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Swimming sheet in a density-stratified fluid
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In this work, we theoretically investigate the swimming velocity of a Taylor swimming
sheet immersed in a linearly density-stratified fluid. We use a regular perturbation
expansion approach to estimate the swimming velocity up to second order in wave
amplitude. We divide our analysis into two regimes of low (� O(1)) and finite
Reynolds numbers. We use our solution to understand the effect of stratification on the
swimming behaviour of organisms. We find that stratification significantly influences
motility characteristics of the swimmer such as the swimming speed, hydrodynamic
power expenditure, swimming efficiency and the induced mixing, quantified by mixing
efficiency and diapycnal eddy diffusivity. We explore this dependence in detail for
both low and finite Reynolds number and elucidate the fundamental insights obtained.
We expect our work to shed some light on the importance of stratification in the
locomotion of organisms living in density-stratified aquatic environments.
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1. Introduction
Density stratification in oceans and lakes occurs due to gradients in temperature or

salinity. This affects the swimming behaviour and the migration patterns of organisms
living in these environments (Doostmohammadi, Stocker & Ardekani 2012; Ardekani,
Doostmohammadi & Desai 2017). An example of this includes the accumulation
of dinoflagellates at thermoclines caused by restriction to propulsion due to steep
thermal gradients (Heaney & Eppley 1981). Planktonic species of copepods have
been observed to migrate towards higher salinity gradients and eventually concentrate
at haloclines (Heuch 1995). Temperature-induced stratification has been shown to
influence the distribution of the phytoplankton community (Arrigo et al. 1999) and
even enhance the period of phytoplankton blooms (Sherman et al. 1998; Mahadevan
et al. 2012).

The swimming of organisms in homogeneous fluids has been studied for over
five decades (see Brennen & Winet 1977; Lauga & Powers 2009; Elgeti, Winkler &
Gompper 2015; Lauga 2016) and significant progress has been made. Theoretical work
in this direction was started by Taylor (1951) who derived an analytical expression for
the swimming velocity of a thin waving sheet immersed in a homogeneous fluid at
low Reynolds numbers. Later, Reynolds (1965) derived an expression for the sheet’s
swimming velocity by including the effect of inertia in his analysis. The formula was
corrected by Tuck (1968), who showed that contrary to the observations made by
Reynolds, the sheet swimming velocity decreases with inertia.

† Email address for correspondence: ardekani@purdue.edu
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Swimming sheet in a density-stratified fluid 211

In the present work, we provide a theoretical analysis of the swimming velocity of
a Taylor sheet in a density-stratified fluid. The theoretical approach used in this study
has been applied by researchers in a wide range of physical scenarios. This includes
locomotion in complex fluids (Chaudhury 1979; Lauga 2007; Elfring & Goyal 2016),
in a gel (Leshansky 2009; Fu, Shenoy & Powers 2010), in two-phase viscous fluids
(Du et al. 2012), in a liquid crystal (Krieger, Dias & Powers 2015) and near solid
boundaries (Reynolds 1965; Katz 1974). Hydrodynamic interaction between multiple
sheets is also studied using this methodology (Elfring & Lauga 2009). Despite the
numerous ecological implications of stratification, there are limited theoretical studies
which shed light on the swimming behaviour of microorganisms in a density-stratified
environment.

Ardekani & Stocker (2010) quantified the effect of stratification on the swimming
of organisms by means of singularity solutions at low Reynolds numbers. They
identified the appropriate length scale to quantify the role of stratification and
showed that stratification has a significant influence on the hydrodynamics of aquatic
organisms. Point-force singularities, however, only give knowledge about the far-field
flow generated by a swimmer at low Reynolds and Péclet numbers.

Numerical models were further developed for a more accurate representation
of swimming organisms in density-stratified fluids. Doostmohammadi et al. (2012)
carried out a detailed numerical analysis of the motion of a spherical squirmer
swimming in a stratified fluid at low Reynolds numbers. They observed that buoyancy
forces induced by density stratification have a significant impact on the flow field
of the swimmer and its energy expenditure. They found the propulsion speed of the
swimmer to be dependent on the direction of the thrust generation by the swimmer,
which is generally not the case in homogeneous fluids. Wang & Ardekani (2015)
performed three-dimensional fully resolved simulations of a suspension of squirmers
in a density-stratified environment to study the mixing induced by organisms in
aquatic environments.

Swimmers create a local disruption in the surrounding fluid during their locomotion.
Biogenic mixing has been extensively studied in the literature (Katija 2012;
Simoncelli, Thackeray & Wain 2017). There are arguments both in support of the
importance of biogenic mixing (Dewar et al. 2006) and against it (Visser 2007). An
understanding of the influence of stratification on the hydrodynamics of swimming is
crucial for making reliable predictions about biogenic mixing.

In this work, we analytically derive an expression for the swimming velocity in a
density-stratified fluid. We model the swimmer as a two-dimensional infinitely long
sheet that propels by passing waves of small amplitude along its surface. This model
can be used to represent the tail of a human spermatozoon (Taylor 1951), flat ciliated
Paramecium, Opalina (Blake 1971) or Caenorhabditis elegans (Sznitman et al. 2010).
We analyse the effects of stratification on swimmer propulsion. We divide our analysis
into two regimes of low (� O(1)) and finite Reynolds numbers. This will help us
understand how inertia affects the locomotion in a stratified fluid. Furthermore, we
make predictions about the hydrodynamic power, swimming efficiency and the mixing
induced by the swimmer in a stratified fluid.

2. Problem formulation
Figure 1 shows a schematic of a swimmer immersed in a linearly density-stratified

fluid in the undisturbed state. The ambient or the undisturbed density variations in the
fluid are given by

ρ0 = ρ∞ − γ y. (2.1)
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FIGURE 1. (Colour online) Swimming sheet immersed in a density-stratified fluid with
ambient density ρ0 = ρ∞ − γ y, where gravity g points in the negative y direction. The
swimmer propels in the y direction by generating a travelling wave in the negative
y direction with a speed σ/k. Parameters b and λ are the wave amplitude and wavelength,
respectively.

Here, ρ∞ is the reference fluid density and γ (>0) is the density gradient in the
vertical direction.

We consider the swimmer to be neutrally buoyant with respect to the surrounding
fluid. The swimmer is thus stationary when it does not propagate waves along its
surface. This is a good assumption since marine organisms have been observed to
regulate their density and remain neutrally buoyant in deep waters. For example,
aquatic copepods, which are the dominant members of the zooplankton biomass,
change their lipid concentration during winter to remain neutrally buoyant (Visser &
Jónasdóttir 1999; Campbell & Dower 2003). Several species of notothenoid fishes
in the mid-water community have been observed to be neutrally buoyant (Eastman
1985; Phleger 1998).

The swimmer propels by beating its flagella periodically, generating a travelling
wave along its surface. This mechanism creates a disturbance in the surrounding fluid.
The surface of the swimmer is assumed to deform according to the travelling wave
x = b sin(ky + σ t), where b is the wave amplitude which is assumed to be small
compared to the wavelength 2π/k (Taylor 1951) and σ is the angular frequency of
the wave.

2.1. Governing equations
Using the Bousinessq approximation (Doostmohammadi et al. 2012; Ardekani et al.
2017), we begin by writing the equations of motion for the fluid:

∂u
∂x
+
∂v

∂y
= 0, (2.2)
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ρ∞

(
∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y

)
=−

∂p
∂x
+µ

(
∂2u
∂x2
+
∂2u
∂y2

)
, (2.3)

ρ∞

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
=−

∂p
∂y
− ρg+µ

(
∂2v

∂x2
+
∂2v

∂y2

)
− ρ∞

dV
dt
. (2.4)

Equations (2.2)–(2.4) represent the continuity equation and the momentum conserva-
tion equations in the x and y directions, respectively. Here, u and v are the velocity
fields in the x and y directions, respectively, in the frame of reference translating with
the swimming velocity of the sheet given by V . Note that, in this frame of reference,
the ambient density of the fluid (ρ0) will depend on time.

When the changes in the concentration/temperature are linearly related to the
changes in the density, one can solve for the advection–diffusion equation for the
density (2.5), instead of such an equation for the temperature or concentration:

∂ρ

∂t
+
∂(ρu)
∂x
+
∂(ρv)

∂y
= c

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)
. (2.5)

Here, c is the diffusivity coefficient. The density and pressure fields can be expressed
as a combination of disturbed and undisturbed fields: ρ = ρ0 + ρ

′ and p = p0 + p′.
Here, ρ ′ and p′ are the disturbed density and pressure fields generated because of
the deformation of the swimmer. The contribution of the undisturbed density to the
buoyancy force term is balanced by the undisturbed pressure. Hence, we obtain the
equations governing the flow and density in terms of the disturbance density and
pressure as follows:

∂u
∂x
+
∂v

∂y
= 0, (2.6)

ρ∞

(
∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y

)
=−

∂p′

∂x
+µ

(
∂2u
∂x2
+
∂2u
∂y2

)
, (2.7)

ρ∞

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
=−

∂p′

∂y
− ρ ′g+µ

(
∂2v

∂x2
+
∂2v

∂y2

)
− ρ∞

dV
dt
, (2.8)(

∂ρ ′

∂t
− γV

)
+
∂(ρ ′u)
∂x
+
∂(ρ ′v)

∂y
− γ v = c

(
∂2ρ ′

∂x2
+
∂2ρ ′

∂y2

)
. (2.9)

Next, we non-dimensionalize the problem by using the following scales: length scale
lc= 1/k, velocity scale uc= σ/k, time scale tc= 1/σ , pressure scale pc=µσ , density
scale ρc = γ /k. The term ∂V/∂t will be non-dimensionalized later and is retained in
its dimensional form for now. We use the same variables to denote the dimensionless
variables. The governing equations are thus written as follows:

∂u
∂x
+
∂v

∂y
= 0, (2.10)

Re
(
∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y

)
=−

∂p′

∂x
+
∂2u
∂x2
+
∂2u
∂y2

, (2.11)

Re
(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
=−

∂p′

∂y
− Riρ ′ +

∂2v

∂x2
+
∂2v

∂y2
−
ρ∞

µσk
dV
dt
, (2.12)

Pe
((

∂ρ ′

∂t
− V

)
+
∂(ρ ′u)
∂x
+
∂(ρ ′v)

∂y
− v

)
=
∂2ρ ′

∂x2
+
∂2ρ ′

∂y2
. (2.13)
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Here, Re = ρ∞σ/k2µ represents the Reynolds number, the ratio of the inertial to
the viscous forces, Pe = σ/k2c is the Péclet number, the ratio of the advective to
the diffusive transport rates of density, and Ri= γ g/µσk2 is the viscous Richardson
number, which is the ratio of the buoyancy to the viscous forces. The magnitude of
the Richardson number represents the extent of stratification in the fluid.

The term ∂V/∂t denotes the dimensional acceleration of the swimmer. We expect
the swimming velocity to change with time, because of the time-varying fluid density
encountered by the translating sheet which is caused by the stratification gradient. The
time-varying buoyancy force per unit volume experienced by the sheet (FB) scales as

FB ∼
γ g
k
. (2.14)

If the density of the sheet is assumed to be ρp, the acceleration of the swimmer due
to this buoyancy force will scale as

dV
dt
∼
γ g
ρpk

. (2.15)

If we now substitute this scale for the sheet’s acceleration in (2.12), we find that the
unsteady force exerted on the fluid due to the translating swimming sheet satisfies

ρ∞

µσk
dV
dt
=
ρ∞

ρp
Ri(as), (2.16)

where as denotes the non-dimensional acceleration of the sheet. As a result, for steady
motion of the sheet, the following condition must be satisfied:

ρ∞

ρp
Ri(as)� 1. (2.17)

As we have assumed the swimmer to be neutrally buoyant with respect to the
surrounding fluid (density of the swimmer changes appropriately to ensure the net
force acting on the swimmer is zero), we have

as� 1. (2.18)

This implies that the unsteady contribution due to the sheet’s translational velocity can
be neglected and the motion of the sheet can be considered as steady. If the density
of the swimmer remains constant with time, then the steady-state assumption is only
valid if Ri � 1. We note that this assumption does not affect the calculation and
analysis presented here as ∂V/∂t does not appear in the equation governing stream
function. We expect, however, that the neutrally buoyant assumption is necessary to
yield a consistent force balance condition.

We further simplify these expressions by representing the velocity fields in terms of
the stream function (ψ) as follows:

u=−
∂ψ

∂y
, v =

∂ψ

∂x
. (2.19a,b)

Next, we eliminate the unknown pressure field by combining equations (2.11)
and (2.12) to obtain a single equation in terms of the stream function. We make
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Swimming sheet in a density-stratified fluid 215

another simplification by introducing a variable transformation given by z = y + t
(Reynolds 1965; Lauga 2007). This allows us to express the derivatives with respect to
y and t in terms of a single variable z. We note that the wave appears to be steady in
this transformed frame of reference. This allows us to express the governing equations
with no dependence on the time variable. After performing these calculations, we
finally obtain the equations of motion for the disturbances generated by the swimmer
as follows:

∇
4ψ − Ri

∂ρ ′

∂x
= Re

(
∂ψ

∂x

(
∂

∂z
∇

2ψ

)
−
∂ψ

∂z

(
∂

∂x
∇

2ψ

)
+
∂

∂z
∇

2ψ

)
, (2.20)

Pe
((

∂ρ ′

∂z
− V

)
+
∂

∂x

(
−ρ ′

∂ψ

∂z

)
+
∂

∂z

(
ρ ′
∂ψ

∂x

)
−
∂ψ

∂x

)
=
∂2ρ ′

∂x2
+
∂2ρ ′

∂z2
. (2.21)

Note that we have obtained a system of two differential equations in terms of two
unknowns, the density field and the stream function.

2.2. Boundary conditions
We apply a no-slip and no-penetration boundary condition at the surface of the sheet
which can be written as follows:

u|x=bksin(z) = bkcos(z), v|x=bksin(z) = 0. (2.22a,b)

Far away from the sheet, the fluid velocity should be the negative of the sheet’s
swimming velocity:

u|x→∞ = 0, v|x→∞ =−V. (2.23a,b)

For the density field, we apply a no-flux boundary condition at the surface of the
swimmer. For stratification induced due to gradients in concentration, this implies that
the surface of the swimmer is impermeable; whereas it implies an adiabatic boundary
condition at the surface in the case of thermal gradients. Hence we obtain

∇ρ · n|x=bksin(z) = 0. (2.24)

Here, n represents the normal vector at the surface of the swimmer.
The disturbance density should vanish far away from the swimmer, which implies

ρ ′|x→∞ = 0. (2.25)

3. Solution
In order to solve equations (2.20) and (2.21), we expand the stream function and the

density in the form of a regular perturbation series. We introduce the small parameter
ε = bk and express the variables in the following form:

ψ = εψ1 + ε
2ψ2 +O(ε3), ρ ′ = ερ1 + ε

2ρ2 +O(ε3). (3.1a,b)

We express the swimming velocity of the sheet as

V = εV1 + ε
2V2 +O(ε3). (3.2)

Next, we substitute these expansions in the boundary conditions and governing
equations and solve at each order of ε.
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3.1. Boundary conditions for successive approximations
We seek to transform the velocity boundary conditions at the surface to obtain
conditions at x = 0. Hence, we first expand the velocity boundary conditions at the
surface of the swimmer about x= 0 using Taylor series representation. We thus obtain

∂ψ

∂z

∣∣∣∣
x=εsin(z)

=
∂ψ

∂z

∣∣∣∣
x=0

+ εsin(z)
∂2ψ

∂z∂x

∣∣∣∣
x=0

+ · · · ,

∂ψ

∂x

∣∣∣∣
x=εsin(z)

=
∂ψ

∂x

∣∣∣∣
x=0

+ εsin(z)
∂2ψ

∂x2

∣∣∣∣
x=0

+ · · · .

 (3.3)

Next, we substitute the perturbation expansion for the stream function in the above
expression and collect the terms at various powers of ε. We obtain the following
boundary conditions at x= 0 at the first and second order:

∂ψ1

∂x
= 0,

∂ψ1

∂z
=−cos(z) at x= 0, (3.4a,b)

∂ψ2

∂x
=−sin(z)

∂2ψ1

∂x2
,

∂ψ2

∂z
=−sin(z)

∂2ψ1

∂x∂z
at x= 0. (3.5a,b)

The no-flux boundary condition for density can be written as

∇(ρ0 + ρ
′) · n|x=εsin(z) = 0. (3.6)

Using a similar procedure to that described for the velocity boundary conditions, we
expand the above equation about x= 0 to obtain

∇(ρ0 + ρ
′) · n|x=εsin(z) =∇(ρ0 + ρ

′) · n|x=0 + εsin(z)
∂

∂x
(∇(ρ0 + ρ

′) · n)|x=0. (3.7)

The normal vector can also be represented by the Taylor series approximation to
obtain

nx =−1+
ε2cos2(z)

2
+O(ε3), ny = εcos(z)+O(ε3). (3.8)

Next, we substitute the density perturbation expansion in (3.7) and use the normal
vector approximation to obtain the density boundary conditions at x = 0 at the first
and second order:

∂ρ1

∂x
=−cos(z) at x= 0, (3.9)

∂ρ2

∂x
=−sin(z)

∂2ρ1

∂x2
+ cos(z)

∂ρ1

∂z
at x= 0. (3.10)

Finally, the boundary condition for the vanishing disturbance density far away from
the swimmer simplifies to

ρ1→ 0, as x→∞, (3.11a)
ρ2→ 0, as x→∞. (3.11b)

Next, we substitute the perturbation expansions of the velocity and the density fields
in the equations of motion (equations (2.20) and (2.21)), and obtain the governing
equations at various orders of ε.
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3.2. Solution at O(ε)
The equations governing the stream function and the density disturbance at O(ε) are
given by

∇
4ψ1 − Ri

(
∂ρ1

∂x

)
= Re

(
∂

∂z
∇

2ψ1

)
, (3.12)

Pe
((

∂ρ1

∂z
− V1

)
−
∂ψ1

∂x

)
=
∂2ρ1

∂x2
+
∂2ρ1

∂z2
. (3.13)

These equations are subjected to the boundary conditions at the first order (equations
(3.4), (3.9) and (3.11a)). The first-order velocity averaged over the vertical direction
at the sheet surface is zero (equation (3.4)). Thus, we expect the first-order solution
to be periodic in the vertical direction. This allows us to express the stream function
and the density in the following form:

ψ1 = f (x)eiz, ρ1 = g(x)eiz. (3.14a,b)

Consequently, we note that, in (3.13), the mean value of all the terms involving
density (ρ1) or the stream function (ψ1) is zero. This implies that the first-order
swimming velocity should be zero. Hence we get V1 = 0. We thus conclude that
stratification does not induce any velocity at the first order. Note that Taylor (1951)
made a similar prediction for a sheet immersed in a homogeneous fluid.

Substituting these expressions in the governing equations at the first order and
solving for f (x), g(x), we get the first-order fields as follows:

ψ1 =R((s1em1x
+ s2em2x

+ s3em3x)eiz), (3.15)

ρ1 =R
((

s1
Pem1

1−m2
1 + iPe

em1x
+ s2

Pem2

1−m2
2 + iPe

em2x
+ s3

Pem2

1−m2
3 + iPe

em3x

)
eiz

)
.

(3.16)

Here R denotes the real part; m1, m2 and m3 are the roots of the equation m6
+

m4(−3 − iPe − iRe) + m2(3 − PeRe + PeRi + i(2Pe + 2Re)) − (1 + iPe)(1 + iRe) = 0
having a negative real part. Enforcing the boundary conditions at first order, we obtain
the following equations whose solution determines s1, s2 and s3:

s1 + s2 + s3 = i,
s1m1 + s2m2 + s3m3 = 0,

s1(m2
1 − 1)2 + s2(m2

2 − 1)2 + s3(m2
3 − 1)2 = Ri.

 (3.17)

Hence,

s1 =

∣∣∣∣∣∣
i 1 1
0 m2 m3

Ri (m2
2 − 1)2 (m2

3 − 1)2

∣∣∣∣∣∣
D

, s2 =

∣∣∣∣∣∣
1 i 1

m1 0 m3

(m2
1 − 1)2 Ri (m2

3 − 1)2

∣∣∣∣∣∣
D

,

s3 =

∣∣∣∣∣∣
1 1 i

m1 m2 0
(m2

1 − 1)2 (m2
2 − 1)2 Ri

∣∣∣∣∣∣
D

,


(3.18)

where

D=

∣∣∣∣∣∣
1 1 1

m1 m2 m3

(m2
1 − 1)2 (m2

2 − 1)2 (m2
3 − 1)2

∣∣∣∣∣∣ . (3.19)
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3.3. Solution at O(ε2)

The equations governing the stream function and the density disturbance at O(ε2) are
given by

∇
4ψ2 − Ri

(
∂ρ2

∂x

)
= Re

(
∂ψ1

∂x

(
∂

∂z
∇

2ψ1

)
−
∂ψ1

∂z

(
∂

∂x
∇

2ψ1

)
+
∂

∂z
∇

2ψ2

)
, (3.20)

Pe
(
−V2 +

∂ρ2

∂z
+
∂

∂x

(
−ρ1

∂ψ1

∂z

)
+
∂

∂z

(
ρ1
∂ψ1

∂x

)
−
∂ψ2

∂x

)
=
∂2ρ2

∂x2
+
∂2ρ2

∂z2
. (3.21)

From the boundary conditions at the second order (equations (3.5), (3.10) and
(3.11b)), we find that second-order vertical velocity and the density gradient averaged
in the vertical direction at the surface of the sheet are non-zero. Hence, the velocity
and density fields must have a non-zero mean component to satisfy the boundary
conditions. In order to obtain these mean components, we define the vertical averaged
density and stream function in the domain as follows:

〈ψ2〉 =
1

2π

∫ 2π

0
ψ2(x, z) dz, 〈ρ2〉 =

1
2π

∫ 2π

0
ρ2(x, z) dz. (3.22a,b)

We now average over the vertical direction on both sides of (3.20) and (3.21) to
obtain

d4
〈ψ2〉

dx4
= Ri

d〈ρ2〉

dx
+ Rek1(x), (3.23)

Pe
(
−V2 + k2(x)−

d〈ψ2〉

dx

)
=

d2
〈ρ2〉

dx2
. (3.24)

Here, k1(x) = 〈∂ψ1/∂x(∂/∂z∇2ψ1) − ∂ψ1/∂z(∂/∂x∇2ψ1)〉 and k2(x) = 〈∂/∂x(−ρ1

∂ψ1/∂z)+ ∂/∂z(ρ1∂ψ1/∂x)〉, where 〈.〉 represents the average in the vertical direction.
These can be easily obtained from the first-order velocity and density fields.

We define 〈ψ2〉 =−V2x+ψ2s, where ∂ψ2s/∂x is the vertically averaged y-direction
velocity field in the fluid domain measured in a stationary frame of reference. We
substitute this expression in (3.23) and (3.24) to obtain the following differential
equation for ψ2s after some algebraic manipulations:

d5ψ2s

dx5
+ (RiPe)

dψ2s

dx
= (RiPe)k2(x)+ Re

d
dx

k1(x). (3.25)

We can now find the contribution of the mean velocity field at x= 0, which is given
by

d〈ψ2〉

dx
(x= 0)=−V2 +

dψ2s

dx
(x= 0). (3.26)

We equate this contribution to the mean value of the second-order boundary condition
at the sheet surface (equation (3.5a)) to obtain

V2 =

〈
sin(z)

d2ψ1

dx2
(x= 0)

〉
+

dψ2s

dx
(x= 0). (3.27)
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Here, ψ1 and ψ2s are obtained by solving equations (3.15) and (3.25), respectively. We
solve equations (3.25) and (3.27) to obtain the velocity of the sheet which is given
by

V2 =
1
2

Im

(
3∑

i=1

3∑
j=1

sisj(m2
i − 1)(mi +mj)

RiPe+ (mi +mj)4

(
Pe
(m2

i − 1)2

mi
− Re(mi +mj)

)
−

3∑
i=1

m2
i si

)
,

(3.28)
where si and mi represent the complex conjugates of si and mi, respectively, Im is the
imaginary part and i2

=−1. The dimensional swimming velocity of the sheet is given
by

Vs =

(σ
k

)
b2k2V2. (3.29)

From the above expression, we observe that the velocity of a swimmer immersed
in density-stratified fluid is proportional to the wave speed, the square of the wave
amplitude and the wavenumber. By substituting Ri = 0 in (3.28), we obtain the
expression for the sheet’s swimming velocity in a homogeneous fluid as follows:

Vs =

(σ
k

)
b2k2

1
2

√
1+
√

1+ Re2

2

 . (3.30)

We note that this expression matches with the formula derived by Tuck (1968), thus
verifying the theoretical procedure used in our analysis.

4. Results and discussion
We divide our analysis into two regimes. We first discuss the low-Reynolds-number

regime, where the inertial forces acting on the swimmer are negligible (Re� 1). In
this case, the swimmer is propelled only by the viscous forces acting on its surface.
The second regime is that of a swimmer having a finite Re. Here, inertial forces can
no longer be neglected and will contribute to the propulsion of the swimmer. Owing
to the dearth of theoretical studies conducted in both these regimes, we expect our
results to provide a fundamental understanding about the effect of stratification on the
swimming of microorganisms.

Henceforth, we will express the Péclet number in terms of the Prandtl number
(Pr = Pe/Re) which is defined as the ratio of the momentum diffusivity to the
thermal diffusivity. We use the same number for salt transport as well, even
though such a number is the Schmidt number when mass transfer occurs. Typical
values of Prandtl number for some practically relevant stratification conditions
are Pr = 700 for salt stratification in water and Pr = 7 for temperature-stratified
water. The magnitude of stratification is often represented by the Brunt–Väisälä
frequency (N =

√
γ g/ρ∞). The typical values of N range from 10−4 to 0.3 s−1

(Thorpe 2005). Using this estimate, in density-stratified water (ρ∞ ≈ 1000 kg m−3,
µ≈ 10−3 kg m−1 s−1), we find that γ ≈ 10−6–10 kg m−4. We can use these parameter
values to determine typical values of Re= ρ∞uclc/µ and Ri= γ gl3

c/(µuc) for various
motile organisms in stratified water with γ = 1 kg m−4. Examples include Escherichia
coli, Salmonella typhimurium (lc ≈ 1 µm, uc ≈ 20–30 µm s−1) (Lauga & Powers
2009): Re≈ 10−5–10−4, Ri≈ 10−8; copepods (lc ≈ 0.05–0.3 cm, uc ≈ 0.1–0.5 cm s−1)
(Strickler 1975): Re≈ 10−2–103,Ri≈ 0.01–0.05; Euphausia pacifica (krills) (lc≈ 1 cm,
uc ≈ 5 mm s−1) (Yen, Brown & Webster 2003): Re≈ 175, Ri≈ 1–5.
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FIGURE 2. (Colour online) First-order flow field (ψ1) induced by the swimmer in (a)
homogeneous fluid and (b) stratified fluid (Pr = 7, Ri = 5). Contours are the streamlines
and colours show the value of the stream function. (c) Isopycnals (ρ = ρ0 + ρ

′) for Pr=
7,Ri= 5. Vertical arrows represent the direction of isopycnal retreat and solid black lines
represent the swimming sheet. (d) Comparison of streamline of a stratified fluid (dashed
line) with a homogeneous fluid (solid line). Black arrows represent the direction of the
first-order velocity and blue arrows represent additional vertical velocities due to isopycnal
retreat. Here Re= 0.001 is chosen for all the subplots.

4.1. Low-Reynolds-number regime (Re� 1)
4.1.1. Effect of stratification on swimming velocity

We first analyse the first-order flow field generated by the propelling sheet in
the presence of stratification. We observe that stratification markedly changes the
flow pattern in comparison with the homogeneous fluid (figure 2a,b). The flow field
generated by the sheet is vertically biased as the streamlines bend towards the denser
portion of the fluid. This observation can be understood by considering that the
motion of the swimmer disturbs the density field in its proximity. This causes the
isopycnals to deform and assume a configuration which is no longer horizontal. Note
that the isopycnals deform such that they are oriented in a direction normal to the
surface of the swimmer, so as to satisfy the no-flux boundary condition. Consequently,
the isopycnals near the lower (upper) end of the sheet’s crest deflect in the positive
(negative) y direction. This is clearly shown in figure 2(c) which depicts the displaced
isopycnals close to the sheet. The tendency of the displaced density layers to return to
their original position creates additional vertical velocities in the fluid domain (shown
by vertical arrows in figure 2c), in a direction which is opposite to the deformation of
isopycnals. We note that this velocity acts in the negative y direction near the lower
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FIGURE 3. (Colour online) Variation of the swimming velocity with (a) Richardson
number and (b) Prandtl number, for Re= 0.001, normalized with respect to the velocity
in a homogeneous fluid in the Stokes regime. First order vorticity field at (c) Ri= 0 and
(d) Ri= 5, for Re= 0.001, Pr= 700.

end of the sheet’s crest (0 6 y< π/2) and in the positive y direction near the upper
end (π/2< y6π). One can add this stratification-induced velocity to the flow field in
a homogeneous fluid to determine the flow field in a stratified fluid. If we consider a
streamline in a homogeneous fluid which is directed from y≈ 0.5 to y≈ 2.5 as shown
by the solid curve in figure 2(d), the effect of stratification-induced velocity is to
decrease the slope of this curve near y≈ 0.5 and to increase this slope near y≈ 2.5,
due to which the streamline in a stratified fluid appears to be bent in the negative y
direction. This flow pattern has a significant influence on the hydrodynamics of the
sheet propulsion, which is discussed in later sections. The effect of stratification on
swimming can be characterized by Ri which depends on the strength of the density
stratification and Pr which depends on the diffusivity of the stratifying agent. We
now analyse the effect of both of these parameters on the swimming velocity.

Figure 3(a) shows the variation of the swimming velocity with Ri normalized with
respect to the velocity in a homogeneous fluid (Ri = 0, Re = 0). We observe that
the velocity decreases with stratification for all values of Pr. This implies that an
increase in stratification hampers the vertical motion of swimmers. We now observe
the effect of diffusion on the swimming velocity (see figure 3b). For smaller levels of
stratification, we see that the velocity initially decreases with Pr, and then increases
after reaching a minimum (see figure 3b (Ri = 1.5)). Thus, for small Ri, diffusivity
of the stratifying agent plays a key role in determining the swimming behaviour.
For higher levels of stratification, we find that the velocity monotonically decreases
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FIGURE 4. (Colour online) Decomposition of the swimming velocity for (a) Pr= 700 and
(b) Ri= 1.5, for Re= 0.001.

with Pr (see figure 3b (Ri= 5)). Additionally, we observe that, for very high values
of diffusion (Pr � 1), the swimmer moves with the same velocity as that in a
homogeneous fluid (see figure 3b). This is mainly because the density disturbance
becomes negligible for very high values of diffusion. We further find that, for small
values of Ri and Pe, the velocity decreases linearly with respect to these parameters.
By using a numerical fit to the velocity curves in figure 3(a,b) for small Ri and Pe,
the mathematical form of the velocity variation is obtained as follows:

V = VH(1− 0.46RiPe). (4.1)

The sheet swimming velocity can be decomposed into two contributions (refer
to (3.27)). The first term signifies the second-order vertical velocity at the sheet
boundary because of the no-slip condition at the sheet surface. In the case of a
homogeneous fluid, this is the only contribution to the sheet propulsion. We can
rewrite this term as follows:〈

sin(z)
d2ψ1

dx2
(x= 0)

〉
=

1
2
(ω1(0,π/2)− 1). (4.2)

Here, ω1(0, π/2) represents the value of first-order vorticity in the fluid at the
sheet crests. We thus find that this contribution to the swimming velocity is directly
proportional to the magnitude of the vorticity generated in the fluid at the sheet crests.
Lauga & Powers (2009) explained that the vortices are caused due to the opposite
direction of longitudinal displacement of the fluid particles close to the sheet’s crests.
The second contribution is caused by the mean second-order velocity field which is
induced in the fluid when density stratification is taken into account (refer to (3.25)).
For a stratified fluid without inertia this contribution is completely governed by k2(x).
Physically, this quantity signifies average rate of mass transfer due to advection across
the fluid volume.

Figure 4 shows the reconstruction of the velocity from both these contributions.
We observe that the second-order vertical velocity at the sheet boundary (represented
by the propulsion component) is positive for all Ri, Pr, which causes the sheet to
propel. Furthermore, this propulsion component of the velocity decreases with Ri.
We rationalize this observation by considering that the propulsion component is
generated due to the vortices developed in the fluid at the sheet crests (refer to (4.2)).
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Figure 3(c,d) shows the modification in the vorticity field when stratification is taken
into account. We find that the vorticity peak is no longer aligned with the sheet crests
in the presence of stratification. Consequently, the magnitude of the vorticity at the
sheet crests decreases, which ultimately causes the propulsion component to decrease
with Ri.

From figure 4(a), we also find that the contribution of the mean second-order
velocity field developed in the fluid due to stratification is negative. In order to
understand this observation, we first note that, as the swimmer translates in the
positive y direction, it pulls the surrounding fluid with itself. If we now consider a
fixed control volume inside the fluid, we deduce that its mass is increasing with time,
as the fluid is being replaced by a heavier fluid. If we further assume that diffusion
is not very large, then mass conservation dictates that the rate of mass transfer due
to advection across the control volume should be negative. Consequently, we note
that the quantity that governs the mean second-order velocity field (refer to k2(x)
in (3.25)) is negative everywhere in the fluid domain. This causes the contribution
of the mean second-order velocity field to oppose the propulsion of the swimmer.
Furthermore, if the ambient density gradient is increased, the mass of the control
volume will increase at a faster rate, causing k2(x) to become more negative in the
fluid. Consequently, we find that increasing stratification leads to an increase in the
opposition caused by the mean second-order velocity field (see figure 4a). After
analysing the variations of both of the velocity contributions, we infer that increasing
stratification restricts the vertical motion of swimmers. From figure 4(b), we observe
that, for low stratification strengths, the propulsion component decreases with Pr;
however, the resistance to propulsion increases with Pr and then decreases, eventually
supporting the propulsion for high Pr. This trend is consequently reflected in the
velocity of the swimmer (see figure 3b, Ri= 1.5). Interestingly, if the density gradient
is small, for low levels of diffusion, the swimmer can even propel faster than in a
homogeneous fluid (see figure 3b, Ri= 1.5, Pr= 1000).

To summarize, we find that higher stratification strengths mostly hamper the
swimming velocity of the sheet in a low-Reynolds-number regime. This result is
expected from an intuitive standpoint, because for the class of problems involving
particles settling in a density-stratified Newtonian fluid, it is well known that an
increased drag force inhibits their vertical motion (Yick et al. 2009; Candelier,
Mehaddi & Vauquelin 2014; Doostmohammadi, Dabiri & Ardekani 2014). However,
in the narrow regime of lower stratification strengths and negligible diffusion, we find
that stratification supports the swimming motion of the sheet.

4.1.2. Effect of stratification on power expenditure and swimming efficiency
In this section, we analyse the influence of stratification on the power expended

by the swimmer to achieve propulsion. This depends on the work done by the
hydrodynamic stresses acting on its surface. Ardekani & Stocker (2010) predicted
that point forces acting on a stratified fluid generate a flow field around the
swimmer which augments its power expenditure. Later, Doostmohammadi et al.
(2012) analysed the power expended by squirmers suspended in a density-stratified
fluid. By conducting a series of numerical studies, they came to the same conclusion
that stratification magnifies the energy required for swimming.

The power expended by the swimmer is given by

P=
∫

S(t)
n · σ · u dS=

∫
V(t)
(∇ · σ ) · u dV + 2µ

∫
V(t)

E : E dV . (4.3)
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Here, σ and E are the stress tensor and the rate-of-strain tensor, respectively, S(t)
represents the surface of the swimmer and V represents the fluid volume which is
bounded by the sheet surface and extends to infinity. The first term on the right-hand
side indicates the work done to move the isopycnals against gravity, while the second
term indicates the viscous energy dissipation in the fluid. The rate-of-strain tensor can
be written as E = 1

2(∇u+∇uT), where u= (u1, v1) represents the first-order velocity
field. The divergence of the stress tensor is

∇ · σ =−ρ ′g. (4.4)

We non-dimensionalize the above quantities and obtain the following expression for
the power dissipation at low Reynolds numbers:

P=
∫
V(t)
µσ 2

(
ε2

(
Ri(ρ1v1)+ 2

((
∂u1

∂x

)2

+

(
∂v1

∂z

)2

+
1
2

(
∂u1

∂z
+
∂v1

∂x

)2
))
+O(ε3)

)
dV .

(4.5)
Here, u1 and v1 are the first-order velocity fields in the x and y directions, respectively.
We observe that, in addition to the viscous dissipation, stratification induces
an additional contribution from the buoyancy force generated by the first-order
disturbance density field.

We calculate the mean power over one time period and compare it with the power
expended by the swimmer in a homogeneous fluid by varying the stratification
magnitude (see figure 5a). We observe that stratification augments the power
expenditure at all values of Pr considered. We previously noted that the streamlines
surrounding the swimmer become more tilted in the presence of stratification
(figure 2b). Similar to the streamlines, we find that the velocity contours also become
vertically skewed due to stratification effects. The skewed velocity contours augment
the velocity gradients generated in the fluid domain. This enhances the shear stresses
developed in the fluid, and consequently the viscous dissipation in the fluid increases.
Moreover, the swimmer consumes more energy in mixing the fluid as well. As a result,
we find that swimming becomes more energetically expensive in a density-stratified
fluid. This result matches with the predictions made by Ardekani & Stocker (2010)
and Doostmohammadi et al. (2012), even though the geometry of the swimmer is
different in each case. We further observe that an increase in diffusion decreases
the power expenditure of the swimmer. This can be understood by considering that
stronger diffusion counteracts the effect of buoyancy more effectively by restricting
the tilting of the density contours. As a result, the work done by buoyancy forces is
mitigated which consequently decreases the power expenditure. This analysis is shown
in figure 5(c,d) which compares the isopyncal deflections for Pr = 7 and Pr = 700.
In order to understand the deflection of isopycnals for low values of diffusion, we
note that, far away from the swimmer, the vertically averaged mass flux developed
in the fluid due to the deformation of the swimmer is positive for smaller values
of diffusion. This implies that, as the swimmer propels, fluid mass is migrating in
the positive y direction. To account for this mass transport, the isopycnals can no
longer be horizontal and are bent upwards. However, for high values of diffusion, we
find that there is no mass transport across the isopycnals and hence they retain their
undisturbed position.

We seek to analyse the effect of stratification on the hydrodynamic efficiency of
the swimmer. Efficiency depends on the fraction of the available power used for
locomotion. Lighthill (1952) defined swimming efficiency as the ratio of external
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FIGURE 5. (Colour online) Effect of stratification on (a) power expenditure and (b)
swimming efficiency, normalized with respect to that in a homogeneous fluid in the Stokes
regime. First-order density field (ρ1) contours for (c) Ri= 5, Pr= 7 and (d) Ri= 5, Pr=
700. Here Re= 0.001 is chosen for all the subplots.

power required to move the swimmer at a constant velocity to the power expended
by the swimmer. This definition is commonly used to represent the hydrodynamic
efficiency of undulating sheets. We use this definition to quantify the hydrodynamic
efficiency in a stratified fluid. Hence, we obtain

η∝
V2

P
. (4.6)

Here, V is the swimming velocity and P is the mean power expended by the swimmer
over one time period. We compare this efficiency with that in the homogeneous fluid
and observe the variation with the stratification strength (see figure 5b). We observe
that an increase in Ri decreases the efficiency of the swimmer. This is expected
because with increasing Ri, the power expenditure of the swimmer is increasing (see
figure 5a), while the swimming velocity is decreasing (see figure 3a). Hence, the
swimmer is converting less fraction of the available power into locomotion. For the
values of Pr considered for the efficiency analysis, we have seen that with increasing
diffusion, the swimming velocity increases, while the power expenditure of the sheet
decreases. This causes the swimming efficiency to increase with diffusion for a
fixed Ri.

4.1.3. Effect of stratification on mixing
Biogenic mixing has been studied via experimental and numerical studies (Katija &

Dabiri 2009; Katija 2012; Wang & Ardekani 2015). Mixing efficiency can be defined
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FIGURE 6. (Colour online) Variation of the mixing efficiency with Richardson number for
Re= 0.001.

as the fraction of mechanical energy converted to change the potential energy of the
fluid by the mixing process. It is represented by the following formula:

Γ =
1PE
1KE

=
Ri
∫
V ρ
′v dV

Ri
∫
V ρ
′v dV + 2

∫
V E : E dV

. (4.7)

Here, ρ ′ and v denote the disturbance density field and the vertical velocity field,
respectively. The numerator denotes the potential energy change in the fluid induced
by the swimming organism, while the denominator indicates the total mechanical
energy of the fluid. From the above expression, it is evident that mixing efficiency
depends on the ratio of the change in the potential energy of the fluid to the viscous
dissipation.

Figure 6 shows the variation of mixing efficiency with Ri. Wagner, Young
& Lauga (2014) showed that the vertical mixing induced by an ensemble of
microorganisms, represented by force dipoles, at small Reynolds and Péclet numbers
is very small (≈ 8 %). Here we consider the mixing induced by a Taylor swimming
sheet. Interestingly, our results show that the mixing efficiencies can reach up to
40 % for thermally stratified water. Although the viscous dissipation increases with
stratification as mentioned before, the bending of the streamlines induces additional
vertical velocities in the fluid domain (see figure 2b). This causes the mass flux to
increase, which consequently increases the potential energy of the fluid. As a result,
we observe that the mixing efficiency increases with Ri. Wang & Ardekani (2015)
also observed that mixing efficiency increases with stratification strength at low
Reynolds numbers by performing fully resolved three-dimensional simulations on a
suspension of squirmers swimming in thermally stratified water (Pr= 7). In addition
to this, we observe that for lower values of diffusion (Pr = 700), which is the case
for salt-stratified water, the mixing efficiency increases with stratification and then
saturates for higher values of Ri. This indicates that the change in potential energy
balances the viscous dissipation for low diffusion and higher stratification strength.
The maximum mixing efficiency for salt-stratified water is about 15 %. We find that
the mixing efficiency is highest when the diffusion of the stratifying agent is very
high (Pr≈ 0). We thus infer that, at low Reynolds number, a swimmer immersed in
thermally stratified water will induce more mixing compared to salt-stratified water.
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FIGURE 7. (Colour online) Variation of swimming velocity with (a) Richardson number
and (b) Prandtl number, for Re= 5, normalized with that in a homogeneous fluid at the
same Re. (c) Decomposition of the swimming velocity into two components for Pr= 700,
Re= 5. (d) Variation of swimming velocity with Reynolds number.

4.2. Finite inertia analysis
Next, we discuss the effect of inertia in our analysis. We will analyse the effect
of stratification on the same parameters that were considered for the low-Reynolds-
number regime. Although our procedure is applicable for any arbitrary value of Pr,
we focus our attention on the cases where diffusion is not significantly large (Pr >
1). These are the problems which are typically encountered in practice as mentioned
before (salt-stratified water (Pr= 700); temperature-stratified water (Pr= 7)). Analysis
of the influence of stratification on swimming in high-diffusion scenarios is given
briefly in the Appendix.

4.2.1. Effect of stratification on swimming velocity
Figure 7(a) shows the effect of stratification on the swimming velocity for Re= 5.

We observe that inclusion of inertia augments the swimmer’s velocity for low
stratification strength. For thermally induced stratification (Pr = 7), the maximum
velocity increase is almost five times that of the homogeneous case. Further increase
in stratification strength causes the velocity to decrease, ultimately leading to a
direction reversal for a sufficiently high Ri. Even higher values of Ri induce a
nominal increase in the velocity with the opposite swimming direction maintained.
For low values of diffusion (Pr = 700), the velocity of the swimmer is almost zero
for most values of Ri considered. This implies that strong salt stratification inhibits
the vertical migration of the swimmer causing it to remain essentially stationary.
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Variation with Pr also follows a similar trend, comprising a velocity peak followed
by a motion reversal, eventually leading to saturation (see figure 7b). Interestingly,
higher stratification strengths tend to completely hamper the velocity of the sheet.
We thus conclude that, for moderately small values of Re, if the diffusion of the
stratifying agent is very low or the stratification strength of the fluid is high, then
the swimmer will not propel (see figure 7a,b). This observation is similar to the
preferential aggregation of marine organisms at pycnoclines at steep density gradients
reported by Harder (1968).

Similar to the Stokes regime, we find that the swimming velocity follows a trend
similar to the contribution of the mean second-order velocity field developed in the
fluid domain (see figure 7c). We also observe that the propulsion component of the
velocity is almost independent of Ri. As discussed before, we know that the propulsion
component of the velocity is governed by the vorticity generated in the fluid. We note
that, when inertial effects are considered, the inertia-induced vorticity near the sheet
crests dominates the vorticity induced due to the density gradients. Consequently, we
find that stratification has a negligible influence on the propulsion component of the
velocity. For a homogeneous fluid, Tuck (1968) noted that inclusion of inertia creates
a second-order mean convective velocity which opposes propulsion. However, for a
density-stratified fluid, we find that the second-order velocity field supports propulsion
for smaller Ri, and opposes propulsion for higher density gradients (see figure 7c).
We see that, for higher Ri, the resistance to motion dominates over the propulsion
component causing the swimmer to reverse its direction of motion.

Next, we quantify the variation of the swimming velocity with Reynolds number
for the cases of both temperature and salt stratification (figure 7d). We find that, in
contrast to a homogeneous fluid, the presence of stratification causes the swimming
velocity to become more sensitive to inertial effects. For thermally stratified water,
the swimming velocity is independent of Re for higher Reynolds numbers and only
increases with stratification. The saturation of swimming velocity at higher Re is also
seen for a homogeneous fluid. This is not the case for salt stratification, where we
observe that higher stratification strengths cause the swimming velocity to increase
with Re, with the swimmer reversing its direction of motion for all Reynolds numbers.
As explained before (figure 7c), this is mainly because of the dominance of the mean
second-order velocity component which becomes negative for higher stratification
strengths.

4.2.2. Effect of stratification on power expenditure and swimming efficiency
In the case of finite Re, we have

∇ · σ = (Riρ ′)ey + Re
Du
Dt
. (4.8)

Here, D/Dt represents the material derivative and u= (u, v) is the fluid velocity vector.
Thus, unlike the Stokes regime, the work done by the fluid inertia will add to the
power expended by the swimmer (see (4.3)).

As in the case of the Stokes regime, we find that with increasing stratification,
the viscous dissipation in the fluid increases and the swimmer does more work in
changing the potential energy of the fluid as well. Consequently, we observe that
the swimmer consumes more power with increasing stratification (see figure 8a). We
thus infer that stratification augments the power expenditure of swimmers irrespective
of the importance of inertia. Figure 8(b) shows the effect of stratification on the
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FIGURE 8. (Colour online) (a) Power expenditure and (b) hydrodynamic efficiency for
Re= 5, normalized with respect to that in a homogeneous fluid at the same Re.

swimming efficiency for finite fluid inertia. For all values of Pr considered, the
efficiency increases with Ri, reaches a peak value and then decreases. For thermal
stratification, the peak efficiency is 20 times that for the homogeneous case. The
trend of the swimming efficiency closely matches that for the swimmer’s velocity
(see figure 7a). This directly follows from the definition of the swimming efficiency
(see (4.6)). As discussed before, for lower values of diffusion, stratification severely
hampers the vertical migration of swimmers for finite fluid inertia. Consequently, we
find that, for high Pr, the efficiency is zero for most values of stratification.

4.3. Effect of stratification on mixing
In this section, we quantify the mixing induced by a swimmer at finite Re.
This analysis is relevant for the zooplankton community in oceans, which have
Re≈O(1–100). We first focus on the mixing efficiency of the swimmer (refer to (4.7)).
We observe that, as in the case of the Stokes regime, an increase in stratification
enhances mixing efficiency of the swimmer (see figure 9a). However, the mixing
efficiency follows a fast decay with Re (see figure 9b). This observation can be
rationalized by considering that the viscous dissipation in the fluid increases rapidly
with Re, dominating any variations in the potential energy, and ultimately leading to
the decay in the mixing efficiency. This can be seen from figure 9(c) which shows
the mean vertical viscous dissipation energy per unit volume. This observation is
consistent with our knowledge derived from application of the Helmoltz minimum
energy dissipation theorem, that Stokes solution has the smallest rate of viscous
dissipation as compared to solutions obtained by considering finite inertia. For high
Reynolds numbers (Re> 200), the mixing induced by the sheet is negligible for both
salt and temperature stratifications. In addition to this, for salt stratification (Pr= 700),
the mixing is insignificant for low Re as well. This implies that, for salt-stratified
water, most of the power expended by the swimmer is dissipated as viscous heat for
all Reynolds numbers. However, for stratification induced by temperature gradients,
we find that the swimmer converts a higher fraction of the power to change the
potential energy of the fluid at low Reynolds numbers, which consequently leads to
higher mixing efficiencies.

Another parameter which is often used to characterize mixing is the diapycnal
eddy diffusivity (Kv), which is a measure of the vertical mass flux in the fluid.
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FIGURE 9. (Colour online) Variation of the mixing efficiency with (a) Richardson number
(Re = 5) and (b) Reynolds number. (c) Spatial variation of vertical averaged viscous
dissipation energy (Pr= 7,Ri= 5); E is the rate-of-strain tensor. (d) Variation of diapycnal
eddy diffusivity with Reynolds number.

The dimensionless diapycnal eddy diffusivity is defined as (Osborn 1980)

Kv

ν
=−Re〈〈ρ ′v〉〉. (4.9)

Here, ρ ′ is the disturbed density field, v is the vertical velocity field, ν is the
kinematic viscosity and 〈〈·〉〉 represents the average in the entire fluid domain. We
calculated Kv for density-stratified water and observed the variation with Reynolds
number (see figure 9d). We observe that the vertical mass flux induced by the
swimmer due to salt stratification is negligible. For thermally stratified water
(Pr = 700, ν = 10−6 m2 s−1), we find that for higher Reynolds numbers (Re > 50),
Kv > 10−7 m2 s−1 which is the molecular temperature diffusivity in water. This
implies that, for higher Re, stratification has potential to enhance mixing in the fluid.
Additionally, we find that Kv increases with Reynolds number. A similar trend was
observed by Wang & Ardekani (2015), by performing simulations on a suspension
of squirmers in a stratified fluid by considering a volume fraction of 4 %. They also
noted that the vertical mass flux is independent of stratification for Fr≈ 20, where Fr
is the Froude number. Our results match with this observation, as it can be seen from
figure 9(d) that increasing stratification has a negligible influence on the diapycnal
eddy diffusivity at all Reynolds numbers.
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5. Conclusion

We analytically obtained the swimming velocity for a self-propelling sheet
immersed in a density-stratified fluid. We performed a regular perturbation to obtain
this velocity up to second order of the undulation amplitude (bk). We found that, as
in the case of a homogeneous fluid (Taylor 1951), the first-order component of the
velocity is zero and the swimming velocity only depends on the square of the wave
amplitude and the wavenumber. We analysed the influence of stratification on the
swimming behaviour by considering cases of both small and finite Re.

For low Re, we found that a large density stratification in the fluid mostly hampers
the vertical motion of the swimmers. This results in a swimming velocity which
is less than that in a homogeneous fluid. We interestingly found that, in cases
where both stratification strength and the diffusivity of the stratifying agent are low,
the swimming speed is magnified and stratification supports the propulsion of the
swimmer. The results in the Stokes regime are relevant for small-scale organisms
in stratified environments; for example, motion of organisms such as bacteria (e.g.
Escherichia coli, Salmonella typhimurium), small plankton, larvae of marine organisms
and smaller sized copepods in oceanic waters. For finite inertia, we found that the
swimming velocity behaviour is highly sensitive to the stratification strength, diffusion
in the fluid and Reynolds number. We found that, for higher stratification strengths
or low values of diffusion, the motion of the swimmer is highly restricted and it
essentially remains stationary. We elucidated the similarity between this observation
and the experimentally observed phenomenon of preferential aggregation of swimmers
at pycnoclines for steep density gradients. The observations in the regime of finite
inertia are particularly relevant for moderately sized swimmers such as zooplankton,
e.g. Euphausia pacifica (krills) and larger sized copepods, for which the Reynolds
number can be much greater than unity. The velocity behaviour in both regimes of
Reynolds number is primarily governed by the mean second-order field developed in
the fluid.

Stratification causes the streamlines to become vertically biased and tilt towards the
denser portion of the fluid. This results in enhanced shear stresses generated in the
fluid which consequently leads to an increased power expenditure by the swimmer.
Moreover, the skewed streamlines cause additional vertical velocities to be developed
in the fluid domain which increases the vertical mass flux. Consequently, the mixing
efficiency induced by the swimmer increases with stratification. We also found that
diffusion plays an important role in influencing the motility characteristics of the
swimmer. A more diffusive fluid will prevent the tilting of the density contours in the
presence of stratification, which more effectively counteracts the buoyancy-induced
disturbances. This results in a decreased power expenditure by the swimmer and
consequently leads to a higher swimming efficiency.

Increase in inertia causes a higher fraction of the power consumed by the swimmer
to be expended in the form of viscous dissipation in the fluid. This leads to a
decreased mixing efficiency and consequently we observe a fast decay of the mixing
efficiency with Reynolds number. However, the diapycnal eddy diffusivity, which is a
measure of the vertical mass flux, increases with inertia. Additionally, we found that,
in both regimes of Reynolds number, a swimmer immersed in thermally stratified
water leads to higher mixing efficiency and diapycnal eddy diffusivity as compared
to salt-stratified water, which has negligible mixing efficiency and diapycnal eddy
diffusivity in the inertial regime.
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FIGURE 10. (Colour online) Effect of stratification on swimming velocity at high values
of diffusion for Re= 5.
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Appendix. Effect of stratification on swimming velocity for high diffusion, finite
inertia (Pr< 1)

Here, we analyse the case of swimmers immersed in a highly diffusive environment
(see figure 10). For Pr = 0.001, we see that the swimming velocity increases with
stratification strength. However, with further increase in Pr, the curve becomes flatter,
ultimately with the trend reversing for Pr= 0.1.
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