to be equivalent to

(∀a ∈ A)
(
Neg(a) =⇒ ¬Sat(a)

)
(8)

where

Neg(a) =def a� �

Sat(a) =def (∃ξ)(ξ � a).

We read Neg(a) as saying that a is negative, and Sat(a) as saying that a is satisfiable.

The statement in (8) then says that if a is negative, it is not satisfiable. Its classical

contrapositive, given in (9), also holds:

(∀a ∈ A)
(
Sat(a) =⇒ ¬Neg(a)

)
. (9)

Neither of the converses of the implications in (8) and (9) is generally derivable. We refer

to these converses as the Sufficiency (10) and Existentiality (11) properties, respectively:

(∀a ∈ A)
(
¬Sat(a) =⇒ Neg(a)

)
(10)

(∀a ∈ A)
(
¬Neg(a) =⇒ Sat(a)

)
. (11)

Note that Sufficiency is exactly the property in (7) for U = �. The next proposition,

whose proof is an exercise in intuitionistic logic, describes some aspects of the relationship

between Sufficiency and Existentiality.

Proposition 3.3.

(a) Sufficiency is equivalent to its contrapositive together with the stability of Neg.

(b) The contrapositives of Sufficiency and Existentiality are equivalent.

(c) Sufficiency is equivalent to the contrapositive of Existentiality together with the

stability of Neg.

The analogous results can be obtained when Sufficiency and Neg are exchanged

with Existentiality and Sat, respectively: Existentiality is equivalent to its contrapositive

together with the stability of Sat, and thus also to the contrapositive of Sufficiency together

with the stability of Sat.

Subspaces

Although Existentiality is often related to assumptions like the axiom of choice, the

failure of Sufficiency in a constructive framework can be explained by Brouwerian
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counterexamples. To illustrate this, we need to obtain some results concerning closed

subspaces. Given a formal topology A with preorder � and cover relation �, the closed

subspace AU of A associated with any given U ⊆ A is defined to be the formal topology

with A as the underlying set, the same preorder � and the cover relation �U defined by

a�U V =def a�U ∪ V .

It is easy to see that this definition determines a cover relation. In particular, the closed

subspace of A associated with U = � coincides with A. The next lemma, which can

be found without proof as Proposition 3.3 of Palmgren (2005a), characterises the formal

points of a closed subspace and allows us to regard AU as the formal counterpart of the

closed complement of the open XU =
⋃
x∈U Xx in the constructive topological space of

points of A. We give a proof for completeness.

Lemma 3.4. Let A be a formal topology and U ⊆ A. A subset ξ ⊆ A is a formal point of

AU if and only if it is a formal point of A such that ξ ∩U = �.

Proof. First let ξ ⊆ A be a formal point of AU . If a ∈ ξ∩U, then ξ � a and a�U �, so

that ξ � �, which is absurd. So ξ∩U = �. If ξ � a and a�V , then we also have a�U V ,

and thus ξ � V . Next, let ξ ⊆ A be a formal point of A. If ξ � a and a �U V , which

means a �U ∪ V , then ξ � U ∪ V , and thus ξ � V if, in addition, we have ξ ∩ U = �.

For the remaining parts of the definition of a formal point, there is nothing to prove.

Let A be a class of formal topologies. We say that A is closed under the formation of

closed subspaces if A ∈ A implies that AU ∈ A for all U ⊆ A. We say that Sufficiency

(respectively, Existentiality) holds for A whenever Sufficiency (respectively, Existentiality)

holds for all A ∈ A and a ∈ A.

Proposition 3.5. If A is closed under the formation of closed subspaces, then every formal

topology in A is spatial if and only if Sufficiency holds for A.

Proof. Sufficiency is the special case with U = � of (7). By Proposition 3.2, A consists

of spatial formal topologies if and only if (7) holds for all its elements. The statement

in (7) for U ⊆ A follows from Sufficiency for AU as follows. Suppose that ξ � a

implies ξ � U for all formal points ξ of A. By contraposition, ¬ (ξ � U) implies ¬ (ξ � a)

for all formal points ξ of A. But ¬ (ξ � U) is equivalent to ξ∩U = �, so, by Lemma 3.4,

we have ¬ (ξ � a) for all formal points ξ of AU . By Sufficiency for AU and a ∈ A, we get

a�U �, which is to say that a�U.

We next extend a result from Schuster (2006), which goes back to Negri (2002). A

formal topology A is finitary if a � V implies the existence of U ⊆ω V such that a � U.

Here and in the following, U ⊆ω V means that U is a finite subset of V . For the sake

of brevity, we will use ‘finite set’ to mean what is generally called a finitely enumerable

set in the literature, namely a set U for which there exists a natural number n and a

surjective mapping from {1, 2, . . . , n} to U. Thus a finite set U is either empty or inhabited

depending on whether n = 0 or n � 1.
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Proposition 3.6. Let A be a formal topology. For a ∈ A, define

Ua = {x ∈ A | a = x, ¬Neg(a)}.

For the statements

(i) Neg(a) is decidable,

(ii) a�Ua,

(iii) if a�Pt(A) Ua, then a�Ua,

the following implications hold:

(i) =⇒ (ii) =⇒ (iii).

Furthermore, if A is finitary, the reverse implications hold.

Proof. If Neg(a), then a�Ua by Transitivity, but if ¬Neg(a), then a ∈ Ua, and thus a�Ua

by Reflexivity. This shows that (i) implies (ii).

The implication from (ii) to (iii) is trivial.

To conclude the proof, assume that A is finitary, and that (iii) is valid. For every formal

point ξ, if ξ � a, then ¬Neg(a) by (9), so a ∈ Ua, and thus ξ � Ua, with witness a ∈ ξ∩Ua.

By (iii), we have a�Ua. Since A is finitary, there is U0 ⊆ Ua with U0 finite and a�U0. As

a finite set, U0 is either empty or inhabited. In the former case, we have Neg(a), whereas

in the latter case we also have that Ua is inhabited, which is to say ¬Neg(a).

When reading the hypothesis of the following, observe that although constructively it is

not generally possible to show that every subset of a finite set is finite, the finitary formal

topologies are closed under the formation of closed subspaces. In fact, if W ⊆ω U ∪ V ,

then W = U ′ ∪ V ′ for suitably defined U ′ ⊆ω U and V ′ ⊆ω V , so if A is a finitary formal

topology, then so is AU for every U ⊆ A. Another class of finitary formal topologies that

is closed under the formation of closed subspaces will be considered later: the class of

formal Zariski topologies (Proposition 4.4).

Corollary 3.7. Let A be a class of finitary formal topologies that is closed under the

formation of closed subspaces. If Sufficiency holds for A, then Neg(a) is decidable for all

A ∈ A and a ∈ A.

4. Principles related to spatiality

Inductively generated formal topologies

As with locales (Johnstone 1982; Mac Lane and Moerdijk 1994; Simmons 2004), defini-

tions by ‘generators and relations’ provide a convenient method for obtaining examples

of formal topologies (Aczel 2006; Battillotti and Sambin 2006; Coquand et al. 2003). For

formal topologies, this method is closely related to the theory of inductive definitions. In

particular, to carry over these definitions to Constructive Set Theory, it is convenient to

work in the extension of CZF that includes the Regular Extension Axiom (REA), which

was originally introduced in Aczel (1986). This axiom ensures that, for a wide class of

inductive definitions, inductively-defined classes are sets (Aczel and Rathjen 2001). From

now on, we work assuming the REA.
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Given a preordered set (A,�), a covering system consists of a function mapping each

element a ∈ A into a set C(a) of subsets U ⊆ A such that the following hold:

(1) For all U ∈ C(a), U ⊆ ↓ a.
(2) If a � b, then for every V ∈ C(b) there exists U ∈ C(a) such that U ⊆ ↓V .

Given such a covering system, we can define inductively a cover relation on A. Observe

that the cover relation is completely determined once we define for each U ⊆ A the

set j(U) =def {x ∈ A | x � U}. The set j(U) is then defined inductively as the smallest

downward closed set X containing U such that a ∈ X whenever there exists U ∈ C(a) such

that U ⊆ X. This definition implies that Reflexivity is automatically verified. Furthermore,

Transitivity and Stability can be shown to hold (Aczel 2006; Coquand et al. 2003).

The formal points of an inductively generated formal topology can be characterised

purely in terms of the covering system that generates the formal topology. For a preordered

set (A,�) with a covering system C on it, a subset ξ ⊆ A is a formal point of the induced

formal topology induced if and only if, with the definitions ξ � a =def a ∈ ξ for a ∈ A

and ξ � U =def (∃a ∈ U)ξ � a for U ⊆ A, the following properties hold for all a, b ∈ A

and U ∈ C(a):

ξ � A

ξ � a, ξ � b =⇒ ξ � a ↓ b
ξ � a, a � b =⇒ ξ � b

ξ � a, U ∈ C(a) =⇒ ξ � U.

Baire space

To define the formal Baire space, we define a partial order on the set �∗ of finite sequences

of natural numbers by letting

a � b =def b is an initial segment of a.

For a ∈ �∗, we can then let C(a) be the set whose unique element is the set of

sequences [a, n] obtained by appending a natural number n to the end of the sequence a.

We may observe that this is a covering system: property (1) follows immediately by the

definition of the partial order on �∗; property (2) follows by observing that if b ∈ �∗ is

an initial segment of a ∈ �∗, then for every n ∈ � there exists m ∈ � such that [b, m]

is an initial segment of [a, n]. We refer to the resulting formal topology B as the formal

Baire space. It is possible to show that the constructive topological space Pt(B) of the

formal points of B is homeomorphic to the Baire space (Gambino 2002). In particular,

we identify a formal point ξ with a sequence (ξi)i∈� of natural numbers, and an element

a ∈ �∗ with a neighbourhood index for the Baire space. We then define a relation between

points and neighbourhood indices by letting ξ � a mean that a is an initial segment of ξ.

We shall now investigate the spatiality of the formal Baire space. To do so, we recall

from Dummett (2000) that a subset U ⊆ �∗ is said to be monotonic if

(∀a ∈ �∗)
(
a ∈ U =⇒ (∀n ∈ �) [a, n] ∈ U

)
,
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and it is called inductive if

(∀a ∈ �∗)
(
(∀n ∈ �)[a, n] ∈ U

)
=⇒ a ∈ U.

Observe that the definition of the covering system for the formal Baire space B implies

that a set is monotonic and inductive if and only if is a saturated subset of the formal

topology B. The principle of monotone bar induction asserts that for all monotonic and

inductive subsets U ⊆ �∗, we have

(∀a ∈ �∗)
(
a�Pt(B) U =⇒ a ∈ U

)
,

where a�Pt(B)U is defined as in (5) and it is usually read in this example as saying that U

is a bar above a.

Proposition 4.1. Spatiality of the formal Baire space is equivalent to the principle of

monotone bar induction.

Proof. We assume that B is spatial, and then derive the principle of monotone bar

induction. Let U ⊆ �∗ be monotonic and inductive. By the spatiality of B, we have

(∀a ∈ �∗)
(
a�Pt(B) U =⇒ a�B U

)
. (12)

Since U is monotonic and inductive, it is saturated. Therefore a �B U implies a ∈ U, as

required. For the converse, it is sufficient to apply the principle of monotone bar induction

to the set {x ∈ B | x �B U}, which is saturated and hence monotone and inductive. By

Reflexivity, it contains U.

Cantor space

The formal Cantor space can be defined in an analogous way to the formal Baire space.

We now deal with sequences (finite or infinite) of elements of {0, 1} rather than of natural

numbers. To analyse the spatiality of the formal Cantor space, we identify the points of

the formal Cantor space with elements of {0, 1}�. The principle related to its spatiality is

the Fan Theorem, which we now recall. For U ⊆ {0, 1}∗ and n ∈ �, define

Un =def {x ∈ U | length(x) � n}.

The following lemma is the key to proving that the spatiality of the formal Cantor space

is equivalent to the Fan Theorem.

Lemma 4.2. Let a ∈ {0, 1}∗, and U ⊆ {0, 1}∗. For every n ∈ � we have

a�Pt(C) Un =⇒ a�C Un.

Proof. We distinguish two cases. If n < length(a), let ξ be a point such that ξ � a.

Assuming a�Pt(C)Un, we prove that there exists x ∈ U such that length(x) � n and ξ � x.

Therefore, we get

length(x) � n < length(a).

Furthermore, we have ξ � a and ξ � x, so x has to be an initial segment of a. Since

x ∈ Un, we have a�Un, as required. We now consider the second case, which arises when
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length(a) � n. We wish to show

{x | x � a, length(x) � n} �Un. (13)

To see this, let x � a. We first consider the case for which x has length n. If ξ � x,

then ξ � a, so there is y ∈ Un such that ξ � y. By reasoning analogous to that employed

in the first case, we get that y is an initial segment of x, and hence x�Un. If the length of

x is n− 1, the reasoning above can be adapted to show that both x · 0 �Un and x · 1 �Un

hold. This implies that x�Un by the inductive definition of the cover. We can proceed in

this fashion to prove (13). Since length(a) � n, we get a�C Un, as required.

Let C be the formal Cantor space. The following implication, which should be read as

saying that every bar above a has a bound relative to a, is generally referred to as the

Fan Theorem:

(∀a ∈ {0, 1}∗)
(
a�Pt(C) U =⇒ (∃n ∈ �)(a�Pt(C) Un)

)
.

Proposition 4.3. Spatiality of the formal Cantor space is equivalent to the Fan Theorem.

Proof. We begin by assuming the Fan Theorem. If a �Pt(C) U, an application of the

Fan Theorem implies that there exists n ∈ � such that a �Pt(C) Un. With an application

of Lemma 4.2, it follows that a�C Un. Since Un ⊆ U, we get a�C U, as required.

For the converse implication, assume that the formal Cantor space is spatial. We

derive the desired conclusion by adapting the argument showing that the principle of

monotone bar induction implies the Fan Theorem (Dummett 2000, Section 3.2). We

assume that a �Pt(C) U, and use the spatiality of the formal Cantor space to deduce

a�C U. Then we define

V =def {x ∈ {0, 1}∗ | (∃n ∈ �) (x�Pt(C) Un)}.

Direct calculations show that U ⊆ V , and thus, using a�CU, we get a�CV by Reflexivity

and Transitivity. Now observe that V is a saturated set for the formal Cantor space

(because it is monotonic and inductive). It therefore follows that a ∈ V , and hence we get

the conclusion of the Fan Theorem, as required.

Zariski spectrum

As recalled in detail in Schuster (2006), the Zariski topology has a counterpart in formal

topology. Following Sigstam (1995), given a commutative ring A, define a preorder on it

by letting

a � b =def (∃n ∈ �)(∃x ∈ A)(an = bx).

Then define a covering system on (A,�) by letting

C(a) =def {{b1, . . . , bk} ⊆ ↓ a | k � 0, b1 + . . .+ bk = a}}.

With this covering system, the inductive definition of the cover relation of the formal

topology gives us

a�U ⇐⇒ (∃n � 1) (an ∈ I(U)),
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where I (U) is the ideal of A generated by U. Note that I (�) = 0, so

a� � ⇐⇒ (∃n � 1) (an = 0).

Let us note that for a commutative ring A the formal points of the formal Zariski topology

associated with A are exactly the prime filters of A. In Schuster (2006, Proposition 27),

this characterisation was proved with a slightly different notion of formal topology, where

the underlying set has the structure of a monoid rather than of a preorder. To prove the

equivalence between the two definitions, it suffices to show

ξ � ab ⇐⇒ ξ � a ↓ b.

We assume ξ � a ↓ b, and let x ∈ A such that ξ � x, and x � a, x � b. Hence xn = ay

and xm = bz for some n, m ∈ � and y, z ∈ A. We then get xn+m = (ab)(xy). Since ξ � x

and x � xn+m, we have ξ � (ab)(xy), so we get ξ � ab by (ab)(xy) � ab. The converse

implication is obvious.

The formal Zariski topology is an example of a finitary formal topology. Following

Sambin (2003), one can say that a finitary formal topology is a predicative presentation

of a coherent frame (or, equivalently, of a spectral locale). In this vein one may think of

the basic opens as of the compact elements of the locale. The concept of a spectral locale,

which is the point-free counterpart of the notion of a spectral space (Hochster 1969),

is crucial for non-Hausdorff point-free topology in general, and for its applications in

domain theory in particular (Vickers 1989, Chapter 9). The notion of a spectral space

comprises the characteristic properties of the Zariski spectrum of a commutative ring:

that is, the whole of its prime ideals endowed with the Zariski topology.

Proposition 4.4. The formal Zariski topologies are closed under the formation of closed

subspaces.

Proof. Let A be the formal Zariski topology of a commutative ring. Given U ⊆ A,

consider the quotient ring A/I (U) of A modulo the ideal I (U) generated by U. The

closed subspace AU is isomorphic to the formal Zariski topology of A/I (U). To see this,

note first that giving an element of A/I (U) is the same as giving an element of A. As for

the cover relations, let a ∈ A and V ⊆ A. By definition, a �U V is a � U ∪ V , which is

to say that an ∈ I (U ∪ V ) for some n � 1. Since I (U ∪ V ) = I (U) + I (V ), this amounts

to an ∈ I (V ) modulo I (U) for some n � 1, which is just a � V in the formal Zariski

topology of A/I (U).

Corollary 4.5. All formal Zariski topologies are spatial if and only if Sufficiency holds for

all formal Zariski topologies.

Proof. This is a consequence of Proposition 3.5 and Proposition 4.4.

Let us note that for the formal Zariski topology on a commutative ring A, Sufficiency

is equivalent to

(∀ξ)(a /∈ ξ) =⇒ (∃n ∈ �)(an = 0).
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This is the classical contrapositive of

(∀n ∈ �)(an �= 0) =⇒ (∃ξ)(a ∈ ξ),

which is classically equivalent to

(∀n ∈ �)(an �= 0) =⇒ (∃π ⊆ A)(π prime ideal, a /∈ π).

The validity of the latter implication for all a ∈ A and every commutative ring A is

equivalent to the assertion that every non-trivial commutative ring has a prime ideal.

It was shown in Schuster (2006) that spatiality of all formal Zariski topologies, expressed

as in (7), implies the Limited Principle of Omniscience (LPO), which asserts that if (λn)n∈�

is an increasing binary sequence, then either λn = 1 for some n ∈ � or λn = 0 for all

n ∈ �. In view of Corollary 4.5, this result can be given by the following corollary (we

give a proof for the sake of completeness).

Corollary 4.6. Sufficiency for all formal Zariski topologies implies the limited principle of

omniscience.

Proof. Given an increasing binary sequence (λn), consider the commutative ring

A = �[T ]/I
(
{λnT n : n ∈ �}

)
.

Writing a for the equivalence class of T , we have

an = 0 ⇐⇒ λn = 1 and an �= 0 ⇐⇒ λn = 0.

Hence Neg(a) amounts to the existence of an index n with λn = 1. To complete the proof,

we use Corollary 3.7 and Proposition 4.4.

5. Future work

Positivity

A natural direction for future research is the extension of the results presented here to the

context of formal topologies equipped with a positivity predicate, which are related to open

locales. This direction is currently being pursued by the second author in collaboration

with Giovanni Sambin.

Independence results

The principles of spatiality for the formal topologies in the examples have been shown

to be independent of the internal logic of a topos using sheaf models (Fourman and

Hyland 1979; Moerdijk 1984). It seems, therefore, natural to investigate whether those

proofs can be recast within the theory of sheaf models for Constructive Set Theory

(Gambino 2002; 2006).

Points

Another potentially interesting direction for further research is represented by the rela-

tionship between spatiality and the study of conditions on a formal topology for it to have
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a ‘small’ set of points (Aczel 2006; Curi 2003; Curi 2006), a condition that we shall refer to

as smallness. There seems to be an essential difference between spatiality and smallness:

spatiality is a structural property, concerned with the relationship between a formal

topology and its space of its points, while smallness does not depend on the topology on

the space of its points. Smallness, however, has been shown to be related to topological

properties of the formal topology (Aczel 2006; Curi 2006), and these topological properties,

at least in the context of locales, are related to spatiality (Johnstone 1982). We should

note, however, that even for the formal topologies that enjoy smallness, such as those

in the examples presented here, the spaces of their points do not generally possess the

desirable topological properties of their point-free counterparts.
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