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Investigation of supersonic twin-jet coupling
using spatial linear stability analysis
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The present work focuses on the study of the resonance and coupling of an underexpanded
circular twin-jet system operating at a nozzle pressure ratio of 5.0. Particle image
velocimetry data from previous work were revisited, and a symmetry-imposed proper
orthogonal decomposition (POD) was performed. It is shown that the system is dominated
by a single POD mode pair symmetric about the internozzle plane, and the resonance
loop is modulated by a third POD mode related to shear thickness modulation. A spatial
Fourier transform of the leading POD mode pair leads to the identification of the peak
wavenumbers and radial shapes of the different waves at play in the screech phenomenon.
Locally parallel linear stability analysis around the experimental mean flow is also
performed, in order to provide clarification of the mode ‘locking’ mechanism, i.e. the
selection of the global mode associated with screech. It is shown that the characteristics
of the Kelvin–Helmholtz wavepackets alone are not sufficient to explain the coupling
observed in the experimental data. A consideration of the upstream-travelling guided jet
mode offers an explanation; only specific symmetries of upstream modes can be supported
in the frequency range at which resonance occurs. Results from stability analysis point
to structures at frequencies and wavenumbers close to those found experimentally, and
their spatial structures show excellent agreement with the POD modes. The present results
suggest that the resonance loop is closed by an upstream-travelling guided jet mode for the
twin-jet system at high nozzle pressure ratio.

Key words: aeroacoustics, jet noise, shear-flow instability

1. Introduction

Since the seminal work of Mollo-Christensen (1967), coherent structures and their
role in sound generation have been one of the main focuses of studies in the jet
aeroacoustics community. As summarised by Jordan & Colonius (2013), jets are subject to
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a hydrodynamic instability mechanism (the Kelvin–Helmholtz (KH) mode) that generates
a large-scale, spatially coherent structure characterised by oscillatory behaviour, with an
exponential growth in early stages of the jet, followed by saturation and decay further
downstream – thus receiving the name ‘wavepackets’. These structures are a key part of
the sound generation mechanism for both subsonic (Crighton 1975; Cavalieri et al. 2012;
Baqui et al. 2015; Cavalieri, Jordan & Lesshafft 2019) and supersonic (Tam 1995; Nichols
& Lele 2011; Sinha et al. 2014) jets.

When dealing with imperfectly expanded supersonic jets, the presence of a coherent
shock-cell structure (Pack 1950) markedly changes the overall characteristics of the
acoustic field. Three noise components can now be identified in the flow (Tam 1995).
The first, common to subsonic and supersonic jets, is the turbulent mixing noise,
which is directly associated with the large-scale structures; for supersonic jets, this
component is highly directional (focused on downstream angles) and generally peaks
at lower frequencies of the acoustic spectrum. The second component is related to the
interaction between the large-scale structures and the shock-cell structure – the broadband
shock-associated noise (Harper-Bourne & Fisher 1974). This component has significant
amplitudes for higher frequencies and in contrast to turbulent mixing noise, the maximum
intensity of this component peaks in the perpendicular/upstream directions. The third
component, usually of higher intensity, is the screech tone. Screech is characterised by
a sharp peak in the acoustic spectrum, and is associated with high-amplitude oscillations
of the jet, being a consequence of a resonance phenomenon.

Screech was first studied by Powell (1953a), who characterised the phenomenon using
schlieren photographs. Powell identified the presence of two types of waves in the flow
travelling in opposite directions: large-scale downstream-travelling waves, which were
later identified as the KH mode, and upstream-travelling waves, which were considered
to be free-field acoustic waves. From his early works, four processes of the resonance
loop can be educed (Edgington-Mitchell 2019): (i) the downstream propagation of
energy, which is due to the large-scale downstream-travelling waves in these jets; (ii)
an energy reflection mechanism, in which downstream-travelling disturbances generate
upstream-travelling waves; (iii) the upstream propagation of disturbances; and (iv) the
forcing of new downstream-travelling waves by the upstream waves in a sensitive point
of the flow. Several works built upon the results of Powell (1953a), identifying a number
of characteristics of screeching jets. Merle (1956) followed by Davies & Oldfield (1962)
identified oscillation regimes of imperfectly expanded jets, highlighting the different
characteristics of the hydrodynamic waves present in each mode. They also showed that
different regimes are observed as the nozzle pressure ratio (NPR) is increased, and these
have a strong effect on the screech frequency and the dynamics of the jet, leading to
changes in the dominant azimuthal wavenumber of the disturbances. The phase and gain
conditions for self-sustaining resonant cycles proposed by Powell (1953b) were also used
to build resonance models for predicting screech frequencies in the different jet regimes;
most of these are summarised in the reviews by Raman (1998) and Edgington-Mitchell
(2019).

The development of linear stability analysis (LSA) allowed for a better characterisation
of the different waves involved in the phenomenon. The association of the large-scale,
downstream-travelling structure with the KH instability mode comes directly from works
such as Michalke (1970), Crow & Champagne (1971), Cavalieri et al. (2013) and Sinha
et al. (2014), who managed to identify some of the characteristics of this structure using
linear models. Recently, attention has been directed to the upstream component of the
resonant cycle. Towne et al. (2017) highlighted the importance of the guided jet mode
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(firstly identified by Tam & Hu (1989)) in high-subsonic resonance, where this mode was
found to be one of the waves responsible for near-field acoustic tones. Some characteristics
of this mode are worth noting: the guided jet mode originates from an acoustic branch in
the eigenspectrum of the jet, and the point where it detaches from this branch is called the
branch point. For supersonic jets, this neutral mode decreases its phase velocity and radial
support as the frequency is increased, until it interacts with a soft-duct mode (a mode that
considers the jet boundary as a pressure release surface, as detailed by Towne et al. (2017))
at the saddle point. This generates a stable mode with a similar spatial structure to the
guided jet mode. Thus, an important feature of such a neutral wave is that it only exists in a
limited range of frequencies, between the branch and saddle points; for higher frequencies,
this wave is exponentially damped in space. The works of Gojon, Bogey & Mihaescu
(2018) and Edgington-Mitchell et al. (2018) have shown that this mode is also of relevance
in underexpanded jets, with their frequency bands of existence (educed from a vortex sheet
model) matching the frequency region where A1 and A2 resonance is observed. Using
the assumption that the resonance cycle is closed by this guided jet mode, Mancinelli
et al. (2019) were able to obtain good predictions of both A1 and A2 screech frequencies.
Still, Gojon et al. (2018) have shown that the overall agreement for higher Mach number
deteriorates, suggesting that the vortex sheet model may not be able to capture all the
relevant features of these waves for such cases.

In the twin-jet framework, most of the efforts to understand the underlying physics of the
flow have relied on experiments. The phenomenon was first studied by Norum & Shearin
(1986) and Seiner, Manning & Ponton (1988), who observed significant changes in the
screech frequencies and amplitudes compared to the single jet case. They also observed
that the resonance phenomenon was characterised by different coupling regimes between
the two jets. More recently, Alkislar et al. (2005) studied the structure of a twin-jet system
using particle image velocimetry (PIV) measurements, showing how the coupling affects
the mean flow and the turbulent kinetic energy. They have also shown that a control
strategy based on micro-jet actuation successfully mitigates the coupling, and suppresses
the screech tone. More recently, Knast et al. (2018) used schlieren photographs to identify
the different coupling regimes of the twin-jet system for different interjet spacing and
Mach numbers, demonstrating that selection of coupling mode is a function of both
parameters. Bell et al. (2017, 2018, 2021) used PIV data to extract the most energetic
coherent structures from the coupled system for two different Mach numbers, highlighting
the presence of a coupled KH mode for this configuration.

Notable exceptions to the experimental focus on the study of twin jets are the works by
Morris (1990) and Rodríguez, Jotkar & Gennaro (2018). Morris (1990) developed twin-jet
vortex sheet and finite thickness models to evaluate the effect of the interjet spacing
on the growth rates of the KH mode, classifying the modes according to their different
symmetries and dominant azimuthal wavenumbers. In a similar approach, Rodríguez et al.
(2018) used LSA and parabolised stability equations to analyse the development of the KH
mode for different spacings and mode symmetries for a subsonic jet.

The present study attempts to provide clarity on the resonance closure mechanism of
twin-jet systems, shedding light on the key structures responsible for screech. This analysis
is based on the experimental data presented by Bell et al. (2021), and on the formulation
of Rodríguez et al. (2018), adapted to take advantage of the symmetry of the problem
(as in Lajús et al. 2019). We start by presenting the LSA in § 2, where the details of the
coordinate system and symmetries considered are also presented. In §3, the experimental
methodology is presented, and a method to isolate the different disturbance symmetries
in the proper orthogonal decomposition (POD) is described. The results from the POD
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are shown in §4, where the characteristics of the dominant structures in the flow are also
compared with those educed from LSA. The paper is closed with conclusions in § 5.

2. Stability analysis using Floquet ansatz

The present stability analysis formulation is based on the work of Lajús et al. (2019)
and Gudmundsson (2009), who studied spatial stability of serrated jets. The inviscid,
compressible, linearised Navier–Stokes equations in polar coordinates can be written in
matrix form as

L̃q̃ = 0, (2.1)

where the response vector q̃(x, r, θ, t) = [ρ̃ ũ ṽ w̃ p̃]T includes density, streamwise,
radial and azimuthal velocity fluctuations, and pressure fluctuations. The linear operator
L is a function of the mean fluid quantities [ρ̄ U V W P]T and the spatial/temporal
derivatives. The flow is considered locally parallel, and only the streamwise component
of the mean velocity is considered. Assuming Fourier-transformed variables in time and
in the streamwise direction, the response vector can be written as

q̃(x, r, θ, t) = q̂(r, θ) e−iωt+iαx, (2.2)

with ω and α the frequency and streamwise wavenumber. Under these assumptions,
manipulation of the Navier–Stokes equations allows us to write a single equation for the
pressure in the flow:

1
r

∂

∂r

(
r
∂ p̂
∂r

)
+ 1

r2
∂2p̂
∂θ2 − f̂

∂ p̂
∂r

− ĝ
1
r2

∂ p̂
∂θ

− ĥp̂ = 0, (2.3)

where the coefficients f̂ , ĝ, ĥ are given by

f̂ (r, θ) = 2α

αU − ω

∂U
∂r

+ 1
ρ̄

∂ρ̄

∂r
− 1

γ P
∂P
∂r

, (2.4)

ĝ(r, θ) = 2α

αU − ω

∂U
∂θ

+ 1
ρ̄

∂ρ̄

∂θ
− 1

γ P
∂P
∂θ

, (2.5)

ĥ(r, θ) = α2 − ρ̄(αU − ω)2

γ P
, (2.6)

and the radial/azimuthal derivatives of the mean pressure are also considered, in order to
account for the effect of the shock cells in the flow. Considering a 2π/N periodicity of the
mean flow in the azimuthal direction (with N an integer related to the number of jets in the
azimuthal symmetry), we can apply Floquet theory, which considers the response to have
the shape

p̂(r, θ) = p(r, θ) eiμθ . (2.7)

Under this assumption, solutions of (2.3) can be obtained in a subsection of the
periodic azimuthal domain and extended to the entire domain via (2.7), reducing the
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computational cost. Thus, (2.3)–(2.6) can be rewritten as

1
r

∂

∂r

(
r
∂p
∂r

)
+ 1

r2
∂2p
∂θ2 − f

∂p
∂r

− g
1
r2

∂p
∂θ

− hp = 0, (2.8)

with

f (r, θ) = 2α

αU − ω

∂U
∂r

+ 1
ρ̄

∂ρ̄

∂r
− 1

γ P
∂P
∂r

, (2.9)

g(r, θ) = 2α

αU − ω

∂U
∂θ

+ 1
ρ̄

∂ρ̄

∂θ
− 1

γ P
∂P
∂θ

− 2iμ, (2.10)

h(r, θ) = α2 − ρ̄(αU − ω)2

γ P
+ μ2

r2 + i
(

2α

αU − ω

∂U
∂θ

+ 1
ρ̄

∂ρ̄

∂θ
− 1

γ P
∂P
∂θ

)
μ

r2 . (2.11)

Following Lajús et al. (2019), we can substitute (2.9)–(2.11) into (2.8), and isolate the
terms multiplying different powers of α. Thus, an eigenvalue problem in discretised form
can be written as⎡

⎣ O I O
O O I

−F 0 −F 1 −F 2

⎤
⎦

⎡
⎣ p

αp
α2p

⎤
⎦ = α

⎡
⎣ I O O

O I O
O O F 3

⎤
⎦

⎡
⎣ p

αp
α2p

⎤
⎦ . (2.12)

In the expression above, the eigenvalue α indicates both the growth rate and the
streamwise wavenumber of the different waves supported by the flow. The eigenfunction
p(r, θ) spans half of the cross-plane, and is fed into (2.7) to recover the disturbances in the
entire cross-plane. The operators F 0, F 1, F 2 and F 3 are defined using the discretised
azimuthal and radial derivative operators and by the mean quantities. For the present
analysis, the mean streamwise velocity is taken from experiments at a given axial station,
and mean pressure and density are obtained using a Crocco–Busemann approximation
based on isentropic relations, and a spatial integration method (Van Oudheusden et al.
2007). The domain is discretised using Fourier–Chebyshev in azimuth and radius, and the
numerical mapping used by Bayliss & Turkel (1992) is also applied in the radial direction,
in order to obtain a higher number of points closer to the jets’ shear layers. Equation (2.12)
is solved numerically using sparse matrices to reduce the computational cost. Boundary
conditions are defined as in Gudmundsson (2009) at the centreline, such that[

r2 ∂2p
∂r2 + r

∂p
∂r

− μ2p
]

r→0
= 0, (2.13)

but considering the boundary condition ∂p/∂r = 0 at the centre of the coordinate system,
used by Lajús et al. (2019), does not lead to perceivable changes in the eigenvalues and
eigenfunctions. Dirichlet boundary conditions (p = 0) are applied in the computational far
field. No reflections close to the artificial boundaries were observed in the relevant modes
due to their sharp amplitude decay in the radial direction (Michalke 1965). Results are
also virtually insensitive to changes in the position of application of far-field boundary
conditions for the cases studied herein.

We focus on the analysis of a twin-jet system, operating at NPR = 5.0. The mean
velocity field is considered to be axisymmetric in both jets, since only the plane containing
both centrelines is available from the PIV data. The velocity field in the region 1.5 ≤
y/D ≤ 4 is obtained from experimental data, leading to a single-jet mean flow profile
Û(rj). This profile is extrapolated to other azimuthal angles of the single jet θj by
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θ

Rj rj
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Dc

External shear layer
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zθj

(b)

(a)

Figure 1. Sketch of the coordinate system used in the present analysis. Polar coordinates (r, θ) are associated
with the centre of the twin-jet system, and (rj, θj) are associated with the centre of a single jet. Both cross-plane
(a) and full view (b) are shown.

considering axisymmetry, or U(rj, θj) = Û(rj), where (rj, θj) are the radial and azimuthal
coordinates considered from the centre of one of the jets. Since the coordinate system for
the Floquet formulation is centred at the mid-plane of the jets, this mean velocity is then
interpolated into this new coordinate system. In summary, the effect of the interaction
between the two jets is not considered in the present analysis, as the mean flows of the jets
are considered axisymmetric; thus, all results are restricted to the axial positions before
the jets start to merge. The different systems used in this problem are shown in figure 1.

In the present analysis, the computational domain is restricted to 0 < r/D ≤ 2.5Dc,
and 0 ≤ θ < 2π/N, with N = 2 for the twin-jet problem; an increase in the maximum
radial distance of the domain did not lead to perceivable changes in the eigenvalues. The
radial mesh is built using Chebyshev polynomials with Nr = 180 collocation points, and
points are distributed in an equispaced manner in azimuth, with Nθ = 180. Radial and
azimuthal derivatives are taken using the algorithms described in Weideman & Reddy
(2000). The the distance between the centre of the coordinate system and the centre of the
jets is Dc/2 = 1.5D, as in the experiments.

3. Experimental methodology

In this paper, we revisit the PIV data presented by Bell et al. (2021), and the reader can
refer to this previous work for more details of the experimental set-up. The jet issues from a
converging nozzle of diameter D = 10 mm, operating at NPR = 5.0. The distance between
the centres of the nozzles is Dc = 3D. Acoustic data were acquired at a distance of 23D
from the origin of the twin-jet system, with a single GRAS type 46BE 1/4′′ preamplified
microphone at the internozzle plane. The acoustic data were acquired at a sample rate of
250 kHz, with a National Instruments DAQ, and the Welch method was performed using
2048 samples with 75 % overlap. A Hanning window was also used to minimise spectral
leakage. The spectrum is shown in figure 2, where a screech tone can be identified around
Stscreech = ωscreechD/(2πUj) = 0.19, where Uj is the ideally expanded jet velocity.
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Figure 2. Power spectral density from the acoustic data of the NPR = 5.0 screeching jet. The screech tone is
clearly identified around St = 0.19.

Roughly 9000 PIV velocity fields (which include both streamwise and lateral velocities)
were obtained in the x–y plane in order to evaluate the streamwise development of both
jets. The average of these fields was used to provide the mean flows for the stability analysis
and to compute the velocity fluctuations for the POD. In order to consider the symmetry
of the problem, we follow an approach similar to that of Sano et al. (2019), defining even
and odd parts of the streamwise velocity field as

ue(x, y, t) = u(x, y, t) + u(x, −y, t)
2

, (3.1)

uo(x, y, t) = u(x, y, t) − u(x, −y, t)
2

, (3.2)

and equivalently for the lateral velocity v. This allows POD modes to be computed
with half of the experimental domain, reducing the computational cost and enhancing
convergence. It is important to note that only modes that are not antisymmetric regarding
the x–y plane can be captured with the present experimental set-up; x–y antisymmetric
modes will have zero amplitude in this PIV plane. Following Rodríguez et al. (2018), the
different modes in the twin-jet system can be classified using the nomenclature mXY,
where m is the dominant azimuthal wavenumber of the disturbance in each jet, and X and
Y are related to the symmetry around the y and z axes, which are also connected to the
Floquet coefficient μ as shown in table 1. Thus, modes related to azimuthal wavenumber
m = 0 (0S and 0A) and those following the symmetry mSS and mSA can potentially be
identified among the POD modes. In all these cases, the velocities of each mode will follow
the combination qSS = [uevo]T for the SS modes and qSA = [uove]T for the SA modes.

Proper orthogonal decomposition (Berkooz, Holmes & Lumley 1993; Taira et al. 2017,
2020) is a modal analysis technique that decomposes a flow into an optimal set of
functions ranked by their kinetic energy. Considering the large number of velocity fields,
the snapshot method (Sirovich 1987) was chosen for the present analysis. Thus, POD can
be applied to both SS and SA datasets, which are orthogonal by construction, such that the
autocovariance matrix of the SS modes is given by

RSS = QT
SSQSS, (3.3)
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Mode Symmetry about x–y plane Symmetry about x–z plane μ

1SS Symmetric Symmetric 0
1AA Antisymmetric Antisymmetric 0
1SA Symmetric Antisymmetric 1
1AS Antisymmetric Symmetric 1

Table 1. Symmetry of the different modes in the twin-jet system.

where the columns of the matrix QSS are built by stacking the velocity vectors for each
snapshot. The POD modes are obtained by solving the eigenvalue problem

RSSξSSj = σSSjξSSj, (3.4)

where the eigenvalues σSSj are ordered in descending order, each of them related to the
energy of the modes. Since no flow reconstruction is attempted in the present work, scaling
factors and integration weights are not considered in the analysis; thus, the eigenfunctions
ξSSj are linked to the temporal coefficients of each mode by aSSj(t) = ξSSj, and are related
to the POD mode shapes by φSSj = QSSξSSj. The equivalent decomposition was also
performed for the SA modes.

As highlighted by Taira et al. (2017), POD modes contain a mix of frequencies, which
can cloud the analysis. Still, considering that the jet is screeching at a single frequency for
this case, the POD mode related to the feedback loop at the screech frequency is likely to
dominate the field (Edgington-Mitchell et al. 2014b, 2018; Jaunet, Collin & Delville 2016;
Edgington-Mitchell et al. 2021).

4. Results

4.1. Mean flows
The temporal averages of the streamwise (U) and lateral (V) velocities, normalised by
the ambient speed of sound, are shown in figure 3. At such high NPR, the flow issues
from the nozzle at unit Mach number, and experiences a strong expansion, which leads
to an acceleration in the near-nozzle region. A large Mach disk is generated at the
first shock cell, and the typical shock-cell pattern is formed further downstream, as
expected for underexpanded jets. The mean flow follows the expected symmetry, with the
streamwise velocity keeping an ‘even’ (U( y>0) = U( y<0)) configuration, opposed to the
lateral velocity, which displays an ‘odd’ (V( y>0) = −V( y<0)) symmetry. Any deviations
from this behaviour are due to small alignment errors or by diffraction of the laser sheet
by the Mach disk of the bottom jet; still, anomalies due to these effects are minor.

These mean velocity fields were used to provide slices of the mean flow for the
spatial stability analysis. Considering that no cross-plane information was available from
the experiments, each jet was considered to be axisymmetric, and the velocities at the
cross-planes were obtained by rotation of the mean fields around each jet axis, and
the ‘even’ symmetry was imposed in the streamwise velocity field. The hypothesis of
axisymmetric jets may be valid for axial stations prior to the merging point of the system,
which can be estimated by the axial station where the mean streamwise velocity starts
to increase considerably at the x–z symmetry plane. Figure 3(c) shows that the lateral
velocity is zero at the centreline of the system (y/D = 0). Since the symmetry of this
velocity component requires zero velocity in the x axis, this confirms that the PIV system
is aligned and that the data are well converged. The streamwise velocity is also very close
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Figure 3. Streamwise (a) and lateral (b) mean flows from PIV experiments. The magnitudes of both velocity
components at the system centreline (y = 0) are also shown in (c) and the mean streamwise velocities at several
axial stations analysed in this work are shown in (d). All fields are normalised by the ambient velocity of sound.

to zero at y = 0 up to x/D = 5, supporting the hypothesis that the effect of the interaction
between the jets on the mean fields is small up to that position, and that the jets had not
merged before that station. Further downstream, as the jets start to merge, the amplitude
of the mean velocity starts to increase considerably. The axisymmetric assumption is also
supported by the symmetry of sample streamwise velocity fields, shown in figure 3(d).
In these fields, the impact of the Mach disk is also clearly seen around the centreline
of the jet, where a second shear layer is observed. The effect of the shock-cell structure
is captured in figure 3(d), where the mean flow is shown to vary non-monotonically for
increasing x/D. These plots altogether suggest that the axisymmetric assumption is valid
up to x/D = 5; thus, LSA was performed for x/D ≤ 5. Also, we avoided regions close
to the Mach disk, were new unstable modes may appear due to the formation of an inner
shear layer (Edgington-Mitchell, Honnery & Soria 2014a). A sample of the mean flow
used in the LSA for x/D = 4 and its respective radial and azimuthal derivatives are shown
in figure 4; in all cross-plane visualisations, the z axis is labelled as −z/D to account for
an observer facing the jets from the positive x axis (see figure 1).

4.2. Proper orthogonal decomposition
The POD spectra for both SS and SA modes are shown in figure 5. As in
Edgington-Mitchell et al. (2014b) and Bell et al. (2017), the first two POD modes have
similar energy, and they sum up to around 11.4 % of the energy of the SS field (or 6 %
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Figure 4. Sample mean flow interpolated into the computational mesh for stability analysis (a) and its
respective radial ∂U/∂r (b) and azimuthal ∂U/∂θ (c) derivatives (x/D = 4). Modes are normalised by the
ambient speed of sound.
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Figure 5. The POD spectra for both SS (a) and SA (b) modes. Blue symbols (and left-hand y axis) depict
the fraction of the total energy held by each mode and orange lines (right-hand y axis) show the cumulative
energy as a function of the number of modes. All percentages are related to the total energy associated with
each symmetry (SS or SA). The total energy of SS modes is 10.4 % greater than the total energy of SA modes.

of the total energy of the flow). The third mode has also a significant separation from the
other suboptimal modes and has no correspondent pair; for the present case, its energy is
around half of the total energy of the first pair. For the SA modes, the spectrum shows
dominance of a single mode, which contains around 5 % of the energy of the SA field,
and 2.4 % of that of the total field. Similarly to the third POD SS mode, this mode has
no correspondent pair. As usual in turbulent flows, a large number of modes is necessary
to account for most of the kinetic energy of the jets, but a clear separation in energy of
the first few modes can point to dominant physical mechanisms at play in the flow (Jaunet
et al. 2016). Considering that the overall energy of the SS mode is around 10.4 % greater
than the SA mode, the dynamics involving modes with the SS symmetry is expected to
overrule the ones related to SA modes.
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Figure 6. Three dominant POD modes for the SS field. Both streamwise (a,c,e) and lateral (b,d, f ) velocities
are shown. Modes 1 and 2 (a–d) seem to form a pair, and mode 3 (e, f ) has no associated pair. All fields are
normalised by their maximum. (a) POD-SS mode 1 (u), (b) POD-SS mode 1 (v), (c) POD-SS mode 2 (u), (d)
POD-SS mode 2 (v), (e) POD-SS mode 3 (u) and (f ) POD-SS mode 3 (v).

The shapes of the dominant POD SS modes are shown in figure 6. Similar to
Edgington-Mitchell et al. (2014b) and Bell et al. (2017), these modes represent coherent
structures in the flow, with their spatial support related to the different waves present in
the jets. The two first modes display an oscillatory behaviour in both streamwise and
lateral velocity fields, which are symmetric and antisymmetric regarding the x–z plane
of the twin-jet system by construction. This is highlighted by the zero amplitude of the
modes at y/D = 0 for the lateral velocity and non-zero amplitudes at the same position
for the streamwise velocity. Figure 6(a,c) also shows that each jet is dominated by m = 1
disturbances, since the amplitudes of the modes at the centreline of each jet are close to
zero, with phase-shifted disturbances on both sides of a jet, which precludes the presence
of an m = 0 mode. Also, figure 6(b,d) shows that the lateral velocity is non-zero at the
jet centreline in these modes, which would not be the case if m > 1. The two first modes
also have a strong signature of waves with support outside the jets, which is particularly
strong in the interjet region. These waves can be related either to a coupling of the KH
modes of the two jets or to upstream waves generated by this system. As expected in the
analysis of flows with temporally coherent oscillatory motions, the shape of the second
mode is similar to that of the first mode with a change in streamwise phase, which can be
seen more clearly for the streamwise velocity. Due to the presence of both downstream-
and upstream-travelling modes, the phase offset is not immediately apparent from visual
inspection. However, a consideration of the mode coefficients provides a robust means
to demonstrate that these modes are a pair representing a single physical mechanism (a
travelling mode associated with the screech phenomenon) in the flow.

Unlike the two first modes, the third POD SS mode varies slowly in the streamwise
direction, and peaks further downstream. This mode has a strong signature at the shear
layer and in positions slightly further away from the centre of the jet in the radial direction,
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with very low amplitudes at the centreline. The same is true for the lateral velocity, with the
difference that this field is antisymmetric with respect to each jet axis. The overall shape
of this mode is similar to the one analysed by Weightman et al. (2018); in that previous
work, the authors attributed this mode to a ‘shear-layer unsteadiness’ (or shear thickness
mode), whose main effect is the amplitude modulation of the instability waves. The same
characteristics are shared by the first POD SA mode (omitted here for conciseness).

In order to confirm the pairing between the two first modes, an analysis of the temporal
coefficients resulting from POD is necessary. As shown by Oberleithner et al. (2011),
coefficients of POD modes related to a single travelling mode of the jet should fall within
a circle in phase space. The phase portrait of the first three POD SS modes is shown in
figure 7(a). The three-dimensional portrait resembles an ellipsoid shell cut in half, aligned

with the a3 axis; to analyse this result in detail, we define a cycle radius r12 =
√

a2
1 + a2

2,
which represents the relative magnitude of the cycle represented by the a1 and a2 modes.
From figure 7(b), which shows the dependence of r12 with a3, it can be inferred that
the third mode modulates the amplitude of the cycle involving modes 1 and 2, with low
values of a3 associated with a smaller cycle radius, as also observed by Weightman et al.
(2018). This is also in line with recent studies of the effect of streaks on the KH instability
mechanism (Marant & Cossu 2018; Lajús et al. 2019; Nogueira & Cavalieri 2021), which
have shown that such elongated structures can have a stabilising/destabilising effect on the
KH mode. Figure 7(c) shows the phase portrait of modes 1 and 2, for restricted values of a3
(|a3 − 0.02| < 0.01). Clearly, most values of (a1, a2) fall within a single circle, confirming
that modes 1 and 2 form a cycle in phase space.

Thus, the overall picture depicted by the POD is a mode pair that represents the in-phase
waves of the system, which include the KH mode and the upstream-travelling wave (which
are responsible for closing the resonance loop), as in Edgington-Mitchell et al. (2021). This
resonance loop is modulated by the third POD SS mode (shear thickness mode/streak),
such that small cycle amplitudes are found for low values of a3. Considering the lack of
cross-plane information, little can be said about this third mode; thus subsequent analysis
will focus on the first two modes, which are associated with the generation of screech
tones. Following the formulation of Jaunet et al. (2016) and Edgington-Mitchell et al.
(2018), we define the screeching mode from the first mode pair as

ζ(x, y, t) = (φSS1 + iφSS2) e−iωst, (4.1)

where ωs is the screech frequency. In order to identify the different waves that compose this
mode, a spatial Fourier transform was applied in the streamwise direction. Such analysis
not only allows us to decompose this structure into the different wave components, but
also to have a first evaluation of the radial structure of these waves. The wavenumber
spectra from the spatial Fourier transform of both velocity fields are shown in figure 8. The
Fourier transform was performed with nfft = 4096 points, and the signal was zero-padded
for Nx > 1036 in order to provide a better visualisation of the most energetic wavenumbers
in the flow. This process does not lead to significant changes in the spectrum, and allows
for a higher resolution in wavenumber. As expected, a strong signature of the KH mode
is observed for both velocity components at positive wavenumbers (around kxD = 1.8),
as in Edgington-Mitchell et al. (2021). The presence of upstream-travelling waves is also
seen in the negative wavenumber region for both velocity components. The wavenumber
of these waves is in good agreement with the wave-interaction theory proposed by Tam &
Tanna (1982): the blue dashed line indicates the wavenumber energised by the interaction
between the KH mode and the shock-cell structure, which matches the peak wavenumber
of the upstream waves.

918 A38-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.366


Twin-jet coupling using spatial linear stability analysis

–0.04 –0.02 0 0.02 0.04
0

0.005

0.010

0.015r12

a3 a1

a1

a3

a2

a2

0.020

0.025

0.030

–0.02

–0.02

0.02

–0.02

–0.02

0.02

0.02

0

0

0

0 0.02

–0.02

–0.01

0

0.01

0.02
(b) (c)

(a)
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Figure 8. The POD SS wavenumber spectra for both streamwise (a) and lateral (b) velocity components. Blue
line depicts the wavenumber energised by the interaction between the KH mode (peak of both spectra) and the
shock-cell structure.

The effect of the coupling between the two jets can be seen clearly in both figures 6
and 8. Overall, the presence of a neighbouring jet induces higher streamwise velocity
amplitudes in the interjet region, and a cancellation of lateral velocity due to the symmetry
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of the SS mode. Even though POD is very efficient in extracting the most energetic
spatially coherent structure from this turbulent flow, it does not provide any reasoning
for this specific coupling. Also, the shapes of the modes are restricted by the PIV plane
used in the present analysis, and the overall structure of the coupled mode for this twin-jet
system is still unclear. In the next section, a spatial LSA around an extrapolated mean flow
from the experiments is conducted in order to explore the conditions for such coupling.

4.3. Spatial LSA
As mentioned in § 4.1, the LSA is focused on the region between the end of the inner
shear layer generated by the Mach disk and the merging point of the twin-jet system.
We start the analysis by introducing the shapes of the different KH modes related to
azimuthal wavenumber m = 1 predicted by this tool. Their overall stability characteristics
are also described, which includes an analysis of the dependence of growth rates and
phase velocities with frequency and axial position. We then proceed to the description
of the upstream-travelling waves predicted by the same analysis, with focus on the bands
of existence of these waves in the frequency–wavenumber space. The shapes of the
modes predicted by the LSA are also compared with those from the POD wavenumber
spectrum in order to provide further validation of the mechanism at play in this system.
As mentioned previously, the LSA was performed in the interval 3 ≤ x/D ≤ 5 in order to
avoid the merging region of the jets (which could not be directly used in the mean flow
extrapolation) and the region around the Mach disk. Still, it will be seen that the region in
which the analysis was performed is representative of the resonance phenomenon at play,
finding a correspondence to the waves found in the POD analysis.

All the modes of this section are obtained as in Rodríguez et al. (2018). In summary,
the spectrum containing eigenmodes related to different symmetries and azimuthal
wavenumbers is obtained as a function of frequency, and the relevant modes are extracted
for the analysis. For the streamwise stations analysed herein, there are usually three
unstable modes for each value of μ: two related to m = ±1 disturbances (which are
dominant) and another related to m = 0 disturbances, which does not find an equivalence
with the POD modes. Other KH modes (with higher m) are either stable or just marginally
unstable. Considering the size of the problem, only a few eigenvalues are obtained
using the function eigs in Matlab. The shift (the position of the spectrum around which
eigenvalues are sought) is chosen to be close to wavenumbers related to the usual phase
velocity of KH disturbances (Michalke 1970). Thus, the most unstable modes are obtained
for all frequencies and axial stations analysed, and the correct symmetries are isolated after
post-processing. The same approach is undertaken for the upstream waves, but a different
shift is chosen for this case, requiring another run of eigs. The complete spectrum of the
twin-jet system is very large, and can only be obtained by parts. Still, there are only two
regions of interest in the spectrum for the present study: the regions related to the KH
and guided jet modes. In this section, we focus on the analysis of both waves, whose
characteristics (like growth rates, wavenumbers and range of existence) will shed light on
the possible reasons for symmetry locking of the screech mode in this configuration.

4.3.1. The KH mode
In order to identify all modes related to the KH instability, (2.12) is solved for
several streamwise positions (x/D) and Strouhal numbers around the screech frequency
(Stscreech = 0.19). In this whole range, the modes with highest growth rates are related
to a combination of azimuthal wavenumbers m = ±1 between the two jets. The pressure
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Figure 9. Real part of the pressure field of KH modes related to azimuthal wavenumber m = 1, St = 0.19 and
x/D = 4. The eigenmodes in the cross-plane can be directly associated with the different symmetries allowed
in the problem. Modes (a) 1SS (μ = 0), (b) 1AA (μ = 0), (c) 1SA (μ = 1) and (d) 1AS (μ = 1).

fields of the different modes for x/D = 4 and St = 0.19 are shown in figure 9. Overall
the modes are similar to those found by Rodríguez et al. (2018), and they follow the
symmetry described in table 1. The different symmetries of the modes lead to regions
of zero amplitude in the field, especially in the x–y plane (for y = 0, or the z axis)
and the x–z plane (for z = 0, or the y axis). These four different modes can be used to
represent disturbances associated with the KH instability in the locally parallel framework;
a linear combination of these modes can be compared with results from experiments
such as the POD modes analysed in § 4.2. Each mode is also associated with a complex
wavenumber α = αkh + iαi, where αkh denotes the streamwise wavenumber of the KH
disturbance and αi represents the spatial growth rate. In the absence of resonance, the mode
with the highest spatial growth rate would be expected to dominate the hydrodynamic
field. In a resonant system, the spatial growth of the downstream-propagating disturbance
remains an important element in determining the overall gain of a particular feedback
mode. However, as is shown in the following section, it is not necessarily the sole
determinant.

Figure 10(a) shows the growth rates of the different KH modes for x/D = 4 and Strouhal
numbers around the screech frequency. Overall, the growth rates of all modes peak around
St = 0.14 and decay for higher frequencies. The plot also shows a slight dominance of the
1SA mode over the other modes in this range of frequencies. The streamwise wavenumbers
of the disturbances, shown in figure 10(b), follow a single line, which indicates that
all modes have roughly the same phase velocity (except for the 1SA mode at very low
frequencies); since the resonance loop is strongly affected by this quantity (Raman 1998;
Edgington-Mitchell et al. 2021), this suggests that any of these modes should be equally
able to close resonance in the present system. Figure 10(c,d) confirms that these features
remain for the different streamwise positions analysed, with a consistent dominance of the
1SA mode, and very little change in the streamwise wavenumber of the different modes.
Since the experimental profile was used in the analysis, which displays strong oscillations
due to the presence of the shock-cell structure, it is natural to expect variations in the
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Figure 10. Growth rates of KH modes related to m = 1 for x/D = 4 as a function of Strouhal number (a)
and their respective streamwise wavenumbers (b). (c,d) Same quantities as a function of streamwise station for
St = 0.19. (a,c) Growth rates and (b,d) Wavenumbers.

eigenvalue α, as seen in figure 10(c,d). Still, these results show that these trends are robust,
and the modes are qualitatively similar at different axial positions.

The analysis of the KH modes shows that the growth rates and streamwise wavenumbers
of all modes are very similar for a given St and x/D. Comparing the wavenumbers of
figure 10(b,d) with the positive part of the spectra shown in figure 8 leads to a very good
agreement (within 3.5 % of the peak wavenumber for St = 0.19); thus, LSA performed in
these positions is able to capture some of the key characteristics of this structure. The KH
mode is one of the key parts of the resonance phenomenon, but a complete description of
screech can only be performed with an analysis of the upstream-travelling wave, which is
responsible for closing the resonance mechanism. This is performed in the next section.

4.3.2. The upstream-travelling mode
Screech is a resonant phenomenon characterised by four processes and two waves
travelling in opposite directions: the KH (downstream-travelling) wave and an
upstream-travelling wave. Recent works (Gojon et al. 2018; Edgington-Mitchell et al.
2018; Mancinelli et al. 2019) have shown that resonance might be closed by an
upstream-travelling guided jet mode, instead of an acoustic wave. Thus, an analysis of the
spatial structure and the bands of existence of these waves in the frequency–wavenumber
domain is a key part of the analysis of the resonant cycle. We analyse these features in the
present section.
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Figure 11. Real part of the pressure field of upstream modes for x/D = 4 and St = 0.19 (1SS, 1AS) and
0.20 (1AA, 1SA). The stable upstream-travelling mode is shown for the 1AA case. Modes (a) 1SS (μ = 0,
St = 0.19), (b) 1AA (μ = 0, St = 0.20), (c) 1SA (μ = 1, St = 0.20) and (d) 1AS (μ = 1, St = 0.19).

Figure 11 shows the real part of the pressure field associated with the guided jet modes
for x/D = 4 and St = 0.19 (1SS and 1AS) and 0.20 (1AA and 1SA). As in the KH
mode, the symmetry of the problem allows for the existence of four different modes,
following the same characteristics of this downstream-travelling wave (summarised in
table 1), thus inheriting the same classification. Comparing the radial structure of the
waves shown in figure 11 with those in Gojon et al. (2018), it becomes clear that these
waves are of first radial order, displaying a single node at the centre of the jets. As in
the previous case, the combination of different values of m = ±1 between the two jets
leads to four modes that may be used to represent the upstream-travelling waves in the
real system. As shown by Tam & Hu (1989), Towne et al. (2017), Gojon et al. (2018)
and Edgington-Mitchell et al. (2018), these waves are spatially neutral, and they form
a saddle with a neutral soft-duct mode in the eigenvalue spectrum, generating a stable
upstream-travelling wave with a very similar spatial structure, and this is also the case for
the twin-jet system. The stable wave is shown in figure 11(b) for the 1AA mode, since the
bands of existence of the neutral wave for this symmetry are very small, hampering its
identification.

The frequency range of existence of the upstream modes is explored in figure 12
for the different symmetries and three different axial stations. This frequency range is
defined by the Strouhal number between the point at which the waves become propagative
(represented by the black dashed lines) and the saddle point (the frequency at which this
neutral mode encounters the soft-duct mode, generating the stable wave). As in the KH
case, the characteristic wavenumbers of these waves change slightly as we go downstream,
which is a consequence of the mean velocity variations induced by the shock-cell structure:
since both x/D = 3 and 5 are close to minima of the shock-cell structure, the magnitude of
the mean velocity is smaller (as shown in figure 3d), leading to higher values of Strouhal
number for the branch and saddle points of the guided jet mode (see Gojon et al. 2018).
On the other hand, x/D = 4 is close to a maximum, explaining the lower values of St
in figure 12(b,e). The first feature observed in these plots is the very small range of
frequencies in which the 1AA and 1SA modes can be identified. This happens consistently
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Figure 12. Wavenumber of the upstream-travelling modes related to m = 1 for x/D = 3, 4, 5 and several
Strouhal numbers. The dashed line indicates the speed of sound, which is the point where the guided jet mode
becomes propagative. (a) μ = 0; x/D = 3, (b) μ = 0; x/D = 4, (c) μ = 0; x/D = 5, (d) μ = 1; x/D = 3, (e)
μ = 1; x/D = 4 and ( f ) μ = 1; x/D = 5.

over all the axial positions analysed, with x/D = 5 being the station with the largest range
of frequencies in which these modes are active. By comparison, the bands of existence of
the 1SS and 1AS modes are much larger for all axial stations analysed, which can also be
seen more clearly for x/D = 5. Figure 12 also shows that the neutral modes are active in
a range of frequencies reasonably close to the screech frequency (Stscreech = 0.19), which
suggests that the guided jet mode is the wave responsible for closing the resonance loop in
the twin-jet case.

Altogether, the results from figures 10 and 12 help to delineate the phenomenon at play.
In summary, the KH characteristics of the four possible modes are not sufficient to define
a dominant coupling symmetry, since their growth rates and phase speeds are very similar
to each other. On the other hand, the characteristics of the upstream-travelling wave at
play in the resonance cycle change substantially among the four different symmetries.
Neutral upstream modes 1SA and 1AA are barely identified in the frequency–wavenumber
spectrum before they become stable, while neutral modes 1SS and 1AS have a larger
region of existence. Thus, the latter two modes have a larger frequency range in which
resonance can be closed. Considering that one of the key elements of screech is the
interaction between KH modes and shocks transferring energy to the upstream waves
(Tam & Tanna 1982; Shen & Tam 2002; Edgington-Mitchell et al. 2021), modes 1SS
and 1AS are possibly the ones closing the resonance in this case, which could lead
either to a 1SS or 1AS flapping motion, or a helical motion involving a combination
of the two modes. The POD modes show clearly the presence of a 1SS mode, which
reduces the options to a 1SS flapping regime, or a 1SS/1AS helical motion, in which
only the 1SS component is observed in the POD; the present experimental set-up cannot
allow for the identification of 1AS modes, since these modes would have zero amplitudes
at the measurement plane. Therefore, due to the absence of cross-plane measurements
of the present dual-jet system, no strong claims about which regime is dominant
can be made.
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Mode POD (kxD) LSA (αkh,ups)

KH 1.80 1.90
Upstream wave −1.93 −1.93

Table 2. Peak wavenumbers of the different waves extracted from the POD wavenumber spectrum compared
with the wavenumbers of the waves from LSA for x/D = 5 and St = 0.2075.

4.3.3. Comparison with structures from POD
The previous sections provided an explanation for the resonance involving the 1SS mode,
highlighting the characteristics of the different waves that make this mode more likely to
close the loop. In this section, we focus on a spatial comparison between the structures
coming from the dominant POD modes and the 1SS waves from spatial LSA. This will
provide more confidence about the nature of the waves involved in the resonance cycle.
The comparison between POD and linear stability modes is performed by the computation
of the streamwise and lateral velocity components from the pressure eigenfunctions of
(2.12). In the present case, the comparisons are performed with the modes resulting
from LSA for x/D = 5 and St = 0.2075, which provided the best quantitative agreement
with experiments, especially for the upstream wave; evaluation of other positions and
frequencies led to a similar qualitative agreement.

Radial shapes of the different waves identified in the wavenumber spectrum of the
leading POD mode pair were extracted at their peak wavenumbers. These can be compared
with the LSA modes at certain frequencies and axial positions, and comparisons between
wavenumbers can also be performed. For the present case (x/D = 5, St = 0.2075), the
comparison between the peak wavenumbers of the two waves educed from POD and those
coming from LSA is shown in table 2. It is clear that wavenumbers of the different waves
from both analyses are in good agreement, despite the small difference in Strouhal number.
The error associated with these wavenumbers for this case is within 5 % for the KH mode,
and less than 1 % for the upstream wave. Also, figures 10 and 12 show that, even though
these wavenumbers may vary with axial position, this variation is not substantial within
the range of frequencies and axial stations analysed, especially considering the small range
of frequencies in which the guided jet mode exists.

The radial shapes of the different waves from POD and LSA are compared in figure 13.
Here, only amplitudes of these modes are shown, since all modes are considered to have
a single frequency and wavenumber; the radial phase information, related to the positions
of peaks and nodes of the different modes, can be directly inferred from figure 13. For
the KH wave, mode shapes from the POD wavenumber spectrum are more radially spread
than the linear stability results, as shown in figure 13(a), which can be connected to both
molecular and turbulent viscous effects; a consideration of these effects may lead to a
better comparison between the modes, similar to what was observed by Pickering et al.
(2020) for resolvent analysis. One should keep in mind that the LSA does not consider
the spreading of the mean flow, which can also lead to KH modes that are more spread in
space. Also, the relative amplitudes of the peaks are not equal, as well as the radial decay
rate in the interjet region and the outer region. Still, some qualitative features are familiar:
as in the POD, the LSA mode displays a second oscillation closer to the centre of the jets
in the streamwise velocity, which is related to the Mach disk wake (Edgington-Mitchell
et al. 2014a), and the phase shifts of this coherent structure for different radial positions
are also in agreement. A phase shift of π between the interjet region and the outer region
is also present in the streamwise velocity for both LSA and POD modes. The asymmetry
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Figure 13. Comparison between mode 1SS from LSA (both (a,b) KH and (c,d) upstream waves) and the
dominant POD mode (extracted from the energy peaks at positive and negative wavenumbers of the spectra
shown in figure 8). The LSA was computed using x/D = 5 and St = 0.2075. All modes are normalised by their
maximum amplitude.

of the mode around y/D = 1.5 is also well captured, which would not be possible if a
single-jet spatial stability analysis was performed. Overall, the shape of the lateral velocity,
shown in figure 13(b), is even closer to the POD modes. Despite the sharper valley around
y/D = 1.5, the LSA was able to capture some essential features like the radial decay of
disturbances and the double peak close to the centre of the jets.

The radial shapes of the upstream-travelling wave are shown in figure 13(c,d). A
remarkable agreement between the POD mode and the LSA is observed for both velocity
components: all peaks and nodes are correctly described by the LSA, the radial decay (both
towards the second jet and outwards) is well captured, as well as the particular asymmetric
behaviour around the centre of the jet. The same is found for the lateral velocity, where a
slight mismatch in the interjet region is observed. This could be due to the absence of the
mean radial velocity in the analysis, or the axisymmetric jet assumption; small deviations
from that assumption are expected in the interjet region, and that could affect the shapes
of the modes. Still, this level of agreement suggests that this wave is not as affected by the
jet spreading and the viscous effects as the KH mode. It also suggests that the resonance
loop is, indeed, closed by the guided jet mode for the twin-jet system even at such high
Mach number.

The present results can also be interpreted in light of the analysis of Bell et al. (2021).
In that previous work, the authors identified the presence of three processes related to the
coupling between the two jets. It was shown that, at NPR = 5.0, the screech tone is steady,
and the flow is dominated by a single process associated with symmetric oscillations
in the PIV plane (here identified as 1SS mode). Still, since no out-of-plane data were

918 A38-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.366


Twin-jet coupling using spatial linear stability analysis

available, no conclusion about the 1AS component could be made. The present results
confirm that the 1SS mode is active, and that this is a consequence of the characteristics
of the upstream wave related to that symmetry. However, we show that the 1AS mode
is also likely to be present, especially considering that the characteristics (phase velocity
and bands of existence) of the waves with the 1AS symmetry are very close to those
of the waves with the 1SS symmetry. This is also supported by the fact that different
processes can be supported simultaneously in the twin-jet system, as shown by Bell et al.
(2021). Evaluation of the role of the 1AS mode will require an experimental campaign
that includes cross-plane measurements. Measurements in the r–θ plane will enable
identification of all possible mode symmetries, and permit direct comparison of their
relative energies using symmetry-imposed POD.

5. Conclusions

The present work focused on a characterisation of the twin-jet coupling operating at
high Mach number and underexpanded condition. The PIV data presented in previous
works (Bell et al. 2018, 2021) were revisited, and a POD was performed imposing the
symmetry of the problem. This confirmed the identification of a dominant regime in the
flow (1SS), and modes with the dominant symmetry were generated. It was found that
three modes are especially relevant in the resonant phenomenon: a mode pair related to
the different waves present in the cycle, and a third mode that can be associated with
a shear thickness modulation. Spatial Fourier transform of the leading POD mode pair
led to the identification of two waves in the velocity field: the KH mode, which has
positive wavenumber peak in the spectrum, and the upstream-travelling wave (related to
the negative wavenumber peak).

The mean flow from the PIV experiments was used to perform a spatial LSA, which
was designed to take advantage of the current symmetry by using Floquet theory. From the
LSA, four modes associated with the KH instability mechanism were identified, each one
related to a combination of azimuthal wavenumbers m = ±1 of each jet. All four modes
had similar growth rates and phase velocities for all frequencies and axial stations analysed,
which provided no argument for resonance locking in any of the modes. By using LSA, we
also identified four different upstream-travelling modes, following the same symmetries as
the KH mode. In contrast with the KH mode, the characteristics of the upstream modes
change substantially between the different symmetries, and modes related to 1SS and 1AS
have a much larger range of allowable frequencies in which resonance can be closed. This
result is consistent over all axial stations analysed, and the frequency range in which these
modes exist is also close to the screech frequency for this case.

Finally, modes from LSA were compared to the leading POD mode pair. Overall, LSA
modes led to coherent structures that are qualitatively similar to the ones found in POD,
especially concerning the positions of the peaks and the phase jumps. By comparing the
radial structure related to the peaks of the spatial Fourier transform of the POD mode pair,
it was seen that the KH mode is qualitatively well predicted by the LSA. The shapes of
the upstream waves were in close agreement, and even the details of these structures were
captured by the LSA. Wavenumbers of both structures were also very close to those from
the POD Fourier spectrum.

We present a method to analyse single- and twin-jet systems (and other flows with
azimuthal non-uniformity) using LSA and a symmetry-imposed POD associated with a
spatial Fourier transform, which has proven useful for revealing some of the characteristics
of the resonance phenomenon at play. The results show the relevance of the KH mode
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in screech, and highlight that the characteristics of the upstream-travelling guided jet
mode are an essential part of the dynamics – in this case, this wave dictates which
coupling regime will be followed by the twin-jet system, being a key part of the resonance
phenomenon.
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