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Let kr(n, δ) be the minimum number of r-cliques in graphs with n vertices and minimum

degree at least δ. We evaluate kr(n, δ) for δ � 4n/5 and some other cases. Moreover, we

give a construction which we conjecture to give all extremal graphs (subject to certain

conditions on n, δ and r).
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1. Introduction

Let fr(n, e) be the minimum number of r-cliques in graphs of order n and size e.

Determining fr(n, e) has been a long-studied problem. The case r = 3, that is, counting

triangles, has been studied by various people. Erdős [3], Lovász and Simonovits [7]

studied the case when e =
(
n
2

)
/2 + l with 0 < l � n/2. Fisher [4] considered the situation

when
(
n
2

)
/2 � e � 2

(
n
2

)
/3, but it was not until nearly twenty years later that a dramatic

breakthrough of Razborov [10] established the asymptotic value of f3(n, e) for a general e.

The proof of this used the concept of flag algebra developed in [9]. Unfortunately, it

seemed difficult to generalize Razborov’s proof even for f4(n, e). Nikiforov [8] later gave a

simple and elegant proof of the asymptotic values of both f3(n, e) and f4(n, e) for general

e. However, the asymptotic value of fr(n, e) for r � 5 has not yet been determined, and

the best known lower bounds were given by Bollobás [2].

In this paper, we are interested in a variant of fr(n, e), where instead of considering

the number of edges we consider the minimum degree. Define kr(n, δ) to be the minimum

number of r-cliques in graphs of order n with minimum degree at least δ. In addition,

kreg
r (n, δ) is defined to be the minimum number of r-cliques in δ-regular graphs of order

n. It should be noted that there exist n and δ such that kr(n, δ) = 0, but kreg
r (n, δ) > 0.

For example, if r = 3, n odd and 2n/5 < δn < 2, then it is easy to show that k3(n, δ) = 0.
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However, a theorem of Andrásfai, Erdős and Sós [1] states that every triangle-free

graph of order n with minimal degree greater than 2n/5 is bipartite. Since no regular

graph with an odd number of vertices can be bipartite, k
reg
3 (n, δ) > 0 for n odd and

2n/5 < δ < n/2, whilst k3(n, δ) = 0. The author [5] evaluated k
reg
3 (n, δ) for n � 107 odd

and 2n/5 +
√
n/5 � δ � n/2.

Throughout this paper, n and δ always represent the number of vertices and the

minimum degree respectively, whereas β represents the rescaled parameter (1 − δ/n). In

other words, δ = (1 − β)n with 0 < β � 1. Thus, β and βn are assumed to be a rational

and an integer respectively. Furthermore, define the integer p to be �β−1� − 1. Note that p

is defined so that, by Turán’s theorem [11], kr(n, (1 − β)n) > 0 for all n (such that βn is an

integer) if and only if r � p + 1. Since the case β = 1 implies the trivial case δ = 0, we may

assume that 0 < β < 1. Furthermore, we consider the cases 1/(p + 1) � β < 1/p separately

for positive integers p. Hence, the condition p = 2 is equivalent to 1/3 � β < 1/2, that is,

n/2 < δ � 2n/3.

Next, we define a family G(n, β) of graphs of order n with minimum degree (1 − β)n.

The number of r-cliques in each of these graphs is small. Thus, we obtain an upper bound

on kr(n, δ) (recalling that δ = (1 − β)n).

Definition 1.1. Let n and (1 − β)n be positive integers not both odd with 0 < β < 1.

Define G(n, β) to be the family of graphs G = (V , E) of order n satisfying the following

properties. There is a partition of V into V0, V1, . . . , Vp−1 with |V0| = (1 − (p − 1)β)n and

|Vi| = βn for 1 � i � p − 1, where again p = �β−1� − 1. For 0 � i < j � p − 1, the bipartite

graph G[Vi, Vj] induced by the vertex classes Vi and Vj is complete. For 1 � i � p − 1, the

subgraph G[Vi] induced by Vi is empty and G[V0] is a (1 − pβ)n-regular graph such that

the number of triangles in G[V0] is minimal over all (1 − pβ)n-regular graphs of order

|V0| = (1 − (p − 1)β)n.

Note that G(n, β) is only defined if n and (1 − β)n are not both odd. Thus, whenever

we mention G(n, β), we automatically assume that n or (1 − β)n is even. Furthermore, we

say (n, β) is feasible if G[V0] is triangle-free for G ∈ G(n, β). Note that G[V0] is regular of

degree (1 − pβ)n � (1 − (p − 1)β)n/2 = |V0|/2. Thus, if |V0| is even, then G[V0] is triangle-

free. Therefore, for a given β, there exist infinitely many choices of n such that (n, β) is a

feasible pair. If (n, β) is not a feasible pair, then |V0| is odd. Moreover, it is easy to show

that k3(G[V0]) = k
reg
3 (n0, δ0) = o(n3), where n0 = |V0| = (1 − (p − 1)β)n, δ0 = (1 − pβ)n and

kr(H) is the number of r-cliques in a graph H .

By Definition 1.1, every G ∈ G(n, β) is (1 − β)n-regular. In particular, for positive integers

r � 3, the number of r-cliques in G is exactly

kr(G) = gr(β)nr +

(
p − 1

r − 3

)
(1 − pβ)r−3nr−3k3(G[V0]),

= gr(β)nr +

(
p − 1

r − 3

)
(1 − pβ)r−3nr−3k

reg
3 (n0, δ0), (1.1)
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where n0 = (1 − (p − 1)β)n, δ0 = (1 − pβ)n and

gr(β) =

(
p − 1

r

)
βr +

(
p − 1

r − 1

)
(1 − (p − 1)β)βr−1

+
1

2

(
p − 1

r − 2

)
(1 − pβ)(1 − (p − 1)β)βr−2,

with
(
x
y

)
defined to be 0 if x < y or y < 0. Since k

reg
3 (n0, δ0) = o(n3), (1.1) becomes

kr(G) = (gr(β) + o(1))nr . In fact, most of the time, we consider the case when (n, β) is

feasible, i.e., k3(G[V0]) = 0 and kr(G) = gr(β)nr for G ∈ G(n, β).

Recall that δ = (1 − β)n. Write g∗
r (n, δ) = gr(β)nr . Since β is a function of n and δ,

we abuse notation by writing ‘(n, δ) is feasible’ to mean (n, β), and G(n, δ) for G(n, β).

We conjecture that if (n, δ) is feasible then G(n, δ) is the extremal family for kr(n, δ) for

3 � r � p + 1 = �β−1� = �(1 − δ/n)−1�.

Conjecture 1.2. Let n and δ be positive integers. Then

kr(n, δ) � g∗
r (n, δ)

for positive integers r. Moreover, for 3 � r � p + 1 = �(1 − δ/n)−1�, equality holds if and

only if (n, δ) is feasible and the extremal graphs are members of G(n, δ).

By Turán’s theorem [11], the conjecture above is true when p = 1 or r > p + 1. If

δ = pn/(p + 1), then G(n, δ) only consists of Tp+1(n), the (p + 1)-partite Turán graph of

order n. Bollobás [2] proved that if (p + 1)|n and e = (1 − 1/(p + 1))n2/2, then fr(n, e) =

kr(Tp+1(n)). Moreover, Tp+1(n) is the only graph of order n with e edges and fr(n, e)

r-cliques. Hence, it is an easy exercise to show that Conjecture 1.2 is true when δ =

pn/(p + 1).

It should be noted that since G(n, δ) defines a family of regular graphs, we also

conjecture that kreg
r (n, δ) is achieved by G ∈ G(n, δ). However, we do not address the

problem kreg
r (n, δ) here. Note that the extremal graphs of kr(n, δ) have minimum degree

δ. For the remainder of the paper, all graphs are also assumed to be of order n with

minimum degree δ = (1 − β)n unless stated otherwise.

2. Main results

By our previous observation, Conjecture 1.2 is true for the following three cases: p = 1,

r > p + 1 and δ = pn/(p + 1). That leaves the situation when 3 � r � p + 1 and δ > n/2.

In Section 3, we prove Conjecture 1.2 for n/2 < δ � 2n/3, as follows.

Theorem 2.1. Let n and δ be positive integers with n/2 < δ � 2n/3. Then

k3(n, δ) � g∗
3(n, δ).

Moreover, equality holds if and only if (n, δ) is feasible and the extremal graphs are members

of G(n, δ).
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The ideas in the proof, which is short, form the framework for our other results. The

next case is that of Kp+2-free graphs. Notice that, by the definition of p, G must contain

Kp+1 but need not contain Kp+2. Conjecture 1.2 is proved for Kp+2-free graphs by the

next theorem.

Theorem 2.2. Let n and δ be positive integers. Let G be a Kp+2-free graph of order n with

minimum degree δ, where p = �(1 − δ/n)−1� − 1. Then,

kr(G) � g∗
r (n, δ)

for positive integers r. Moreover, for 3 � r � p + 1 equality holds if and only if (n, δ) is

feasible, and the extremal graphs are members of G(n, δ).

Theorem 2.2 is proved in Section 5, after some notation and basic inequalities have

been set up in Section 4. Hence, the difficulty in proving Conjecture 1.2 is in handling

(p + 2)-cliques. We discuss this situation in Section 6 for the case p = 3, and by a detailed

analysis of 5-cliques in Section 7, proving Conjecture 1.2 for 2n/3 < δ � 3n/4, as follows.

Theorem 2.3. Let n and δ be positive integers with 2n/3 < δ � 3n/4. Then

kr(n, δ) � g∗
r (n, δ),

for positive integers r. Moreover, for 3 � r � 4 equality holds if and only if (n, δ) is feasible

and the extremal graphs are members of G(n, δ).

This theorem is the hardest in the paper. We have in fact proved Conjecture 1.2 for

3n/4 < δ � 4n/5 by a similar argument. It is too complicated to be included in this paper,

but it can be found in [6]. For each positive integer p � 5, it is likely that by following

the arguments in the proof of Theorem 2.3 one could construct a proof for Conjecture 1.2

when (1 − 1/p)n < δ � (1 − 1/(p + 1))n.

We give two more results in support of Conjecture 1.2 in Section 8 and Section 9. The

first is that for every positive integer p, Conjecture 1.2 holds for a positive proportion of

values of δ.

Theorem 2.4. For every positive integer p, there exists a (calculable) constant εp > 0 so

that if n and δ are positive integers such that (1 − 1/(p + 1) − εp)n < δ � (1 − 1/(p + 1))n,

then

kr(n, δ) � g∗
r (n, δ),

for positive integers r. Moreover, for 3 � r � p + 1 equality holds if and only if (n, δ) is

feasible and the extremal graphs are members of G(n, δ).

Finally, using a different argument, we can show that Conjecture 1.2 holds in the case

r = p + 1 (the largest value of r for which r-cliques are guaranteed).
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Theorem 2.5. Let n and δ be positive integers. Then

kp+1(n, δ) � g∗
p+1(n, δ),

where p = �(1 − δ/n)−1� − 1. Moreover, equality holds if and only if (n, δ) is feasible and

the extremal graphs are members of G(n, δ).

3. Proof of Theorem 2.1

Here we prove Theorem 2.1, that is, Conjecture 1.2 for n/2 < δ � 2n/3, so 1/3 � β < 1/2

and p = 2. First, we would need the following simple proposition.

Proposition 3.1. Let A be a finite set. Suppose f, g : A → R with f(a) � M and g(a) � m

for all a ∈ A. Then ∑
a∈A

f(a)g(a) � m
∑
a∈A

f(a) + M
∑
a∈A

g(a) − mM|A|,

with equality if and only if, for each a ∈ A, f(a) = M or g(a) = m.

Proof. Observe that
∑

a∈A(M − f(a))(g(a) − m) � 0.

Proof of Theorem 2.1. Let G be a graph of order n with minimum degree δ. Since G

has at least δn/2 = (1 − β)n2/2 edges,

(1 − 2β)βnk2(G) � (1 − 2β)(1 − β)βn3/2 = g3(β)n3.

Thus, in proving the inequality in Theorem 2.1, it is enough to show that k3(G) �
(1 − 2β)βnk2(G).

For an edge e, define d(e) to be the number of triangles containing e and write

D(e) = d(e)/n. Clearly,

n
∑

e∈E(G)

D(e) =
∑

d(e) = 3k3(G).

In addition, D(e) � 1 − 2β for each edge e, because each vertex in G misses at most βn

vertices. Since β < 1/2, D(e) > 0 for all e ∈ E(G) and so every edge is contained in a

triangle. Let T be a triangle in G. Similarly, define d(T ) to be the number of 4-cliques

containing T , and write D(T ) = d(T )/n. We claim that∑
e∈E(T )

D(e) � 2 − 3β + D(T ). (3.1)

Let ni be the number of vertices in G with exactly i neighbours in T for i = 0, 1, 2, 3.

Clearly, n = n0 + n1 + n2 + n3. By counting the number of edges incident with T , we

obtain

3(1 − β)n �
∑

v∈V (T )

d(v) = 3n3 + 2n2 + n1 � 2n3 + n2 + n. (3.2)
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On the other hand, n3 = d(T ) and n2 + 3n3 =
∑

e∈E(G) d(e). Hence, (3.1) holds. Notice that

if equality holds in (3.1) then d(v) = (1 − β)n for all v ∈ T .

For an edge e, define D−(e) = min{D(e), β}. We claim that∑
e∈E(T )

D−(e) � 2 − 3β (3.3)

for every triangle T . If D(e) = D−(e) for each edge e in T , then (3.3) holds by (3.1).

Otherwise, there exists e0 ∈ E(T ) such that D(e0) 	= D−(e0). This means that D−(e0) = β.

Recall that for the other two edges e in T , D(e) � 1 − 2β, so
∑

D−(e) � β + 2(1 − 2β) =

2 − 3β. Hence, (3.3) holds for every triangle T .

Next, by summing (3.3) over all triangles T in G, we obtain

n
∑

e∈E(G)

D−(e)D(e) =
∑
T

∑
e∈E(T )

D−(e) � (2 − 3β)k3(G). (3.4)

We are going to bound
∑

D−(e)D(e) above in terms of
∑

D(e), which is equal to 3k3(G)/n.

Recall that D(e) � 1 − 2β and D−(e) � β. By Proposition 3.1, taking A = E(G), f = D−,

g = D, M = β and m = 1 − 2β, we have

n
∑

e∈E(G)

D(e)D−(e) � (1 − 2β)n
∑

e∈E(G)

D−(e) + βn
∑

e∈E(G)

D(e) − (1 − 2β)βnk2(G)

� (1 − β)n
∑

e∈E(G)

D(e) − (1 − 2β)βnk2(G), (3.5)

n
∑

e∈E(G)

D(e)D−(e) � 3(1 − β)k3(G) − (1 − 2β)βnk2(G). (3.6)

After substitution of (3.6) into (3.4) and rearrangement, we have

k3(G) � (1 − 2β)βk2(G)n.

Thus, we have proved the inequality in Theorem 2.1.

Now suppose equality holds, i.e., k3(G) = (1 − 2β)βk2(G)n. This means that equality

holds in (3.5), so (since β < 1/2) D(e) = D−(e) for all e ∈ E(G). Because equality holds

in (3.3),
∑

e∈E(T ) D(e) = 2 − 3β for triangles T . Hence, D(T ) = 0 for every triangle T

by (3.1), so G is K4-free. In addition, by the remark following (3.1), G is (1 − β)n-regular,

because every vertex lies in a triangle as D(e) > 0 for all edges e. Since equality holds

in Proposition 3.1, either D(e) = 1 − 2β or D(e) = β for each edge e. Recall that equality

holds for (3.1), so every triangle T contains exactly one edge e1 with D(e1) = β and two

edges, e2 and e3, with D(e2) = D(e3) = 1 − β. Pick an edge e with D(e) = β and let W

be the set of common neighbours of the end vertices of e, so |W | = βn. Clearly W is

an independent set, otherwise G contains a K4. For each w ∈ W , d(w) = (1 − β)n implies

N(w) = V (G)\W . Therefore, G[V (G)\W ] is (1 − 2β)n-regular. If there is a triangle T in

G[V (G)\W ], then T ∪ w forms a K4 for w ∈ W . This contradicts the assumption that G

is K4-free, so G[V (G)\W ] is triangle-free. Hence, G is a member of G(n, β) and (n, β) is

feasible. Therefore, the proof is complete.
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4. Degree of a clique

Denote the set of t-cliques in G[U] by Kt(U) and write kr(U) for |Kr(U)|. If U = V (G),

we simply write Kr and kr .

Define the degree d(T ) of a t-clique T to be the number of (t + 1)-cliques containing

T . In other words, d(T ) = |{S ∈ Kt+1 : T ⊂ S}|. If t = 1, then d(v) coincides with the

ordinary definition of the degree for a vertex v. If t = 2, then d(uv) is the number

of common neighbours of the end vertices of the edge uv, that is, the codegree of u

and v. Clearly,
∑

T∈Kt
d(T ) = (t + 1)kt+1 for t � 1. For convenience, we write D(T ) to

denote d(T )/n.

Recall that p = �β−1� − 1 and 1/(p + 1) � β < 1/p. Let G0 ∈ G(n, β), with (n, β) feasible.

Let T be a t-clique in G0. It is natural to see that there are three types of cliques according

to |T ∩ V0|. However, if we consider d(T ), then there are only two types. To be precise,

D(T ) =

{
1 − tβ if |V (T ) ∩ V0| = 0, 1,

(p − t + 1)β if |V (T ) ∩ V0| = 2,

for T ∈ Kt(G0) and 2 � t � p + 1. Next, define the functions D+ and D− as follows. For

a graph G with minimum degree δ = (1 − β)n, define

D−(T ) = min{D(T ), (p − t + 1)β}, and

D+(T ) = D(T ) − D−(T ) = max{0, D(T ) − (p − t + 1)β}

for T ∈ Kt and 1 � t � p + 1. We say that a clique T is heavy if D+(T ) > 0. The graph

G is said to be heavy-free if and only if G does not contain any heavy cliques. Now, we

study some basic properties of D(T ), D−(T ) and D+(T ).

Lemma 4.1. Let 0 < β < 1 and p = �β−1� − 1. Suppose G is a graph of order n with

minimum degree (1 − β)n. Suppose S ∈ Ks and T ∈ Kt(S) for 1 � t < s. Then we have the

following.

(i) D(S) � 1 − sβ.

(ii) D(S) � D(T ) − (s − t)β.

(iii) For s � p + 1, D+(T ) � D+(S) � D+(T ) + (s − t)β.

(iv) If T is heavy and s � p + 1 then S is heavy.

(v) If T is not heavy and s � p + 1, then D+(S) � (s − t)β. In particular, if t = s − 1 � p,

then D+(S) � β.

Moreover, G is Kp+2-free if and only if G is heavy-free.

Proof. For each v ∈ S , there are at most βn vertices not joined to v. Hence, D(S) � 1 − sβ,

so (i) is true. Similarly, consider the vertices in S\T , so (ii) is also true. If s � p + 1 and

D+(T ) > 0, then we have

D+(S) + (p − s + 1)β � D(S)

� D(T ) − (s − t)β

= D+(T ) + (p − t + 1)β − (s − t)β,
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so the left inequality of (iii) is true. Since D(S) � D(T ), the right inequality of (iii) is also

true by the definition of D+(S) and D+(T ). Hence, (iv) and (v) are true by the left and

right inequalities in (iii) respectively. Notice that D(U) = D+(U) for U ∈ Kp+1. Hence, by

(iv), G is Kp+2-free if and only if G is heavy-free.

Now we prove the generalized version of (3.1), that is, the sum of degrees of t-subcliques

in an s-clique.

Lemma 4.2. Let 0 < β < 1. Let s and t be integers with 2 � t < s. Suppose G is a graph

of order n with minimum degree (1 − β)n. Then∑
T∈Kt(S )

D(T ) � (1 − β)s

(
s − 2

t − 1

)
− (t − 1)

(
s − 1

t

)
+

(
s − 2

t − 2

)
D(S)

for S ∈ Ks. Moreover, if equality holds, then d(v) = (1 − β)n for all v ∈ S .

Proof. Let ni be the number of vertices with exactly i neighbours in S . The three

equations ∑
i

ni = n, (4.1)∑
i

ini =
∑

v∈V (S )

d(v) � s(1 − β)n, (4.2)

∑
i

(
i

t

)
ni =

∑
T∈Kt(S )

D(T )n (4.3)

follow by counting the number of vertices, edges and (t + 1)-cliques respectively. Next, by

considering (t − 1)
(
s−1
t

)
(4.1) −

(
s−2
t−1

)
(4.2) + (4.3), we have∑

T∈Kt(S )

D(T )n �
(

(1 − β)s

(
s − 2

t − 1

)
− (t − 1)

(
s − 1

t

))
n +

∑
0�i�s

xini,

where xi =
(
i
t

)
+ (t − 1)

(
s−1
t

)
− i

(
s−2
t−1

)
. Notice that xi = xi+1 +

(
s−2
t−1

)
−

(
i

t−1

)
� xi+1 for 0 �

i � s − 2. For i = s − 1, we have

xs−1 =

(
s − 1

t

)
+ (t − 1)

(
s − 1

t

)
− (s − 1)

(
s − 2

t − 1

)
= t

(
s − 1

t

)
− (s − 1)

(
s − 2

t − 1

)
= 0.

For i = s, ns = D(S)n and

xs =

(
s

t

)
+ (t − 1)

(
s − 1

t

)
− s

(
s − 2

t − 1

)
= t

(
s − 1

t

)
+

(
s − 1

t − 1

)
− s

(
s − 2

t − 1

)
= (s − t + 1)

(
s − 1

t − 1

)
− s

(
s − 2

t − 1

)
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= (s − t + 1)

(
s − 2

t − 2

)
− (t − 1)

(
s − 2

t − 1

)
=

(
s − 2

t − 2

)
.

In particular, if equality holds in the lemma, then equality holds in (4.2). This means that

d(v) = (1 − β)n for all v ∈ S .

Most of the time, we are only interested in the case when s = t + 1. Hence, we state the

following corollary.

Corollary 4.3. Let 0 < β < 1. Suppose G is a graph of order n with minimum degree (1 −
β)n. Then ∑

T∈Kt(S )

D(T ) � 2 − (t + 1)β + (t − 1)D(S)

for S ∈ Kt+1 and integer t � 2. Moreover, if equality holds, then d(v) = (1 − β)n for all

v ∈ S .

In the next lemma, we show that the functions D in Lemma 4.2 can be replaced with D−.

Lemma 4.4. Let 0 < β < 1 and p = �β−1� − 1. Let s and t be integers with 2 � t < s �
p + 1. Suppose G is a graph of order n with minimum degree (1 − β)n. Then, for S ∈ Ks,∑

T∈Kt(S )

D−(T ) � (1 − β)s

(
s − 2

t − 1

)
− (t − 1)

(
s − 1

t

)
+

(
s − 2

t − 2

)
D−(S).

Proof. Since D+(S) � D+(T ) for every T ∈ Kt(S) by Lemma 4.1(iii), there is nothing

to prove by Lemma 4.2 if there are at most
(
s−2
t−2

)
heavy t-cliques in S . Now suppose

there are more than
(
s−2
t−2

)
heavy t-cliques in S . In particular, S contains a heavy t-clique,

so S is itself heavy with D−(S) = (p + 1 − s)β by Lemma 4.1(iv). Thus, the right-hand

side of the inequality is
(
s
t

)
(1 − tβ) +

(
s−2
t−2

)
((p + 1)β − 1). By Lemma 4.1(i) we have that

D−(T ) � (1 − tβ) for T ∈ Kt(S). Furthermore, by Lemma 4.1(iv) D−(T ) = (p − t + 1)β if

T is heavy, so summing D−(T ) over T ∈ Kt(S) gives∑
T∈Kt(S )

D−(T ) � k+
t (S)(p − t + 1)β +

((
s

t

)
− k+

t (S)

)
(1 − tβ)

=

(
s

t

)
(1 − tβ) + k+

t (S)((p + 1)β − 1).

This completes the proof of the lemma.

Define the function D̃ : Kt+1 → R such that

D̃(S) =
∑

T∈Kt(S )

D−(T ) −
(
2 − (t + 1)β + (t − 1)D−(S)

)
for S ∈ Kt+1 and 2 � t � p. Hence, for s = t + 1, Lemma 4.4 gives the following corollary.
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Corollary 4.5. Let 0 < β < 1 and p = �β−1� − 1. Let t be an integer with 2 � t � p. Sup-

pose G is a graph of order n with minimum degree (1 − β)n. Then D̃(S) � 0 for S ∈ Kt+1.

Next, we bound
∑

S∈Kt+1
D̃(S) from above by using Proposition 3.1.

Lemma 4.6. Let 0 < β < 1 and p = �β−1� − 1. Let t be an integer with 2 � t � p. Suppose

G is a graph of order n with minimum degree (1 − β)n. Then∑
S∈Kt+1

D̃(S) �
(
t − 1 + (p − 2t + 2)(t + 1)β

)
kt+1 + (t − 1)

∑
S∈Kt+1

D+(S)

− (1 − tβ)(p − t + 1)βnkt − (t − 1)(t + 2)
kt+2

n
− (1 − tβ)n

∑
T∈Kt

D+(T ).

Moreover, equality holds if and only if, for each T ∈ Kt, either D−(T ) = 1 − tβ or D−(T ) =

(p − t + 1)β.

Proof. Notice that the sum D̃(S) over S ∈ Kt+1 is equal to∑
S∈Kt+1

∑
T∈Kt(S )

D−(T ) − (2 − (t + 1)β)kt+1 − (t − 1)
∑

S∈Kt+1

D−(S). (4.4)

Consider each term separately. Since D(S) = D−(S) + D+(S),∑
S∈Kt+1

D−(S) =
∑

S∈Kt+1

D(S) −
∑

S∈Kt+1

D+(S) =
(t + 2)kt+2

n
−

∑
S∈Kt+1

D+(S).

By interchanging the order of summation, we have∑
S∈Kt+1

∑
T∈Kt(S )

D−(T ) = n
∑
T∈Kt

D−(T )D(T ),

and by Proposition 3.1, taking A = Kt, f = D−, g = D, M = (p − t + 1)β and m = 1 − tβ,

n
∑
T∈Kt

D−(T )D(T )

� (1 − tβ)n
∑
T∈Kt

D−(T ) + (p − t + 1)βn
∑
T∈Kt

D(T ) − (1 − tβ)(p − t + 1)βnkt

= (1 + (p − 2t + 1)β)n
∑

D(T ) − (1 − tβ)n
∑

D+(T ) − (1 − tβ)(p − t + 1)βnkt

= (1 + (p − 2t + 1)β)(t + 1)kt+1 − (1 − tβ)n
∑

D+(T ) − (1 − tβ)(p − t + 1)βnkt.

Hence, substituting these identities back into (4.4), we obtain the desired inequality in the

lemma.

By Proposition 3.1, equality holds if and only if, for each T ∈ Kt, either D(T ) = 1 − tβ

or D−(T ) = (p − t + 1)β.

To keep our calculations simple, we are going to establish a few relationships between

gt(β) and gt+1(β) in the next lemma.
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Lemma 4.7. Let 0 < β < 1 and p = �β−1� − 1. Let t be an integer with 2 � t � p. Then

(t + 1)gt+1(β) = (1 − tβ)gt(β) +
1

2

(
p − 1

t − 2

)
((p + 1)β − 1)(1 − (p − 1)β)(1 − pβ)βt−2, (4.5)

gt+1(β) =
(1 − tβ)(p − t + 1)βgt(β) + (t − 1)(t + 2)gt+2(β)

t − 1 + (t + 1)(p − 2t + 2)β
. (4.6)

Moreover,

gp(β)

gp+1(β)
=

1

β

(
1 +

βgp−1(β
′)

(1 − β)gp(β′)

)
, (4.7)

where β′ = β/(1 − β).

Proof. We fix β (and p) and write gt to denote gt(β). Pick n such that (n, β) is feasible and

let G ∈ G(n, β) with partition classes V0, V1, . . . , Vp−1 as described in Definition 1.1. Thus,

for T ∈ Kt, D(T ) = 1 − tβ or D(T ) = (p − t + 1)β. Since D(T ) = (p − t + 1)β if and only

if |V (T ) ∩ V0| = 2, there are exactly

1

2

(
p − 1

t − 2

)
(1 − (p − 1)β)(1 − pβ)βt−2nt

t-cliques T with D(T ) = (p − t + 1)β. Also, we have

(t + 1)gt+1n
t+1 = (t + 1)kt+1 = n

∑
T∈Kt

D(T ).

Hence, (4.5) is true, by expanding the right-hand side of the equation above. For 2 � s < p,

let fs and fs+1 be (4.5) with t = s and t = s + 1 respectively. Then (4.6) follows by

considering (p − s + 1)fs − (s − 1)βfs+1.

Now let G′ = G\Vp−1. Notice that G′ is (1 − 2β)n-regular with (1 − β)n vertices.

We observe that G′ is a member of G(n′, β′), where n′ = (1 − β)n and β′ = β/(1 − β).

Observe that �β′−1� − 1 = p − 1, so 1/p � β′ < 1/(p − 1). Recall that kt(G) = gt(β)nt for

all 2 � t � p, so kp+1(G)gp(β) = kp(G)gp+1(β)n. Similarly, kp(G
′)gp−1(β

′) = kp−1(G
′)gp(β

′)n.

By considering Kp(G) and Kp+1(G), we obtain the following two equations:

kp+1(G) = βnkp(G
′), (4.8)

kp(G) = βnkp−1(G
′) + kp(G

′) = βn
gp−1(β

′)kp(G
′)

n′gp(β′)
+ kp(G

′)

=

(
1 +

βgp−1(β
′)

(1 − β)gp(β′)

)
kp(G

′). (4.9)

By substituting (4.8) and (4.9) into kp(G)n/kp+1(G) = gp(β)/gp+1(β), we obtain (4.7). The

proof is complete.

5. Kp+2-free graphs

In this section, all graphs are assumed to be Kp+2-free. Lemma 4.1 implies that these

graphs are also heavy-free. This means that D+(T ) = 0 and D(T ) � (p − t + 1)β for all
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T ∈ Kt and t � p + 1. We prove the theorem below, which easily implies Theorem 2.2 as

g2(β)n2 = (1 − β)n2/2 � k2(G).

Theorem 5.1. Let 0 < β < 1 and p = �β−1� − 1. Suppose G is a Kp+2-free graph of order

n with minimum degree (1 − β)n. Then

ks(G)

gs(β)ns
� kt(G)

gt(β)nt
(5.1)

holds for 2 � t < s � p + 1. Moreover, the following three statements are equivalent:

(i) equality holds for some 2 � t < s � p + 1,

(ii) equality holds for all 2 � t < s � p + 1,

(iii) the pair (n, β) is feasible and G is a member of G(n, β).

Proof. Fix β and write gt to denote gt(β). Recall that D+(T ) = 0 for cliques T . By

Corollary 4.5 and Lemma 4.6, we have

kt+1 � (1 − tβ)(p − t + 1)βnkt + (t − 1)(t + 2)kt+2/n

t − 1 + (p − 2t + 2)(t + 1)β
. (5.2)

First, we are going to prove (5.1). It is sufficient to prove the case when s = t + 1. We

proceed by induction on t from above. For t = p, kp+2 = 0 and so (5.2) becomes

(p − 1 − (p − 2)(p + 1)β)kp+1 � (1 − pβ)βnkp.

Since gp+2 = 0, we have kp+1/gp+1n
p+1 � kp/gpn

p by (4.6). Hence, (5.1) is true for t = p.

For t < p, (5.2) becomes

(t − 1 + (t + 1)(p − 2t + 2)β)kt+1

� (1 − tβ)(p + 1 − t)βnkt + (t − 1)(t + 2)kt+2/n

� (1 − tβ)(p + 1 − t)βnkt + (t − 1)(t + 2)gt+2kt+1/gt+1, (5.3)

by the induction hypothesis. Thus, (5.1) follows from (4.6).

It is clear that (iii) implies both (i) and (ii) by Definition 1.1 and the feasibility of

(n, β). Suppose (i) holds, so equality holds in (5.1) for t = t0 and s = s0 with t0 < s0. We

claim that equality must also hold for t = p and s = p + 1. Suppose the claim is false and

equality holds for t = t0 and s = s0, where s0 is maximal. Since equality holds for t = t0,

by (5.1), equality holds for t = t0, . . . , s0 − 1 with s = s0. We may assume that t = s0 − 1

and s0 	= p + 1 and ks0+1/gs0+1n > ks0/gs0 . However, this would imply a strict inequality

in (5.3), contradicting the fact that equality holds for s = s0 and t = s0 − 1. Thus, the

proof of the claim is complete, that is, if (i) holds then equality holds in (5.1) for t = p

and s = p + 1.

Therefore, to prove that (i) implies (iii), it is sufficient to show that if kp+1/gp+1n
p+1 =

kp/gpn
p, then (n, β) is feasible and G is a member of G(n, β). We proceed by induction on p.

It is true for p = 2 by Theorem 2.1, so we may assume p � 3. Since equality holds in (5.1),

we have equality in (5.2), Corollary 4.5 and Lemma 4.6. Since D+ is a zero function,

equality in Corollary 4.5 implies equality in Corollary 4.3 and so G is (1 − β)n-regular,

as every vertex is a (p + 1)-clique. In addition, for each T ∈ Kp, either D(T ) = 1 − pβ or

https://doi.org/10.1017/S0963548311000745 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548311000745


Cliques in Graphs With Bounded Minimum Degree 469

D(T ) = β by equality in Lemma 4.6. Moreover, Corollary 4.3 implies that
∑

T∈Kp(S ) D(T ) �
2 − (p + 1)β for S ∈ Kp+1. Thus, there exists T ∈ Kp(S) with D(T ) = β. Pick T ∈ Kp with

D(T ) = β and let W =
⋂

{N(v) : v ∈ V (S)}, so |W | = β. Since G is Kp+2-free, W is a set

of independent vertices. For each w ∈ W , d(w) = (1 − β)n, so N(w) = V (G)\W . Thus, the

graph G′ = G[V (G)\W ] is (1 − β′)n′-regular, where n′ = (1 − β)n, β′n′ = (1 − 2β)n and

β′ = β/(1 − β). Note that �β′−1� − 1 = p − 1. Since G is Kp+2-free, G
′ is Kp+1-free. Also,

kp+1(G) = βnkp(G
′) and

kp(G) = βnkp−1(G
′) + kp(G

′)
by (5.1)

� β
gp−1(β

′)kp(G
′)

gp(β′)
+ kp(G

′)

=

(
1 + β

gp−1(β
′)

(1 − β)gp(β′)

)
kp(G

′)
by (4.7)

=
gp(β)β

gp+1(β)
kp(G

′). (5.4)

Hence,

gp(β)βnkp(G
′) = gp(β)kp+1(G)

by (5.1)
= gp+1(β)nkp(G)

by (5.4)

� gp(β)βnkp(G
′).

Therefore, we have kp(G
′)/gp(β

′)n′p = kp−1(G
′)/gp−1(β

′)n′p−1. By the induction hypothesis,

G′ ∈ G(n′, β′), which implies G ∈ G(n, β). This completes the proof of the theorem.

6. Evaluating kr(n, δ) for 2n/3 < δ � 3n/4

By Theorem 2.2, in order to prove Conjecture 1.2 it remains to handle the heavy cliques.

However, even though both Corollary 4.5 and Lemma 4.6 are sharp by considering

G ∈ G(n, β), they are not sufficient to prove Conjecture 1.2, even for the case when

2n/3 < δ � 3n/4 by the observation below. Let 2n/3 < δ � 3n/4, 1/4 � β < 1/3 and

p = 3. By Corollary 4.5 and Lemma 4.6, we have

(1 + 3β)k3 +
∑
T∈K3

D+(T ) � 2(1 − 2β)βnk2 +
4

n
k4 + (1 − 2β)n

∑
e∈K2

D+(e), (6.1)

(2 − 4β)k4 + 2
∑
S∈K4

D+(S) � (1 − 3β)βnk3 +
10

n
k5 + (1 − 3β)n

∑
T∈K3

D+(T ), (6.2)

for t = 2 and t = 3 respectively. Since D− is a zero function on 4-cliques,∑
S∈K4

D+(S) =
∑
S∈K4

D(S) = 5k5/n.

Hence, the terms with k5 and
∑

D+(S) cancel in (6.2). Also, (1 − 2β) > 0, so we may ignore

the term with
∑

D+(e) in (6.1). Recall that g2(β) = (1 − β)/2 and g3(β) = (1 − 2β)2β. After

substitution of (6.2) into (6.1), replacing the k4 term and rearrangement, we get

k3(G) � g3(β)n3 − 4β − 1

1 − β

∑
T∈K3

D+(T ).

However, (4β − 1) � 0 only if β = 1/4. Hence, we are going to strengthen both (6.2)

and (6.1). Recall that (6.1) is a consequence of Corollary 4.5 and Lemma 4.6 for t = 2.

Therefore, the following lemma, which is a strengthening of Corollary 4.5 for t = 2, would

lead to a strengthening of (6.1).
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Lemma 6.1. Let 1/4 � β < 1/3. Suppose G is a graph of order n with minimum degree

(1 − β)n. Then, for T ∈ K3,

D̃(T ) �
(

1 − 2

29 − 75β

)
4β − 1

1 − 2β
D+(T ) − (1 − 2β)

∑
e∈K2(T )

D+(e)

D+(e) + β
. (6.3)

Moreover, if equality holds then T is not heavy and d(v) = (1 − β)n for all v ∈ T .

Proof. Let c be (1 − 2/(29 − 75β))(4β − 1)/(1 − 2β). Corollary 4.5 gives D̃(T ) � 0, so we

may assume that T is heavy. In addition, Corollary 4.3 implies that

D̃(T ) +
∑

e∈K2(T )

D+(e) � D+(T ). (6.4)

Since c < 1, we may further assume that T contains at least one heavy edge, or else (6.3)

holds as (6.4) becomes D̃(T ) � D+(T ) > cD+(T ). Let e0 ∈ K2(T ) with D+(e0) maximal.

By substituting (6.4) into (6.3), it is sufficient to show that the function

f =

(
1 − 1 − 2β

D+(e0) + 2β

)
D̃(T ) −

(
c − 1 − 2β

D+(e0) + 2β

)
D+(T )

is non-negative.

First consider the case when D+(T ) � 1 − 3β. Lemma 4.1(iii) implies D+(e0) � D+(T ) �
1 − 3β. Hence,

1 − 2β

D+(e0) + 2β
− c � 1 − 2β

1 − β
− c > 0.

Also, 1 − 2β � 2β < D+(e0) + 2β. Therefore, f > 0 by considering the coefficients of

D̃(T ) and D(T ). Hence, we may assume D+(T ) > 1 − 3β. Since T is heavy, D−(T ) = β.

Therefore, by the definition of D̃, we have

D̃(T ) =
∑

e∈K2(T )

D−(e) − 2(1 − β). (6.5)

We split into different cases separately depending on the number of heavy edges in T .

Suppose all edges are heavy. Thus, D̃(T ) = 2(4β − 1) by (6.5), because D−(e) = 2β for

all edges e in T . Clearly D+(T ) = D(T ) − β � 1 − β. Hence, (6.3) is true as

D̃(T ) = 2(4β − 1) � (4β − 1)(1 − β)/(1 − 2β) � cD+(T ).

Thus, there exists an edge in T that is not heavy and D+(T ) � β by Lemma 4.1(v).

Suppose T contains one or two heavy edges. We are going to show that in both cases

D̃(T ) � 2(D+(T ) − (1 − 3β)).

First assume that there is exactly one heavy edge in T . Let e1 and e2 be the two non-heavy

edges in T . Note that D−(ei) = D(ei) � D(T ) = D+(T ) + β for i = 1, 2. Thus, (6.5) and

Lemma 4.1 imply that D̃(T ) � 2(D+(T ) − (1 − 3β)). Assume that T contains two heavy

edges. Let e1 be the non-heavy edge in T . Similarly, we have D−(e1) � D+(T ) + β. Recall
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that D+(T ) � β, so (6.5) and Lemma 4.1 imply

D̃(T ) � (4β + D+(T ) − (1 − 3β))

= 4β − 1 + D+(T ) − (1 − 3β) � 2(D+(T ) − (1 − 3β)).

Since D̃(T ) � 2(D+(T ) − (1 − 3β)), in proving (6.3), it is enough to show that

D(e0)f = (D+(e0) + 2β)f

� 2(D+(e0) + 4β − 1)(D+(T ) − (1 − 3β))

− ((D+(e0) + 2β)c − (1 − 2β))D+(T ) (6.6)

is non-negative for 0 < D+(e0) � D+(T ) and 1 − 3β � D+(T ) � β. Notice that for a fixed

D+(T ) it is enough to check the boundary points of D+(e0). For D+(e0) = 0, we have

D(e0)f � (2(3 − c)β − 1)D+(T ) − 2(4β − 1)(1 − 3β)

� (4β − 1)(D+(T ) − (1 − 3β)) > 0.

For D+(e0) = D+(T ), the right-hand side of (6.6) becomes a quadratic function in D+(T ).

Moreover, both coefficients of D+(T )2 and D+(T ) are positive. Thus, it is enough to check

for D+(T ) = 1 − 3β. For D+(T ) = D+(e0) = 1 − 3β, (6.6) becomes

D(e0)f � (1 − c − (2 − c)β)(1 − 3β) > 0.

Hence, we have proved the inequality in Lemma 6.1.

It is easy to check that if equality holds in (6.3) then D+(T ) = 0. Thus, for all edges e

in T , D+(e) = 0 by Lemma 4.1. Furthermore, equality holds in (6.4), so equality holds in

Corollary 4.3 as D+(T ) = 0 = D+(e). Hence, d(v) = (1 − β)n for v ∈ S . This completes the

proof of the lemma.

Together with Lemma 4.6 with t = 2, we obtain the strengthening of (6.1).

Corollary 6.2. Let 1/4 � β < 1/3. Suppose G is a graph of order n with minimum degree

(1 − β)n. Then

(1 + 3β)k3 +
2

1 − 2β

(
1 − 3β +

4β − 1

29 − 75β

) ∑
T∈K3

D+(T ) � 2(1 − 2β)βnk2 + 4
k4

n

holds. Moreover, if equality holds, then G is (1 − β)n-regular and for each edge e, either we

have D(e) = 1 − 2β or D(e) = 2β.

Note that by mimicking the proof of Lemma 6.1, we could obtain a strengthening of

Corollary 4.5 for t = 3. It would lead to a strengthening of (6.2). However, it is still not

sufficient to prove Conjecture 1.2 when β is close to 1/3. Instead, we prove the following

statement. The proof requires a detailed analysis of K5, so it is postponed to Section 7.
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Lemma 6.3. Let 1/4 � β < 1/3. Suppose G is a graph of order n with minimum degree

(1 − β)n. Then

(2 − 4β)k4 � (1 − 3β)βnk3 +

(
1 − 3β +

4β − 1

29 − 75β

)
n

∑
T∈K3

D+(T ). (6.7)

Moreover, equality holds only if (n, β) is feasible, and G ∈ G(n, β).

By using the two strengthened versions of (6.1) and (6.2), that is, Corollary 6.2 and

Lemma 6.3, we prove the theorem below, which implies Theorem 2.3.

Theorem 6.4. Let 1/4 � β < 1/3. Let s and t be integers with 2 � t < s � 4. Suppose G

is a graph of order n with minimum degree (1 − β)n. Then

ks(G)

gs(β)ns
� kt(G)

gt(β)nt
.

Moreover, the following three statements are equivalent:

(i) equality holds for some 2 � t < s � 4,

(ii) equality holds for all 2 � t < s � 4,

(iii) the pair (n, β) is feasible, and G is a member of G(n, β).

Proof. Recall that p = 3 as 1/4 � β < 1/3, so

g2(β) = (1 − β)/2, g3(β) = (1 − 2β)2β and g4 = (1 − 2β)(1 − 3β)β2/2.

Note that in proving the inequality, it is sufficient to prove the case when s = t + 1.

Lemma 6.3 states that (2 − 4β)k4 � (1 − 3β)βnk3. This implies k4/g4(β)n4 � k3/g3(β)n3

by (4.6) with t = 3. Hence, the theorem is true for t = 3. For t = 2, by substituting

Corollary 6.2 into Lemma 6.3, we obtain

(1 + 3β)k3 +
2

1 − 2β

(
1 − 3β +

4β − 1

29 − 75β

) ∑
T∈K3

D+(T ) � 2(1 − 2β)βnk2

+
4

(2 − 4β)n

(
(1 − 3β)βnk3 +

(
1 − 3β +

4β − 1

29 − 75β

)
n
∑

D+(T )

)
.

Observe that the
∑

D+(T ) terms on both sides cancel. Hence, after rearrangement, we

have (1 − β)k3 � 2(1 − 2β)2βnk2. Thus, k3/g3(β)n4 � k2/g2(β)n3 as required.

This is clear that (iii) implies (i) and (ii) by the construction of G(n, β) and the

feasibility of (n, β). Suppose (i) holds, so equality holds for some 2 � t < s � 4. It is easy

to deduce that equality also holds for s = 4 and t = 3. By Lemma 6.3, (n, β) is feasible,

and G ∈ G(n, β).

7. Proof of Lemma 6.3

In this section, T , S and U always denote a 3-clique, a 4-clique and a 5-clique respectively.

Before presenting the proof, we recall some basic facts about T , S and U. Observe that

D−(S) = 0 for S ∈ K4, so D+(S) = D(S). Recall that D̃(S) =
∑

T∈K3(S ) D−(T ) − (2 − 4β).
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Let T1, . . . , T4 be triangles in S with D(Ti) � D(Ti+1) for 1 � i � 3. Since D−(T ) � β, we

have

D̃(S) =

⎧⎪⎪⎨⎪⎪⎩
2(4β − 1) if k+

3 (S) = 4,

4β − 1 + (D(T1) − (1 − 3β)) if k+
3 (S) = 3,

D(T1) + D(T2) − 2(1 − 3β) if k+
3 (S) = 2,

(7.1)

where k+
3 (S) is the number of heavy triangles in S . Also recall that D(T ) � 1 − 3β by

Lemma 4.1(i). We will often make reference to these formulae throughout this section.

Define the function η : K4 → R to be

η(S) = D̃(S) − 4β − 1

29 − 75β

∑
T∈K3(S )

D+(T )

D+(T ) + β

for S ∈ K4. Recall that for a heavy triangle T , D(T ) = D+(T ) + β. Thus, only heavy

3-cliques in S contribute to
∑

D+(T )/(D+(T ) + β). A 4-clique S is called bad if η(S) < 0,

otherwise it is called good. The sets of bad and good 4-cliques are denoted by Kbad
4 and

Kgood
4 respectively. In the lemma below, we identify the structure of a bad 4-clique.

Lemma 7.1. Let 1/4 � β < 1/3. Let

Δ = (1 − 3β)(1 + ε) and ε = (4β − 1)/(150β2 − 137β + 30).

Suppose G is a graph of order n with minimum degree (1 − β)n. Let S be a bad 4-clique.

Then, the following hold:

(i) S contains exactly one heavy edge and two heavy triangles,

(ii) 0 < D(S) < Δ,

(iii) D(T ) + D(T ′) < 2Δ, where T and T ′ are the two non-heavy triangles in S .

Proof. Let T1, . . . , T4 be triangles in S with D(Ti) � D(Ti+1) for 1 � i � 3. We may

assume that D+(T4) > 0, otherwise S is good by Corollary 4.5 as η(S) = D̃(S) � 0. Hence,

S is also heavy by Lemma 4.1(iv). We separate cases by the number of heavy triangles

in S .

First, suppose all triangles are heavy. Hence, D̃(S) = 2(4β − 1) by (7.1). Clearly,

D+(Ti) � 1 − β for 1 � i � 4, so

η(S) � 2(4β − 1) − 4β − 1

29 − 75β

∑
T∈K3(S )

D+(T )

D+(T ) + β

� 2(4β − 1)

(
1 − 2(1 − β)

29 − 75β

)
=

2(4β − 1)(27 − 73β)

29 − 75β
� 0.

This contradicts the assumption that S is bad. Thus, not all triangles in S are heavy, so

0 < D(S) � β by Lemma 4.1(v). Also, D+(T ) � D+(S) = D(S) � β.
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Suppose all but one triangles are heavy, so D̃(S) � 4β − 1 by (7.1). Hence,

η(S) � 4β − 1 − 4β − 1

29 − 75β

∑
T∈K3(S )

D+(T )

D+(T ) + β

� (4β − 1)

(
1 − 3

29 − 75β

D(S)

D(S) + β

)
� (4β − 1)

(
1 − 3

2(29 − 75β)

)
=

5(4β − 1)(11 − 30β)

2(29 − 75β)
� 0,

which is a contradiction.

Suppose there is only one heavy triangle, T4, in S . Corollary 4.3 implies D̃(S) + D+(T4) �
2D+(S) = 2D(S). Note that D+(T4) � D+(S) = D(S), so D̃(S) � D(S). Thus,

η(S) � D(S) − 4β − 1

29 − 75β

D+(T4)

D+(T4) + β
� D(S) − 4β − 1

29 − 75β

D(S)

D(S) + β

=

(
1 − 4β − 1

(29 − 75β)(D(S) + β)

)
D(S) �

(
1 − 4β − 1

(29 − 75β)β

)
D(S) > 0.

Hence, S has exactly two heavy triangles, namely T3 and T4. If D(S) � Δ, then

η(S) = D(T1) + D(T2) − 2(1 − 3β) − 4β − 1

29 − 75β

(
D+(T3)

D+(T3) + β
+

D+(T4)

D+(T4) + β

)
� 2(D(S) − (1 − 3β)) − 2(4β − 1)

29 − 75β

D(S)

D(S) + β

> 2(1 − 3β)ε − 2(4β − 1)

29 − 75β

Δ

Δ + β

� 2(1 − 3β)ε − 2(4β − 1)Δ

(29 − 75β)(1 − 2β)
= 0.

Thus, D(S) < Δ. If D(T1) + D(T2) � 2Δ, then D̃(S) � 2(Δ − (1 − 3β)) = 2(1 − 3β)ε by (7.1).

Moreover, since D+(Ti) � D(S) < Δ for i = 3, 4,

η(S) > 2(1 − 3β)ε − 2(4β − 1)

29 − 75β

Δ

Δ + β
� 2(1 − 3β)ε − 2(4β − 1)Δ

(29 − 75β)(1 − 2β)
= 0.

Thus, (iii) is true.

We have shown that S contains exactly two heavy triangles. Therefore, to prove (i), it is

sufficient to prove that S contains exactly one heavy edge. A triangle containing a heavy

edge is heavy by Lemma 4.1(iv). Since S contains two heavy triangle, there is at most

one heavy edge in S . It is enough to show that if S does not contain any heavy edge

and D(S) < Δ, then S is good, which is a contradiction. Assume that S contains no heavy

edge. Let ei = Ti ∩ T4 be an edge of T4 for i = 1, 2, 3. We claim that D̃(S) � D+(T4). By

Corollary 4.3, taking S = T4 and t = 2, we obtain

D(e1) + D(e2) + D(e3) � 2 − 3β + D(T4),

D(e1) + D(e2) � 2 − 4β + D+(T4),

as D(e3) � 2β and D−(T4) = β. By Lemma 4.1(ii), we get

D(T1) + D(T2) � D(e1) + D(e2) − 2β � 2(1 − 3β) + D+(T4).
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Hence, D̃(S) � D+(T4) by (7.1). Therefore,

η(S) � D+(T4) − 4β − 1

29 − 75β

∑
T∈K4(S )

D+(T )

D+(T ) + β

�
(

1 − 2(4β − 1)

(29 − 75β)(D+(T4) + β)

)
D+(T4)

�
(

1 − 2(4β − 1)

(29 − 75β)β

)
D+(T4) > 0,

and so S is good, a contradiction. This completes the proof of the lemma.

Next, we study the relationship between the number of heavy edges and bad 4-cliques

in a 5-clique U.

Lemma 7.2. Let 1/4 � β < 1/3. Suppose G is a graph of order n with minimum degree

(1 − β)n. Let U ∈ K5 with h � 2 heavy edges and b bad 4-cliques. Then b � 2h/(h − 1) =

2 + 2/(h − 1). Moreover, if there exist two heavy edges sharing a common vertex, b � 3.

Proof. Define H to be the graph induced by the heavy edges in U. Write uS for the

vertex in U not in S ∈ K4(U). This defines a bijection between V (U) and K4(U). If S is

bad, uS is adjacent to all but one heavy edge by Lemma 7.1(i). By summing the degrees

of H , 2h =
∑

S∈K4(U) d(uS ) � b(h − 1). Thus, b � 2h/(h − 1).

If there exist two heavy edges sharing a common vertex in H , then every bad 4-clique

must miss one of the vertices of these two heavy edges. Hence, b � 3.

We are now ready to prove Lemma 6.3.

Proof of Lemma 6.3. We now claim that in order to show that the inequality in

Lemma 6.3 holds, it is enough to prove that
∑

S∈K4
η(S) � 0. If

∑
S∈K4

η(S) � 0, then

Lemma 4.6 with t = 3 implies that

0 �
∑
S∈K4

η(S) =
∑
S∈K4

D̃(S) − 4β − 1

29 − 75β
n

∑
T∈K3

D+(T )

� (2 − 4β)k4 − (1 − 3β)βnk3 −
(

1 − 3β +
4β − 1

29 − 75β

)
n

∑
T∈K3

D+(T )

+ 2
∑
S∈K4

D+(S) − 10k5/n,

where the last inequality is due to Lemma 4.6 with t = 3. Observe that
∑

S∈K4
D+(S) =∑

S∈K4
D(S) = 5k5/n, so the terms with

∑
D+(S) and k5/n cancel. Rearranging the

inequality, we obtain the inequality in Lemma 6.3.

Suppose
∑

S∈K4
η(S) < 0. Then, there exists a bad 4-clique S with η(S) < 0. Since a

bad 4-clique S by Lemma 7.1(ii) must be heavy, that is, D(S) > 0, it is contained in some

5-clique. A 5-clique is called bad if it contains at least one bad 4-clique. We denote Kbad
5
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to be the set of bad 5-cliques. Define η̃(S) to be η(S)/D(S) for S ∈ K4 with D(S) > 0.

Clearly,

n
∑
S∈K4

η(S) =
∑
U∈K5

∑
S∈K4(U)

η̃(S) + n
∑

S∈K4:D(S )=0

η(S). (7.2)

Recall that our aim is to show that
∑

S∈K4
η(S) � 0. Since D(S) = 0 implies that S is

good, we have η(S) � 0. Hence, it is enough to show that
∑

S∈K4(U) η̃(S) � 0 for each bad

5-clique U.

Now, we give a lower bound on η̃(S) for bad 4-cliques S . By Lemma 7.1,

η(S) � − 4β − 1

29 − 75β

∑
T∈K3(S )

D+(T )

D+(T ) + β
� −2(4β − 1)

29 − 75β

D(S)

D(S) + β
.

Hence,

η̃(S) � − 2(4β − 1)

(29 − 75β)(D(S) + β)
> − 2(4β − 1)

(29 − 75β)β
. (7.3)

Next, we are going to bound D(S) from above for S ∈ K4(U)\Kbad
4 and U ∈ Kbad

5 . Let

Sb ∈ Kbad
4 (U). Observe that S ∩ Sb is a 3-clique. Then, by Lemma 4.1 and Lemma 7.1, we

have

D(S) � D(S ∩ Sb) = D+(S ∩ Sb) + β � D(Sb) + β < Δ + β. (7.4)

We claim that for each bad 5-clique U ∈ Kbad
5∑

S∈K4(U)

η̃(S) > 0. (7.5)

Recall that a bad 4-clique S contains a heavy edge by Lemma 7.1(i), and hence so does a

bad 5-clique U. We now divide into two cases depending on whether or not a bad 5-clique

U has two heavy edges.

Case 1: There are two heavy edges in U. Let e and e′ be two heavy edges in U,

and let b be the number of bad 4-cliques in U. We consider separately the cases of

whether or not e and e′ are vertex-disjoint. First, assume that e and e′ are vertex-disjoint.

Notice that
∑

S∈Kbad
4 (U) η̃(S) > −bγ by (7.3), where γ = 2(4β − 1)/(29 − 75β)β and b � 4 by

Lemma 7.2. Also, there is exactly one heavy 4-clique S containing both e and e′. Therefore,

it is sufficient to prove that η(S) � bD(S)γ. Since S contains two disjoint heavy edges,

all triangles in S are heavy by Lemma 4.1(iv). Thus, D̃(S) = 2(4β − 1) by (7.1). Observe

that T = S ∩ S ′ is a triangle for S ′ ∈ K4(U)\S . Moreover, D+(T ) � D+(S ′) = D(S ′) by

Lemma 4.1(iii). Hence,

η(S) � 2(4β − 1) − 4β − 1

29 − 75β

∑
S ′∈K4(U)\S

D(S ′)

D(S ′) + β

> (4β − 1)

(
2 − 1

29 − 75β

(
bΔ

Δ + β
+

(4 − b)(Δ + β)

Δ + 2β

))
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by Lemma 7.1(ii) and (7.4). Therefore, η(S) − bD(S)γ is at least

(4β − 1)

(
2 − 1

29 − 75β

(
bΔ

Δ + β
+

(4 − b)(Δ + β)

Δ + 2β

))
− b(Δ + β)γ

� (4β − 1)

(
2 − 4Δ

(29 − 75β)(Δ + β)

)
− 4(Δ + β)γ > 0.

Thus, if U contains two vertex-disjoint heavy edges,
∑

S∈K4(U) η̃(S) > 0. A similar argument

also holds for the case when e and e′ share a common vertex.

Case 2: There is exactly one heavy edge in U. Let u1, . . . , u5 be the vertices of U, where

u4u5 is the heavy edge. Write Si and ηi to be U − ui and η(Si), respectively, for 1 � i � 5.

Similarly, write Ti,j to be U − ui − uj for 1 � i < j � 5. Recall that a bad 4-clique contains

a heavy edge by Lemma 7.1(i). Hence, Si is a bad 4-clique only if i � 3. Without loss of

generality, S1, . . . , Sb are the bad 4-cliques in U.

Since S3 contains a heavy edge, it contains at least two heavy triangles by Lemma 4.1(iv).

If S3 contains either three or four heavy triangles, then S3 is not bad by Lemma 7.1(i). By

an argument similar to that of Case 1, we can deduce that η3 � 2γD(S3), where as before

γ = 2(4β − 1)/(29 − 75β)β. Therefore,
∑

S∈K4(U) η̃(S) > 0 as b � 2. Thus, we may assume

that there are exactly two heavy triangles in Si for 1 � i � 3. By Lemma 4.1(v), D(Si) < β

for 1 � i � 3. For 1 � i � b,

D(Ti,4) + D(Ti,5) < 2Δ = 2(1 − 3β)(1 + ε)

by Lemma 7.1(iii). For b < i � 3, D̃(Si) = D(Ti,4) + D(Ti,5) − 2(1 − 3β) by (7.1). Thus,

D(Ti,4) + D(Ti,5) = ηi + 2(1 − 3β) +
4β − 1

29 − 75β

∑
T∈K3(Si)

D+(T )

D+(T ) + β

� ηi + 2(1 − 3β) +
γβD(Si)

D(Si) + β

� ηi + 2(1 − 3β) + γβ/2.

After applying Corollary 4.5 to S4 and S5, taking t = 3, and adding the two inequalities

together, we obtain

2(2 − 4β) �
∑

1�i�3

(D−(Ti,4) + D−(Ti,5)) + 2D−(T4,5)

2(2 − 5β) �
∑

1�i�b

(D(Ti,4) + D(Ti,5)) +
∑
b<i�3

(D(Ti,4) + D(Ti,5))

< 2b(1 − 3β)(1 + ε) +
∑
b<i�3

ηi + (3 − b) (2(1 − 3β) + γβ/2)

2(4β − 1) < 2b(1 − 3β)ε +
∑
b<i�3

ηi + (3 − b)γβ/2. (7.6)

If b = 3, the inequality above becomes

2(4β − 1) < 6(1 − 3β)ε < 2(4β − 1),
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which is a contradiction. Thus, b � 2. Notice that ηi > −D(Si)γ > −γ for 1 � i � b. Hence,∑
S∈Kbad

4 (U) η̃(S) > −bγ. Also, recall that D(Si) � β for 1 � i � 3. It is enough to show that∑
b<i�3 ηi � bγβ. Suppose the contrary, so

∑
b<i�3 ηi < bγβ. Then, (7.6) becomes

2(4β − 1) < 2b(1 − 3β)ε + (3 + b)γβ/2 � 4(1 − 3β)ε + 5γβ/2 < 2(4β − 1),

which is a contradiction.

Therefore, (7.5) holds as claimed, so the inequality in Lemma 6.3 holds as
∑

S∈K4
η(S) �

0 by (7.2). Now suppose equality holds in Lemma 6.3, i.e.,
∑

S∈K4
η(S) = 0. By (7.2)

and (7.5), no 5-clique is bad and so no 4-clique is bad. Furthermore, we must have

η(S) = 0 for all S ∈ K4. It can be checked that if the definition of a bad 4-clique includes

heavy 4-cliques S with η(S) = 0, then all arguments still hold. Thus, we can deduce that

G is K5-free. Hence, G is also K5-free. By Theorem 5.1, taking s = 4 and t = 3, we obtain

that (n, β) is feasible and G ∈ G(n, β).

8. Proof of Theorem 2.4

Our aim is to prove Theorem 2.4. First, we strengthen Corollary 4.5 by mimicking the

proof of Lemma 6.1. Then, we follow the proof of Theorem 5.1 using the strengthened

version of Corollary 4.5. Hence, we only give a sketch of the proof of Theorem 2.4 to

avoid getting bogged down by the details.

Sketch of Proof of Theorem 2.4. For 2 � t � p and 1/(p + 1) � β < 1/p, define

A
p
t (β) = (t − 1)((p + 1)β − 1)Cp

t (β), and

B
p
t (β) = ((p + 1)β − 1)Cp

t (β),

where Cj(β) satisfies the recurrence

Ct(β) + 1 = (p − t + 1)βCt−1(β)

with the initial condition Cp(β) = 0 for 1/(p + 1) � β < 1/p. Explicitly, C
p
p−j(β) =∑

0�i<j i!β
i−j/j! for 0 � j � p − 2. These functions will be used as coefficients in cor-

responding statements of Lemma 6.1 for 2 � t < p. Define the integer r(β) to be the

smallest integer at least 2 such that, for r � t � p, Ap
t (β) < 1 and B

p
t (β) < (p − t)β. Let

βp = sup{β0 : r(β) = 2 for all 1/(p + 1) � β < β0}

and εp = βp − 1/(p + 1). Observe that At(β), Bt(β) and Ct(β) are right continuous functions

of β. Moreover, both At(β) and Bt(β) tend to zero as β tends to 1/(p + 1) from above, so

βp > 1/(p + 1) and εp > 0. By mimicking the proof of Lemma 6.1, we have

D̃(S) � A
p
t+1(β)D+(S) − B

p
t (β)

∑
T∈Kt(S )

D+(T )

D(T )
(8.1)

for S ∈ Kt+1, 1/(p + 1) � β < βp and 2 � t � p. Note that (8.1) is a strengthening of

Corollary 4.5. Then, following the arguments in the proof of Theorem 5.1 while using
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(8.1) instead of Corollary 4.5, we can deduce that

ks(G)

gs(β)ns
� kt(G)

gt(β)nt
+

1 − tβ − B
p
t (β)

(1 − tβ)(p − t + 1)βgt(β)nt

∑
T∈Kt

D+(T )

for 2 � t < s � p + 1 and 1/(p + 1) < β � βp. Since 1 − tβ − B
p
t (β) � 0, the proof of the

theorem is completed.

Clearly, εp defined in the proof is not optimal. Generalizing the proof of Lemma 6.3

would lead to an improvement on εp.

9. Counting (p + 1)-cliques

In this section, we are going to prove the following theorem, which implies Theorem 2.5.

Theorem 9.1. Let 0 < β < 1 and p = �β−1� − 1. Suppose G is a graph of order n with

minimum degree (1 − β)n. Then, for any integer 2 � t � p,

kp+1(G)

gp+1(β)np+1
� kt(G)

gt(β)nt
.

Moreover, for t = 2, equality holds if and only if (n, β) is feasible, and G is a member of

G(n, β).

For positive integers 2 � t � s � p + 1, define the function φs
t : Ks → R such that

φs
t(S) =

{
D−(S) if t = s,∑

U∈Ks−1(S ) φ
s−1
t (U) if t < s,

for S ∈ Ks. Observe that for G0 ∈ G(n, β) with (n, β) feasible,

φs
t(S) =

{
(s − t)!(1 − tβ) if |V (S) ∩ V0| = 0, 1,

(1 − tβ)s!/t! + ((p + 1)β − 1)(s − 2)!/(t − 2)! if |V (S) ∩ V0| = 2,

for s-cliques S in G0. Let Φs
t(S) = min{φs

t(S), ϕs
t} for S ∈ Ks and 2 � t � s � p + 1, where

ϕs
t = (1 − tβ)s!/t! + ((p + 1)β − 1)(s − 2)!/(t − 2)!,

so Φs
t(S) is the analogue of D− for φs

t . The next lemma gives a lower bound on Φs
t(S) for

S ∈ Ks.

Lemma 9.2. Let 0 < β < 1 and p = �β−1� − 1. Let G be a graph of order n with minimum

degree (1 − β)n. Then,

Φs
t(S) � (1 − tβ)s!/t! + (D−(S) − (1 − sβ)) (s − 2)!/(t − 2)!

for S ∈ Ks and 2 � t < s � p + 1. In particular, for s = p + 1 and t = p,∑
S∈Kp+1

Φp+1
t (S) �

(
(1 − tβ)

(p + 1)!

t!
− (1 − (p + 1)β)

(p − 1)!

(t − 2)!

)
kp+1. (9.1)
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Proof. Fix β and t and we proceed by induction on s. The inequality holds for s = t + 1

by Corollary 4.5. Suppose s � t + 2 and that the lemma is true for t, . . . , s − 1. Hence

φs
t(S) =

∑
T∈Ks−1(S )

φs−1
t (T ) �

∑
T∈Ks−1(S )

Φs−1
t (T )

�
∑

T∈Ks−1(S )

(
(1 − tβ)

(s − 1)!

t!
+

(
D−(T ) − (1 − (s − 1)β)

) (s − 3)!

(t − 2)!

)

= (1 − tβ)
s!

t!
+

(s − 3)!

(t − 2)!

( ∑
T∈Ks−1(S )

D−(T ) − s(1 − (s − 1)β)

)
� (1 − tβ)s!/t! +

(
D−(S) − (1 − sβ)

)
(s − 2)!/(t − 2)!,

by the induction hypothesis in the second line, and where the last inequality comes from

Corollary 4.5 with t = s − 1. The right-hand side is increasing in D−(S). In addition, the

right-hand side equals ϕs
t only if D−(S) = (p − s + 1)β. Thus, the proof of the lemma is

complete.

Now, we bound
∑

S∈Ks
Φs

t(S) from above using Proposition 3.1 to obtain the next

lemma. The proof is essentially a straightforward application of Proposition 3.1 with an

algebraic check.

Lemma 9.3. Let 0 < β < 1 and p = �β−1� − 1. Let G be a graph of order n with minimum

degree (1 − β)n. Then, for 2 � t � s � p + 1,

∑
S∈Ks

Φs
t(S) � ϕs−1

t sks + 2((p + 1)β − 1)

s−1∑
i=t+1

(
(i − 3)!

(t − 2)!
kin

s−i

s−1∏
j=i

(1 − jβ)

)

+
(
(t + 1)kt+1 − (p − t + 1)βktn

)
ns−t−1

s−1∏
j=t

(1 − jβ).

Proof. Fix β and t. We proceed by induction on s. Suppose s = t + 1. Note that Φt+1
t (S) �∑

T∈Kt(S ) D−(T ). By Proposition 3.1, taking A = Kt, f = D−, g = D, M = (p − t + 1)β and

m = 1 − tβ,∑
S∈Kt+1

Φt+1
t (S) �

∑
S∈Kt+1

∑
T∈Kt(S )

D−(T ) = n
∑
T∈Kt

D(T )D−(T )

� (p − t + 1)βn
∑
T∈Kt

D(T ) + (1 − tβ)n
∑
T∈Kt

D−(T ) − (1 − tβ)(p − t + 1)βnkt

� (t + 1)(1 − (p − 2t + 1)β)kt+1 − (1 − tβ)(p − t + 1)βnkt.

Hence, the lemma is true for s = t + 1. Now assume that s � t + 2 and the lemma is

true up to s − 1. By Proposition 3.1, taking A = Kt, f = Φs−1
t , g = D, M = ϕs−1

t and
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m = 1 − (s − 1)β, we have∑
S∈Ks

Φs
t(S) = n

∑
T∈Ks−1

D(T )Φs−1
t (T )

� ϕs−1
t

∑
T∈Ks−1

nD(T ) + (1 − (s − 1)β)n
∑

T∈Ks−1

Φs−1
t (T ) − ϕs−1

t (1 − (s − 1)β)nks−1

= ϕs−1
t sks + (1 − (s − 1)β)n

∑
T∈Ks−1

Φs−1
t (T ) − ϕs−1

t (1 − (s − 1)β)nks−1.

Next, we apply the induction hypothesis on
∑

Φs−1
t (T ). Note that

(s − 1)ϕs−2
t − ϕs−1

t = 2((p + 1)β − 1)(s − 4)!/(t − 2)!.

After collecting the terms, we obtain the desired inequality.

Now we are ready to prove Theorem 9.1. The proof is very similar to the proof of

Theorem 5.1.

Proof of Theorem 9.1. We fix β and write gt for gt(β). We proceed by induction on t

from above. The theorem is true for t = p by Lemma 9.2 and Lemma 9.3. Hence, we may

assume t < p. By Lemma 9.3,

∑
Φp+1

t (S) � (p + 1)ϕp
t kp+1 + 2((p + 1)β − 1)

p∑
i=t+1

(
(i − 3)!

(t − 2)!
kin

p+1−i

p∏
j=i

(1 − jβ)

)

+
(
(t + 1)kt+1 − (p − t + 1)βnkt

)
np−t

p∏
j=t

(1 − jβ),

� (p + 1)ϕp
t kp+1 + 2((p + 1)β − 1)

p∑
i=t+1

(
kp+1gi

gp+1

(i − 3)!

(t − 2)!

p∏
j=i

(1 − jβ)

)

+

(
(t + 1)

kp+1

gp+1
gt+1 − (p − t + 1)βnkt

)
np−t

p∏
j=t

(1 − jβ).

by the induction hypothesis for the second inequality. Substitute the inequality above into

(9.1) and rearrange, to obtain the desired inequality.

Now suppose that equality holds, so equality holds in (9.1). Therefore, D(S) = D−(S) = 0

for all S ∈ Kp+1. Thus, G is Kp+2-free. By Theorem 5.1, (n, β) is feasible, and G ∈ G(n, β).

This completes the proof of the theorem.
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